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1 Introduction

Ordinary mirror symmetry has had a long history in string theory. This paper concerns

a heterotic generalization of ordinary mirror symmetry, sometimes known as (0,2) mirror

symmetry. Whereas ordinary mirror symmetry relates, in simple cases, pairs of Calabi-Yau

spaces X1, X2, (0,2) mirror symmetry relates pairs (X1, E1), (X2, E2), where Ei → Xi is a

holomorphic vector bundle such that ch2(Ei) = ch2(TXi).

Ordinary mirror symmetry is now well-understood, but (0,2) mirror symmetry is still

under development, and has been for a number of years (see e.g. [1–7]). Many basics have

been worked out: there is a (0,2) version [2] of the Greene-Plesser orbifold construction [8],

there has been an attempt [3] to duplicate GLSM-based dualities [9, 10], and for the

case that E is a deformation of the tangent bundle of a ‘reflexively plain’ Calabi-Yau

hypersurface, there is a (0,2) analogue [4] of Batyrev’s construction [11–13]. Furthermore,

there is now a (0,2) analogue of quantum cohomology, known as quantum sheaf cohomology,

which has been developed in e.g. [14–29]. The present state-of-the-art is that quantum sheaf

cohomology has been computed for toric varieties and Grassmannians with deformations

of the tangent bundle. (At present, however, a heterotic analogue of Gromov-Witten

invariants [30] is not yet known.)

Ideally, one would like to understand mirrors to basic cases such as the quintic with

a tangent bundle deformation. At present, not even such basic examples are understood.

One strategy to construct such mirrors would be to use abelian duality [9, 10] to construct

mirrors to toric ambient spaces, and then standard tricks to extrapolate to conjectures for

mirrors to compact Calabi-Yau hypersurfaces.

Such a strategy was attempted in [3], who discovered that the methods previously

applied in [10] seem to crucially require (2,2) supersymmetry — or at least a (0,2) extension

will require new ideas. As a result, the (0,2) version of abelian duality is not presently

understood. Worse, unlike the case when [10] was written, until recently there were no

known examples of (0,2) Landau-Ginzburg mirrors to Fano spaces, not even for simple

cases such as P1 × P1, which complicates efforts to extend abelian duality to (0,2) cases.

As part of a program of better understanding (0,2) mirror symmetry, one of the authors

has been engaged with various collaborators in a program of constructing such Landau-

Ginzburg mirrors for Fano spaces [6, 7], to help cut through the difficulties above. In those

works, mirrors were constructed for (0,2) GLSMs for products of projective spaces, toric del

Pezzo surfaces, and Hirzebruch surfaces,1 with (Euler-type) tangent bundle deformations.

In each case, mirrors were constructed in a laborious non-systematic piecemeal fashion

by guessing ansatzes and comparing chiral rings and correlation functions to determine

coefficients — no systematic formulas applicable to all cases were produced.

In this paper we propose formulas for (0,2) B/2-twisted mirrors to A/2 models on toric

Fano spaces (and closely related toric varieties), and present corresponding conjectures for

hypersurfaces, for a special class of Euler-type tangent bundle deformations corresponding

1Most Hirzebruch surfaces are not Fano, but as discussed in [7], one expects them to flow to isolated

vacua in the IR, so one expects to be able to use the same techniques to build a mirror to the GLSM, which

is more properly interpreted as the mirror to a different geometric phase (the UV phase) of the GLSM.
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to a subset of ‘toric’ deformations. (To be clear, we are proposing a formula for Landau-

Ginzburg mirrors, but we are not claiming to have a worldsheet dualization procedure

along the lines of [10].)

We will check that our systematic construction successfully duplicates results (for this

special class of deformations) for the examples of toric Fano surfaces described in [6, 7].

The methods we present here will only apply to a subset of the deformations considered

in [6, 7], but will produce mirrors systematically and quickly, unlike the methods used

in [6, 7] to arrive at the results presented there.

Our methods will use ideas and results from supersymmetric localization [31], first

applied to two-dimensional GLSMs in [32, 33].

We begin in section 2 by quickly reviewing existing results on GLSM-based mirror

constructions in theories with (2,2) supersymmetry. In section 3 we describe our proposal

for (0,2) mirrors to toric Fano varieties. In section 4 we describe formal arguments for why

correlation functions match between the original A/2-twisted GLSM and the mirror B/2-

twisted Landau-Ginzburg model. In section 5 we describe several examples, checking that

the predictions of our proposal match existing results worked out in [6, 7]. In section 6 we

describe how to formally extend these results to hypersurfaces, following the same pattern

that has been followed for (2,2) mirror symmetry.

Other recent work on two-dimensional (0,2) theories from different directions includes

e.g. [34–44].

2 Review of (2,2) Fano mirrors

Let us quickly review the mirror ansatz for abelian (2,2) GLSMs for Fano toric varieties

in [10].

2.1 General aspects

2.1.1 Basics

First, we consider a GLSM with gauge group U(1)k and N chiral superfields, with charges

encoded in charge matrix (Qai ).

Following [10], the mirror is a theory with k superfields Σa, as many as U(1)s in the

original GLSM, and N twisted chiral fields Yi, as many as chiral multiplets in the original

GLSM, of periodicity 2πi, with superpotential

W =
k∑
a=1

Σa

(
N∑
i=1

Qai Yi − ta

)
+ µ

N∑
i=1

exp(−Yi), (2.1)

where µ is a scale factor.

In the expression above, the Σa act effectively as Lagrange multipliers, generating

constraints
N∑
i=1

Qai Yi = ta (2.2)

– 3 –
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originating with the D terms of the original theory. We can solve these constraints formally2

by writing

Yi =

N−k∑
A=1

V A
i θA + t̃i (2.3)

where θA are the surviving physical degrees of freedom, t̃i are solutions of

N∑
i=1

Qai t̃i = ta, (2.4)

and V A
i is a rank-(N − k) matrix solving

N∑
i=1

Qai V
A
i = 0. (2.5)

(The rank requirement goes hand-in-hand with the statement that there are N − k inde-

pendent θA’s.) The periodicity of the Yi’s will lead to interpretations of the space of θA’s

in terms of LG orbifolds and character-valued fields, as we shall review later. Note that

for ti, V
A
i satisfying the equation above,

N∑
i=1

Qai Yi =
∑
i

Qai

(∑
A

V A
i θA + t̃i

)
= ta,

and so the V A
i encode a solution of the D-term constraints.

After integrating out the Lagrange multipliers, the superpotential can be rewritten as

W = µ

N∑
i=1

(
et̃i

N−k∏
A=1

exp(−V A
i θA)

)
. (2.6)

In this language, the (2,2) mirror map between A- and B-model operators is (partially)

defined by
k∑
a=1

Qai σa ↔ µ exp(−Yi) = µet̃i
N−k∏
A=1

exp(−V A
i θA), (2.7)

which can be derived by differentiating (2.1) with respect to Yi. (See for example [10,

Section 3.2], where this is derived as the equations of motion of the mirror theory. In the

next section, we will also see that this map is consistent with axial R symmetries.) In

fact, this overdetermines the map — only a subset of the Yi’s will be independent variables

solving the constraints (2.2). As we will see explicitly later, the redundant equations are

equivalent to chiral ring relations (as must follow since they all arise as the same equations

of motion in the mirror), and are also specified by the equations of motion derived from

the superpotential W above.

2The expressions given here are entirely formal, and there can be subtleties. For example, if the entries

in V Ai are fractional, then as is well-known, the mirror may have orbifolds.
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In appendix A we will briefly outline a variation on the usual GLSM-based mirror

derivation. Regardless of how the B-model mirror superpotential is obtained, it can be

checked by comparing closed-string A model correlation functions between the mirror and

the original A-twisted GLSM using supersymmetric localization. For (2,2) theories, this

can be done at arbitrary genus using the methods of [45, 46], whereas for (0,2) theories, we

can only apply analogous tests at genus zero. We will perform such correlation function

checks later in this paper.

2.1.2 R charges

Let us take a moment to consider R charges. In the A-twisted theory, the axial R-charge

is in general broken by nonperturbative effects, so that under an axial symmetry transfor-

mation, anomalies induce a shift in the theta angle3 by

θa 7→ θa + 2α
∑
i

Qai , ta 7→ ta + 2iα
∑
i

Qai ,

for α parametrizing axial R symmetry rotations. The shift above can formally be de-

scribed as

t̃i 7→ t̃i + 2iα,

(using the relation between t̃i and ta in (2.4)). In the same vein, under the same axial R

symmetry, the mirror field Yi transforms as

Yi 7→ Yi + 2iα,

so that exp(−Yi) has axial R-charge 2. If we take Σa to also have axial R-charge 2, then it

is easy to verify that the entire mirror superpotential (2.1) has axial R-charge 2, as desired,

taking the t’s to have nonzero R-charge as described. In addition, the operator mirror

map (2.7) is also consistent with axial R-charges in that case.

2.1.3 Twisted masses

One can also consider adding twisted masses. Recall that a twisted mass can be thought of

as the vev of a vector multiplet, gauging some flavor symmetry. Taking the vev removes the

gauge field, gauginos, and auxiliary field, and replaces them with a single mass parameter

m̃, corresponding to the vev of the σ field. In the notation of [47, Eq. (2.19)], this means,

for a single U(1) flavor symmetry that acts on a field φi with charge QF,i, we add terms to

the action of the form

−2|m̃|2
∑
i

Q2
F,i|φi|2 −

√
2
∑
i

QF,i
(
m̃ψ+,iψ−,i + m̃ψ−,iψ+,i

)
.

In the present case, for a toric variety with no superpotential, there are at least as

many flavor symmetries as chiral superfields modulo gauged U(1)s, i.e. at least N −k U(1)

flavor symmetries. (There can also be nonabelian components.) For simplicity, we will

3This should not be confused with the fundamental field θA defined earlier.
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simply allow for a twisted mass m̃i associated to each chiral superfield, and will not try to

distinguish between those related by gauge U(1)s.

Including twisted masses m̃i, the full mirror superpotential (before integrating out Σ’s)

takes the form

W =
N∑
i=1

(
k∑
a=1

ΣaQ
a
i + m̃i

)(
Yi − t̃i

)
+ µ

N∑
i=1

exp(−Yi). (2.8)

This expression manifestly has consistent axial R-charge 2 (using the ‘modified’ R-charge

that acts on t̃i). It differs from the more traditional expression [10, Eq. (3.86)]

W =
k∑
a=1

Σa

(∑
i

Qai Yi − ta

)
+

N∑
i=1

m̃iYi + µ
N∑
i=1

exp(−Yi), (2.9)

by a constant term (proportional to
∑N

i=1 m̃it̃i), and so defines the same physics.

After including twisted masses, the operator mirror map becomes

k∑
a=1

Qai σa + m̃i ↔ µ exp(−Yi).

Note that both sides of this expression are consistent with the (modified) R-charge assign-

ments described above.

Generically in this paper we will absorb µ into a redefinition of the Yi’s, and so not

write it explicitly, but we mention it here for completeness.

Finally, we should remind the reader that in addition to the superpotential above, one

may also need to take an orbifold to define the theory, as is well-known. This will happen

if, for example, some of the entries in (V A
i ) are fractions, in order to reflect ambiguities in

taking the roots implicit in resulting expressions such as exp(−V A
i θA).

2.2 Example with twisted masses

To give another perspective, in this section we will review the (2,2) mirror to the GLSM

for Tot(O(−n)→ P2), for n ≤ 3 (and no superpotential), and to make this interesting, we

will include twisted masses m̃i, correspnding to phase rotations of each field.

The charge matrix for this GLSM is

Q = (1, 1, 1,−n),

and following the usual procedure, the D terms constrain the dual (twisted) chiral super-

fields as

Y1 + Y2 + Y3 − nYp = t.

The standard procedure at this point is to eliminate Yp, and write the dual potential

in terms of Y1−3, taking a Zn orbifold to account for the fractional coefficients of the Yi
and its periodicity. In other words,

Yp =
1

n
(Y1 + Y2 + Y3 − t) ,

– 6 –
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hence the (2,2) superpotential is given by

W =
∑
i

m̃iYi + exp(−Y1) + exp(−Y2) + exp(−Y3) + exp(−Yp),

=
∑
i

m̃iYi + (exp(−Y1/n))n + (exp(−Y2/n))n + (exp(−Y3/n))n

+ exp(−t/n) exp(−Y1/n) exp(−Y2/n) exp(−Y3/n).

Phrased more simply, if we define Zi = exp(−Yi/n), then the (2,2) mirror theory is, as

expected, a Zn orbifold with superpotential

W = −
∑
i

m̃in lnZi + Zn1 + Zn2 + Zn3 + exp(−t/n)Z1Z2Z3,

with the understanding that the fundamental fields are Yis not Zis. (For hypersurfaces,

the fundamental fields will change.)

Later, we will use the matrices (V A
i ) extensively, so in that language, the change of

variables above is encoded in

(V A
i ) =

 1 0 0 1/n

0 1 0 1/n

0 0 1 1/n

 .
Then, we write Yi = V A

i θA, and so

Y1 = θ1, Y2 = θ2, Y3 = θ3, Yp = (1/n)(θ1 + θ2 + θ3 − t).

Let us next discuss the operator mirror map. This is given by

exp(−Y1) = Zn1 ↔ σ,

exp(−Y2) = Zn2 ↔ σ,

exp(−Y3) = Zn3 ↔ σ,

exp(−Yp) = Z1Z2Z3 exp(−t/n) ↔ −nσ.

2.3 (2,2) in (0,2) language

Now, let us describe (2,2) mirrors in (0,2) language, as preparation for describing more

general (0,2) mirrors. Let (Σa,Υa) be the (0,2) chiral and Fermi components of Σa, and

(Yi, Fi) the (0,2) chiral and Fermi components of Yi. Then, the (2,2) superpotential (2.8)

is given in (0,2) superspace by

W =
k∑
a=1

[
Υa

(
N∑
i=1

Qai Yi − ta

)
+

N∑
i=1

ΣaQ
a
i Fi

]
− µ

N∑
i=1

Fi exp(−Yi) +
N∑
i=1

m̃iFi. (2.10)

We integrate out Σa, Υa to get the constraints

N∑
i=1

Qai Yi = ta,

N∑
i=1

Qai Fi = 0,

– 7 –
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which we solve with the V A
i by writing

Yi =
N−k∑
A=1

V A
i θA + t̃i, Fi =

N−k∑
A=1

V A
i GA,

where (θA, GA) are the chiral and Fermi components of the (2,2) chiral superfields θA.

After integrating out the constraints, the (0,2) superpotential becomes

W =
N∑
i=1

N−k∑
A=1

GAV
A
i (m̃i − µ exp(−Yi)) =

N∑
i=1

N−k∑
A=1

GAV
A
i

(
m̃i − µet̃i

N−k∏
B=1

exp(−V B
i θB)

)
.

(2.11)

As is standard, we remind that reader that depending upon the entries in (V A
i ), the mirror

may be a LG orbifold, which are required to leave W invariant.

In this language, the (2,2) mirror map between A- and B-model operators is (partially)

defined by
k∑
a=1

Qai σa + m̃i ↔ µ exp(−Yi) = µet̃i
N−k∏
A=1

exp(−V A
i θA), (2.12)

which can be derived by differentiating (2.10) with respect to Fi.

In most of the rest of this paper, we will absorb µ into a field redefinition of the Yis

for simplicity, but we include it here for completeness.

3 Proposal for (0,2) Fano mirrors

We restrict to (0,2) theories obtained by (some) toric deformations of abelian (2,2) GLSMs

for Fano spaces, by which we mean physically that we choose E’s such that Ei ∝ φi,

where on the (2,2) locus φi is the chiral superfield paired with the Fermi superfield whose

superderivative is Ei.

In addition, to define a mirror, we also make another choice, namely we pick an invert-

ible4 k × k submatrix, of the charge matrix (Qai ), which we will denote S. The choice of

S will further constrain the allowed toric deformations — for a given S, we only consider

some toric deformations. Our mirror will depend upon the choice of S, and since different

S’s will yield different allowed bundle deformations, there need not be a simple coordinate

transformation relating results for different choices of S in general. Furthermore, S is only

relevant for bundle deformations — it does not enter (2,2) locus computations, and so it

has no analogue within [10].

For a given choice of S, in the A/2 model, write

Ei =
k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσaφi,

4We assume that the charge matrix does indeed have an invertible k × k submatrix. If not, then the

theory has at least one free decoupled U(1), and after performing a change of basis to explicitly decouple

those U(1)’s, our analysis can proceed on the remainder.

– 8 –
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where in the expression above, we do not sum over i’s. The (0,2) deformations we will

consider are encoded in the matrices Bij , where Bij = 0 if i defines a column of the matrix

S. Note that, at least on its face, this does not describe all possible Euler-sequence-type

(0,2) deformations, but only a special subset. We will give a mirror construction for that

special subset.

Then, the mirror can be described by a collection of C×-valued fields Yi (just as on

the (2,2) locus, dual to the chiral superfields of the original theory), satisfying the same

D-term constraints as on the (2,2) locus, and with (0,2) superpotential

W =
k∑
a=1

[
Υa

(
N∑
i=1

Qai Yi − ta

)
+

N∑
i=1

ΣaQ
a
i Fi

]

−µ
∑
i

Fi exp(−Yi) + µ
∑
i

Fi

∑
iS ,j,a

BijQ
a
j [(S

−1)T ]aiS exp(−YiS )

 , (3.1)

where iS denotes an index running through the columns of S, and where the second term

was chosen so that the resulting equations of motion duplicate the chiral ring. (For the

moment, we have assumed no twisted masses are present; we will return to twisted masses

at the end of this section.)

Now, to do meaningful computations, we must apply the D-term constraints to both

Yi’s and Fi’s. Applying the D-term constraints to the Fi’s to write them in terms of GA’s

(i.e. integrating out Σa’s), and for simplicity suppressing the Υa constraints and setting

the mass scale µ to unity, we have the expression

W = −
N−k∑
A=1

GA

∑
i

V A
i exp(−Yi) +

∑
iS

DA
iS

exp(−YiS )

 , (3.2)

where

DA
iS

= −
∑
i,j

∑
a

V A
i BijQ

a
j [(S

−1)T ]aiS (3.3)

Note when B = 0, D = 0, and the expression for W above immediately reduces to its (2,2)

locus form. We will derive this expression for D below.

In this language, the mirror map between A/2- and B/2-model observables is defined by

k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσa ↔ exp(−Yi) = et̃i

N−k∏
A=1

exp(−V A
i θA). (3.4)

(Strictly speaking, we will see in examples that these equations define not only the operator

mirror map plus some of the chiral ring relations.)

We can derive the operator mirror map above from the superpotential (3.1) by taking

a derivative with respect to Fi, as before. Doing so, one finds

Qai σa − exp(−Yi) +
∑
iS ,j,a

BijQ
a
j [(S

−1)T ]aiS exp(−YiS ) = 0.

– 9 –
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For i corresponding to columns of S, Bij = 0, and the expression above simplifies to

SaiSσa = exp(−YiS ).

Plugging this back in, we find

Qai σa − exp(−Yi) +
∑
j,a

BijQ
a
jσa = 0,

which is easily seen to be the operator mirror map (3.4).

We can apply the operator mirror map as follows. Recall that the constraints imply∑
i

Qai Yi = ta

hence ∏
i

exp(−Qai Yi) = exp(−ta) = qa,

hence plugging in the proposed map (3.4) above, we have

∏
i

 k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσa

Qai

= qa,

which is the chiral ring relation in the A/2-twisted GLSM.

In passing, to make the method above work, it is important that the determinants

appearing in quantum sheaf cohomology relations in e.g. [22–25] all factorize. In other

words, recall that for a general tangent bundle deformation, the quantum sheaf cohomology

ring relations take the form ∏
α

(detMα)Q
a
α = qa,

where α denotes a block of chiral fields with the same charges, and Mα encodes the E’s,

which will mix chiral superfields of the same charges. In order for the operator mirror map

construction we have outlined above to work, it is necessary that each detMα factorize into

a product of factors, one for each matter chiral multiplet. This is ultimately the reason

why in this paper we have chosen to focus on ‘toric’ deformations, in which each E’s do

not mix different matter chiral multiplets.

Now, in terms of the operator mirror map, let us derive the form of D above in

equation (3.3). The equations of motion from the superpotential (3.2) are given by

∂W

∂GA
=
∑
i

V A
i exp(−Yi) +

∑
iS

DA
iS

exp(−YiS ) = 0.

Now, we plug in the operator mirror map (3.4) above to get

∑
i

V A
i

∑
a

∑
j

(δij +Bij)Q
a
jσa

 +
∑
iS

DA
iS

∑
a

∑
j

(δiSj +BiSj)Q
a
jσa

 = 0.

– 10 –
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Using the constraint ∑
i

V A
i Q

a
i = 0,

the first δij term vanishes, and furthermore, since the matrix B is defined to vanish for

indices from columns of S, we see that in the second term, BiSj = 0, hence the equation

above reduces to ∑
i,j

∑
a

V A
i BijQ

a
jσa +

∑
iS

∑
a

DA
iS
SaiSσa = 0.

Since this should hold for all σa, we have that∑
i,j

V A
i BijQ

a
j +

∑
iS

DA
iS
SaiS = 0,

which can be solved to give expression (3.3) for D above.

Thus, the expression for the superpotential (3.2) together with the operator mirror

map (3.4) has equations of motion that duplicate the chiral ring.

In passing, one could also formally try to consider more general cases in which a

submatrix S ⊂ Q is not specified. One might then try to take the expression for the mirror

superpotential to be of the form

W = −
N−k∑
A=1

GA

(∑
i

V A
i exp(−Yi) +

∑
i

DA
i exp(−Yi)

)
,

where now the i index on D is allowed to run over all chiral superfields, not just a subset.

Following the methods above, one cannot uniquely solve for D — one gets families of

possible D’s with undetermined coefficients, and we do not know how to argue that the

correlation functions match for all such coefficients without restricting to subsets defined

by choices S ⊂ Q.

Now, in principle, for (0,2) theories defined by deformations of the (2,2) locus, there

is an analogue of twisted masses that one can add to the theory. In the (2,2) case, twisted

masses corresponded to replacing a vector multiplet by its vevs, so that only a residue of

σ survived. In (0,2), by contrast, the vector multiplet does not contain σ, only the gauge

field, gauginos, and auxiliary fields D, so we can no longer interpret the twisted mass in

terms of replacing a vector multiplet with its vevs.

Instead, we can understand the analogue of a twisted mass in a (0,2) theory corre-

sponding to a deformation of the (2,2) locus in terms of additions to Ei = D+Λi, for Fermi

superfields Λi. In particular, the (2,2) vector multiplet’s σ field enters GLSMs written

in (0,2) superfields as a factor in such E’s, so twisted masses enter similarly, as terms of

the form

Ei = m̃iφi

(where as usual we are admitting the possibilty of several toric symmetries, and simply

giving each chiral superfield the possibility of its own twisted mass). Such terms are

only possible if the (0,2) superpotential has compatible J ’s, meaning that in order for
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supersymmetry to hold, one requires E ·J = 0, as usual. This is a residue of the requirement

in the (2,2) theory that twisted masses arise from flavor symmetries.

We have already seen, in section 2.3, how (2,2) twisted masses can be represented in the

mirror, described in (0,2) superspace. To describe their combination with E deformations

is straightforward. Briefly, the (0,2) mirror superpotential takes the form

W = −
N−k∑
A=1

GA

∑
i

V A
i exp(−Yi) +

∑
iS

DA
iS

exp(−YiS )

 +

N∑
i=1

N−k∑
A=1

GAV
A
i m̃i, (3.5)

with (DA
iS

) defined as in (3.3), and the operator mirror map has the form

k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσa + m̃i ↔ exp(−Yi) = et̃i

N−k∏
A=1

exp(−V A
i θA). (3.6)

4 Correlation functions

In this section, we will argue formally that correlation functions in our proposed (0,2)

mirrors match those of the original theory. More precisely, we will compare closed-string

correlation functions of A- or A/2-twisted GLSM σ’s to corresponding correlation functions

in B- or B/2-twisted Landau-Ginzburg models. (Often, the Landau-Ginzburg mirror will

be an orbifold; we will only compare against untwisted sector correlation functions in such

orbifolds.) Our computations will focus on genus zero computations, but in (2,2) cases, in

principle can be generalized to any genus. (See also [48] for related work.)

Before doing so, let us first outline in what sense correlation functions match. There

are two possibilities:

• First, for special matrices (V A
i ), we will argue that correlation functions match on

the nose. In order for this to happen, we will need to require that the determinant

of an invertible k × k submatrix of the charge matrix Q, match (up to sign) the

determinant of a complementary5 (N − k)× (N − k) submatrix of (V A
i ).

• Alternatively, we can always formally rescale some of the Yis (without introducing or

removing orbifolds) to arrange for the determinants above to match, up to sign. In

this case, the correlation functions of one theory are isomorphic to those of the other

theory, but the numerical factors will not match on the nose. (Instead, the relations

between numerical factors will be determined by the rescaling of the Yis.)

In either event, correlation functions will match.

5‘Complementary’ in this case means that if the k × k matrix is defined by i’s corresponding to certain

chiral superfields, then those same chiral superfields cannot appear corresponding to any i’s in the (N −
k) × (N − k) submatrix of (V Ai ).
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4.1 (2,2) supersymmetric cases

We will first check that on the (2,2) locus, the ansatz described above (i.e. the ansatz

of [10]) generates matching correlation functions between the A-twisted GLSM and its

B-twisted Landau-Ginzburg model mirror. (See also [49] for an analogous comparison of

partition functions.)

First, let us consider correlation functions in an A-twisted GLSM. An exact expression

is given for fully massive cases in e.g. [50, Eq. (4.77)]:

〈O〉 =
(−)Nc

|W |
1

(−2πi)rkG

∑
σP

O
Z1−loop

H

where G is the GLSM gauge group, W its Weyl group, Nc its rank,

Z1−loop =
N∏
i=1

(
k∑
a=1

Qai σa

)R(Φi)−1

,

(R(Φi) the R-charge, which for simplicity we will assume to vanish,) σP the vacua, and H

is the Hessian of the twisted one-loop effective action, meaning

H = det

(∑
i

QaiQ
b
i∑

cQ
c
iσc

)
, (4.1)

using (up to factors) the twisted one-loop effective action in e.g. [51, Eq. (3.36)].

Now, up to irrelevant overall factors, there is an essentially identical expression for

Landau-Ginzburg correlation functions [52], involving the Hessian of the superpotential

rather than H/Z1−loop above. Therefore, to show that correlation functions match, we will

argue that the H/Z1−loop above, computed for the A-twisted GLSM, matches the Hessian

of superpotential derivatives for the mirror Landau-Ginzburg model.

First, since we are only interested in the determinant, we can rotate the charge matrix

(Qai ) by an element U ∈ SL(k,C) without changing the determinant:

det

(∑
i

QaiQ
b
i∑

cQ
c
iσc

)
7→ (detU)2 det

(∑
i

QaiQ
b
i∑

cQ
c
iσc

)
= det

(∑
i

QaiQ
b
i∑

cQ
c
iσc

)
.

Thus, it will be convenient to rotate the charge matrix to the form6

Qai =

 a1 Q1
k+1 · · · Q1

N
. . .

...
. . .

...

ak Q
k
k+1 · · · QkN

 . (4.2)

Note that for the charge matrix in this form,

Z1−loop =

(
k∏
i=1

aiσi

)−1( N∏
i=k+1

(
k∑
a=1

Qai σa

))−1

.

6As we are not conjugating the charge matrix, but rather multiplying on one side only, it should be

possible to arrange for a k × k submatrix to be diagonal, not just in Jordan normal form.
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To put the charge matrix in this form, write

Q = [S|∗] = (detS)1/k[S′|∗],

where S is k × k. Then, multiply in (S′)−1, to get

(S′)−1Q = (detS)1/k[I|∗],

which is now diagonal.

It is straightforward to compute

H = det

(∑
i

QaiQ
b
i∑

cQ
c
iσc

)

= det


a1
σ1

+
(Q1

k+1)2

Qck+1σc
+ . . .+

(Q1
N )2

QcNσc

Q1
k+1Q

2
k+1

Qck+1σc
+ . . .+

Q1
NQ

2
N

QcNσc
· · ·

Q2
k+1Q

1
k+1

Qck+1σc
+ . . .

Q2
NQ

1
N

QcNσc
a2
σ2

+
(Q2

k+1)2

Qck+1σc
+ . . .+

(Q2
N )2

QcNσc
· · ·

...
...

. . .

 . (4.3)

We define7 ti = ai/σi and Eai = Qai /
√∑

cQ
c
iσc, then the matrix in the above determinant

becomes  t1 + (E1
k+1)2 + . . .+ (E1

N )2 E1
k+1E

2
k+1 + . . .+ E1

NE
2
N · · ·

E2
k+1E

1
k+1 + . . .+ E2

NE
1
N t2 + (E2

k+1)2 + . . .+ (E2
N )2 · · ·

...
...

. . .

 . (4.4)

When all the ti vanish, one can straightforwardly see that the matrix above is the product

(ET )TET , for matrix E

E =


E1
k+1 E

1
k+2 · · · E1

N

E2
k+1 E

2
k+2 · · · E2

N
...

...
. . .

...

Ekk+1 · · · · · · EkN

 . (4.5)

Using standard results from linear algebra, the generalized characteristic polynomial of

matrix (4.4), in terms of the variables ti, is given by

k∑
m=0

( ∑
a1<···<am

ta1 · · · tam det (Ma1···am)

)
, (4.6)

where the matrix Ma1···am denotes the submatrix of M = (ET )TET by omitting rows

a1 · · · am and columns a′1 · · · a′m (i.e. a principal minor of M of size k − m). (In our

conventions, the determinant vanishes if M has no entries.) Notice that M = (ET )TET ,

so the determinant can be written more simply as

detM + t1 · · · tk +

k−1∑
m=1

 ∑
a1<···<am

ta1 · · · tam

 ∑
i1<···<iN+m−2k

(
detEa1···am,i1···iN+m−2k

)2 ,

(4.7)

7The reader should note that the ti in this section, defined above, is not related to t’s used earlier to

describe FI parameters.
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where detEa1···am,ii···iN+m−2k
denotes the determinant of the submatrix of E formed by

omitting rows a1 · · · am and columns i1 · · · iN+m−2k. (We formally require it to be zero

when N +m− 2k < 0.)

Finally, we divide by Z1−loop to get an expression for H/Z1−loop where H is the Hes-

sian (4.1):

detM + t1 · · · tk
Z1−loop

+
k−1∑
m=1

 ∑
a1<···<am

(aa1)2 · · · (aam)2

 ∏
i/∈{a1,··· ,am}

(
k∑
a=1

Qai σa

)Ba1···am

 ,

(4.8)

for

Ba1···am =
∑

i1<···<iN+m−2k

(
detEa1···am,i1···iN+m−2k

)2
,

where detM vanishes for N < 2k. For later use, note that for N ≤ 2k we can expand

detM

Z1−loop
=

(
k∏
i=1

aiσi

) ∏
i 6∈{i1,··· ,ik}

(
k∑
c=1

Qck+iσc

)
(Ai1,··· ,ik)2

 , (4.9)

and the terms for 1 ≤ m ≤ k − 1 are given by

a2
a1 · · · a

2
am

 ∏
b 6∈{a1,··· ,am}

abσb

 ∏
i 6∈{im+1,··· ,ik}

(
k∑
c=1

Qck+iσc

)(
Aim+1,··· ,ik

)2 , (4.10)

where Aim+1,··· ,ik denotes the sum of determinants of all (k−m)× (k−m) submatrices of

the charge matrix (Qai ) for values of i > k.

Next, we need to compare the ratio H/Z1−loop above to the analogous Hessian arising

in the mirror B-twisted Landau-Ginzburg model. Here, there is a nearly identical compu-

tation in which the Hessian we just computed is replaced with the determinant of second

derivatives of the mirror superpotential (2.6):

∂2W

∂θA∂θB
= −

N∑
i=1

(
et̃i

(
N−k∏
C=1

exp(−V C
i θC)

)
V A
i V

B
i

)
,

= −
N∑
i=1

((
k∑
a=1

Qai σa

)
V A
i V

B
i

)
,

using the operator mirror map (2.7).

Thus, we need to compute

det

(∑
i

V A
i V

B
i

∑
c

Qciσc

)
,

and compare to the ratio H/Z1−loop from the A model that we computed previously. In

principle, the argument here is very similar to the argument just given for the determinant
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defined by charge matrices. First, using the fact that V has rank N − k, inside the

determinant we can rotate V to the more convenient form

V A
i =

 V 1
1 · · · V 1

k λ1

...
. . .

...
. . .

V k
1 · · · V k

k λ(N−k)

 . (4.11)

In fact, we can say more. Given that the V matrix was originally defined to satisfy∑
i

Qai V
A
i = 0,

after the rotation above inside the determinant, the V matrix should in fact have the form

V A
i =


−λ1Q1

k+1

a1
· · · −λ1Qkk+1

ak
λ1

...
. . .

...
. . .

−λ(N−k)Q1
N

a1
· · · −λ(N−k)QkN

ak
λ(N−k)

 . (4.12)

Then, using the more convenient form of V above, we find that we can write the matrix(∑
i

V A
i V

B
i

∑
c

Qciσc

)
(4.13)

=


(λ1)2

[
(Q1

k+1)2σ1
a1

+ · · ·+ (Qkk+1)2σk
ak

+Qck+1σc

]
λ1λ2

[
Q1
k+1Q

1
k+2σ1

a1
+ · · ·+ Qkk+1Q

k
k+2σk

ak

]
· · ·

λ2λ1

[
Q1
k+1Q

1
k+2σ1

a1
+ · · ·+ Qkk+1Q

k
k+2σk

ak

]
(λ2)2

[
(Q1

k+2)2σ1
a1

+ · · ·+ (Qkk+2)2σk
ak

+Qck+2σc

]
· · ·

...
...

. . .

 .

Similarly, we define si = (λi)2Qck+iσc and F ai = λiQak+i

√
σa/aa (without summing over the

index a). Then, the matrix above can be written as s1 + (F 1
1 )2 + · · ·+ (F k1 )2 F 1

1F
1
2 + · · ·+ F k1 F

k
2 · · ·

F 1
2F

1
1 + · · ·+ F k2 F

k
1 s2 + (F 1

2 )2 + · · ·+ (F k2 )2 · · ·
...

...
. . .

 . (4.14)

When all si vanish, one can observe that the matrix is the product F TF , for

F =


F 1

1 F 1
2 · · · F 1

N−k
F 2

1 F 2
2 · · · F 2

N−k
...

...
. . .

...

F k1 F k2 · · · F kN−k

 . (4.15)

By using the same technique we can show that the determinant of (4.13) vanishes for

N > 2k, and for N ≤ 2k is

det(F TF ) + s1 · · · sN−k (4.16)

+

N−k−1∑
n=1

 ∑
i1<···<in

(si1si2 · · · sin)

 ∑
a1<···<a2k−N+n

(
detFi1···in,a1···a2k−N+n

)2
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For later use, note that

detF TF =
∑

a1<···<a2k−N

(detFa1···a2k−N )2,

=

(
N−k∏
A=1

(λA)2

)(
k∏
b=1

σb
ab

) ∑
i1<···<ik

( ∑
a1,··· ,ak

Qa1k+i1
· · ·Qakk+ik

εa1···ak

)2
 ,

where Fa1···a2k−N denotes the submatrix of F ai formed by deleting columns a1

through a2k−N .

Next, we plug

sij = (λij )2Qck+ij
σc

into equation (4.16), and compare equation (4.8). First, note that we can expand

t1 · · · tk
Z1−loop

=

(
k∏
i=1

a2
i

) N∏
j=1

(
k∑
a=1

Qajσa

) ,

which matches

s1 · · · sN−k =

N−k∏
A=1

(λA)2

(
k∑
a=1

Qak+Aσa

)
so long as

N−k∏
A=1

λA = ±
k∏
i=1

ai. (4.17)

Analogous results hold for other terms, as we now verify. First we consider the case N ≥ 2k.

The term detM/Z1−loop in the previous determinant corresponds to the term n = N − 2k

in the expansion (4.16), which is given by(
N−k∏
A=1

λA

)2 k∏
a=1

σa
aa

∏
i 6∈{i1,··· ,ik}

(
k∑
c=1

Qck+iσc

)
(Ai1···ik)2 ,

for Ai1···ik defined previously. It is easy to verify that this matches equation (4.9) for

detM/Z1−loop so long as condition (4.17) is satisfied, just as before. The remaining terms

in expansion (4.16) for any given n correspond to terms in (4.8) with m related by n =

N − 2k +m, and have the form(
N−k∏
A=1

λA

)2 ∏
b 6∈{a1,··· ,am}

σb
ab

 ∏
i 6∈{im+1,··· ,ik}

(
k∑
c=1

Qck+iσc

)(
Aim+1···ik

)2 ,

and it is easy to verify that this matches equation (4.10) so long as condition (4.17) is satis-

fied, just as before. The reader can now straightforwardly verify that analogous statements

hold for the cases k < N < 2k, which exhausts all nontrivial possibilities.

Thus, we see that correlation functions will match so long as equation (4.17) holds.

Furthermore, we can always arrange for equation (4.17) to hold. If it does not do so initially,

– 17 –



J
H
E
P
1
1
(
2
0
1
7
)
1
1
2

then as discussed at the start of this section, we can perform field redefinitions and rescale

Yis to arrange for it to hold, at the cost of making the isomorphism between the correlation

functions of either theory a shade more complicated. For example, the coefficient of(∑
c

Qck+1σc

)
· · ·

(∑
d

QdNσd

)

in equation (4.8) is (a1a2 · · · ak)2, and the coefficient of the term of the same order in

equation (4.16) is (λ1λ2 · · ·λN−k)2. We see that equation (4.17) is required for equality

hold, and the choice of sign in equation (4.17) should not have any physical significance.

So far, we have worked at genus zero, but the same argument also implies that the

same closed-string correlation functions match at arbitrary genus. At genus g, A-twisted

GLSM correlation functions are computed in the same fashion albeit with a factor of

(H/Z1−loop)g−1 (see e.g. [45, Section 4], [46, Section 5.1]), whereas B-twisted Landau-

Ginzburg model correlation functions (in the untwisted sector) are computed with a factor

of (H ′)g−1 [52], for H ′ the determinant of second derivatives of the mirror superpotential.

Demonstrating that H/Z1−loop = H ′ therefore not only demonstrates that genus zero

correlation functions match, but also higher-genus correlation functions. (For (0,2) theories,

by contrast, higher genus correlation functions are not yet understood, so there we will only

be able to compare genus zero correlation functions.)

Essentially the same argument applies if one adds twisted masses to the theory. One

simply makes the substitution ∑
a

Qai σa →
∑
a

Qai σa + m̃i, (4.18)

where m̃i is the twisted mass. The details of the proof above are essentially unchanged.

Also note that we are free to redefine σa to σa + ca, and we can use this to set the first k

twisted masses to zero. This leaves N − k twisted masses, consistent with a global flavor

symmetry U(1)N−k.

The arguments above hold so long as one can integrate out all of the matter Higgs fields,

to obtain a pure Coulomb branch. In the (2,2) theory one expects that one should be able

to do this if one adds sufficient twisted masses (see e.g. [45, Section 2.3]). (In particular,

adding twisted masses can act as a substitute for going far out along the Coulomb branch,

which also makes the matter fields massive.)

4.2 (0,2) supersymmetric cases

We will now generalize the previous argument to (0,2) cases.

Our argument here will be very similar to that given for (2,2) cases. We will compare

results for correlation functions in A/2-twisted GLSMs computed with supersymmetric

localization to results for correlation functions computed in B/2-twisted (0,2) Landau-

Ginzburg models.

First, as before, applying supersymmetric localization to an A/2-twisted GLSM, there

is an exact formula for (genus zero) (0,2) correlation functions [25], which has more or
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less the same form as in the (2,2) case, now involving a Hessian of derivatives of a twisted

one-loop (0,2) effective action [22], which takes the form

H = det

(∑
i

∑
j Q

a
iAijQ

b
j∑

mAimQ
c
mσc

)
, (4.19)

where Aij = δij +Bij .

We assume without loss of generality that the invertible S submatrix of the charge

matrix corresponds to the first k columns of Q. Then, one can show that the determi-

nant (4.19) above is equal to

det


a1
σ1

+
Q1
k+1(Q

1
k+1+ε1k+1)

(Qak+1+εak+1)σa
+ . . .+

Q1
N(Q1

N+ε1N)
(QaN+εaN)σa

Q1
k+1(Q

2
k+1+ε2k+1)

(Qak+1+εak+1)σa
+ . . .

Q1
N(Q2

N+ε2N)
(QaN+εaN)σa

· · ·
Q2
k+1(Q

1
k+1+ε1k+1)

(Qak+1+εak+1)σa
+ . . .

Q2
N(Q1

N+ε1N)
(QaN+εaN)σa

a2
σ2

+
Q2
k+1(Q

2
k+1+ε2k+1)

(Qak+1+εak+1)σa
+ . . .+

Q2
N(Q2

N+ε2N)
(QaN+εaN )σa

· · ·
...

...
. . .

 ,

(4.20)

where εai =
∑

j BijQ
a
j .

Now, in the B/2-twisted (0,2) Landau-Ginzburg model, there is an analogous expres-

sion for correlation functions [17], involving the Hessian

det
∂2W

∂GA∂θB
.

One can similarly show that the Hessian above is given by (using the (0,2) operator mirror

map (3.4))

det


(λ1)2

[∑k
b=1

Qbk+1(Q
b
k+1+εbk+1)σb
ab

+ Sk+1

]
λ1λ2

[∑k
b=1

(Qbk+1+εbk+1)Q
b
k+2σb

ab

]
· · ·

λ2λ1

[∑k
b=1

Qbk+1(Q
b
k+2+εbk+2)σb
ab

]
(λ2)2

[∑k
b=1

Qbk+2(Q
b
k+2+εbk+2)σb
ab

+ Sk+2

]
· · ·

...
...

. . .

 ,

(4.21)

where Sk+i =
∑

a

(
Qak+i + εak+i

)
σa.

Finally, following the same steps as for (2,2), one can show that the ratio H/Z1−loop

appearing in the A/2-twisted GLSM matches the Hessian appearing in the B/2-twisted

Landau-Ginzburg model,

det

(∑
i

∑
j Q

a
iAijQ

b
j∑

mAimQ
c
mσc

)(
k∏
i=1

aiσi

) N∏
j=k+1

(Qaj + εaj )σa

 = det
∂2W

∂GA∂θB
,

so long as
N−k∏
i=1

λi = ±
k∏
i=1

ai.

(As before, if this does not hold, we can always perform field redefinitions to rescale some of

the Yis and corresponding Fermi fields Fi, at the cost of making the isomorphism between
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correlation functions of either theory slightly more complicated.) Thus, the A/2-twisted

GLSM Hessian matches that arising in B/2-twisted Landau-Ginzburg model correlation

functions [17]. Since correlation functions in the A/2-twisted GLSM and the B/2-twisted

(0,2) Landau-Ginzburg model have essentially the same form, albeit with potential dif-

ferent Hessians, and we have now demonstrated that the Hessians match, it follows that

correlation functions match.

5 Examples

So far we have presented formal arguments for a (0,2) mirror defined by a (0,2) Landau-

Ginzburg theory with the same chiral ring and correlation functions8 as the original A/2

theory. In this section we will verify that this proposal reproduces known results in spe-

cific examples.

To be specific, we will compare predictions to mirror proposals previously made in [6, 7].

Those papers were originally written by guessing ansatzes for possible mirrors, constrained

to match known results on the (2,2) locus and to have the correct correlation functions and

chiral ring relations. Here, we will see that the proposal we have presented correctly and

systematically reproduces the results obtained by much more laborious methods in [6, 7].

This will implicitly also provide tests that correlation functions and chiral rings do indeed

match, as argued formally in the last section.

That said, the systematic proposal of this paper will only apply to special, ‘toric’ de-

formations, not all tangent bundle deformations, not even all tangent bundle deformations

realizable by Euler-type sequences. Curiously, the terms in the mirrors described in [6, 7]

that are not realized are nonlinear in the fields, suggesting that toric deformations are

mirror to linear terms. We will not pursue this direction further in this paper, but mention

it here for completeness.

5.1 P1 × P1

We begin by reviewing the now-nearly-canonical example of P1 × P1. The charge matrix

of the GLSM for the chiral fields is of the form[
1 1 0 0

0 0 1 1

]
,

and deformations of the tangent bundle are described mathematically as the cokernel of

the short exact sequence

0 −→ O2 ∗−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0,

where the map ∗ is given by

∗ =

[
Ãx B̃x

C̃y D̃y

]
,

8Technically, untwisted sector correlation functions, if the mirror involves an orbifold.
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where Ã, B̃, C̃, D̃ are constant 2 × 2 matrices, and x, y are two-component vectors of

homogeneous coordinates on either P1 factor.

We have the same constraints on fields from D terms as on the (2,2) locus, namely:

Y1 + Y2 = t1, Y3 + Y4 = t2,

where Y1,2 are dual to the variables for one P1, and Y3,4 are dual to the variables for

the other.

Let us solve the constraints above by taking

t̃1 = 0, t̃2 = t1, t̃3 = 0, t̃4 = t2,

and

V A
i =

[
1 −1 0 0

0 0 1 −1

]
,

so that

Y1 = θ, Y2 = t1 − θ, G1 = F1 = −F2,

Y3 = θ̃, Y4 = t2 − θ̃, G2 = F3 = −F4.

5.1.1 First choice of S

We will first consider the case that the submatrix S is given by the first and third columns of

the charge matrix Q above, so that S is the identity matrix. Then, the allowed deformations

are defined by

Aij =


1 0 0 0

A21 A22 A23 A24

0 0 1 0

A41 A42 A43 A44

 .
(Rows correspond to fixed i index, and reflect the fact that for i a row of S, values are fixed

to those of the (2,2) locus.) We can find the corresponding tangent bundle deformations

by comparing the Ei’s. In terms of the matrix above,

E1 =
∑
j,a

A1jQ
a
jσaφ1,

= σ1φ1,

E2 = ((A21 +A22)σ1 + (A23 +A24)σ2)φ2,

E3 = σ2φ3,

E4 = (A41 +A42)σ1 + (A43 +A44)σ2)φ4,

whereas in terms of Ã, B̃, C̃, D̃, we have

E1 = (Ã11φ1 + Ã12φ2)σ1 + (B̃11φ1 + B̃12φ2)σ2,

E2 = (Ã21φ1 + Ã22φ2)σ1 + (B̃21φ1 + B̃22φ2)σ2,

E3 = (C̃11φ3 + C̃12φ4)σ1 + (D̃11φ3 + D̃12φ4)σ2,

E4 = (C̃21φ3 + C̃22φ4)σ1 + (D̃21φ3 + D̃22φ4)σ2,
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for φ1,2 corresponding to homogeneous coordinates on the first P1 factor and φ3,4 corre-

sponding to homogeneous coordinates on the second. Comparing these two expressions, we

find that in terms of the original 2×2 matrices, our ansatz is equivalent to the special case

Ã =

[
1 0

0 A21 +A22

]
, B̃ =

[
0 0

0 A23 +A24

]
,

C̃ =

[
0 0

0 A41 +A42

]
, D̃ =

[
1 0

0 A43 +A44

]
.

From formula (3.3), we have that

(DA
iS

) =

[
A21 +A22 − 1 A23 +A24

A41 +A42 A43 +A44 − 1

]
,

where the A index counts across rows, and the iS index counts across columns.

The (0,2) superpotential of the proposed mirror is then given by (3.2)

W = −G1

(
e−Y1 − e−Y2 + (A21 +A22 − 1)e−Y1 + (A23 +A24)e−Y3

)
−G2

(
e−Y3 − e−Y4 + (A41 +A42)e−Y1 + (A43 +A44 − 1)e−Y3

)
,

If we define Xi = exp(−Yi), then the (0,2) superpotential above can be written

W = −G1

(
(A21 +A22)X1 −

q1

X1
+ (A23 +A24)X3

)
−G2

(
(A43 +A44)X3 −

q2

X3
+ (A41 +A42)X1

)
.

The operator mirror map (3.4) in this case implies

X1 ↔ σ1,

X3 ↔ σ2.

In fact, the operator mirror map statement earlier also implies

X2 =
q1

X1
↔ (A21 +A22)σ1 + (A23 +A24)σ2, (5.1)

X4 =
q2

X3
↔ (A41 +A42)σ1 + (A43 +A44)σ2. (5.2)

These two statements are also redundant consequences of the equations of motion

∂W/∂G1,2 = 0, which are themselves consequences of the quantum sheaf cohomology

relations, as we shall see momentarily.

Now, let us compare results from [6]. There, it was argued that the (0,2) mirror could

be represented as

W = −G1

(
aX ′1 + b

(X ′2)2

X ′1
+ µX ′2 −

q1

X ′1

)
−G2

(
dX ′2 + c

(X ′1)2

X ′2
+ νX ′1 −

q2

X ′2

)
,
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where

a = det Ã, b = det B̃, c = det C̃, d = det D̃,

µ = det(Ã+ B̃)− det Ã− det B̃,

ν = det(C̃ + D̃)− det C̃ − det D̃,

and with operator mirror map

X ′1 ↔ σ1, X ′2 ↔ σ2.

In the present case,

a = A21 +A22, b = 0, c = 0, d = A43 +A44, µ = A23 +A24, ν = A41 +A42,

and it is easy to see that the mirror superpotential proposed here matches the specialization

of that in [6], if we identify X1 = X ′1, X3 = X ′2.

In addition, the quantum sheaf cohomology ring in this model is [22–25]

aσ2
1 + bσ2 + µσ1σ2 = q1, cσ2

1 + dσ2
2 + νσ1σ2 = q2,

which in the present case matches the remaining mirror map equations (5.1), (5.2) above.

Altogether, we see that the mirror proposed here matches results in [6], giving us a

consistency check not only of proposed mirror superpotentials but also implicitly correlation

functions and chiral rings.

5.1.2 Second choice of S

Next, we consider the case that the submatrix S is given by the first and fourth columns

of the charge matrix Q, so that S is the identity matrix, and the allowed deformations are

(Aij) =


1 0 0 0

A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 1

 .
(Rows correspond to fixed i index, and reflect the fact that for i a row of S, values are

fixed to those of the (2,2) locus.) In other words, in terms of the original 2 × 2 matrices,

we restrict to the special case

Ã =

[
1 0

0 A21 +A22

]
, B̃ =

[
0 0

0 A23 +A24

]
,

C̃ =

[
A31 +A32 0

0 0

]
, D̃ =

[
A33 +A34 0

0 1

]
.

From formula (3.3), we have that

(DA
iS

) =

[
A21 +A22 − 1 A23 +A24

−(A31 +A32) −(A33 +A34 − 1)

]
,

where the A index counts across rows, and the iS index counts across columns.

– 23 –



J
H
E
P
1
1
(
2
0
1
7
)
1
1
2

The (0,2) superpotential of the proposed mirror (3.2) is then given by

W = −G1

(
e−Y1 − e−Y2 + (A21 +A22 − 1)e−Y1 + (A23 +A24)e−Y4

)
−G2

(
e−Y3 − e−Y4 − (A31 +A32)e−Y1 − (A33 +A34 − 1)e−Y4

)
,

= −G1

(
(A21 +A22)X1 −

q1

X1
+ (A23 +A24)X4

)
−G2

(
q2

X4
− (A31 +A32)X1 − (A33 +A34)X4

)
,

where Xi = exp(−Yi) and with hindsight we have chosen to write the superpotential in

terms of X1 and X4, to illuminate the relation to other mirrors.

Furthermore, the operator mirror map (3.4) implies

X1 ↔ σ1, (5.3)

X4 ↔ σ2 (5.4)

and also implies

X2 =
q1

X1
↔ (A21 +A22)σ1 + (A23 +A24)σ2, (5.5)

X3 =
q2

X4
↔ (A31 +A32)σ1 + (A33 +A34)σ2 (5.6)

The latter two relations are a redundant restatement of the chiral ring of the theory, which

can be seen by comparing the equations of motion of the superpotential above, defined by

∂W/∂GA = 0.

Now, in this case the mirror given in [6] is defined by

a = A21 +A22, b = c = 0, d = A33 +A34, µ = A23 +A24, ν = A31 +A32,

and so has the form

W = −G1

(
(A21 +A22)X ′1 + (A23 +A24)X ′2 −

q1

X ′1

)
−G2

(
(A33 +A34)X ′2 + (A31 +A32)X ′1 −

q2

X ′2

)
,

with operator mirror map

X ′1 ↔ σ1, X ′2 ↔ σ2.

With the dictionary X1 = X ′1, X4 = X ′2 and a sign change on G2, we see that the superpo-

tential and operator mirror map predicted here match that in [6]. In passing, note that the

fact that we reproduce the mirror of [6] implicitly gives an independent check of matching

of correlation functions.
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5.1.3 Comment on Adams-Basu-Sethi result

Let us very briefly compare to the analysis of [3], which also examined (0,2) mirrors to

P1×P1. They primarily considered tangent bundle deformations of the form [3, Eq. (255)]

Ã = I = D̃, C̃ = 0, B̃ =

[
ε1 0

0 ε2

]
.

In principle, a deformation of this form is compatible with making a non-invertible choice

of S, specifically the last two columns of the charge matrix, so that

S =

[
0 0

1 1

]
.

Since S is not invertible, it is not possible to uniquely solve for (DA
iS

)i in our approach,

and we find it intriguing that in their analysis, they also were not able to uniquely solve

for the mirror superpotential without doing further worldsheet instanton computations to

solve for the values of some otherwise-undetermined parameters.

5.2 Fn

Next we consider Hirzebruch surfaces Fn. Now, for n > 1, these are not Fano, but nev-

ertheless one can write down a mirror for the GLSM (which for the non-Fano cases is

more properly interpreted as a mirror to a different geometric phase, the UV phase, of the

GLSM), as discussed in [7]. The charge matrix of the GLSM is[
1 1 n 0

0 0 1 1

]
,

and deformations of the tangent bundle are described mathematically as the cokernel E of

the short exact sequence

0 −→ O2 ∗−→ O(1, 0)2 ⊕O(n, 1)⊕O(0, 1) −→ E −→ 0,

where

∗ =

 Ãx B̃x

γ1s γ2s

α1t α2t

 .
In the expression above, x is a two-component vector of homogeneous coordinates of charge

(1, 0), s is a homogeneous coordinate of charge (n, 1), and t is a homogeneous coordinate of

charge (0, 1), A, B are constant 2× 2 matrices, and γ1,2, α1,2 are constants. (In principle,

nonlinear deformations are also possible, but as observed previously in e.g. [22–25], do not

contribute to quantum sheaf cohomology or A/2-model correlation functions, so we omit

nonlinear deformations.) The (2,2) locus is given by the special case

A = I, B = 0, γ1 = n, γ2 = 1, α1 = 0, α2 = 1.
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We have the same constraints on fields from D terms as on the (2,2) locus, namely

Y1 + Y2 + nYs = t1, Ys + Yt = t2,

where Y1,2 are dual to the x’s, Y3 is dual to s, and Y4 is dual to t. We can solve them by

taking

t̃1 = 0, t̃2 = t1, t̃s = 0, t̃t = t2,

(V A
i ) =

[
1 −1 0 0

0 −n 1 −1

]
,

so that

Y1 = θ, Y2 = t1 − θ − nθ̃, G1 = F1 = −F2 − nG2,

Y3 = θ̃, Y4 = t2 − θ̃, G2 = F3 = −F4.

5.2.1 First choice of S

We take the submatrix S ⊂ Q to correspond to the first and third columns of the charge

matrix Q, i.e.

S =

[
1 n

0 1

]
.

The allowed deformations are

(Aij) =


1 0 0 0

A21 A22 A23 A24

0 0 1 0

A41 A42 A43 A44

 .
To find the corresponding elements of Ã, B̃, γ1,2, α1,2, we compare the E’s. For the

deformations defined by Aij ,

E1 =
∑
a

Qaaσaφ1 = σ1φ1,

E2 =
∑
j,a

A2jQ
a
jσaφ2,

= (A21σ1 +A22σ1 +A23(nσ1 + σ2) +A24σ2)φ2,

Es = (nσ1 + σ2)s,

Et = (A41σ1 +A42σ1 +A43(nσ1 + σ2) +A44σ2) t,

whereas for the bundle deformation parameters,

E1 =
(
Ã11φ1 + Ã12φ2

)
σ1 +

(
B̃11φ1 + B̃12φ2

)
σ2,

E2 =
(
Ã21φ1 + Ã22φ2

)
σ1 +

(
B̃21φ1 + B̃22φ2

)
σ2,

Es = γ1sσ1 + γ2sσ2,

Et = α1tσ1 + α2tσ2,
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from which we read off

Ã =

[
1 0

0 A21 +A22 + nA23

]
, B̃ =

[
0 0

0 A23 +A24

]
,

a = det Ã = A21 +A22 + nA23, b = det B̃ = 0, µ =A23 +A24,

γ1 =n, γ2 = 1, α1 =A41 +A42 + nA43, α2 =A43 +A44.

Next, let us construct the mirror. From formula (3.3),

(DA
iS

) =

[
A21 +A22 − nA24 − 1 A23 +A24

n(A21+A22−nA24)+(A41+A42−nA44) n(A23+A24)+(A43+A44)−1

]
,

From equation (3.2), the proposed mirror superpotential is then

W = −G1

(
e−Y1 − e−Y2 + (A21 +A22 − nA24 − 1)e−Y1 + (A23 +A24)e−Y3

)
−G2

(
− ne−Y2 + e−Y3 − e−Y4

+ (n(A21 +A22 − nA24) + (A41 +A42 − nA44)) e−Y1

+ (n(A23 +A24) + (A43 +A44)− 1) e−Y3
)
,

= −G1

(
(A21 +A22 − nA24)X1 −

q1

X1Xn
3

+ (A23 +A24)X3

)
−G2

(
−n q1

X1Xn
3

+ (n(A23 +A24) + (A43 +A44))X3 −
q2

X3

+ (n(A21 +A22 − nA24) + (A41 +A42 − nA44))X1

)
,

where Xi = exp(−Yi), with operator mirror map (3.4)

X1 ↔ σ1,

X2 =
q1

X1Xn
3

↔ (A21 +A22)σ1 +A23(nσ1 + σ2) +A24σ2,

X3 ↔ nσ1 + σ2,

X4 =
q2

X3
↔ (A41 +A42)σ1 +A43(nσ1 + σ2) +A44σ2.

Note that the operator mirror map relations for X2, X4 are consequences of the equations

of motion ∂W/∂GA = 0.

For these deformations, the quantum sheaf cohomology ring is given by [22–25]

Q(k)Q
n
(s) = q1, Q(s)Q(t) = q2,

where

Q(k) =(A21 +A22 + nA23)σ2
1 + (A23 +A24)σ1σ2,

Q(s) = nσ1 + σ2, Q(t) = (A41 +A42 + nA43)σ1 + (A43 +A44)σ2.
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It is straightforward to check that these relations are implied by the mirror map equa-

tions above.

A proposal was made in [7] for the Toda dual to a (GLSM for a) Hirzebruch surface.

Briefly, the mirror superpotential had the form

W = −G1J1 −G2J2

for [7, Section 4.2]

J1 = aX1 + µAB(X3 − nX1) + b
(X3 − nX1)2

X1
− q1X

−1
1 (γ1X1 + γ2(X3 − nX1))−n , (5.7)

J2 = n

(
aX1 + µAB(X3 − nX1) + b

(X3 − nX1)2

X1

)
− nq1

X1 (γ1X1 + γ2(X3 − nX1))n

− q2

X3
+

(γ1X1 + γ2(X3 − nX1)) (α1X1 + α2(X3 − nX1))

X3
, (5.8)

with operator mirror map

X1 ↔ σ1, X3 ↔ nσ1 + σ2.

It is straightforward to check that the proposal of [7], reviewed above, specializes to

our proposal here.

5.2.2 Second choice of S

Next, consider the case that the submatrix S ⊂ Q is taken to correspond to the first and

fourth columns of Q, i.e.

S =

[
1 0

0 1

]
.

The allowed deformations are

(Aij) =


1 0 0 0

A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 1


Proceeding as before, the corresponding Ã, B̃, γ1,2, α1,2 are given by

Ã =

[
1 0

0 A21 +A22 + nA23

]
, B̃ =

[
0 0

0 A23 +A24

]
,

a = det Ã = A21 +A22 + nA23, b = det B̃ = 0, µ = A23 +A24,

γ1 = A31 +A32 + nA33, γ2 = A33 +A34,

α1 = 0, α2 = 1.

Next, let us construct the mirror. From formula (3.3),

(DA
iS

) =

[
A21 +A22 + nA23 − 1 A23 +A24

n(A21+A22+nA23)−(A31+A32+nA33) n(A23+A24)−(A33+A34−1)

]
.
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From equation (3.2), the proposed mirror superpotential is then

W = −G1

(
e−Y1 − e−Y2 + (A21 +A22 + nA23 − 1)e−Y1 + (A23 +A24)e−Y4

)
−G2

(
− ne−Y2 + e−Y3 − e−Y4

+ (n(A21 +A22 + nA23)− (A31 +A32 + nA33)) e−Y1

+ (n(A23 +A24)− (A33 +A34 − 1)) e−Y4
)
,

= −G1

(
(A21 +A22 + nA23)X1 −

q1

qn2

Xn
4

X1
+ (A23 +A24)X4

)
−G2

(
−n q1

qn2

Xn
4

X1
+
q2

X4
+ (n(A23 +A24)− (A33 +A34))X4

+ (n(A21 +A22 + nA23)− (A31 +A32 + nA33))X1

)
,

where Xi = exp(−Yi), with operator mirror map (3.4)

X1 ↔ σ1,

X2 =
q1

qn2

Xn
4

X1
↔ (A21 +A22)σ1 +A23(nσ1 + σ2) +A24σ2,

X3 =
q2

X4
↔ (A31 +A32)σ1 +A33(nσ1 + σ2) +A34σ2,

X4 ↔ σ2.

The operator mirror map relation for X2 is a consequence of ∂W/∂G1 = 0, and the operator

mirror map relation for X3 is a consequence of that plus ∂W/∂G2 = 0.

A second proposal was made in [7] for the Toda dual to a (GLSM for a) Hirzebruch

surface, in which the mirror superpotential had the form

W = −G1J1 −G2J2,

for [7, Section 4.2]

J1 =

(
aX1 + µABX4 + b

X2
4

X1

)
− q1

qn2

(α1X1 + α2X4)n

X1
, (5.9)

J2 = −n
(
aX1 + µABX4 + b

X2
4

X1
− q1

qn2

(α1X1 + α2X4)n

X1

)
+

(
α2γ2X4 + γ1α1

X2
1

X4
+ (γ1α2 + γ2α1)X1

)
− q2

X4
. (5.10)

with operator mirror map

X1 ↔ σ1, X4 ↔ σ2.

It is straightforward to check that this proposal of [7] specializes to our proposal.
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5.3 dP2

Let us now consider the del Pezzo surface dP2, corresponding to P2 blown up at two points,

which was also considered in [7]. The charge matrix of the GLSM for the chiral fields is of

the form  1 1 1 0 0

0 0 1 1 0

1 0 0 0 1

 ,
and deformations of the tangent bundle are described mathematically as the cokernel E of

the short exact sequence

0 −→ O3 ∗−→ O(1, 0, 1)⊕O(1, 0, 0)⊕O(1, 1, 0)⊕O(0, 1, 0)⊕O(0, 0, 1)

−→ E −→ 0,

where

∗ =


α1φ1 α2φ2 α3φ3

β1φ1 β2φ2 β3φ3

γ1φ1 γ2φ2 γ3φ3

δ1φ1 δ2φ2 δ3φ3

ε1φ1 ε2φ2 ε3φ3

 .
The (2,2) locus is given by the special case

α1 = 1, α2 = 0, α3 = 1,

β1 = 1, β2 = β3 = 0,

γ1 = γ2 = 1, γ3 = 0,

δ1 = 0, δ2 = 1, δ3 = 0,

ε1 = ε2 = 0, ε3 = 1.

We will take

(V A
i ) =

[
1 −1 0 0 −1

0 −1 1 −1 0

]
.

5.3.1 First choice of S

For our first choice of S, we will take the first, third, and fifth columns of the charge matrix,

so that

S =

 1 1 0

0 1 0

1 0 1

 .
With this choice of S, the allowed deformations are

(Aij) =


1 0 0 0 0

A21 A22 A23 A24 A25

0 0 1 0 0

A41 A42 A43 A44 A45

0 0 0 0 1

 .
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We compute the corresponding bundle deformation parameters by comparing E’s:

E1 = (α1σ1 + α2σ2 + α3σ3)φ1 = (σ1 + σ3)φ1,

E2 = (β1σ1 + β2σ2 + β3σ3)φ2,

= (A21(σ1 + σ3) +A22σ1 +A23(σ1 + σ2) +A24σ2 +A25σ3)φ2,

E3 = (γ1σ1 + γ2σ2 + γ3σ3)φ3 = (σ1 + σ2)φ3,

E4 = (δ1σ1 + δ2σ2 + δ3σ3)φ4,

= (A41(σ1 + σ3) +A42σ1 +A43(σ1 + σ2) +A44σ2 +A45σ3)φ4,

E5 = (ε1σ1 + ε2σ2 + ε3σ3)φ5 = σ3φ5,

from which we find

~α = (1, 0, 1), ~γ = (1, 1, 0), ~ε = (0, 0, 1),

~β = (A21 +A22 +A23, A23 +A24, A21 +A25),

~δ = (A41 +A42 +A43, A43 +A44, A41 +A45).

From formula (3.3), we have

(DA
iS

) =

 A21 +A22 − 1−A24 A23 +A24 −A22 +A24 +A25 + 1

A21 +A22 −A24+

A41 +A42 −A44
A23 +A24 +A43 +A44 − 1

−A22 +A24 +A25

−A42 +A44 +A45

 .
The proposed mirror superpotential (3.2) is then

W = −G1

[
(A21 +A22 −A24)X1 −

q1

X1X3
+ (A23 +A24)X3 + (−A22 +A24 +A25)X5

]
−G2

[
(A21 +A22 −A24 +A41 +A42 −A44)X1

− q1

X1X3
+ (A23 +A24 +A43 +A44)X3

− q2

X3
+ (−A22 +A24 +A25 −A42 +A44 +A45)X5

]
,

with operator mirror map (3.4)

X1 ↔ σ1 + σ3,

X2 =
q1

X1X3
↔ (A21 +A22 +A23)σ1 + (A23 +A24)σ2 + (A21 +A25)σ3,

X3 ↔ σ1 + σ2,

X4 =
q2

X3
↔ (A41 +A42 +A43)σ1 + (A43 +A44)σ2 + (A41 +A45)σ3,

X5 =
q3

X1
↔ σ3.

(It is straightforward to check that the nontrivial operator mirror map relations above are

equivalent to the equations of motion derived from ∂W/∂GA = 0.)
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Now, let us compare to the first (0,2) mirror proposal for dP2 in [7, Section 3.2.2]. In

their notation

α ·X = X1, γ ·X = X3, ε ·X = X5,

β ·X = (A21 +A22 −A24)X1 + (A23 +A24)X3 + (A24 +A25 −A22)X5,

δ ·X = (A41 +A42 −A44)X1 + (A43 +A44)X3 + (A44 +A45 −A22)X5,

and

J1 = − q1

X1X3
+ Z

q3

X1X5
+X5 + β ·X,

J3 = − q2

X3
− q1

X1X3
+ β ·X + δ ·X,

J5 = X5 + Z
q3

X1X5
,

JZ = 1− q3

X1X5
.

Solving JZ = 0, we get X5 = q3/X1, and solving J5 = 0, we get Z = −X5. Plugging in,

we are left with two independent J ’s:

J1 = − q1

X1X3
+ (A21 +A22 −A24)X1 + (A23 +A24)X3 + (A24 +A25 −A22)

q3

X1
,

J3 = − q2

X3
− q1

X1X3
+ (A21 +A22 −A24 +A41 +A42 −A44)X1

+(A23 +A24 +A43 +A44)X3 + (A24 +A25 −A22 +A44 +A45 −A42)
q3

X1
,

which precisely matches the prediction of our proposal.

Finally, let us compare the quantum sheaf cohomology ring relations. There are three

quantum sheaf cohomology ring relations, but only two relations appearing above in the

operator mirror map and equations of motion. Specifically, in this case, the quantum sheaf

cohomology ring relations [22–24] take the form

(σ1 + σ3)(σ1 + σ2)Q(2) = q1, (5.11)

(σ1 + σ2)Q(4) = q2, (5.12)

(σ1 + σ3)σ3 = q3, (5.13)

where

Q(2) = (A21 +A22 +A23)σ1 + (A23 +A24)σ2 + (A21 +A25)σ3,

Q(4) = (A41 +A42 +A43)σ1 + (A43 +A44)σ2 + (A41 +A45)σ3.

The first two quantum sheaf cohomology ring relations correspond to two of the operator

mirror map statements. The third is realized on the mirror as the relation

X1X5 = q3,

which is a consequence of the D terms, and so automatic.
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5.3.2 Second choice of S

For our second choice of S, we will take the second, fourth, and fifth columns of the charge

matrix, so that S is the identity. With that choice of S, the allowed deformations are

(Aij) =


A11 A12 A13 A14 A15

0 1 0 0 0

A31 A32 A33 A34 A35

0 0 0 1 0

0 0 0 0 1

 .
To find the corresponding bundle deformation parameters, we compare the E’s:

E1 = (α1σ1 + α2σ2 + α3σ3)φ1,

= (A11(σ1 + σ3) +A12σ1 +A13(σ1 + σ2) +A14σ2 +A15σ3)φ1,

E2 = (β1σ1 + β2σ2 + β3σ3)φ2 = σ1φ2,

E3 = (γ1σ1 + γ2σ2 + γ3σ3)φ3,

= (A31(σ1 + σ3) +A32σ1 +A33(σ1 + σ2) +A34σ2 +A35σ3)φ3,

E4 = (δ1σ1 + δ2σ2 + δ3σ3)φ4 = σ2φ4,

E5 = (ε1σ1 + ε2σ2 + ε3σ3)φ5 = σ3φ5,

from which we conclude

~α = (A11 +A12 +A13, A13 +A14, A11 +A15),

~β = (1, 0, 0), ~δ = (0, 1, 0), ~ε = (0, 0, 1),

~γ = (A31 +A32 +A33, A33 +A34, A31 +A35).

Next, we construct the mirror. From formula (3.3), we have

(DA
iS

) = −

[
A11 +A12 +A13 − 1 A13 +A14 A11 +A15 − 1

A31 +A32 +A33 − 1 A33 +A34 − 1 A31 +A35

]
,

then the proposed mirror superpotential (3.2) is

W = −G1

(
q1

q2

X4

X2
− (A11 +A12 +A13)X2 − (A13 +A14)X4 − (A11 +A15)X5

)
−G2

(
−(A31 +A32 +A33)X2 +

q2

X4
− (A33 +A34)X4 − (A31 +A35)X5

)
,

where Xi = exp(−Yi).
The operator mirror map (3.4) is then given by

X1 =
q1

q2

X4

X2
↔ A11(σ1 + σ3) +A12σ1 +A13(σ1 + σ2) +A14σ2 +A15σ3,

X2 ↔ σ1,

X3 =
q2

X4
↔ A31(σ1 + σ3) +A32σ1 +A33(σ1 + σ2) +A34σ2 +A35σ3,

X4 ↔ σ2,

X5 ↔ σ3.
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From [22–24], the quantum sheaf cohomology relations in this model are given by

σ1Q(1)Q(3) = q1, (5.14)

σ2Q(3) = q2, (5.15)

σ3Q(1) = q3, (5.16)

where

Q(1) = (A11 +A12 +A13)σ1 + (A13 +A14)σ2 + (A11 +A15)σ3,

Q(3) = (A31 +A32 +A33)σ1 + (A33 +A34)σ2 + (A31 +A35)σ3.

This first two quantum sheaf cohomology relations can be seen to correspond to both the

operator mirror map relations and the equations of motion. The third relation (5.16) is

effectively redundant on the mirror. To see this, note that it corresponds to the statement

X5Q(1) = q3.

However, X5 = q3/X1 from the D-term relations, so this is equivalent to

X1 = Q(1),

which is the first mirror-map relation.

6 Hypersurfaces in toric varieties

6.1 General aspects

An extension of ordinary mirror symmetry from toric varieties to hypersurfaces therein

was discussed in [10] and further justified in [53]. Let us begin our discussion here by very

briefly reviewing this for the special case of the (2,2) quintic in P4. One begins with the

Toda dual of Tot (O(−5)→ P4), the ambient GLSM for the quintic albeit with vanishing

superpotential. The Toda dual is defined by a (twisted) superpotential of the form

W =

5∑
i=1

exp(−Yi) + exp(−Yp),

where the D term constraint requires

−5Yp +
n∑
i=1

Yi = t.

The effect of dualizing the GLSM with a nonzero superpotential, according to [10, 53] is

to change the fundamental fields from Yi to Xi ≡ exp(−Yi/5), which also introduces Z5

orbifolds. As a result, after eliminating Yp with the D term constraint and the change of

variables, the mirror superpotential becomes (Z5 orbifolds of)

W =
∑
i

X5
i + q

∏
i

Xi.
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The fact that the B-twisted mirror sits at a Landau-Ginzburg point reflects the fact that

the B model is independent of Kähler moduli, and so topological field theory computations

can be computed at any point on the Kähler moduli space — the Landau-Ginzburg orbifold

point in the moduli space of a hypersurface being a convenient example.

Before considering (0,2) analogues, let us quickly outline a formal justification for

the change of variables above, in TFT correlation functions. We claim that at the level

of untwisted-sector correlation functions, it is formally equivalent to insertions needed

to restrict to the hypersurface. The argument below omits questions of counting and

degeneracy of vacua, as well as how the kinetic terms of the fields change, but is sufficiently

tantalizing that we mention it here.

Begin with a (2,2) supersymmetric GLSM for Tot (O(−5) → P4), labelled the V +

model in [51]. To compute a correlation function matching one on the hypersurface, in

principle one should insert (−)(−5σ)2 (see e.g. [51, Eq. (5.8)]). Correlation functions in

the untwisted sector of the mirror B-twisted Landau-Ginzburg model, corresponding to

certain computations on the hypersurface, should then have the form

〈O1 · · · On〉quintic = 〈O1 · · · On(−)(−5σ)2〉V + ∝
∑

vacua

O1 · · · On exp(−2Yp)

det(∂Yi∂YjW )
.

where we have used the mirror map

exp(−Yp) = e−t/5
∏
i

exp(−Yi/5) ↔ −5σ.

Now, we change variables from Yi to Xi ≡ exp(−Yi/5). Formally, in the denominator,

∂

∂Yi
W =

∂Xj

∂Yi

∂W

∂Xj
= −1

5
Xi
∂W

∂Xi
,

∂2W

∂Yi∂Yj
=

(
−1

5

)2

XiXj
∂2W

∂Xi∂Xj
(no sum on i, j),

along the critical locus. Now, strictly speaking, after the change of variables, the critical lo-

cus becomes degenerate, the second derivative of the superpotential vanishes at the critical

locus. One could attempt to solve this by turning on twisted masses, possible for certain

special superpotentials, but as our aim here is a formal observation, we shall move on.

The point we wish to make is that formally, if one plugs into the expression for correlation

functions, then glossing over questions of number and degeneracy of vacua,

〈O1 · · · On〉quintic =
∑

vacua

O1 · · · On exp(−2Yp)

(−1/5)10 (
∏
iXi)

2 det
(
∂Xi∂XjW

) ,
then along the vacua, the factor of exp(−2Yp) = e−2t/n(

∏
iXi)

2 largely cancels out the

(
∏
iXi)

2 in the denominator, leaving an expression which (setting aside questions of count-

ing and degeneracy of vacua, as well as how the change of variables would operate on kinetic

terms) formally duplicates the usual expression in the orbifold:

〈O1 · · · On〉quintic ∝
∑

vacua

O1 · · · On
det
(
∂Xi∂XjW

) .
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Now, setting aside formal justifications, it is, of course, tempting to conjecture a (0,2)

analogue of the story above. The justification for the (2,2) case in [53] was based on

the claim in [54] that the A model on a hypersurface is equivalent to the A model on a

supermanifold over the ambient space. Unfortunately, at present no (0,2) analogue of [54]

exists in the literature. Mathematically, the idea of inserting Chern classes to restrict to

hypersurfaces is more properly understood in terms of insertions of Mathai-Quillen forms.

A (0,2) analogue of Mathai-Quillen forms has been sketched out (see [55] for definitions

and conjectures), but one open question in that work is whether they have all the pertinent

properties of ordinary Mathai-Quillen forms.

Another question concerns the appropriateness of getting a mirror at a Landau-

Ginzburg orbifold point. In (2,2) theories, for hypersurfaces, since the B model is indepen-

dent of Kähler structures, we could evaluate a B-twisted mirror at any convenient point

on the Kähler moduli space, and the Landau-Ginzburg orbifold point is a convenient such

point. By contrast, (0,2) theories are somewhat more complicated. It was argued in [22–25]

that A/2-twisted GLSMs are independent of complex structure moduli and some bundle

moduli (Js), and B/2-twisted GLSMs are independent of Kähler moduli and other bun-

dle moduli (Es), but this seems to be an accident of the GLSM’s presentation of moduli,

and we do not understand how to formulate analogous statements in IR nonlinear sigma

models — or indeed if it is even possible to formulate such statements in IR theories. In

any event, for our purposes, this will suffice to justify describing B/2-twisted mirrors at

Landau-Ginzburg orbifold points.

With all that in mind, we will now describe some formal computations for (0,2) theories,

generated by proceeding along the same lines as (2,2) theories, albeit with less justification.

Note that in (0,2) theories, in addition to performing a variable change on (0,2) chiral

superfields, we must also perform a variable change on (0,2) Fermi superfields. For example,

suppose that in the mirror to the ambient GLSM, the fundamental fields are (θA, GA),

where θAs are (0,2) chiral superfields and GAs are (0,2) Fermi superfields, which on the

(2,2) locus together form a (2,2) chiral multiplet. If we define

XA = exp(−θA/n),

and take that to be a fundamental chiral superfield then to get a Landau-Ginzburg model

that matches the (2,2) mirror on the (2,2) locus, we must also define new fundamental

Fermi superfields ΛA, as

ΛA =
∂XA

∂θB
GB.

In the example above,
∂XA

∂θB
= − 1

n
XAδ

B
A ,

hence

ΛA = − 1

n
XAGA (no sum on A),

and we should take ΛA to be the fundamental field in the mirror to the hypersurface,

replacing GA.
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6.2 Example

For an example, we will study the mirror to a (0,2) GLSM describing a degree (n, 0) hyper-

surface in P2 × P1, with a tangent bundle deformation. There are two dueling constraints

that make finding interesting examples, somewhat nontrivial:

• Our E’s, J ’s must satisfy E · J = 0 in order to preserve supersymmetry,

• Simultaneously, choices of S ⊂ Q constrain the allowed deformations.

We will deal with these issues by considering a hypersurface in the first P2 factor,

paired with a bundle deformation over the second P1 factor, so that the two constraints

are fundamentally uncoupled from one another. We will ‘follow our nose’ and work out

what naive expectations would predict for the (0,2) mirror given the proposal of this paper;

however, we have not checked any correlation functions or performed other independent

tests to ensure that we have in fact produced the correct (0,2) mirror.

Our GLSM will have six chiral superfields, which we label φ1,··· ,5 and p, with charge

matrix

Q =

[
1 1 1 0 0 −n
0 0 0 1 1 0

]
.

We interpret φ1−3 as related to homogeneous coordinates on first factor (P2), and φ4−5 as

related to homogeneous coordinates on the second factor (P1).

Given the charge matrix Q above, we will take

(V A
i ) =


n 0 0 0 0 1

0 1 0 0 0 1/n

0 0 1 0 0 1/n

0 0 0 −1 1 0

 .
Now, since we are going to apply our mirror construction, we pick an invertible sub-

matrix S ⊂ Q. To be specific, we will take S to correspond to the fourth and sixth rows of

Q, so that

S =

[
0 −n
1 0

]
,

and we will consider deformations

(Aij) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

A51 A52 A53 A54 A55 A56

0 0 0 0 0 1


.

Now, the choice of S above is compatible with a more complicated deformation matrix

(Aij) — for example, the first, second, and third rows could have entries different from

those of the identity matrix. However, to avoid running into difficulties with the constraint
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E · J = 0, for simplicity in this example we pick the E’s to be trivial along directions with

nonzero J ’s, and so we take the matrix to be of the more specialized form above.

With these choices, it is straightforward to compute

(DA
iS

) =


0 0

0 0

0 0

(A54 +A55 − 1)/n −(A51 +A52 +A53 − nA56)

 .
Thus, the (0,2) mirror to the GLSM without superpotential is given by a Landau-

Ginzburg model with superpotential

W = −G1

(
n exp(−Y1) + exp(−Yp)

)
− G2

(
exp(−Y2) + (1/n) exp(−Yp)

)
−G3

(
exp(−Y3) + (1/n) exp(−Yp)

)
−G4

(
− exp(−Y4) + exp(−Y5) +

1

n
(A54 +A55 − 1) exp(−Y4)

−(A51 +A52 +A53 − nA56) exp(−Yp)
)
,

subject to the usual D-term constraints, which allow us to rewrite Y ’s in terms of θ’s. If

we pick

(t̃i) = (0, 0, 0, t2, 0,−t1/n),

then

θ1 = Y1/n, θ2 = Y2, θ3 = Y3, θ4 = Y5,

and

Yp = θ1 + θ2/n+ θ3/n− t1/n, Y4 = −θ4 + t2,

so if we define

Z1 = exp(−θ1), Z2,3 = exp(−θ2,3/n), Z4 = exp(−θ4),

the mirror superpotential above becomes

W = −G1

(
nZn1 + Z1Z2Z3e

−t1/n
)
− G2

(
Zn2 +

1

n
Z1Z2Z3e

−t1/n
)

−G3

(
Zn3 +

1

n
Z1Z2Z3e

−t1/n
)

−G4

(
Z4−

q2

Z4
+

1

n
(A54 +A55−1)

q2

Z4
−(A51 +A52 +A53−nA56)Z1Z2Z3e

−t1/n
)
,

and the theory has a (Zn)2 orbifold, acting on Z2,3, in which the group action preserves

the superpotential above.
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For completeness, the operator mirror map takes the following form:

exp(−Y1) = Zn1 ↔ σ1,

exp(−Y2) = Zn2 ↔ σ1,

exp(−Y3) = Zn3 ↔ σ1,

exp(−Y4) =
q2

Z4
↔ σ2,

exp(−Y5) = Z4 ↔ (A51 +A52 +A53 − nA56)σ1 + (A54 +A55)σ2,

exp(−Yp) = Z1Z2Z3e
−t1/n ↔ −nσ1.

We could also add a twisted mass along the p direction, for example. Doing so would

add the following terms to the mirror Landau-Ginzburg model superpotential

GAV
A
p m̃p = m̃p

(
G1 +

1

n
G2 +

1

n
G3

)
,

and also alter the operator mirror map, by modifying the map for exp(−Yp) as

exp(−Yp) ↔ −nσ1 + m̃p.

Now, let us consider restricting to the hypersurface. This will involve changing the

fundamental fields, from θ’s to X’s and G’s to Λ’s.

First, let us consider changing variables amongst chiral superfields. We will take Zis

to be the fundamental variables. (Physically, this means changing e.g. kinetic terms, and

so changing the physical theory, but here we will primarily focus on the superpotential.)

In addition, we must also change the Fermi fields, as mentioned previously. Following

the pattern discussed previously, we define the new fundamental Fermi superfields

Λ1 = −Z1G1, Λ2,3 = − 1

n
Z2,3G2,3, Λ4 = −Z4G4.

Rewriting the mirror superpotential above in terms of the new fundamental fields Zi,

Λi, we find it takes the form

W = Λ1

(
nZn−1

1 + Z2Z3e
−t1/n

)
+ Λ2

(
nZn−1

2 + Z1Z3e
−t1/n

)
+Λ3

(
nZn−1

3 + Z1Z2e
−t1/n

)
+Λ4

(
1− q2

Z2
4

+
1

n
(A54 +A55−1)

q2

Z2
4

− (A51 +A52 +A53−nA56)
Z1Z2Z3

Z4
e−t1/n

)
,

again with a (Zn)2 orbifold group action.

The reader should note that the first three terms in the superpotential above appear

identical to those one would expect in a (0,2) expansion of a (2,2) superpotential of the form

Zn1 + Zn2 + Zn3 + Z1Z2Z3e
−t1/n,

exactly as one would expect for the mirror to a hypersurface of degree n in P2. Similarly,

the first two terms in the last line appear to be a (0,2) expansion of the (2,2) Toda dual to

P1, defined by the superpotential

Z4 +
q2

Z4
,

again exactly as one would expect. The remaining terms encode the bundle deformation.
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6.3 Brief comment on the quintic

Next, let us consider an example of a different character. Consider a GLSM for a quintic

in P4. As is well-known (see e.g. [56, Section 15.6.3]), one can deform it to a (0,2) theory.

To see this, first rewrite the (2,2)superpotential in (0,2) language as

W =
∑
i

ΛiJi + ΛpJp,

for

Ji = p
∂G

∂φi
, Jp = G,

for G a quintic polynomial in the chiral superfields φi. Then, one typically deforms off the

(2,2) locus by deforming

Ji = p
∂G

∂φi
7→ p

∂G

∂φi
+ Gi,

where the functions Gi are constrained to obey∑
i

φiGi = 0,

Now, let us consider this theory in the context of the mirror proposals of this paper.

The A/2-twist only depends upon E’s, not J ’s, so the deformation above is invisible in the

twisted theory. The dualization procedure we have described does not seem to involve the

Gi’s above — we take a tangent bundle deformation on the ambient space and restrict to

a hypersurface, but the Gi’s cannot be understood as a tangent bundle deformation of the

ambient space. As a result, using the methods here, the Gi’s are effectively invisible. On

the other hand, since the A/2 theory is independent of the Gi’s, it is nevertheless a sensible

mirror for the A/2 theory.

7 Conclusions

In this paper we have given a proposal for (0,2) mirrors to toric Fano varieties with special

tangent bundle deformations, subsets of toric deformations, and also described restrictions

to hypersurfaces. Our methods do not apply to all tangent bundle deformations, only a

subset of the toric deformations. We have given formal arguments that the resulting corre-

lation functions always match, and also checked in examples that our methods reproduce

previous results for (0,2) mirrors produced by laboriously guessing and tuning ansatzes.

It would be interesting to generalize the results presented here to all tangent bundle

deformations. On the one hand, for more general tangent bundle deformations, previous

methods have generated nonlinear superpotential terms in the mirror, which we do not

see. On the other hand, naive moduli counting arguments suggest that in many cases it

may be possible to use field redefinitions to rewrite all the GLSM-realizable tangent bundle

deformations in the form we use in this paper.
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A Brief notes on (2,2) mirror ansatz

In this appendix we will briefly outline how symmetries and the operator mirror map par-

tially determine the exponential terms in the (2,2) GLSM mirror superpotential. Suppose

we have not derived the instanton-generated terms, and only have an ansatz for the mirror

superpotential of the form

W =

k∑
a=1

Σa

(
N∑
i=1

Qai Yi − ta

)
+ g(Yi), (A.1)

for some unknown function g(Yi). (Requiring R-charges match only fixes terms exp(−Yi)
up to an R-invariant function.) Instead of deriving g from a direct instanton computation

in the A-twisted theory, we outline here how the same result could be obtained using other

properties of the theory.

Now, previously we derived the operator mirror map (2.7) from the form of the mir-

ror superpotential, but one can outline an independent justification, and then use it to

demonstrate the form of g. To see this, use the relation [10, Eq. (3.17)]

Y + Y = 2Φe2QV Φ,

which implies component relations [10, Eqs. (3.20), (3.21)]

χ+ = 2ψ+φ, χ− = −2φ†ψ−,

for χ the superpartners of Y and ψ the superpartners of φ. From [47, Eq. (2.19)], the

equations of motion of σa (in the limit e2 →∞, so that the kinetic terms drop out) are(
N∑
i=1

Qai |φi|2
)
σa ∝

N∑
i=1

ψ+iψ−i.

If we add twisted masses so that only one φ field is light, then this becomes

Qai σa + m̃i ∝
ψ+iψ−i
|φi|2

∝ χ+iχ−i.

Now, the χ+χ− could come from a Y 2, but that has the wrong R charge to make the

expression sensible. However, exp(−Yi) has the correct R charge and contains Y 2, so up

to overall factors, which can be reabsorbed into field redefinitions, this suggests

Qai σa + m̃i = exp(−Yi),

which is the operator mirror map (2.7). (Granted, we are again using axial R-charges, but

here since we know some components, there is less ambiguity.)
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Returning to the ansatz (A.1), we can now determine the function g. The equations

of motion from the superpotential above imply

∂W

∂Yi
= Qai σa +

∂g

∂Yi
,

= 0,

and the operator mirror map implies

Qai σa + m̃a = exp(−Yi),

hence
∂g

∂Yi
= −Qai σa = m̃i − exp(−Yi),

hence

g(Yi) = m̃iYi +
∑
i

exp(−Yi),

up to an irrelevant additive constant.

It is tempting to apply the same methods to (0,2) theories. Unfortunately, the de-

creased symmetry leads to multiple possible potential (0,2) mirror superpotentials, derived

from applying the operator mirror map in different ways, which must be independently

tested against chiral rings and correlation functions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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