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1 Introduction

Early literature on the renormalization group, notably Wilson’s papers [1, 2] and the classic

review by Wilson and Kogut [3], makes prominent use of finite-step recursion relations

to approximate renormalization group flow in a continuum field theory. The recursion

relations are in the spirit of Kadanoff’s block-spin version of the renormalization group [4],

and it is noted in Wilson’s early work that the recursion relations become exact when used

on the Dyson hierarchical model [5], while when applied to ordinary φ4 field theory on Rn

they can be used to extract scaling dimensions at the Wilson-Fisher fixed point that are

correct through order ε, where ε = 4− n.
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Subsequent work, including [6, 7] and reviewed in [8], established rigorous results on the

solvability and fixed points of the renormalization group for hierarchical models as realized

by the recursion relations. In [9] it was understood that a continuum limit of a suitable

hierarchical model gives p-adic φ4 theory — meaning a theory with a real field φ which

is a function defined over the p-adic numbers Qp. One may similarly treat theories where

Qp is replaced by a field extension Qpn , which in part means working with a vector space

Qn
p .1 The O(N) generalization of [9] was first considered in [10], which however restricted

the form of the kinetic term and did not consider extensions of the p-adic field, and for

these reasons dealt only with an asymptotically free theory. These restrictions were lifted

in [11–13], in which a renormalized projection Hamiltonian formalism was used to explore

the Wilson-Fisher fixed point of the p-adic O(N) model in an appropriate ε expansion

(similar to expanding in ε = 4−n dimensions in standard O(N) field theory on Rn) and to

compute the critical exponents. In section 2 we review the Wilsonian renormalization of

the p-adic O(N) model and carry out standard diagrammatic perturbation theory in the ε

expansion.

In section 3, we adapt methods of [14, 15] to the p-adic case to obtain self-consistent

results for the critical exponents of the non-Gaussian fixed point that are exact in ε and

valid through the first non-trivial order in large N . We demonstrate agreement between

these two approaches where they overlap, namely small ε and large N . The large N

methods are based mostly on position space integrals of multiplicative characters, and by

defining suitable variants of the Euler beta function motivated by the simplest of these

integrals we are able to give universal formulas for the anomalous dimensions in terms of

residues at poles of meromorphic functions which are simple rational combinations of beta

functions.

Readers wishing to skip technical details and see in section 4 the final results for

anomalous dimensions should be aware of some non-standard notation in this paper: ζ(t)

is not the usual Riemann zeta function, nor are Γ(t) and B(t1, t2) the usual gamma or beta

functions. Instead ζ(t) is a “local” version of the zeta function defined either for R or for

Qp, while Γ(t) and B(t1, t2) are defined in reference either to Rn or the unramified extension

Qpn of the p-adic numbers of degree n. All these functions take complex arguments and

are meromorphic. The point of defining ζ, Γ, and B anew every time we pass to a new field

or vector space is that physical quantities like scaling dimensions tend to have a universal

form when expressed in terms of the appropriate functions. Even well-known results in Rn

assume pleasingly simple forms in terms of suitably defined ΓRn(t) and BRn(t1, t2).

Formulas applicable only to Rn or only to Qpn will be suitably marked: for example,

Rn ζ(t) = ζR(t) ≡ π−t/2ΓEuler(t/2) (1.1)

1Dyson’s original approach, in which spin variables are grouped in pairs, and then the pairs are paired,

etc., gives rise in the continuum limit to a field theory over Q2, whereas if q = pn spins are grouped together

at each step one gets in an appropriate limit a field theory over Qpn . The spirit of this construction does

not seem to require that q = pn is a power of a prime. However, if it is not, “Qq” is not a field, nor even

an integral domain, and it is harder to understand either the q-adic norm which enters into correlators or

the q-adic conformal symmetry that arises near a critical point. We therefore leave the interesting point of

general composite q to future work.

– 2 –



J
H
E
P
1
1
(
2
0
1
7
)
1
0
7

whereas

Qpn ζ(t) = ζQp(t) ≡
1

1− p−t
. (1.2)

Note that the volume of Sn−1 is 2/ζR(n), whereas 1/ζQp(n) is the volume of the set of

units in Qpn , which is the set of elements ξ ∈ Qpn with |ξ| = 1. It is tempting to define

ζRn(t) ≡ ζR(nt) and ζQpn (t) ≡ ζQp(nt), along the lines of [16, 17], but for our current

purposes it is clearer not to do so, and instead always to construe ζ(t) as ζR(t) or ζQp(t).

Formulas which apply equally to Rn and Qpn will be left unmarked: for example,2

Γ(t) ≡ ζ(t)

ζ(n− t)
B(t1, t2) ≡ Γ(t1)Γ(t2)

Γ(t1 + t2)
. (1.3)

In the same spirit as Γ and B implicitly refer either to Rn or to Qpn , we also use |x| to

denote the absolute value in either Rn or Qpn . In the former case, |x| =
√∑n

i=1 x
2
i , which

is an Archimedean norm. In the latter case, |x| is ultrametric and takes values which are

integer powers of p; formally, |x| is defined as the p-adic norm of the field norm of x with

respect to the extension relation Qpn : Qp.
3

A key feature of ultrametric theories is that their kinetic terms are non-local. In mo-

mentum space, they are expressed as
∫
dk 1

2φ(−k)|k|sφ(k), where s is a spectral parameter,

a real number which we must usually choose between 0 and n. This makes ultrametric

theories similar to bilocal field theories on Rn as studied in [20, 21] and more recently, for

example, in [22]. In these bilocal theories, similar kinetic terms are considered, with |k|s

as their momentum space kernel. A special feature of field theories on Rn is that when s

is a positive even integer, the kinetic term becomes local in position space. In section 3,

we mostly focus on the case s = 2 when we examine field theories on Rn. In section 4,

we argue that s = 4 and higher even integers are also interesting: these values give rise

to higher derivative O(N) models, and they seem to be free of pathologies as long as they

are regarded as Euclidean path integral field theories. An example of such a theory was

discussed already in [23]. Four derivative theories have also been considered in the con-

densed matter literature [24], where they have been used to investigate spatially modulated

phases [25] along the lines of the Landau-Brazovskii model [26]. Commonly called Lifshitz

points, these four derivative theories have connections with the next-to-nearest neighbor

Ising model, as reviewed in [27]. (The main focus of many of the condensed matter applica-

tions is anisotropic models, in which one direction is singled out and may exhibit different

2Gamma functions defined this way satisfy the functional equation Γ(t)Γ(n− t) = 1. This results in the

following useful identity for the beta function: B(t1, t2) = B(t1, n− t1 − t2) = B(t2, n− t1 − t2).
3An introduction to Qpn and other concepts used in the current work can be found in [18], and closely re-

lated ideas have appeared in [19]. Here let us note that the distinction between ultrametric and Archimedean

norms hinges on the triangle inequality. An ultrametric norm must satisfy |x + y| ≤ max{|x|, |y|}, which

implies the triangle inequality but is obviously stronger than it. An Archimedean norm satisfies the stan-

dard triangle inequality and also has the property that if 0 < |x| < |y|, then there exists some integer n

such that |nx| > |y|, where nx is understood as x added to itself n times. The ultrametric and Archimedean

properties are mutually exclusive. Ostrowski’s Theorem states (approximately) that the only norms on the

rational numbers are the usual Archimedean norm together with the p-adic norms for any prime p.

– 3 –
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scaling behavior. In the current work, we are instead interested in the isotropic case.) We

will recall the basics of these approaches in section 4.

Although we do not pursue holographic calculations in the current work, it is natural

to hope that the p-adic O(N) model for large N is dual to some appropriate modification of

Vasiliev theory defined on the Bruhat-Tits tree, along the lines of [18, 19, 28, 29]. While a

minimal bulk theory on the Bruhat-Tits tree that matches the two-, three-, and four-point

functions of a free theory on the boundary has been proposed in [30], no exact non-trivial

correspondence between theories defined on the Bruhat-Tits tree and theories defined on

the p-adic numbers is known at present. But the striking resemblance between the p-adic

and Archimedean holographic computations and the functional forms of scalar correlators

(see e.g. [30]) hint at an underlying, possibly adelic relation between the formulations of

holography over Qp and R. A notion of bulk gravitational dynamics can be introduced on

the Bruhat-Tits tree [31], by considering a discrete version of the Einstein-Hilbert action

motivated from a graph theoretic formulation of Ricci curvature [32]. However, gauge

redundancy does not seem to play any direct role in such a construction, and spin properties

of the “graviton” on the Bruhat-Tits tree remain obscure. On the p-adic field theory side,

working with real valued operators and fields does not straightforwardly allow building

actions with local derivatives, or in fact local conserved currents. It is therefore difficult

to envisage how these features, which appear prominently in the Archimedean place, could

be understood from a p-adic perspective. Nevertheless, in undertaking in this paper a

study of the p-adic O(N) model, its RG flows and the computation of various anomalous

dimensions, we take the first steps towards a unified description of holography over local

number fields.

2 p-adic Wilsonian renormalization

Let φi be a map from Qpn to RN , where n and N are positive integers and p is a prime

number. (If n = 1 then the domain of φi is the p-adic numbers themselves). Our reason

for focusing on the unramified extension Qpn is that it is an n-dimensional vector space

over Qp with a natural ultrametric norm taking the same values as the norm on Qp, similar

to the way Rn is an n-dimensional vector space over R with a natural Archimedean norm

(namely the usual L2 norm). It is likely that the discussion to follow could be generalized

to somewhat more general ultrametric spaces, but we do not pursue this.

2.1 Action

Following [9], we consider the action

Qpn

S =

∫
dk

1

2
φi(−k)(|k|s + r)φi(k)

+

∫
dk1dk2dk3dk4 δ(k1 + k2 + k3 + k4)

λ

4!
Ti1i2i3i4φ

i1(k1)φi2(k2)φi3(k3)φi3(k4) ,

(2.1)

– 4 –
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where summation over repeated indices is implied, and following [33] we set

Qpn Ti1i2i3i4 =
1

3
(δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3) . (2.2)

Fourier transforms are defined by

Qpn φi(x) =

∫
dk χ(kx)φi(k) , (2.3)

where χ(ξ) = e2πi{ξ} is an additive character on Qpn . All integrals in (2.1) and (2.3) are by

default over all of Qpn ; however, we may impose a hard momentum cutoff |k| ≤ Λ where

Λ is an integer power of p and |k| is the standard norm on Qpn , whose values are integer

powers of p.

The O(N) model on Qpn comes with three real parameters, r (a mass-squared param-

eter), λ, and a spectral parameter s which tells us in the free theory that the dimension of

φ(x) is n−s
2 . Unlike in ordinary local field theories on Rn, s is an adjustable parameter in

a p-adic context.

2.2 One-loop amplitudes

To renormalize φ4 theory we typically need to handle divergences in the two-point and

four-point functions. To one loop order, these Green’s functions take the following forms:

Qpn

G
(2)
ij (k) =

δij
|k|s + r

+
δij

(|k|s + r)2

1

2
(−λ)

N + 2

3
I2 =

δij

|k|s + r + λN+2
6 I2

+O(λ2)

G
(4)
i1i2i3i4

(ki) =− λTi1i2i3i4 +
1

2
(−λ)2 1

9

(
I

(S)
4 [(N + 4)δi1i2δi3i4 + 2δi1i3δi2i4 + 2δi1i4δi2i3 ]

+ I
(T )
4 [(N + 4)δi1i3δi2i4 + 2δi1i2δi3i4 + 2δi1i4δi2i3 ]

+ I
(U)
4 [(N + 4)δi1i4δi2i3 + 2δi1i2δi3i4 + 2δi1i3δi2i4 ]

)
,

(2.4)

In (2.4) and below, we omit the momentum-conserving delta functions from the Green’s

functions. The loop integrals are

Qpn I2 =

∫
d`

|`|s + r
I

(S)
4 =

∫
d`

(|`|s + r)(|`+ k1 + k2|s + r)
. (2.5)

I
(T )
4 and I

(U)
4 are defined like I

(S)
4 , but with k1+k2 replaced by k1+k3 for I

(T )
4 and by k1+k4

for I
(U)
4 . A diagrammatic account of the formulas (2.4) is summarized in figure 1. The

standard challenge of perturbative renormalization group analysis is to tame divergences

at large |`| (the ultraviolet) arising in the integrals (2.5).

2.3 Wilsonian renormalization

In a Wilsonian approach, we integrate out a shell of hard momenta, so we want the internal

momenta, denoted ` in (2.4)–(2.5), to be hard, while the external momenta ki are soft. A

– 5 –



J
H
E
P
1
1
(
2
0
1
7
)
1
0
7

= +

= + + +

1

Figure 1. Diagrammatic representation of the two- and four-point functions to one loop order.

key property of Qpn is that it organizes into momentum shells whose magnitudes are integer

powers of p, and we can integrate out one such momentum shell at a time. Momentum

shell integration is easy to do because the integrands are constant over each momentum

shell. Explicitly,

Qpn

I2 =

∫
|`|=Λ

d`

Λs + r
=

1

ζ(n)

Λn

Λs + r

I4 =

∫
|`|=Λ

d`

(Λs + r)2
=

1

ζ(n)

Λn

(Λs + r)2
.

(2.6)

The result for I4 is the same for all three channels (so we dropped the channel label), and

it relies on the fact that |`+ k| = |`| when ` is hard and k is soft. This equality is an exact

statement which follows directly from |k| < |`| together with the ultrametric property of

the norm on Qpn . The situation contrasts strongly with the Archimedean case, where we

have the weaker condition |`+ k| ≈ |`| when |k| � |`|.
To extract the recursion relations that define the renormalization group for the p-adic

O(N) model, we require that G
(2)
ij (k) as computed in (2.4) through one-loop order, with

the loop momentum required to satisfy |`| = Λ, should coincide with the tree level Green’s

function G
(2)
soft,ij(k) =

δij
|k|s+rsoft

of an effective soft theory with a hard momentum cutoff at

Λ/p instead of Λ. Likewise, we seek to have G
(4)
i1i2i3i4

as computed in (2.4) coincide with

the tree-level G
(4)
soft,i1i2i3i4

= −λsoftTi1i2i3i4 , and this is possible because G
(4)
i1i2i3i4

has no

momentum dependence (beyond the momentum-conserving delta function which we have

suppressed). Altogether, we find

Qpn

rsoft = r + λ
N + 2

6

1

ζ(n)

Λn

Λs + r

λsoft = λ− λ2N + 8

6

1

ζ(n)

Λn

(Λs + r)2
.

(2.7)

The relations (2.7) are more simply expressed in terms of analogs of “dimensionless

couplings”

Qpn

r̄ =
r

Λ[r]
r̄soft =

rsoft

(Λ/p)[r]

λ̄ =
λ

Λ[λ]
λ̄soft =

λsoft

(Λ/p)[λ]
,

(2.8)

– 6 –
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where

Qpn [r] = s [λ] = ε ≡ 2s− n . (2.9)

In general, [X] is the dimension of a quantity X for the Gaussian fixed point at λ = 0.

Thus for example [|k|] = 1, [dk] = n, [|x|] = −1, and [φ(x)] = n−s
2 . Holding n fixed and

increasing s is analogous to holding s fixed and lowering n, and the analog of the upper

critical dimension, at which φ4 becomes marginal, is s = n/2.4 Thus [λ] itself is the analog

of the parameter ε = 4− n in ordinary φ4 theory, and in some formulas we emphasize this

by writing quantities in terms of ε.

Having defined dimensionless couplings in (2.8), we can now recast (2.7) as

Qpn

r̄soft = ps
[
r̄ + λ̄

N + 2

6

1

ζ(n)

1

1 + r̄

]
λ̄soft = pε

[
λ̄− λ̄2N + 8

6

1

ζ(n)

1

(1 + r̄)2

]
.

(2.10)

These are the recursion relations which define the renormalization of the p-adic O(N) model

through one loop.

2.4 A non-renormalization theorem

Note that we didn’t have to worry about wave-function renormalization when working

out the recursion relations (2.10). Absence of wave-function renormalization is a trivial

observation at this loop order, since there is no way to get momentum dependence in the

one-loop correction to G
(2)
ij (k) even in an Archimedean theory. A striking point about

the p-adic O(N) model is that (at least in a perturbative Wilsonian approach), no wave-

function renormalization ever occurs. Better yet, no diagrammatic loop correction ever

exhibits momentum dependence, even in higher point amplitudes. That is, the effective

action is always schematically of the form5

Qpn S =

∫
dk

1

2
~φ(−k)|k|s · ~φ(k) +

∫
dxVeff(~φ(x)) , (2.11)

where Veff(~φ(x)) undergoes renormalization group flow but the “kinetic term”

φ(−k)|k|sφ(k) is never renormalized, nor are any other k-dependent terms generated as

they are for theories on Rn. In other words, the renormalization group acts strictly on

the purely non-derivative, local part of the action which depends on ~φ(x) at one point

only. This feature of the renormalization group seems to have been appreciated already

for the hierarchical model [8]. It hinges on ultrametricity, as we can see by examining the

first diagram whose momentum dependence would ordinarily contribute to wave-function

4The analog of the lower critical dimension is s = n, so IR critical behavior occurs for n/2 < s < n, or

equivalently s < n < 2s which is the analog of 2 < n < 4 in φ4 theory in Rn.
5By

∫
dxVeff(~φ(x)) we really mean a sum of powers of ~φ(x), suitably contracted with O(N)-covariant

tensors and multiplied by running couplings like r and λ, and expressed in momentum space as integrals

against momentum-conserving delta functions.

– 7 –
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0

x1

x2

x

k l2

l3

l1

1

Figure 2. The underground diagram, the lowest order diagram that contributes to wave-function

renormalization in Archimedean φ4 theory.

renormalization in φ4 theory, namely the underground diagram shown in figure 2. The

loop integral is

Qpn I2′ =

∫
|`1|=Λ

d`1

∫
|`2|=Λ

d`2

∫
|`3|=Λ

d`3
δ(`1 + `2 + `3 − k)

(Λs + r)3
. (2.12)

To see that I2′ is actually independent of k, we use the u-substitution ˜̀
3 = `3 − k. Ul-

trametricity guarantees that the map `3 → ˜̀
3 is a bijection from the momentum shell

|`3| = Λ to itself, provided |k| < Λ. Similar arguments can be applied to general Feynman

diagrams [9].

2.5 Fixed point and anomalous dimensions

Finding a fixed point of the discrete RG equations (2.10) now amounts to setting r̄soft = r̄

and λ̄soft = λ̄. This happens, to leading order in small ε, at the p-adic Wilson-Fisher

fixed point,

Qpn r̄∗ = −ζ(n/2)
N + 2

N + 8
ε log p λ̄∗ =

6ζ(n)

N + 8
ε log p . (2.13)

To analyze anomalous dimensions at the fixed point, we consider perturbations

Qpn r̄ = r̄∗ + δr̄ λ̄ = λ̄∗ + δλ̄ . (2.14)

To linear order in δr̄ and δλ̄, the discrete RG equations become

Qpn

(
δr̄soft

δλ̄soft

)
= M

(
δr̄

δλ̄

)
. (2.15)

The explicit form of M can be worked out easily starting from (2.10) but is unenlightening.

Eigenvalues of M take the form pn−∆ where ∆ is the dimension of a primary operator O
in the fixed point theory. To see this, note that if ρ is the coupling dual to O, then ρ has

dimension n−∆, and we naturally define ρ̄ = ρ/Λn−∆, while ρ̄soft = ρ/(Λ/p)n−∆ = pn−∆ρ̄.

– 8 –
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By straightforward calculation, we see that the dimensions from (2.15) to leading order in

small ε take the form

Qpn ∆irr = n+ ε ∆rel = s− 6

N + 8
ε . (2.16)

For higher order expansions in ε, we refer the reader to [11, 12]. We may naturally suppose

that ∆irr controls the approach of a discrete flow from the free O(N) model to the p-

adic Wilson-Fisher fixed point, while ∆rel is the dimension of a mass-like operator which

generically drives trajectories away from the fixed point.

3 Large N methods

Methods based on the Hubbard-Stratonovich transformation have been developed, notably

in [14, 15], which resum an infinite set of diagrams of the O(N) model at fixed order in large

N and allow a determination of critical exponents at the Wilson-Fisher fixed point which

are known exactly as functions of ε and to a few orders in large N . Whereas Wilsonian

methods are significantly different for field theories defined over Qpn than for field theories

defined over Rn, the large N methods work nearly identically in the two cases. We will

illustrate this by working out the leading non-trivial results for anomalous dimensions in

φ4 theory.

3.1 Action

We start with an informal introduction to the methods of [14, 15]. We are interested in a

conformally invariant theory, and so we will naively turn off the relevant mass deformation

while keeping the φ4 interaction. The action (2.1) becomes

S =

∫
dx

[
1

2
φi(x)Dsφi(x) +

λ

4!

(
φi(x)φi(x)

)2]
. (3.1)

Here and below, integrals are over all of Qpn , or all of Rn, unless indicated otherwise, and

φi takes values in RN .

Acting with Ds in position space is, by definition, the same as multiplying by |k|s in

momentum space: ∫
dxχ(kx)∗Dsφi(x) ≡ |k|sφi(k) . (3.2)

A Fourier integral of fundamental importance is∫
dk χ(kx)|k|s =

1/Γ(−s)
|x|n+s

+ contact terms . (3.3)

We have previously defined Fourier transforms over Qpn in (2.3). For Rn, we set χ(kx) =

e2πi~k·~x. Thus, relative to standard conventions in quantum field theory, our wave numbers
~k always include an extra factor of 1/2π.6

6Restoring dimensions by writing a plane wave as ei~p·~x/~, where now ~p is the momentum, the current

conventions can be understood as arising from setting h ≡ 2π~ = 1 rather than following the usual practice

of setting ~ = 1.
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In the case of p-adic numbers, a sufficient prescription for the contact terms is for them

to be just a delta function, so that we recover the Vladimirov derivative:

Qpn Dsφi(x) ≡ 1

Γ(−s)

∫
dy

φi(y)− φi(x)

|y − x|n+s
. (3.4)

Some of the good properties of the Vladimirov derivative are explained, for instance, in

appendix B of [31]. The Vladimirov derivative should be understood to act on functions

which can be approximated as piecewise constant functions with compact support.

In the case of Rn, the contact terms have in general a more complicated structure,

including both delta functions and derivatives of delta functions. At a formal level, we can

let s remain a continuously variable parameter in the real case. The theories so obtained

have bilocal terms in position space, as in [20, 21]. When s is a positive even integer, we

recover locality:

Rn Dsφi(x) = �s/2 φi(x) for s = 2, 4, 6, . . . , (3.5)

where

Rn � ≡ −
1

(2π)2

n∑
j=1

∂2
j . (3.6)

The general expression (3.2) is consistent with (3.5) because 1/ΓRn(−s) has zeros at s =

2, 4, 6, . . . . (Actually, (3.5) is equally valid at s = 0, where 1/ΓRn(−s) also has a zero,

but this is not an interesting case because then the “kinetic” term is identical to the

mass term.)7

The Hubbard-Stratonovich trick is to replace

λ

4!
(φiφi)2 → λ

4!
(φiφi)2 − 3

2λN

(
σ − λ

√
N

6
φiφi

)2

=
1

2
√
N
σφiφi − 3σ2

2λN
(3.7)

in the action. This is permitted because we can eliminate σ by its equation of motion

and recover the original action. At the level of path integration the same manipulation is

still permitted, but σ must run over imaginary rather than real values in order to have a

convergent integral in the σ direction. Next we assume that λN runs to large values, so

that the σ2/λN term in (3.7) may be neglected. Thus we arrive at the modified action

S =

∫
dx

[
1

2
φi(x)Dsφi(x) +

1

2
√
N
σφiφi

]
. (3.8)

We may alternatively understand (3.8) as arising from a non-linear sigma model where for

each x, φi(x) is constrained to lie on a sphere SN−1 of fixed radius; then σ is the Lagrange

multiplier that enforces the constraint, and there is an extra term linear in σ whose role is

to fix the radius of the SN−1 — or in diagrammatic terms, to eliminate any tadpole for σ.

7The explicit factors of 2π in (3.6) imply a normalization of the kinetic term that is different from the one

normally used in field theory: for Rn with s = 2, our kinetic term is Skin =
∫
Rn dx

1
8π2 (∂φi)2 instead of the

more standard Skin =
∫
Rn dx

1
2
(∂φi)2. This means that our field φi includes an extra factor of 2π compared

with standard conventions, and as a result, powers of 2π will show up in all our position space Green’s

functions that do not match the literature. More precisely: explicit factors of 2π altogether disappear

from Green’s functions when we follow our conventions faithfully, including the use of ΓRn (defined in (1.3)

and (1.1)) rather than ΓEuler.
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Figure 3. The vacuum polarization diagram for the σ field. Dashed lines correspond to the σ field,

and solid lines correspond to the φ field.

3.2 Leading order propagators

A two-point function for φi can be read off from (3.8) at tree level:

Γ
(0)
φφ(k) = |k|s G

(0)
φφ(k) =

1

|k|s
G

(0)
φφ(x) =

1/Γ(s)

|x|n−s
. (3.9)

All these two-point functions include a factor of δij which we suppress. All position space

correlators should be understood as subject to correction by contact terms. The 1PI two-

point amplitude for σ gets its first contribution at one loop as shown in figure 3:

Γ(1)
σσ (x) = − 1/Γ(s)2

2|x|2n−2s
. (3.10)

The explicit sign in (3.10) comes from the convention that field configurations are weighted

by e−Γ. The 1/2 is a symmetry factor, and the rest of the amplitude is the square of G
(0)
φφ(x).

A factor of N for the sum over indices in the φi loop is offset by two factors of 1/
√
N , one

from each vertex. Straightforward Fourier transforms lead to

G(1)
σσ (k) = − 2

B(n− s, n− s)
|k|2s−n G(1)

σσ (x) = −2
Γ(2s)

B(n− s, n− s)
1

|x|2s
. (3.11)

From G
(0)
φφ(x) ∝ 1/|x|n−s we conclude ∆φ = n−s

2 + O(1/N), which for Qpn trivially

agrees with the conclusion of the non-renormalization theorem of section 2.4, which indi-

cates that ∆φ receives no corrections from its free field value. This agreement is trivial

because we’re only looking at tree-level contributions to Gφφ(x) thus far.

From G
(0)
σσ (x) ∝ 1/|x|2s we conclude ∆σ = s + O(1/N). We identify σ itself as the

relevant deformation, so from (2.16) we see that we already have agreement between ∆rel

and ∆σ to leading order in small ε and large N . Our computations in section 3.5 will

extend this agreement to the next order: that is, we will find

∆σ = s− 6

N
ε+O(1/N2) +O(ε2) . (3.12)

First, however, we will show that on the p-adics ∆φ receives no correction through O(1/N).

3.3 Self-energy diagram I: momentum space methods

The self-energy correction to the 1PI two-point function for φi is given by the diagram in

figure 4, whose amplitude is

Γ
(2)
φφ(k) = − 1

N

∫
d`G

(0)
φφ(`)G(1)

σσ (k − `) =
2/N

B(n− s, n− s)

∫
d` |`|−s|k − `|2s−n . (3.13)
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Figure 4. The self energy diagram for the φ field.

Evidently we must investigate the divergence properties of the integral. It helps to

introduce functions

πt(k) ≡ |k|t−n (3.14)

for any complex number t. These functions are multiplicative characters on Qpn ,8 but are

also of course well defined on Rn despite there being no obvious notion of multiplicative

characters there (unless n = 1 or 2, where we have R or C respectively, both of which are

fields). The Fourier transform of πt(k) is π̂t(x) ≡ Γ(t)|x|−t up to contact terms, so the

obvious identity π̂t1(x)π̂t2(x) = B(t1, t2)π̂t1+t2(x) becomes in Fourier space

(πt1 ∗ πt2)(k) ≡
∫
d` |`|t1−n|k − `|t2−n = B(t1, t2)πt1+t2(k) = B(t1, t2)|k|t1+t2−n , (3.15)

The integral in (3.15) converges provided t1 > 0, t2 > 0, and t1 + t2 < n. Outside this

triangular region, we need to consider some regularization.

Suppose t1 > 0, t2 > 0, but t1 + t2 > n, so that the integral in (3.15) has an ultraviolet

divergence. In Qpn , imposing a hard momentum cutoff leads to

Qpn

∫
|`|≤Λ

d` |`|t1−n|k − `|t2−n = B(t1, t2)|k|t1+t2−n +
ζ(t1 + t2 − n)

ζ(n)
Λt1+t2−n , (3.16)

provided |k| < Λ. To obtain (3.16), the simplest method is to split the integral into regions

where |`| and |k − `| are constant, and then the integral becomes a discrete sum which

can be performed exactly. What is notable about (3.16) is that the result is the sum of

two terms: the expression |k|t1+t2−nB(t1, t2) that we got through formal manipulations

in (3.15), plus the k = 0 result. Applying (3.16) to (3.13), we now find for Qpn the result

Qpn Γ
(2)
φφ(k) =

2/N

B(n− s, n− s)

[
|k|sB(n− s, 2s) +

ζ(s)

ζ(n)
Λs
]
. (3.17)

The divergent piece can be canceled by a counterterm Sct ∝
∫
dxΛsφiφi. The absence of

wave-function renormalization is due to the fact that the divergent part of Γ
(2)
φφ(k) has no

k-dependence. In particular, we don’t see an anomalous dimension for φi (at this level) be-

cause there is no term proportional to |k|s log(Λ/|k|). There is only a finite renormalization

of the two-point function for φ:

Qpn Γ
(0)
φφ(k) + Γ

(2)
φφ(k) =

[
1 +

2

N

B(n− s, 2s)
B(n− s, n− s)

]
|k|s . (3.18)

8Given a field K, a multiplicative character π : K× → C× satisfies π(xy) = π(x)π(y).
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The case of Rn is harder because there is no such exact formula as (3.16), owing to the

possibility of subleading divergences. Focusing on the case where the leading divergence is

quadratic,

Rn

∫
|`|≤Λ

d` |`|t1−n|k − `|2−t1 =
2

ζ(n)

[
Λ2

2
− (t1 − n)(2− t1)

2n
k2 log

Λ

|k|
+ (finite)

]
=

(t1 − n)(2− t1)

nζ(n)
k2 log |k|+ (non-universal) ,

(3.19)

where k2 = |k|2 =
∑n

i=1 k
2
i and we restrict 0 < t1 < n + 2 to avoid infrared divergences.

In (3.19), “finite” means terms which remain finite as Λ → ∞ with k held fixed. The

precise way in which we impose the cutoff doesn’t affect the terms shown; for instance,

we could have integrated instead over the region |k − `| ≤ Λ. The logarithmic term is

particularly robust, in that even a rescaling of Λ does not affect it. This is the familiar

scheme independence of leading logarithmic terms, which we emphasize in the second line

by picking out the k2 log |k| behavior explicitly and folding the k2 log Λ term along with

the Λ2 term into the “non-universal” part. These divergent terms can be canceled by local

counterterms. Of course, all this is textbook renormalization procedure, worthy of note

here only as a segue into a more formal method to extract the same leading logarithmic

term which will generalize conveniently to the p-adic context in section 3.5. This more

formal method is to “regularize” by shifting one of the exponents of the integral and then

treating that shift as small:

Rn

∫
d` |`|t1−n|k − `|2−t1−δ = B(t1, n+ 2− t1 − δ)|k|2−δ = B(t1,−2 + δ)|k|2−δ

=
(t1 − n)(2− t1)

nζ(n)

[
−1

δ
+ log |k|

]
k2 + (finite) .

(3.20)

The first line of (3.20) is rigorously valid when t1 − n− 2 < δ < −2. To reach the second

line of (3.20), we analytically continue in δ past the singularity of B(t1,−2 + δ) at δ = −2

to the next singularity, at δ = 0. Evidently, the k2 log |k| term matches what was found

in (3.19). In applications of (3.20) and related analytic continuations to diagrammatic

amplitudes, we must be careful to shift dimensions at the level of the Feynman rules. Our

choice is to shift exponents associated with the σ propagator.

The contrast between Rn and Qpn is clear from the position of poles in the beta

function. If we tried the same manipulation as (3.20) for the p-adics, we would get a finite

result and no log |k| term because there is no singularity in BQpn (t1,−2 + δ) at δ = 0; but

BRn(t1,−2+δ) does have such a pole on account of the infinite sequence of poles in ΓRn(t).9

If, on the other hand, we were considering an integral like
∫
d` |`|t1−n|k − `|−t1 which is

logarithmically divergent, then a log |k| term would come out of any sensible regularization

9It is intriguing to note that the same contrast between analytic properties of ΓR and ΓQp is responsible

for the presence of infinitely many states in the Archimedean string spectrum, whereas the standard p-adic

string construction gives only a tachyon. We will return to this line of thought further in section 5.
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procedure regardless of whether the integral is over Rn or Qpn . In the approach where we

shift one exponent, the log |k| term would be associated with a pole in B(t1, δ) at δ = 0,

which is present equally for BRn and BQpn .

With (3.19) or (3.20) in hand, we can calculate the anomalous dimension for φi in the

standard setup of a local field theory on Rn: setting s = 2 and keeping only the universal

leading logarithmic term, we have

Rn Γ
(0)
φφ(k) + Γ

(2)
φφ(k) = k2 − 4/N

B(n− 2, n− 2)

4− n
nζ(n)

k2 log |k| = |k|n−2∆φ , (3.21)

where

Rn ∆φ =
n− 2

2
+

2/N

B(n− 2, n− 2)

4− n
nζ(n)

+O(1/N2) . (3.22)

This result is exact in ε = 4 − n, but if we wish to compare with standard perturbation

theory we can expand in small ε:

Rn ∆φ =
n− 2

2
+

ε2

4N
+O(ε3) +O(1/N2) . (3.23)

It is possible to unify our perspective somewhat by writing a formula for ∆φ which is

valid equally for Rn and Qpn :

∆φ =
n− s

2
+

1

N
Res
δ

B(n− s,−s+ δ)

B(n− s, n− s)
+O(1/N2) , (3.24)

where we understand Resz as picking out the residue at a pole at z = 0 of a meromorphic

function of z:

Res
z
f(z) ≡

∮
0

dz

2πi
f(z) . (3.25)

This unified perspective suggests in Rn that s = 2 may not be as special as we normally

think — and that in particular, any positive even s will give rise to constructions similar to

the Wilson-Fisher fixed point, obtained (one might assume) from local Gaussian theories

by adding a φ4 term. We follow up this idea in section 4. When applied to Qpn (assuming

s > 0), (3.25) tells us correctly that the anomalous dimension vanishes since B(n−s,−s+δ)

is finite at δ = 0. Although the expression (3.24) appears to be merely a repackaging of

previous results, it does highlight the origin of the anomalous dimension and suggests the

possibility of extending to more general base fields and/or more interesting multiplicative

characters.

3.4 Self-energy diagram II: position space methods

The evaluation of the 1PI self-energy diagram is trivial in position space:

Γ
(2)
φφ(x) = − 1

N
G

(0)
φφ(x)G(1)

σσ (x) =
2

N

Γ(2s)/Γ(s)

B(n− s, n− s)
1

|x|n+s
. (3.26)

In Qpn we can straightforwardly combine Γ
(2)
φφ(x) with Γ

(0)
φφ(x) = 1/Γ(−s)

|x|n+s to obtain the

finite renormalization factor appearing already in (3.18). In Rn this fails because Γ
(0)
φφ(x) =

– 14 –
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� δ(x). A more effective method is to investigate the contribution of the self-energy graph

to the connected two-point function:

G
(2)
φφ(x) = − 2/N

Γ(s)B(s, s)B(n− s, n− s)
I3(x) , (3.27)

where we define

I3(x) ≡
∫
dx1dx2

1

|x1|n−s|x12|n+s−δ|x− x2|n−s
, (3.28)

where x12 = x1 − x2. Anticipating possible divergences, we’ve already introduced as a

regulator a shift δ in one of the exponents. We have coordinated the normalization of δ

in (3.28) with the normalization we used in (3.20): in both cases, we’re effectively sending

∆σ → ∆σ − δ/2 while holding all other quantities fixed.

Because I3(x) is the convolution of three power laws, it is easily evaluated using (3.15).

(We don’t mean to pass to Fourier space; we mean to apply (3.15) as is with k variables

replaced with x variables.) The result is

I3(x) =
B(s, s)B(2s,−s+ δ)

|x|n−s−δ
δ
=

B(s, s)B(n− s,−s+ δ)

|x|n−s−δ
. (3.29)

In the second step,
δ
= means that the last expression differs from the first only by terms

which are finite as δ → 0. In the current case, this delta-equality is true provided s avoids

special values such as 0, n, and n/2. Thus we arrive at

G
(0)
φφ(x) +G

(2)
φφ(x)

δ
=

1/Γ(s)

|x|n−s

[
1− 2

N

B(n− s,−s+ δ)

B(n− s, n− s)
|x|δ
]

δ
=

1/Γ(s)

|x|n−s

[
1− 2

N

(
Res
δ

B(n− s,−s+ δ)

B(n− s, n− s)

)(
1

δ
+ log |x|

)]
.

(3.30)

As before, we drop the divergent 1/δ piece, understanding that its effects can be offset by

a local counterterm. Comparing (3.30) with the expected power law Gφφ(x) ∝ 1/|x|2∆φ ,

we arrive at

γφ ≡ ∆φ −
n− s

2
=

1

N
Res
δ

B(n− s,−s+ δ)

B(n− s, n− s)
+O(1/N2) . (3.31)

This is easily seen to agree with (3.24) provided we stipulate s > 0. For Rn (and s = 2 as we

always stipulate for the Archimedean case) it also agrees with the standard result [14, 15]

Rn γφ =
n− 4

N

2n−3

π3/2

ΓEuler

(
n−1

2

)
ΓEuler

(
n
2 + 1

) sin
πn

2
+O(1/N2) . (3.32)

3.5 Corrections to the σ propagator

In order to arrive at (3.12), we need to find contributions to Γσσ(x) at order 1/N .10 There

are three diagrams which contribute: D1, D2, and D3 as shown in figure 5. The first is

10After the discussion of section 3.4 one might expect that carrying through to Gσσ(x) is necessary in

order to avoid comparing power laws to contact terms in the case of Rn. This is not a problem because in

Γ
(1)
σσ,Rn(x) ∝ 1/|x|2n−4 we allow ourselves to analytically continue in n — and the only points of concern

are the upper and lower critical dimensions, n = 4 and 2.
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Figure 5. The three position space diagrams that contribute to 1/N corrections to the anomalous

dimension of the σ field.

easy because the only logarithmic divergence arises from the self-energy subdiagram, and

it can be tracked by replacing the two-loop diagram with the one-loop diagram in figure 3,

only with the tree-level propagators G
(0)
φφ(x) replaced by

G
(0)
φφ(x) +G

(2)
φφ(x)

δ
=

1/Γ(s)

|x|n−s

[
1− 2γφ

(
1

δ
+ log |x|

)]
, (3.33)

where we have rewritten (3.30) in compact form. We remember that γφ is O(1/N) and

vanishes for Qpn . Thus, following through the manipulations of section 3.2, we find

Γ(1)
σσ (x) + Γ(D1)

σσ (x)
δ
= − 1/Γ(s)2

2|x|2n−2s

[
1− 4γφ

(
1

δ
+ log |x|

)]
, (3.34)

implying that diagram D1 contributes γ
(D1)
σ = −2γφ to the anomalous dimension

γσ ≡ ∆σ − s . (3.35)

To get the contributions to γσ fromD2 andD3 we need only isolate their leading logarithmic

terms and add those terms to (3.34).

The second diagram contributes

Γ(D2)
σσ (x) = − 1

2N

(
1

Γ(s)

)4(
−2

Γ(2s)

B(n− s, n− s)

)
ID2(x) . (3.36)

The leading sign is the usual one for 1PI diagrams; the 1/2 is a symmetry factor; 1/N

comes from index summation together with four σφφ vertices; the remaining prefactors

come from the four G
(0)
φφ propagators and the one internal G

(1)
σσ propagator; and

ID2(x) =

∫
dx1dx2

1

|x1|n−s|x1 − x|n−s|x12|2s−δ|x2|n−s|x2 − x|n−s
δ
= B(s, s)B(δ, δ)|x|2s−2n+δ .

(3.37)

The second equality in (3.37) takes a little work to justify, and we postpone a derivation

to section 3.7. Combining (3.36) and (3.37) we see that

Γ(D2)
σσ (x)

δ
=

1

N

B(δ, δ)

Γ(s)2B(n− s, n− s)
|x|2s−2n+δ

δ
=

1/N

Γ(s)2
|x|2s−2n

(
Res
δ

B(δ, δ)

B(n− s, n− s)

)[
1

δ
+ log |x|

]
,

(3.38)
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from which we deduce in turn the contribution to the anomalous dimension

γ(D2)
σ = − 1

N
Res
δ

B(δ, δ)

B(n− s, n− s)
. (3.39)

The third diagram contributes

Γ(D3)
σσ (x) = − 1

2N

(
1

Γ(s)

)6(
−2

Γ(2s)

B(n− s, n− s)

)2

ID3(x) (3.40)

where

ID3(x) =

∫
dx1dx2dx3dx4

1

|x1|n−s|x2|n−s|x12|n−s
× 1

|x13|2s−δ/2|x24|2s−δ/2

× 1

|x3 − x|n−s|x4 − x|n−s|x34|n−s
δ
= B(s, s)2B(n− s, n− 2s)B(δ, δ)|x|2s−2n+δ .

(3.41)

The first and third factors in the integrand of (3.41) come from theG
(0)
φφ propagators running

around the triangular loops. The second factor comes from the internal G
(1)
σσ propagators.11

Γ(D3)
σσ (x)

δ
= − 2/N

Γ(s)2

B(n− s, n− 2s)B(δ, δ)

B(n− s, n− s)2
|x|2s−2n+δ

δ
= − 2/N

Γ(s)2
|x|2s−2n

(
Res
δ

B(n− s, n− 2s)B(δ, δ)

B(n− s, n− s)2

)[
1

δ
+ log |x|

]
,

(3.42)

from which we deduce in turn

γ(D3)
σ =

2

N
Res
δ

B(n− s, n− 2s)B(δ, δ)

B(n− s, n− s)2
. (3.43)

Putting the contributions from D1, D2, and D3 together, we arrive at the anomalous

dimension

γσ = γ(D1)
σ + γ(D2)

σ + γ(D3)
σ +O(1/N)2

=
1

N
Res
δ

[
−2

B(n− s,−s+ δ)

B(n− s, n− s)
+

(
−1 + 2

B(n− s, n− 2s)

B(n− s, n− s)

)
B(δ, δ)

B(n− s, n− s)

]
+O(1/N2) .

(3.44)

The first term in square brackets comes from D1 and vanishes for Qpn . For Rn and

s = 2 we recover from (3.44) the result of [14, 15]:

Rn γσ = 4
(n− 1)(n− 2)

n− 4
γφ +O(1/N2) . (3.45)

11The alert reader may be surprised that we chose ∆σ → ∆σ− δ/4 as a regulator in the G
(1)
σσ propagators

in (3.41), in contrast to our previous strategy ∆σ → ∆σ − δ/2. We made this new choice because there are

two G
(1)
σσ propagators, and we wanted the added x dependence arising from the regulator to be |x|δ rather

than |x|2δ. Our new choice does not affect the leading logarithmic term: the leading terms in a small δ

expansion involve a factor 1
δ

+ log |x|, whereas if we had stuck with ∆σ → ∆σ − δ/2 we would have found
1
2δ

+ log |x|.
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If we pass to the limit of small ε, (3.44) becomes

γσ = − 6

N
ε+O(1/N2) +O(ε2) . (3.46)

The result (3.46) is valid equally for Rn and Qpn , and for Qpn we see that it agrees

with (3.12). If one further expands (3.44) to third order in ε for Qpn , the result will

be found to agree with the ε expansion in [11, 12]. If instead we expand about the lower

critical dimension and define ε̃ = n− s, then equation (3.44) says that

γσ = O(ε̃2) . (3.47)

This result is also valid equally for Rn and Qpn , though the agreement is non-trivial:

different terms in (3.44) cancel to make the term linear in ε̃ vanish.

3.6 Position space integrals I: the star-triangle identity

Two useful tools for evaluating position space diagrams are the convolution integral (3.15),

which we rewrite here:∫
dy |y|t1−n|y − x|t2−n = B(t1, t2)|x|t1+t2−n , (3.48)

and the star-triangle identity of [34],12 which can be written compactly as

∫
dx

3∏
i=1

|x− xi|ti−n = B(t1, t2)

3∏
i=1

|yi|−ti if

3∑
i=1

ti = n , (3.49)

where we define

y1 ≡ x23 y2 ≡ x31 y3 ≡ x12 . (3.50)

The formulas (3.48)–(3.49) are valid equally for Rn or Qpn . Note that it does not matter

which two of t1, t2, and t3 we supply as arguments to B in (3.49). The integrals (3.48)

and (3.49) are rigorously valid only when the integrals converge. Provided we set t3 =

n − t1 − t2, the region of convergence for the integrals both in (3.48) and (3.49) can be

characterized by the constraints ti > 0 for all i. Outside this region, we must be prepared

to shift exponents (while preserving the constraint
∑3

i=1 ti = n) and cancel divergences

against local counterterms, as seen in detail in sections 3.3 and 3.4 for the self-energy

diagram.

In Qpn , it is possible to evaluate the integral in (3.49) explicitly even when
∑3

i=1 ti 6= n.

Due to the “tall isosceles” property of ultrametric spaces, for any three non-coincident

points x1, x2 and x3, the linear combinations yi defined in (3.50) form the sides of a triangle,

12Originally in [34] the star-triangle identity was stated for R3 as∫
d3t |t− x|a|t− y|b|t− z|c=π3/2 ΓEuler(

a+3
2

)ΓEuler(
b+3

2
)ΓEuler(

c+3
2

)

ΓEuler(−a/2)ΓEuler(−b/2)ΓEuler(−c/2)
|x− y|−3−c|y − z|−3−a|z − x|−3−b

provided a+ b+ c = −6. The somewhat complicated prefactor is precisely BR3(a+ 3, b+ 3).
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such that up to relabeling yi, we always have |y1| = |y2| ≥ |y3|. With this choice of yis, the

integral in (3.49) can be worked out in general to give

Qpn

∫
dx

3∏
i=1

|x− xi|ti−n = B(t1, t2)|y2|t3−n|y3|t1+t2−n

+ B(t3, t1 + t2 − n)|y2|t1+t2+t3−2n.

(3.51)

The integral converges provided ti > 0 for all i, and t1 + t2 + t3 < 2n. From the right hand

side of (3.51), we observe that the integral has poles at ti = 0 for all i, at t1 + t2 + t3 = 2n,

and at t1 + t2 = n. Remarkably in Rn, numerics reveal (3.51) (more precisely the Rn

version constructed from BRn) holds approximately as long as the L2 norms satisfy |y1| ≈
|y2| > |y3|, although it is no longer an exact identity like it is in Qpn .

3.7 Position space integrals II: symmetric deformations

In order to find the anomalous dimension of the σ field by evaluating Feynman diagrams, it

is necessary to introduce a regulator to the scaling of the position space σ propagator. But

when introducing this regulator, the condition
∑3

i=1 ti = n in equation (3.49) is no longer

satisfied, and so the star-triangle identity cannot immediately be applied to equations (3.37)

and (3.41).13 There is, however, a way around this obstacle [35]. Essentially the idea

consists in considering instead of the integrals ID2(x) and ID3(x) other integrals that differ

from them only by terms that are finite in the δ → 0 limit, but to which the star-triangle

identity can be applied. Suppose, in (3.37), that we introduce yet another regulator η and

consider the following integral:

ID2(x, η) =

∫
dx1dx2

1

|x1|n−s−η|x1 − x|n−s−η|x12|2s−δ|x2|n−s+η|x2 − x|n−s+η
. (3.52)

The deformation is depicted diagrammatically in figure 6. Because of the symmetrical

manner in which η has been introduced, it is clear that ID2(x, η) is invariant under the

transformation η → −η. For this reason, and because this Feynman diagram has at most

single poles in the regulators, the Taylor expansion of ID2(x, η) in η must assume the

following form,

ID2(x, η) = ID2(x) + f2(x)η2 + f4(x)η4 + . . . (3.53)

where fi(x) are some functions that have at most single poles in δ. It is clear then, that

if we set η = δ
2 , then ID2(x, η) will only differ from ID2(x) by terms that tend to zero as

δ → 0. But ID2(x, δ2) can be evaluated exactly via equations (3.49) and (3.48).

ID2(x)
δ
= ID2,δ(x) =

∫
dx1

|x1|n−s−
δ
2 |x1 − x|n−s−

δ
2

dx2

|x12|2s−δ|x2|n−s+
δ
2 |x2 − x|n−s+

δ
2

δ
= B(s, s)|x|2s−n−δ

∫
dx1

|x1|n−δ|x1 − x|n−δ
= B(s, s)B(δ, δ)|x|2s−2n+δ.

(3.54)

13The more general identity written in (3.51) can still be employed — we present an alternate derivation

of (3.37) using this identity in the next section.
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ID2 0

−η

+η

−δ

x1

x2

x

−η

+η

ID3 0

+η

−η

x1

x2

x3

x4

x

+η

−η

− δ
2

− δ
2

0 2s− δ

2n− 3s+ η

s− η

x2

x3

x

s+ η

2n− 3s− η

1

Figure 6. The symmetric deformation of ID2
that allows the integral to be exactly evaluated

without disturbing the leading behavior in δ. η is eventually set to δ/2.

This method of finding the leading order behavior of a Feynman diagram by symmetri-

cally changing the scaling of internal propagators and invoking equations (3.49) and (3.48)

can also be used to derive equation (3.41) in the following manner, represented diagram-

matically in figure 7:

ID3(x)
δ
=

∫
dx2 dx3

|x2|n−s−
δ
2 |x3 − x|n−s−

δ
2

∫
dx1

|x1|n−s+
δ
2 |x12|n−s|x13|2s−

δ
2

×
∫

dx4

|x24|2s−
δ
2 |x34|n−s|x4 − x|n−s+

δ
2

δ
= B(s, s)2

∫
dx2 dx3

|x2|2n−3s|x2 − x|s|x23|2s−δ|x3|s|x3 − x|2n−3s

δ
= B(s, s)2

∫
dx3

|x3|s−
δ
2 |x3 − x|2n−3s− δ

2

dx2

|x2|2n−3s+ δ
2 |x23|2s−δ|x2 − x|s+

δ
2

δ
= B(s, s)2B(n− s, n− 2s)|x|2s−n−δ

∫
dx3

|x3|n−δ|x3 − x|n−δ

= B(s, s)2B(n− s, n− 2s)B(δ, δ)|x|2s−2n+δ .

(3.55)

After the second step we recognize the remaining integral as similar to ID2 , but with

different (and slightly less constrained) exponents. We represent this diagrammatically

on the right side of figure 7 by showing a diagram with the topology of D2 but with the

exponents taken from the second line of (3.55). The third step, then, is to shift these

exponents again in imitation of how we evaluated ID2 . It may not be entirely evident that

the scaling dimensions are altered in a symmetrical manner in the third step in (3.55), but

changing variables by letting x2 → −x̃2 and x̃3 → x3 + x clearly shows that this is indeed

the case.

3.8 Position space integrals III: direct evaluation in Qpn

We now present an alternate derivation of (3.37) which is applicable in Qpn and relies on a

direct application of the identity in (3.51). Using the identity to perform the integral over

x1 in (3.37), we obtain

Qpn ID2(x) =

∫
dx2

1

|x2|n−s|x− x2|n−s
f(|x|, |x2|, |x− x2|) , (3.56)
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ID2 0

−η

+η

−δ

x1

x2

x

−η

+η

ID3 0

+η

−η

x1

x2

x3

x4

x

+η

−η

− δ
2

− δ
2

0 2s− δ

2n− 3s+ η

s− η

x2

x3

x

s+ η

2n− 3s− η

1

Figure 7. The symmetric deformations that allow ID3 to be exactly evaluated without disturbing

the leading behavior in δ. η is set to δ/2 in both cases.

where

Qpn f(|x|, |x2|, |x− x2|) =



B(s, s)

|x2|2s−δ|x|n−2s
+

B(2s− n, n− δ)
|x2|n−δ

if |x2| > |x|

B(s, s− δ)
|x|n−s|x2|s−δ

+
B(s, δ − s)
|x|n−δ

if |x2| < |x|

B(s, s− δ)
|x|n−s|x− x2|s−δ

+
B(s, δ − s)
|x|n−δ

if |x2| = |x| .

(3.57)

Splitting into the three cases displayed in (3.57), the x2 integral in (3.56) is seen to reduce

to the following three simple kinds of integrals (with the convergence condition on the

exponent shown in parenthesis):

Qpn

∫
|y|>|z|

dy |y|t−n = |z|t 1

p−t − 1

(
1− 1

pn

)
(t < 0)

∫
|y|<|z|

dy |y|t−n = |z|t 1

pt − 1

(
1− 1

pn

)
(t > 0)

∫
|y|=|z|

dy |y − z|t−n = |z|t
(
− 1

pn
+

1

1− p−t

(
1− 1

pn

))
(t > 0) .

(3.58)

Plugging (3.57) in (3.56) and using (3.58) to evaluate the x2 integrals, we end up with the

final result

Qpn ID2(x)
δ
= B(s, s)B(δ, δ)|x|2s−2n+δ , (3.59)

where as usual,
δ
= means equality up to terms which are finite in the limit δ → 0. Though

the computation is more cumbersome, the above procedure can also be used to directly

evaluate ID3(x) as well as any other Feynman diagram over the p-adics since the integrals

always reduce to sums of geometric series.

4 Higher derivative theories

Let us compactly state what has been done so far. We started with an action

S =

∫
dx

[
1

2
φi(x)Dsφi(x) +

λ

4!

(
φi(x)φi(x)

)2]
(4.1)
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for Euclidean quantum field theory. Ds is an s-th order derivative operator, implemented

by multiplying φ by |k|s in Fourier space. It is assumed that s > 0. The sums over i

run from 1 to N , which we take to be large. The integration is over an n-dimensional

vector space V . We have considered the cases V = Rn and V = Qpn , which are n-

dimensional vector spaces over R and Qp, respectively. Qpn is also a field, and its field

structure picks out a particular ultrametric norm. It is reasonable to suppose that in fairly

generic circumstances, the theory (4.1) flows to a Wilson-Fisher fixed point — assuming

we appropriately tune away relevant operators, in particular the mass deformation. We

exhibited in section 2 (see especially (2.7)) the discrete transformations that implement the

Wilsonian renormalization group for Qpn , and we used them to analyze the Wilson-Fisher

fixed point in an ε expansion, where ε = 2s−n is the dimension of λ in the Gaussian theory.

In section 3, we employed large-N methods with a Hubbard-Stratonovich field σ, whose

equation of motion sets σ = φiφi up to a factor. Working to the leading non-trivial order

in N , we obtained our main results so far, the anomalous dimensions

γφ ≡ ∆φ −
n− s

2
= Res

δ
gφ(δ) +O(1/N2)

γσ ≡ ∆σ − s = Res
δ
gσ(δ) +O(1/N2) ,

(4.2)

where Resδ g(δ) means the residue of a meromorphic function g(δ) at δ = 0. We found

gφ(δ) =
1

N

B(n− s,−s+ δ)

B(n− s, n− s)

gσ(δ) = − 2

N

B(n− s,−s+ δ)

B(n− s, n− s)
+

1

N

(
−1 + 2

B(n− s, n− 2s)

B(n− s, n− s)

)
B(δ, δ)

B(n− s, n− s)
,

(4.3)

where B is the variant of the Euler beta function defined in (1.3). An important point is

that gφ(δ) has no pole at δ = 0 for Qpn , and so γφ = 0 in this case. For Rn, gφ(δ) does have

a pole, and one easily recovers standard results [14, 15] for γφ upon setting s = 2. On the

other hand, gσ(δ) generically has a pole both for Rn and for Qpn . We have checked that

its residue gives γσ in accord with the standard results for the case of Rn, and in accord

with results from the Wilsonian approach of section 2 for Qpn .

4.1 Higher derivative O(N) models on Rn

In order to compare with standard results in the literature, we have generally set s = 2

when considering the O(N) model on Rn. One could reasonably ask, what happens if we

lift this restriction? The large N analysis leading from (4.1) to (4.2)–(4.3) remains valid.

For generic s, gφ(δ) has no pole at δ = 0. As for Qpn , this is associated with having

only a finite renormalization of Gφφ rather than an anomalous dimension. For Qpn we

understand this as a consequence of the non-renormalization argument of [9], following

quite generally from ultrametricity. In Rn a non-local kinetic term is not expected to be

renormalized [36] due to the fact that Wilsonian renormalization leads to correction terms

polynomial in momenta — in other words local derivative couplings in position space which

do not affect the non-local kinetic piece. (This reasoning is equally valid in Qpn , but due to

the ultrametricity of the p-adic norm a stronger version holds: as discussed in section 2.4,
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no derivative couplings are ever generated.) Theories with a non-local kinetic term in Rn

were already studied in [20, 21]. Fisher, Ma and Nickel [20] considered precisely the theory

described by (4.1) in Rn and computed critical exponents in the ε expansion and at large

N , in the range n/2 < s < 2. The large N results presented in (4.2)–(4.3) find perfect

agreement with the anomalous dimensions γφ and γσ extracted from the critical exponents:

Rn

η = 2− s+ 2γφ = 2− s+O(1/N2)

1

γ
=

(
s− 2γφ

n− s− γσ

)−1

= 1− 2s− n
s
− 8

N

ΓEuler(
s
2)2ΓEuler(n− s)

sΓEuler(s− n
2 )ΓEuler(

n
2 )ΓEuler(

n−s
2 )2

×

[
ΓEuler(

s
2)ΓEuler(n− s)ΓEuler(

n
2 − s)ΓEuler(

3s−n
2 )

ΓEuler(s)ΓEuler(n− 3s
2 )ΓEuler(s− n

2 )ΓEuler(
n−s

2 )
− 1

2

]
+O(1/N2).

(4.4)

In (4.4), η and γ are critical exponents computed in [20], while γφ and γσ are obtained

from (4.2)–(4.3). Generically for s ≥ 2, the local kinetic term ∼ (∂φ)2, generated from

Wilsonian considerations, becomes more relevant and dominates the non-local kinetic

piece, resulting in a non-vanishing anomalous dimension for φ found by setting s = 2

in (4.2)–(4.3). The discontinuity in γφ at s = 2 can be removed by accounting for the com-

petition between the local kinetic term induced from renormalization and the non-local

kinetic piece, with the local kinetic term argued to become more relevant at s = s? < 2 in

such a way that γφ is continuous along s [21, 36] (see also [37–39]).14 In this paper, however,

we have concerned ourselves with a (φiφi)2 deformation as shown in (4.1) with all other

relevant deformations appropriately tuned away, and the results presented in (4.2)–(4.3)

are valid as long as that continues to hold.

Perhaps a more interesting question is what happens when s = 4, or 6, or some larger

even number. At precisely these values, the original model (4.1) recovers locality. It is

then a higher derivative version of the O(N) model. Let’s consider the case s = 4 for the

sake of a focused discussion. Then

Rn S =

∫
dx

[
1

2
(�φi)2 +

λ

4!
(φiφi)2

]
, (4.5)

from which it follows that

Rn [φi] =
n− 4

2
[λ] = 8− n , (4.6)

and so we see that the upper critical dimension is n = 8, while the lower critical dimension

is n = 4. Between the upper and lower critical dimension, the interaction term (φiφi)2 is

relevant, so it triggers a renormalization group flow which we may suspect leads to a new

critical theory in the infrared — provided relevant deformations are appropriately tuned

away. Precisely this sort of flow was considered in 8− ε dimensions in [24], and the infrared

critical theory was referred to as a Lifshitz point. Setting s = 4 in (4.2)–(4.3) leads to the

14As this paper was nearing completion, we became aware of forthcoming work by S. Rychkov and

collaborators on related issues.
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following predictions for the anomalous dimensions at Lifshitz points:

Rn
n 5 6 7

Nγφ
48

35π2 0 − 128
315π2

Nγσ − 1408
105π2 −14

3 − 15872
315π2

(4.7)

up to O(1/N2) corrections to both γφ and γσ in each case. These results were anticipated

in [40]; in fact, results were given there for fixed s = 4 and arbitrary n ∈ (4, 8) in the form

Rn

η`4 = 4−s+ 2γφ

∣∣∣
s=4

=
1

N

(8− n)

n(n+ 2)

3× 2n−2

π3/2

ΓEuler(
n−3

2 )

ΓEuler(
n
2 )

sin
πn

2
+O(1/N2)

γ` =
s− 2γφ
n−s−γσ

∣∣∣∣∣
s=4

=
(n

4
− 1
)−1
− 1

N

ΓEuler(n− 4)

ΓEuler(
n
2 )ΓEuler(

n
2 − 2)2ΓEuler(4− n

2 )

×
(n

4
− 1
)−2

[
1 +

(10− n)(n− 5)

3
+

3(n− 6)(n− 8)

4(n+ 2)

]
+O(1/N2).

(4.8)

In (4.8), η`4 and γ` are quantities defined and computed in [40]. Explicit expression in

terms of ΓEuler can be derived for γφ and γσ starting from (4.2)–(4.3) with s set equal to

4, and when this is done, perfect agreement with (4.8) is found.

The expressions for γφ and γσ that we gave in (4.2)–(4.3) go smoothly to zero at

both the upper and lower critical dimensions. At the upper critical dimension, the natural

expectation is that the only fixed point is the Gaussian theory, and turning on λ causes

us to run logarithmically away from it. At the lower critical dimension (namely four), we

recover the four-dimensional sigma-model considered in [23], and the value given in [23]

for the anomalous dimension of φ just above the lower critical dimension in an epsilon

expansion matches the s = 4 case of the 1/N result (4.2)–(4.3). We comment further on

the lower critical dimension at the end of section 4.3.

4.2 A bound on the higher derivative action

To properly understand the field theory (4.5), we should list the relevant deformations:

for n ≥ 6,

Rn Srel =

∫
dx
[w

2
φi�φi +

r

2
φiφi

]
, (4.9)

where [w] = 2 and [r] = 4. (Of course, φi�φi = −(∂φi)2/(2π)2 up to a total derivative

which we can discard.) With these extra terms added, the action may no longer be ev-

erywhere nonnegative, and one might wonder about runaway instabilities. The aim of this

section is to provide an estimate which shows that by adding a suitable constant term to

the lagrangian, we can make it once again nonnegative. This is the sense in which the ac-

tion is bounded below. While the estimates we give are fairly trivial, they are worthwhile

to see given the prevalence of instabilities and ghosts in higher derivative theories after

passing to a Hamiltonian or Lorentzian setting.

For n < 6, O(N) singlet operators schematically of the form φ2(∂φ)2 become relevant

as well, and we can proceed to φ4(∂φ)2 operators when we have n < 5. Such a large
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assortment of terms would complicate the story too much for us to give simple estimates,

so let’s stipulate n ≥ 6 in this section.

We may bring the action into a form considered for example in [41, 42] by trading w

and r for two mass parameters, m1 and m2:

Rn S + Srel =

∫
dx

[
1

2
φiq(�)φi +

λ

4!
(φiφi)2

]
(4.10)

where

Rn q(�) = (�+m2
1)(�+m2

2) . (4.11)

We can assume m2
1 < m2

2 without loss of generality, but we cannot necessarily assume

that the m2
i are positive. Aficionados of Pauli-Villars regulators will immediately recog-

nize (4.11) and the consequent tree-level momentum space propagator:

Rn G
(0)
φφ(k) =

1

(k2 +m2
1)(k2 +m2

2)
=

1

m2
2 −m2

1

(
1

k2 +m2
1

− 1

k2 +m2
2

)
. (4.12)

The Pauli-Villars strategy is to let the 1/k4 behavior of this propagator improve UV be-

havior, and then at the end of a computation take m2 large while m1 remains finite.

(Normally in a Pauli-Villars context one would rescale φ by a power of m2
2 − m2

1 to get

rid of the 1/(m2
2 −m2

1) prefactor in the last expression in (4.12).) The minus sign on the

1/(k2 + m2
2) term in (4.12) is understood as an indication of ghosts (i.e. negative norm

states in the Hilbert space) in a canonical quantization approach. Indeed, pathological

features of higher derivative scalar field theories have been explored extensively: see for

example [41–44] and references therein. Typical pathologies hinge on a Hamiltonian con-

struction in which one sees an instability along the lines of Ostrogradsky’s theorem [45],

and/or failures of reflection positivity [41] that lead to negative norm states in a canoni-

cal quantization approach. In a Euclidean quantum field theory setting, these pathologies

may prove less significant as long as we do not attempt canonical quantization. Instead,

we should form a Euclidean path integral

Rn Z =

∫
Dφ e−S[φ]−Srel[φ] , (4.13)

and then what matters is that the total action should be bounded below and that it

should not have flat or nearly flat directions that prevent convergence. Boundedness can

be demonstrated explicitly, as follows.

Rn

∣∣∣∣∫ dx
1

2
(m2

1 +m2
2)φi�φi

∣∣∣∣ ≤ (∫ dx
1

4ξ
(m2

1 +m2
2)2φiφi

)1/2(∫
dx ξ(�φi)2

)1/2

≤
∫
dx

[
ξ

2
(�φi)2 +

1

8ξ
(m2

1 +m2
2)2φiφi

]
,

(4.14)
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where the first inequality is Cauchy-Schwarz and the second is the arithmetic-geometric

mean inequality, and ξ is any positive real number. Plugging (4.14) into (4.10), we arrive at

Rn
S + Srel ≥

∫
dx

[
1− ξ

2
(�φi)2 − 1

8

(
1− ξ
ξ

(m2
1 +m2

2)2 + (m2
1 −m2

2)2

)
φiφi

+
λ

4!
(φiφi)2

]
.

(4.15)

We must choose ξ ∈ (0, 1) in order to get the derivative term on the right hand side

of (4.15) to be positive definite, so as to make the lower bound strong when the φi are

highly oscillatory. Choosing ξ ∈ (0, 1) makes the mass term on the right hand side of (4.15)

negative, which seems like the beginning of an instability; but as long as λ > 0 the overall

value of the lagrangian density is bounded below. We could adjust the lagrangian density

by a constant term (which is after all a relevant deformation) to achieve an action which

can be shown to be nonnegative through the approach outlined in (4.14)–(4.15). In short,

the situation is no worse than the case of the usual O(N) model on Rn with negative mass

squared. It should be borne in mind that the inequalities might be far from sharp. So the

actual behavior of S + Srel could be somewhat better than we have demonstrated.

4.3 Qualitative features of renormalization group flows

Starting from the free massless higher derivative theory S0 =
∫
dx 1

2(�φi)2, let’s consider

what renormalization group flows there must be, indicating in each case what the likeliest

outcome is in the infrared. For simplicity we avoid consideration of deformations which

lead to soft or spontaneous breaking of translational or rotational symmetry on Rn. We

assume that n > 4 so that the dimension of φi is positive, and we assume n < 8 so that

we have relevant deformations, namely φ2, (∂φ)2, or φ4, where we omit O(N) indices for

brevity. Let’s consider in turn the deformations with respect to each:

• Deforming only by φ2 with a positive coefficient looks boring in the sense that it can

only lead to a theory in which there are no light degrees of freedom. We exclude

the case of adding −φ2 to the action because then there really would be a runaway

instability.

• Deforming only by (∂φ)2 — where again to avoid instability we must insist on a

positive coefficient — leads trivially to the massless two-derivative Gaussian theory,

with action (proportional to)
∫
dx 1

2(∂φ)2. We say “trivially” because there are no

loop diagrams. All we are doing is setting m2 6= 0 in (4.11) while keeping m2
1 = 0.

The only non-trivial Green’s function is the two-point function Gφφ(k) ∝ 1
k2 − 1

k2+m2
2
,

the same as for a free massless scalar plus a Pauli-Villars regulator. Passing to the

regime |k| � m2 amounts to excising the Pauli-Villars part of the propagator.

• Deforming by (∂φ)2 and φ4, with positive coefficients for each, while tuning the

coefficient of φ2, should enable us to again reach massless two-derivative Gaussian

theory. The key point is that (∂φ)2 is more relevant than the original (�φ)2 term,

so the latter drops out; and in the new dimension counting based on (∂φ)2, the
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interaction term φ4 is irrelevant, so it too should attenuate away as we proceed

toward the infrared. In the process, φ2 terms are generated, so to wind up at the free

massless Gaussian theory rather than a massive theory we must tune φ2.

We could also take the Pauli-Villars point of view and reason that our deformed

theory in this case is a Pauli-Villars regularization of the usual two-derivative O(N)

model. Since we are above the upper critical dimension of this two-derivative theory,

the transition from the disordered state to the ordered state must be described by

mean field theory, i.e. the massless two-derivative Gaussian theory.

• Deforming by φ4 with a positive coefficient while tuning both (∂φ)2 and φ2 should

enable us to reach new conformal theories whose anomalous dimensions for integer

n are listed in (4.7). Deforming only by φ4 doesn’t make sense because loop effects

will presumably generate (∂φ)2 and φ2. If we don’t tune the φ2 term, we’ll wind up

with a massive theory, while if we don’t tune the (∂φ)2 term we could wind up with

the two-derivative Gaussian theory.

Below n = 6, new relevant O(N) singlets appear: the aforementioned φ2(∂φ)2 oper-

ators. Their coefficients might also need to be tuned in order to arrive at the new

conformal field theories whose existence we are hypothesizing. Relevant operators of

this type may be relatively harmless since their dimensions are always higher than

the operator φ4 which is driving the flow.

Altogether, four-derivative φ4 theory should augment the space of fixed points of the

O(N) model as indicated in figure 8. If this picture is accepted, the next natural question is

what happens at the lower critical dimension. In the case of two-derivative theories, the key

point for N > 1 is that non-linear sigma models (NLσM) on SN−1 become renormalizable

in n = 2 — though for N > 2 they are asymptotically free rather than conformal. In

the case N = 1, the symmetry group is Z2, and we obtain the c = 1/2 minimal model as

the continuum limit of 2d Ising. In other words, the NLσMs (or, for N = 1, the c = 1/2

minimal model) are at the terminus of the line of Wilson-Fisher fixed points as we proceed

downward in dimension.

Proceeding by analogy, we might expect in n = 4 some new way of realizing O(N)

symmetry in a renormalizable field theory. The obvious candidate is a NLσM on SN−1,

where the kinetic term is (�φi)2 with φiφi constrained to be equal to 1. Exactly such a

theory is considered in [23], and the beta-function computed there accords with the natural

expectation that for N large enough (larger than 2) the theory is asymptotically free in

the ultraviolet and confining in the infrared. Since the NLσM construction is unavailable

for N = 1, we are thrown back on the more abstract proposal that there could be some

four-dimensional Euclidean conformal field theory whose natural degrees of freedom we

don’t know but which realizes a global Z2 symmetry.

It is of course tempting not to stop with φ4 theory; as in two-derivative theories one

can consider higher powers of φ, leading to new branches of fixed points that fork off the

Gaussian theory at dimensions that are successively closer to n = 4 as one raises the power

of φ. Such fixed points are called multicritical in the two-derivative context because one
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Figure 8. The four-derivative extension of the space of fixed points of φ4 theory.

has to tune several relevant operators to hit the infrared fixed point. They are thought

to connect to minimal models in the lower critical dimension [46]. Multicriticality will be

even more pronounced for four-derivative theories, because the list of relevant operators

proliferates quickly as we head toward n = 4 and includes an assortment of two-derivative

operators. Let us nonetheless conjecture that multicritical versions of Lifshitz fixed points

above n = 4 exist for the O(N) model, and that for N = 1 they are continuously connected

with new conformal field theories in n = 4 which are analogs of unitary minimal models.

These new theories, both in n = 4 and in higher dimensions, may be amenable to treatment

via the conformal bootstrap, similar to [47]. If all this is true, then one might hope that

other classic field theory constructions in n = 2 generalize to higher derivative theories in

n = 4; in such a case, we clearly have a lot of work to do to understand what the full

picture of four-dimensional Euclidean field theories really comprises!

One also need not stop with four-derivative theories. The next case to consider is

φ�3 φ theory. The upper critical dimension (where φ4 becomes marginal) is 12, and

the lower critical dimension is 6. It is easy to read off from (4.2)–(4.3) the anomalous

dimensions of φ and φ2 at conjectural fixed points anywhere between n = 6 and 12. The

list of relevant deformations will be even more extensive than in the four-derivative case,

and correspondingly one must expect quite a complex picture of possible renormalization

group flows. Problems with canonical quantization and Ostrogradsky instabilities are likely
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to be ubiquitous in all the higher derivative theories we are considering, but as Euclidean

path integral field theories they are probably well defined due to bounds along the lines

of section 4.2. In fact, by studying the analytical structure of the conformal blocks of

generalized free CFTs (unitary and non-unitary) and nearby Wilson-Fisher critical points,

the authors in [48, 49] derive expressions for the first terms of the anomalous dimensions

of classes of scalar operators in an epsilon expansion, and their results for γφ and γφ2 in

theories with (in our notation) s = n/2 exactly matches (4.2)–(4.3) in arbitrary dimension.

4.4 A lattice implementation

Just as ordinary two-derivative φ4 theory (with real-valued φ, i.e. N = 1) is realized as

a continuum limit of the Ising model with nearest neighbor interactions, we might expect

four-derivative φ4 theory to be realized as a continuum limit of an Ising model with next-

to-nearest neighbor interactions. We have in mind particularly a lattice action along the

lines of the anisotropic next-to-nearest neighbor Ising model (ANNNI for short) [50, 51],

but as isotropic as the underlying lattice allows:

S = K
∑
~x∈Zn

(�σ~x)2 + J
∑
~x∈Zn

∑
~y∼~x

(σ~x − σ~y)2 , (4.16)

where we define a lattice laplacian

�σ~x =
∑
~y∼~x

(σ~x − σ~y) . (4.17)

The notation
∑

~y∼~x means that we hold ~x fixed and sum over all ~y which are nearest

neighbors of ~x, which is to say 2n nearest neighbors when we work on the lattice Zn. With

the action (4.16) in hand, we can define a partition function

Z =
∑
σ

e−S , (4.18)

where the sum is over all possible spin configurations. If we set K = 0, then according to

standard reasoning, there is a phase transition between ordered and disordered phases that

occurs at a special value of J , and it will have mean field theory critical exponents when

n > 4 because n = 4 is the upper critical dimension of two-derivative φ4 theory. But if

4 ≤ n < 8, we should be able to find a critical point not described by mean field theory by

tuning both K and J . Instead, the critical point should be described by the endpoint of

a renormalization group flow from the massless four-derivative Gaussian theory, triggered

by φ4 deformation and with the relevant operators φ2 and (∂φ)2 appropriately tuned —

the Lifshitz point of [24]. A caveat, as previously noted, is that as one gets close to the

lower critical dimension, additional relevant operators appear, so it is conceivable that

more lattice quantities must be tuned than just K and J . For n ≥ 6 this should not be a

problem.

Similar lattice constructions can obviously be given for N > 1 theories. We could even

construct next-to-next-to-nearest neighbor models which should give Lifshitz-like critical

points in dimensions between 6 and 12 — but the computational difficulties associated with
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lattices in such large dimensions, not to mention the number of tunings required to suppress

relevant directions, seem likely to make anything beyond next-to-nearest neighbor models

impractical. The recent work [52] indicates that n = 5 lattice simulations of the Ising model

on large enough lattice to see scaling behavior are accessible with modern computational

methods. So it should be possible to do a direct search on the lattice for non-mean-field

critical behavior in (4.16) in n = 4, 5, and maybe 6. It would also be interesting to study

finite-range Ising models on the Bethe lattice, whose recursive structure often leads to

exactly solvable models and whose exponential growth mimics infinite dimension [53, 54].

Such studies might eventually lead us back to the p-adics through the holographic relation

of the Bethe tree with coordination number p+1 to the p-adic numbers Qp on the boundary.

5 Discussion

Our main technical result, summarized in (4.2)-(4.3), is the expression of anomalous di-

mensions γφ and γσ as residues at δ = 0 of meromorphic functions gφ(δ) and gσ(δ) of

a quantity δ, understood as a shift in the dimension of the Hubbard-Stratonovich field

σ that we impose as a regulator and then remove at the end of the calculation. These

meromorphic functions come from diagrammatic amplitudes of the form

IV,m(za) =

∫
dV x

(
m∏
a=1

V∏
i=1

1

|xi − za|δia

)∏
i 6=j

1

|xij |δij

 (5.1)

where xij = xi−xj . V is the number of internal vertices, each at a spatial location xi. The

notation
∫
dV x means that we are integrating xi over all space; and “space” here could be

Rn or Qpn . The number of external vertices is m, each at a spatial location za. Based on

the Feynman rules for the particular theory under consideration (the O(N) model in our

case), we are able to assign values to the exponents δij and δia which are linear functions

of the regulator δ. Then IV,m(za) becomes a meromorphic function of δ, and a linear

combination of several such functions, each deriving from a different diagram, gives us the

meromorphic functions gφ(δ) and gσ(δ) that we are eventually interested in.

In general, such integrals give complicated answers. However, there are particular

cases where the answer simplifies. If m = 2 and V = 1, then IV,m is just a convolution, so

the answer is expressed naturally in terms of the appropriate variant of the beta function

together with a power of z12. If m = 3 and V = 1, then the same thing happens again

provided the exponents obey a sum rule: this is the star-triangle identity (3.49). The

striking point about O(N) model calculations, to the order we have exhibited here, is that

all the amplitudes of interest for the computation of anomalous dimensions are expressible

as products of the beta function times power-law functions of the za.
15 At the Archimedean

place, the question of which transcendentals appear in anomalous dimensions at various

15Final expressions for the functions gφ(δ) and gσ(δ) involve factors of B(n− s, n− s) in the denominator

for a special reason: this particular beta function appears in the leading order propagator for σ. In other

words, negative powers of B(n − s, n − s) appear in the meromorphic functions only because they appear

in the coefficients we must use to combine the IV,m(za) into 1PI amplitudes.
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loop orders is well-studied, and it is known that at order O(1/N3) transcendentals that

cannot be obtained by differentiation of zeta-functions begin to make an appearance [55].

There is an interesting connection between the amplitudes IV,m and string scattering

amplitudes. The beta function appears in the star-triangle identity precisely as it appears

in four-point scattering amplitudes of tachyons, i.e. the Veneziano or Virasoro-Shapiro

amplitude.16 The star-triangle identity is in fact a generalization of the way one obtains

the Veneziano amplitude by integration over the position of one vertex operator over the

boundary of the string. The sum rule on the exponents is understood in this context as

related to momentum conservation plus the on-shell condition for external string states.

Generalizations of the Veneziano amplitude to integrations over all of Rn were considered

in [56], while generalizations to integrations over Qp are the foundation of p-adic string

theory [57–59]. If we add more internal vertices, then in the string theory context, instead

of a four-point scattering amplitude, we would be considering a higher point amplitude

— still at tree level. Might we understand the expression of the IV,m integrals we need

for anomalous dimensions in the O(N) models in terms of products of beta functions as a

consequence of a factorization property of string amplitudes?

The analogy between diagrammatic amplitudes in scalar field theory and string scat-

tering helps our intuition in understanding why the anomalous dimension γφ vanishes for

the O(N) model defined over Qpn , but not for the usual O(N) model defined over Rn. We

saw in section 3.3 that after canceling a quadratic divergence with local counterterms, the

amplitude in the p-adic case had no further divergences, but in the Archimedean case a

logarithm appeared that gave rise to the anomalous dimension. From the point of view of

meromorphic functions, we wound up with an integral ID that located us at a pole in the

Archimedean case which would be understood in string scattering terms as an infinitely

sharp resonance due to the exchange of a first-excited string state (where tachyons are

counted as the unexcited state). The absence of a pole in the p-adic case implies the van-

ishing of γφ and corresponds to the fact that the p-adic string has only one state in its

spectrum, namely the tachyon. In general we would like to associate divergences in field

theory with on-shell divergences in string scattering amplitudes.

Once we express diagrammatic amplitudes in the form (5.1), it is natural to consider

a large generalization, in which we replace Rn or Qpn with some homogeneous space —

not necessarily Archimedean. The propagators 1/|x|2∆ would then naturally be replaced

by representations of a group which fixes a point in the homogeneous space.17 For Rn

equipped only with conformal structure rather than full metrical structure, this group

would consist of dilations and rotations around the origin, so on top of 1/|x|2∆ we could

get a factor depending only on the direction of x and providing a unitary representation

16We should bear in mind that our BR(t1, t2) is not the same as BEuler(t1, t2); rather, BR(t1, t2) is a

crossing-symmetric combination of Euler beta functions. Thus when we refer to the Veneziano amplitude,

we really mean the crossing-symmetric combination without Chan-Paton factors.
17The group of interest is generally not the full group preserving a point. For instance, in the case of

Rn equipped only with conformal structure, special conformal transformations are excluded even though

they preserve the origin. If G admits an Iwasawa decomposition G = KAN , and M is the subgroup of K

comprising elements which commute with all of A, then on the homogeneous space G/MAN the generalized

propagators would be representations of M and A. See the related discussion in [60].
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of the rotation group. In common parlance, we could consider operators with spin. For

Qpn , the natural notion replacing spin hinges on multiplicative characters, as remarked

in [19]; so in place of 1/|x|2∆ we would have θ(x̂)/|x|2∆ where x̂ ≡ x|x| is a unit in

Qpn and θ is a unitary multiplicative character of the group of units. It seems likely

that there are significant generalizations of the beta functions we have used, related to

convolving generalized propagators. Star-triangle identities and more general diagrammatic

amplitudes may be similarly capable of generalization, and the important question becomes

what kind of meromorphic functions appear and how their poles translate into anomalous

dimensions, or appropriate generalizations thereof. It would be fascinating to try to extend

standard quantum field theoretic notions of locality and renormalizability to this more

general setting.
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