
J
H
E
P
1
1
(
2
0
1
7
)
0
4
3

Published for SISSA by Springer

Received: July 31, 2017

Revised: September 17, 2017

Accepted: October 23, 2017

Published: November 9, 2017

Weak gravity conjecture, multiple point principle and

the standard model landscape

Yuta Hamadaa,b and Gary Shiua

aDepartment of Physics, University of Wisconsin-Madison,

Madison, WI 53706, U.S.A.
bKEK Theory Center, IPNS, KEK,

Tsukuba, Ibaraki 305-0801, Japan

E-mail: yhamada@wisc.edu, shiu@physics.wisc.edu

Abstract: The requirement for an ultraviolet completable theory to be well-behaved upon

compactification has been suggested as a guiding principle for distinguishing the landscape

from the swampland. Motivated by the weak gravity conjecture and the multiple point

principle, we investigate the vacuum structure of the standard model compactified on S1

and T 2. The measured value of the Higgs mass implies, in addition to the electroweak

vacuum, the existence of a new vacuum where the Higgs field value is around the Planck

scale. We explore two- and three-dimensional critical points of the moduli potential arising

from compactifications of the electroweak vacuum as well as this high scale vacuum, in the

presence of Majorana/Dirac neutrinos and/or axions. We point out potential sources of

instability for these lower dimensional critical points in the standard model landscape. We

also point out that a high scale AdS4 vacuum of the Standard Model, if exists, would be at

odd with the conjecture that all non-supersymmetric AdS vacua are unstable. We argue

that, if we require a degeneracy between three- and four-dimensional vacua as suggested

by the multiple point principle, the neutrinos are predicted to be Dirac, with the mass of

the lightest neutrino ≈ O(1–10) meV, which may be tested by future CMB, large scale

structure and 21cm line observations.

Keywords: Field Theories in Lower Dimensions, Neutrino Physics, Flux

compactifications

ArXiv ePrint: 1707.06326

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2017)043

mailto:yhamada@wisc.edu
mailto:shiu@physics.wisc.edu
https://arxiv.org/abs/1707.06326
https://doi.org/10.1007/JHEP11(2017)043


J
H
E
P
1
1
(
2
0
1
7
)
0
4
3

Contents

1 Introduction 1

2 The SM vacua in four dimension 3

3 The SM vacua from S1 compactification 4

3.1 Effective action 4

3.2 Boundary condition 6

3.3 U(1) gauge theory on S1 7

3.3.1 With charged matter 7

3.3.2 With neutral matter 8

3.4 SM on S1 8

3.5 Multiple point principle and prediction on the neutrino mass 15

3.6 Flux vacua 16

4 The SM vacua from T 2 compactification 17

4.1 Effective action 17

4.2 U(1) gauge theory on T 2 19

4.2.1 With charged matter 19

4.2.2 With neutral matter 19

4.3 SM on T 2 20

4.4 Flux vacua 26

5 Summary and discussion 28

A One-loop effective potential in curved spacetime 31

B Calculation of the Casimir energy 31

B.1 S1 compactification 32

B.2 Generalized Chowla-Selberg formula for T 2 compactification 33

B.3 T 2 compactification 35

B.3.1 Consistency with ref. [3] 37

B.4 Consistency between S1 and T 2 compactifications 39

C Vacuum condition 39

C.1 Breitenlohner-Freedman bound in AdSd+1 spacetime 39

C.2 Vacuum condition of the S1 compactification 40

C.3 Vacuum condition of the T 2 compactification 41

– i –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
3

1 Introduction

String theory is one of the most promising candidates for a consistent quantum theory of

gravity. While there is no free parameter in string theory, there appears to be an enormous

large number of vacua, usually dubbed as the string theory landscape. A natural question

is whether the theory is so rich that any low energy effective theory can be realized in the

string landscape? At present, the space of low energy theories that can(not) be realized

in string theory is not entirely known. The set of classically consistent effective field

theories which turn out to be inconsistent when coupled to quantum gravity is referred to

as the swampland [1]. Identifying the boundary between the landscape and the even vaster

swampland has become an active research area in recent years.

Among the vast number of seemingly viable low energy effective theories, particularly

interesting are those that reproduce the standard model (SM) spectrum at energies below

the electroweak scale. If string theory is the ultraviolet completion of the SM, it is certainly

important to examine the region of the string landscape where the SM vacuum resides.

Understanding how our SM vacuum arises from compactifications of string theory may give

us insights to the principle behind how our vacuum is selected. But equally interesting are

vacua that arise from compactifying the SM down to lower dimensions, as they show that

the rich structure of a landscape is not unique to ultraviolet complete theories of quantum

gravity, but is already manifest in well understood theories such as the SM. It was in

this spirit that the vacuum structure of the SM upon compactification on S1 and T 2 was

investigated in refs. [2–5].

In this paper, we improve on these earlier works in several fronts. First of all, in light

of the discovery of the Higgs boson [6, 7], we can now provide a more accurate analysis up

to the electroweak scale while in lack of the LHC data, previous works only focussed on the

contributions from physics at the meV scale. Moreover, the measured value of the Higgs

mass implies the existence of a new vacuum where the Higgs field value is around the Planck

scale (see e.g. refs. [8–10]). Thus, in addition to mapping out the landscape of the standard

model upon compactifying the electroweak vacuum, we also analyzed the landscape arising

from this high scale vacuum. On a technical level, we also generalized these earlier studies

to include the most general boundary conditions for the SM fields in the compact space,

and with general fluxes supported on the internal cycles. These generalizations allow us to

find many more lower-dimensional vacua in the SM landscape. We also performed a careful

analysis of the perturbative stability of the candidate vacua in two dimensions. Our results

can thus be taken as a starting point for future systematic studies of the SM landscape. As

we shall see, some of the salient features of the SM landscape can be exhibited in a simpler

setting. To this effect, we have examined the vacuum structure of the compactified U(1)

gauge theory with matter. We will first present our results for the U(1) case as a warmup

before we discuss our findings for the full-fledged SM landscape.

There are several motivations to study compactifications of the SM, along the lines we

developed in this paper. First of all, our analysis may lend insights to the weak gravity

conjecture [11], see also refs. [12–26] for some recent studies. A proposed criterion for a

low energy theory to be ultraviolet complete with quantum gravity is that it should be
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consistently behaved upon compactification, and requiring this consistency leads to non-

trivial constraints on the low energy effective theory [14, 27–29]. This criterion implicitly

assumes that the size of the compactification can be chosen freely. While this assumption

may hold if supersymmetry is preserved in the lower dimensional theory,1 it may not hold

for non-supersymmetric theories. Therefore, it is important to explore the conditions un-

der which lower dimensional vacua exist. Furthermore, it has recently been conjectured

that non-supersymmetric AdS vacua are unstable [30, 31]. This conjecture is based on

the picture that AdS vacua can be identified as the near horizon limit of the extremal

black hole.2 Ref. [30] further pointed out that their argument rules out minimal Majorana

neutrino masses for the SM if they give rise to stable non-supersymmetric AdS3 vacua,

and thus suggested a novel connection between the weak gravity conjecture and neutrino

physics. Key to this line of arguments is an understanding of the vacuum structure and the

possible sources of instabilities. Our work therefore sets the stage for a systematic investi-

gation of this picture at the quantum level. We found that the moduli potential in some

cases develops a runaway behavior in the small compactification scale region (.GeV−1).

Therefore, even though there exist two- and three-dimensional AdS critical points of the

SM landscape, we argue that these candidate vacua may be subject to quantum tunneling

instabilities.

Another motivation for investigating the SM landscape is to explore the implications of

the multiple point criticality principle [33, 34], see also appendix D of ref. [35] for a review

and refs. [36–38] for its possible interpretations. This principle requires that the parameter

of the theory to be tuned so that there are multiple vacua that are degenerate in energy.

Based on this principle, Froggatt and Nielsen [33, 39] predicted the mass of the Higgs boson

in 1995. In the present work, we show that the mass of the lightest neutrino may also be

predicted using this principle, by requiring the 3-dimensional vacuum is close to the flat

vacuum. Thus, while it is unclear whether the aforementioned 2- and 3-dimensional AdS

vacua in the SM landscape are stable, we still find an intriguing constraint between the

neutrino mass and the observed cosmological constant based on a rather general principle

that had some success in a different particle physics context.

Finally, our investigation of the SM landscape provides a starting point to discuss the

possibility of dynamical compactification of the SM [40], which may determine the final

fate of our universe.

This paper is organized as follows. In section 2, we review the 4 dimensional SM Higgs

vacua. In section 3 and section 4, we present our results for S1 and T 2 compactifications of

the SM. We summarize our findings in section 5. Some detailed calculations are relegated

to the appendices. For convenience, we summarize the models which will be analyzed in

this paper in table 1.

Note added. While this work was being written, ref. [41] appeared where the constraints

on the neutrino mass and the cosmological constant from the weak gravity conjecture were

considered.

1Even in this case, non-perturbative corrections can generate a potential for the moduli.
2This point of view was emphasized in ref. [32].
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model Reference, section

U(1), neutral Sec. 3.3.2

U(1), charged Sec. 3.3.1

SM, νM Ref. [2], Sec. 3.4

S1 SM, νD Ref. [2], Sec. 3.4

SM, νM , high scale Sec. 3.4

SM, νD, high scale Sec. 3.4

axion Sec. 3.6

U(1), neutral Sec. 4.2.1

U(1), charged Sec. 4.2.2

T 2 SM, νM Ref. [3], Sec. 4.3

SM, νD, NH Ref. [3], Sec. 4.3

SM, νD, IH Ref. [3], Sec. 4.3

axion Sec. 4.4

Table 1. The models which will be analyzed in this paper. Related earlier works are also shown.

2 The SM vacua in four dimension

In this section, we review the SM vacua in four dimensions with the current experimental

values of the SM parameters, see e.g. refs. [9, 10, 42] for details. The Higgs potential is

written as

VH = −m2|H|2 + λ
(
|H|2

)2
, (2.1)

and our electroweak vacuum corresponds to

〈
|H|2

〉
=
m2

2λ
. (2.2)

At a high scale compared with the electroweak one, we can neglect the quadratic term

in the potential, and obtain

VH = λeff(µ)
h4

4
+ c6

h6

M2
P

+ . . . , (2.3)

where λeff is the effective quartic coupling which includes the quantum corrections to the

Higgs potential, MP is the reduced Planck scale, h =
√

2 〈H〉 is the physical Higgs field,

and µ is the renormalization scale. Usually, µ = h is taken in order to optimize the log term

in the quantum correction. The Planck suppressed term represents the effect of gravity.

Interestingly, the current values of the SM parameter indicates the existence of a new

vacuum at the high scale.3 In figure 1, we plot the Higgs potential as a function of h.

3Here we assume that the SM plus Einstein gravity is valid up to the high scale. Any new physics beyond

the SM may change the structure of the second minimum, or eliminate it altogether.
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Figure 1. The 4-dimensional Higgs potential as a function of the physical Higgs field h, eq. (2.1).

In the left panel, we put c6 = 0. The potential has AdS, flat or dS vacua depending on the value

of the top mass. In the right panel, the c6 term is included while Mt is fixed. We again have AdS,

flat or dS minima corresponding to the value of c6.

Depending on the mass of the top quark and the value of c6, the cosmological constant of

the high scale vacuum can be positive, zero or negative.

In the following, we consider compactification of the SM where the Higgs field takes

either the electroweak scale or the vacuum value at the high scale.

Before going to the analysis of the compactification, we would like to comment on the

relation between the 4D SM vacua and the conjecture that all non-supersymmetric AdS

vacua are unstable [30, 31]. If the high scale vacuum of the SM has a negative cosmological

constant and is stable, it would seem to be at odd with the weak gravity conjecture. This

may indicate an interesting connection between the Higgs potential and the weak gravity

conjecture, which we plan to investigate in future work.

3 The SM vacua from S1 compactification

In this section, we consider the compactification of the SM on S1. We calculate the one-loop

effective potential, and investigate the vacuum structure.

3.1 Effective action

Let us consider the situation where the SM is compactified on S1. First, the four dimen-

sional action is

S =

∫
d4x
√
−g
(

1

2
M2
PR− Λ4 − V all

S1 −
1

4
FµνF

µν + . . .

)
, (3.1)

where L is the radion field of S1, Fµν is the field strength of the U(1) field, and Λ4 is

the cosmological constant of the four dimensional theory. We adapt the mostly positive

metric convention. In our universe, we have Λ4 ' 3.25 × 10 meV4. If we consider the

high scale vacuum in four dimensions, Λ4 can take other values. We also add V all
S1 , the

one-loop Casimir energy, for later convenience. The remaining terms include the Higgs

boson, fermions and the SU(3) × SU(2) gauge fields.
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Since the radius of S1 is denoted by L, the volume of the compactified space is 2πL,

and so the momentum is quantized as 2πn/L. The metric of this S1 compactification is

ds2 =
(
gij + L2AiAj

)
dxidxj + 2L2Aidxidx3 + L2 (dx3)2 , (3.2)

where x3 is the compactified dimension, 0 ≤ x3 ≤ 2π, Ai is the graviphoton, and i, j=0, 1, 2.

Then, we have the following decomposition:

det (−gµν) = L2 det (−gij) , R = R(3) − 2
1

L
∇2L− 1

4
L2FµνF

µν , (3.3)

where µ, ν = 0, 1, 2, 3, R(3) is the Ricci scalar constructed from gij . The dimensional

reduction yields

S =

∫
d3x

√
−g(3)(2πL)

[
1

2
M2
P

{
R(3) − 2

1

L
∇2L− 1

4
L2FµνF

µν

}
− Λ4 − V all

S1

]
=

∫
d3x

√
−g(3)(2πL)

[
1

2
M2
P

{
R(3) − 1

4
L2FµνF

µν

}
− Λ4 − V all

S1

]
, (3.4)

where the total derivative is omitted in the last equality. Performing the redefinition of the

metric gij = (2πL/L0)−2gEij , we obtain4√
−g(3) = (2πL/L0)−3

√
−gE(3),

R(3) = (2πL/L0)2

{
RE(3) + 4∇2 ln(2πL)− 2

gEij∂iL∂jL

L2

}
, (3.5)

gij∂iL∂jL = (2πL/L0)2gEij∂iL∂jL, gµρgνσFµνFρσ = (2πL/L0)4gEµρgEνσFµνFρσ.

Note that the formula for D-dimensional Weyl transformation is

R̃ = e−2ω
{
R− 2(D − 1)∇2ω − (D − 2)(D − 1)∂µω∂

µω
}
, (3.6)

where R̃ and R are constructed by G̃µν = e2ωGµν and Gµν , respectively.

The resultant action is

S=

∫
x3d,E

[
1

2
L0M

2
P

{
RE(3)−2

gEij∂iL∂jL

L2
−
(

2πL

L0

)2
1

4
L2FµνF

µν

}
− L3

0Λ4

(2πL)2
−
L3
0V

all
S1

(2πL)2

]

=

∫
x3d,E

[
1

2
L0M

2
PR

E(3)−L0M
2
P

gEij∂iL∂jL

L2
−L0M

2
P

8

(
2πL

L0

)2

L2FµνF
µν− L3

0Λ4

(2πL)2
−
L3
0V

all
S1

(2πL)2

]
,

(3.7)

where
∫
x3d,E

:=
∫
d3x
√
−gE(3). Furthermore, by performing Ai → 1√

2πMPL0
Bi and denot-

ing the field strength for Bi by Bij , we arrive at

S=

∫
x3d,E

(L0)

[
1

2
M2
PR

E(3)−M2
P

gEij∂iL∂jL

L2
− 1

4

(
L

L0

)4

BijB
ij− Λ4L

2
0

(2πL)2
−
V all
S1 L

2
0

(2πL)2

]
, (3.8)

which agrees with ref. [2].

4L0 is introduced in order to keep gij dimensionless.
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Let us calculate the one-loop correction to the effective potential. The procedure is

the same as that of thermal effective potential, see appendices A and B for the details. As

a result, we obtain5 [2]

V all
S1

(2πL)2
=

∑
particle

(−1)2spnp
V

(1)
S1

(
L,Mp, qpAφ +

1−zp
2

)
(2πL)2

,

V
(1)
S1 (L,M, θ) = −M

4

2π2

∞∑
n=1

cos(2πnθ)

(2πLMn)2
K2(2πLMn),

V
(1)
S1 (L, 0, 0) = − 1

360L4

1

(2π)2
, V

(1)
S1 (L, 0, 1/2) =

7

2880L4

1

(2π)2
, (3.9)

as the one-loop Casimir energy. Here Mp is the mass of the particle, sp is the spin of

the particle, np is the number of degrees of freedom of the particle, Aφ is the Wilson line

modulus and za is the boundary condition of the particle which we discuss below. za = 0

and 1 correspond to anti-periodic and periodic boundary conditions, respectively. Now we

can see that

L2
0

(2πL)2

(
Λ4 + V all

S1

)
(3.10)

is the Einstein frame effective potential in 3 dimensions.

Note that the canonically normalized field χ is related to L by the relation

L = e
− χ

MP
√
L0 . (3.11)

3.2 Boundary condition

In order to define the theory on a compactified spacetime, we have to specify the boundary

condition of each field as well as the action. The restriction is the requirement of the single

valuedness of the action, from which one can see that the gauge boson should be periodic

because the covariant derivative term is linear in the gauge field. Similarly, the graviton

should be periodic because the Einstein Hilbert term behaves as∫
d4x
√
−gR→

∫
d4x
√
−gReiα, (3.12)

under gµν → eiαgµν .

On the other hand, fermions can have non-trivial boundary condition (spin structure):

ψlepton(x3 + 2πL) =


±ψlepton(x3) for Majorana neutrino,

eiQLψlepton(x3) for Dirac neutrino.

ψbaryon(x3 + 2πL) = eiQBψbaryon(x3). (3.13)

5At the next order in perturbation theory, we may need to include the effect of the ring (or daisy)

diagram, which will be presented elsewhere.
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These correspond to the symmetries of the classical action, U(1)L and U(1)B, respectively.

In terms of eq. (3.9), the fermion behaves as

ψ(x3 + 2πL) = e
2π
(
qpAφ+

1−zp
2

)
ψ(x3). (3.14)

3.3 U(1) gauge theory on S1

3.3.1 With charged matter

Before we get into the complicated structure of the SM, it is instructive as a warmup

exercise to first analyze the vacuum structure of a U(1) gauge theory. The field content

includes a charged Dirac fermion as well as a U(1) gauge field. The one-loop potential is

given by

V charged
S1 =

L2
0

(2πL)2

{
Λ4 −

1

180L4(2π)4
− 4V

(1)
S1

(
L,Me, qeA+

1− ze
2

)}
(3.15)

where Me, qe are the mass and charge of the fermion, ze is the boundary condition of the

fermion and A is the U(1) Wilson line. The second and third terms correspond to the

photon and charged matter contributions, respectively.

We recall that L is not the canonically normalized field. However, the extrema of the

potential in term of L corresponds to extrema in terms of canonically normalized field χ

because ∂χV ∝ ∂LV . In this sense, the potential in terms of L is useful. Moreover, the

curvature of the potential is obtained by

∂2V

∂χ2
=

(
∂L

∂χ

)2 ∂2V

∂L2
+
∂L

∂χ

(
∂

∂L

∂L

∂χ

)
∂V

∂L
=

1

M2
PL0

(
L2∂

2V

∂L2
+ L

∂V

∂L

)
. (3.16)

Therefore, at the extreme ∂LV = ∂χV = 0, the positive curvature condition ∂2
χV > 0 is

equivalent to the condition ∂2
LV > 0.

In the left panel of figure 2, we can numerically see that, when qeA+ 1−ze
2 = 1/2, the

potential V takes its minimum with respect to A, and −4V
(1)
S1 takes negative value at the

minimum. Setting qeA + 1−ze
2 = 1/2, the potential for the L field is plotted in the right

panel of figure 2. No local minimum appears in the potential.6 This conclusion is valid if

we add a four dimensional cosmological constant.

Therefore, there are no vacua in S1 compactification of QED. One may think that the

Wilson line field need not be fixed at the minimum because tachyons are allowed if the

three dimensional space is AdS3. As discussed in appendix C.2, this does not help. While

the typical mass scale of Willson line is determined by compactification scale L−1, the scale

of Ricci curvature is L−4/M2
P . Hence, as long as the compactification scale is below the

Planck scale, the stability condition is effectively the same as that in flat spacetime.7

6We note that, in the figures, the potential is multiplied by L6 for illustration. We need to be careful

when we see the conditions ∂LV = 0 and ∂2
LV > 0 from the figures.

7This is not obvious for T 2 compactifications, which we will see in section 4.
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Figure 2. Left: the potential of the U(1) gauge theory with a charged Dirac fermion, eq. (3.15),

is plotted as a function of the Wilson line. The potential takes minimum at qe + (1− ze)/2 = 1/2.

Here we take Λ4 = 0. For the illustration, the vertical axis is not the potential itself, but the

potential multiplied by L−20 L6. Right: the potential as a function of L, the radius of S1. The value

of the Wilson line is set to be at the minimum of the potential.
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Figure 3. The potential of compactified U(1) gauge theory with neutral matter. In the left figure,

Λ4 is set to be zero. In the right figure, periodic boundary condition, ze = 1, is taken.

3.3.2 With neutral matter

In contrast, compactified vacua can appear if the matter field is neutral under U(1), where

the potential is given by

V neutral
S1 =

L2
0

(2πL)2

{
Λ4 −

1

180L4(2π)4
− 4V

(1)
S1

(
L,Me,

1− ze
2

)}
. (3.17)

We can plot the potential as a function of L for various value of ze, which is shown in the

left panel of figure 3. Here Λ4 = 0 is taken. We can see that, if the boundary condition is

close to the periodic one, a stable vacuum appears. In the right panel, we plot the potential

for various Λ4 with a fixed ze = 1. If the value of Λ4 is small, the minimum corresponds

to AdS3. For the larger value of Λ4, the vacuum becomes M3 or dS3. This is shown in

the right panel of figure 3. The lower dimensional AdS3, M3 or dS3 vacua are obtained for

Λ4 . 10−2.8M4
e , Λ4 ' 10−2.8M4

e and 10−2.8M4
e . Λ4 . 10−2.6M4

e , respectively.

3.4 SM on S1

Next, let us move on to the vacuum structure of the SM. The particle contents contributing

to the Casimir energy in the SM are shown in tables 2 and 3. The potential of the standard
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particle mass (−1)2spnp qU(1)EM

graviton 0 2 0

photon 0 2 0

ν . 0.1eV −6 or −12 0

e 0.511MeV −4 −1

µ 100MeV −4 −1

π 140MeV 3 (1, 0,−1)

K 500MeV 4 (1, 0,−1)

η8 550MeV 1 0

Table 2. The particle contents contributing to the Casimir energy below the GeV scale.

particle mass (−1)2spnp qU(1)EM
qSU(3)1 qSU(3)2

graviton 0 2 0 0 0

photon 0 2 0 0 0

gluon 0 2 0 (2, 1, 1, 0, 0,−1,−1,−2) (1, 1, 0, 0, 0, 0,−1,−1)

ν . 0.1eV −6 or −12 0 0 0

e 0.511MeV −4 −1 0 0

µ 100MeV −4 −1 0 0

u 300MeV −12 2/3 (1, 0,−1) (1, 1,−2)

d 300MeV −12 −1/3 (1, 0,−1) (1, 1,−2)

s 300MeV −12 −1/3 (1, 0,−1) (1, 1,−2)

c 300MeV −12 2/3 (1, 0,−1) (1, 1,−2)

τ 1GeV −4 −1 0 0

b 3GeV −12 −1/3 (1, 0,−1) (1, 1,−2)

W 80GeV 6 (1, 0,−1) 0 0

Z 90GeV 3 0 0 0

Higgs 125GeV 1 0 0 0

t 173GeV −12 2/3 (1, 0,−1) (1, 1,−2)

Table 3. The particle contents contributing to the Casimir energy above the GeV scale.

model is given by

V SM
S1 =

L2
0

(2πL)2

(
Λ4 + V all

S1

)
. (3.18)

In our calculation of the Casimir energy, the neutrino masses were chosen numerically

as m2
2−m2

1 = 7.53×10−5 eV2, |m2
3−m2

2| = 2.44×10−3 eV2 [43]. The lightest neutrino mass,

mν,lightest, is m1 for the normal hierarchy (NH), and is m3 for the inverted hierarchy (IH).

We plot the Casimir energy as a function of L in figure 4. Below the QCD scale

∼ 0.3 GeV, we use the particle contents in table 2 while we use table 3 above 1 GeV.8 The

8For simplicity, we neglect the effect of SU(2)L Wilson line, w, which would not change our result. Ne-

glecting the effect of w is equivalent to fixing the value of w to be zero. If we consider the dynamics of the

Wilson line moduli, we may find the true minimum which has an even smaller energy, but this only strength-

ens the runaway behavior, and our qualitative conclusion about the runaway behavior does not change.
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vertical axis is the height of the potential normalized by L2
0L

6
. The Wilson line moduli

is fixed to be at the minimum of the potential. The upper and lower figures correspond

to Majorana and Dirac neutrinos respectively. For simplicity, we take the same boundary

condition for leptons and baryons. It would be interesting to consider different boundary

conditions. The right figures are the enlarged view of the left figures. We note that the

vertical axis of the figures is the potential multiplied by L−2
0 L6, so one has to be careful

in locating the stationary points from the figures. For example, at the mass threshold of

the electron ∼ 10−3 GeV, the vertical axis exhibits a step function-like behavior because of

this normalization we have chosen, making it seem like there is a stationary point at that

mass scale. However, a stationary point exists only if the sign of the vertical axis changes

at around the mass threshold.

The reader may wonder why we choose L−2
0 L6V as the vertical axis rather than the

potential V itself. The reason is as follows. Since V is very steep, it is unfortunately difficult

to find its minima from the figure where V itself is the vertical axis and the horizontal axis

L−1 covers the wide range of values that we consider. For example, if we try to draw the

figure corresponding to the upper right panel in figure 4 without the L6 normalization, we

obtain figure 5. The left panel is a linear plot of V , and the right panel is a log plot of

the absolute value of V . It is not easy to find the neutrino minimum from these figures. If

we concentrate on a small segment of L−1 which is close to neutrino minima, then a figure

where the vertical axis is V (which we show in figure 6) is more illustrative of the features

of the potential. On the other hand, if one wants to see the full behavior of the potential

for a wide range of L−1, the figure with the L−2
0 L6 normalization is more appropriate.

We also note how one can infer the existence of the neutrino minimum from figure 4.

In figure 4, we have plotted the flat and the AdS neutrino minima. For the flat case, the

minima of L−2
0 L6V is same as that of V itself. For the AdS minima, the point is that the

sign of L−2
0 L6V is the same as that of V itself. Then, if the sign of L−2

0 L6V changes as

plus→ minus→ plus as we increase L−1, then V should follow the same sign change, and

hence there should be an AdS minimum. In this way, the existence of the AdS minima is

common for L−2
0 L6V and V itself although the precise value of L−1 corresponding to the

minima is different. To summarize, the change of the sign of the vertical axis signals the

existence of a stationary point.

We can see that, if the boundary condition is close to the periodic one, the potential has

a minimum at around the neutrino mass scale, and this vacuum is likely to unstable under

tunneling to the runaway vacuum at high energy scale because the potential behaves as

V ∝ −L−6 at high scale, and the runaway vacuum has a smaller energy than the neutrino

vacuum, see the left panel of figure 5.9 We leave the construction of the concrete bounce

solution describing the tunneling to a future work. On the contrary, if it is found that

the AdS3 vacuum is stable,10 we can constrain the mass of the neutrino, and exclude the

9Whether this runaway behavior continues to smaller L or becomes an extremum depends on the UV

completion of the SM. It would also be interesting to investigate the robustness of the runaway behavior

by considering the contributions of new particles in various extensions of the SM.
10See, e.g. section 4.2 of ref. [44] for the claim that tunneling to and from AdS space cannot occur.

Another possibility is that the bubble size is larger than the AdS length so the decay does not happen.
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Figure 4. S1 compactification of the SM. The effective potential as a function of the radion L.

Here the Wilson lines are fixed at the potential minimum. “νM(D)” represents Majorana (Dirac)

neutrino, and z is the boundary condition of fermion ψ → −e−iπzψ. The shaded region is close

to the QCD scale, 0.3–1 GeV, around which perturbation theory is not good. Right figures are

enlarged view of the left figures. The solid and dashed line correspond to the normal and inverted

hierarchy, respectively. We can see that there is vacuum at around the neutrino mass scale if the

boundary condition is close to the periodic one.

-12 -10 -8 -6 -4 -2 0

-6.×10-18
-5.×10-18
-4.×10-18
-3.×10-18
-2.×10-18
-1.×10-18

0

log10(L
-1[GeV])

V

z=0, m1=0.1eV

z=0, m1=0eV

z=1, m1=0.1eV

z=1, m1=0eV

νM, NH&IH

-12 -10 -8 -6 -4 -2 0

-70
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-40
-30
-20
-10
0

log10(L
-1[GeV])
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g 1
0
|V
| z=0, m1=0.1eV

z=0, m1=0eV

z=1, m1=0.1eV

z=1, m1=0eV

νM, NH&IH

Figure 5. The potential is the same as the upper right panel of figure 4, but the vertical axes are

V (left), and log10 |V |(right), respectively. Here the scale L0 is taken to be 1 GeV−1.

Majorana neutrino alone the lines of refs. [30, 31]. Note that, since this vacuum requires

a non-trivial spin structure of the fermion, it does not decay by the Witten’s bubble of

nothing [45].11 For Majorana neutrino, we show the results for mν,lightest = 0 and 0.1 eV,

where mν,lightest is the mass of the lightest neutrino. Both of them leads to an AdS3 vacuum.

On the other hand, mν,lightest = 8.4 meV is taken for the Dirac neutrino case, which give

a flat 3-dimensional vacuum with periodic neutrinos. The vacuum becomes dS3(AdS3) for

11Even if the fermion has a non-trivial spin structure, the Witten bubble of nothing can happen if the

fermion couples with the Wilson line and the boundary condition becomes anti-periodic by the background

Wilson line value [46]. However, this subtlety does not change the arguments that follow as the neutrinos

are uncharged under the Wilson line.
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V
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z=1, m1=0eV

νM , NH

5.×10-11 1.×10-10

-3.×10-66

0

3.×10-66

L-1 [GeV]

V

z=0

z=1/3

z=2/3

z=1

νD , m1=8.4meV, NH

Figure 6. The radion potential around the neutrino mass scale for NH. Here the scale L0 is taken

to be 1 GeV−1. The potential is same as that in figure 4, but the vertical axis is the potential

V itself, and the horizon axis is the small segment of L−1 around the neutrino mass scale. As in

figure 4, for the Majorana case, the z = 1 plots correspond to AdS minima. For the Dirac case,

z = 1 and z = 2/3 correspond to the flat and AdS minima, respectively.

smaller (larger) mν,lightest. Explicitly, AdS3 is obtained for 8.4(3.1) meV . mν,1(3) and dS3

is obtained for 7.3(2.5) meV . mν,1(3) . 8.4(3.1) meV for NH (IH).

In the analysis above, we take the Wilson line to be at the global minimum of the

potential. Here we examine the possibility of local minima of the Wilson line potential.

For a massless particle, we approximately have

VS1,M=0 ' −(−1)2spnp
1

16π6L4
cos (2πθ) , (3.19)

see around eq. (B.8) for the derivation. As for the quarks, leptons and gluons, it is obtained

that

V SM
S1,M=0'

L2
0

16π8L6

[
3cos

{
2π

(
−Ae+

1−zL
2

)}
+3cos

{
2π

(
2

3
Ae+Ag1+Ag2+

1−zB
2

)}
+3cos

{
2π

(
2

3
Ae+Ag2+

1−zB
2

)}
+3cos

{
2π

(
2

3
Ae−Ag1−2Ag2+

1−zB
2

)}
+3cos

{
2π

(
−1

3
Ae+Ag2+

1−zB
2

)}
+3cos

{
2π

(
−1

3
Ae−Ag1−2Ag2+

1−zB
2

)}
+3cos

{
2π

(
−1

3
Ae−Ag1−2Ag2+

1−zB
2

)}
−[cos{2π (2Ag1+Ag2)}+cos{2π (Ag1+Ag2)}+cos(2πAg1)]

]
+. . . (3.20)

where . . . represents functions which do not depend on the Wilson line moduli. If a local

minimum with positive value of V SM
S1,M=0 exists with respect to the Wilson line, it may

indicate the existence of a new local minimum in the S1 compactification. Positivity of

the potential at its minimum would be needed because ∂2
χV should be positive in order to

obtain a minimum of the potential.12

12Precisely speaking, the coefficient of L−6 should change from negative to positive around the mass

threshold of the new particle. However, the positive minimum condition is sufficient for the following

discussion.
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Although we do not exclude this possibility completely, within our numerical analysis,

we do not find positive energy minima in V SM
S1,M=0 with respect to the Wilson line.

We also consider the lower dimensional vacuum corresponding to the high scale Higgs

vacuum, whose cosmological constant can take positive, zero, or negative value. For def-

initeness, we take 〈H〉 = 1016 GeV, and assume the existence of heavy right handed neu-

trinos whose masses are smaller than 1016 GeV in the case of Majorana neutrino. In the

high scale vacuum, the SM mass spectrum drastically changes. The Dirac neutrino mass,

yν 〈H〉, can become larger than the Majorana mass. The QCD scale increases, and becomes

around 106 GeV. The masses of the quarks and charged leptons are given by

mq = mq,EW

(
〈H〉
〈H〉EW

)
, m` = m`,EW

(
〈H〉
〈H〉EW

)
, (3.21)

where mq,EW and m`,EW are masses of our electroweak vacuum. If the neutrino is of the

Dirac type, the mass is given by mν,EW 〈H〉 / 〈H〉EW. For the Majorana fermion, the mass

matrix and mass eigenvalues are(
0 yν 〈H〉

yν 〈H〉 MN

)
, mν =

1

2

(
MN ±

√
M2
N + 4y2

ν 〈H〉
2

)
, (3.22)

where MN is the Majorana mass of the neutrino. Note that the neutrino mass in the

electroweak vacuum is mν,EW ' 〈H〉2EW y2
ν/MN . Therefore, even if we fix mν,EW, there

remains a freedom to choose MN . In our numerical calculations, we take MN = 1012 GeV

as a canonical value.

We summarize the numerical results in figure 7. It is found that a perturbative stable

vacuum only appears for Λ4 = 0 and Dirac neutrino.13 This can be understood intuitively.

If the neutrino is of the Majorana type and the neutrino Yukawa coupling is not small,14 the

neutrino is not the lightest matter in the theory. The electron, up quark and down quark

become lighter than the neutrino due to their small Yukawa couplings, ye, yu, yd ∼ 10−6.

Therefore, the lightest particle is the charged one, and the vacuum can not be found as in

the compactification of U(1) gauge theory. This is why the vacuum disappears for Majorana

neutrinos. Even if the neutrinos are of the Dirac type, the neutrino vacuum does not appear

if the absolute value of the cosmological constant is large compared with the mass of the

neutrino. In this case, Λ4 term dominates the potential (3.18) up to L−1 ∼ (Λ4)1/4, where

the charged particle contribution becomes large. Therefore, the effect of the neutrino loop

is not effective, and the vacuum does not appear.

To summarize, there are no vacua except for the neutrino one, and this neutrino

vacuum in 3 dimensions is likely to be unstable through tunneling to the runaway solution.

13As in figure 4, the vertical axis is L−2
0 L6V in figure 7. We can guess the existence of minima in the

upper right figure in figure 7 in the following way. If z & 2/3 is satisfied, L−2
0 L6V becomes positive around

L−1 ∼ 104GeV, and hence V is also positive there. Moreover, V behaves as V ∝ −L−6 for smaller L−1

where only the gauge boson and graviton contributions are present, see eq. (3.9). Combining the fact that

V is negative and a monotonically decreasing function at small L−1 and is positive around L−1 ∼ 104GeV,

we can see that there should exist AdS minima. We also plot the figure where the vertical axis is V around

the neutrino mass scale in figure 8.
14Here we use yν ∼ 0.01 which is obtained from MN = 1012 GeV as a canonical value.
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Figure 7. Upper: S1 compactification of the SM where Λ4 = 0 and 〈H〉 = 1016 GeV. For

νD, the vacuum exists around L−1 ∼ 10−3 GeV. Middle: S1 compactification of the SM where

Λ4 = −10−2 〈H〉4 and 〈H〉 = 1016 GeV. For L−1 . 1016 GeV, the main contribution is the cos-

mological constant while the Casimir energy dominates for L−1 & 1016 GeV. There are no vacua.

Lower: the S1 compactification of the SM where Λ4 = 10−2 〈H〉4 and 〈H〉 = 1016 GeV. There are

no vacua.
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Figure 8. The potential of the S1 compactification of the SM where Λ4 = 0 and 〈H〉 = 1016 GeV

around the neutrino mass scale with NH. Here the scale L0 is taken to be 1 GeV−1. The potential is

same as upper right panel of figure 7, but the vertical axis is the potential V itself, and the horizon

axis is the small segment of L−1 around the neutrino mass scale.
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We comment on the relation of our results with that in previous works [2, 41]. In

refs. [2, 41], the Wilson line was taken to be zero (or π).15 Since the potential around the

neutrino vacuum is very flat16 and the maximum of the potential satisfies the Breitenlohner-

Freedman (BF) bound in AdS, vanishing Wilson line is a valid solution. It would be inter-

esting to study if there can be tunneling transitions from those vacua with a zero Wilson

line to the runaway found in this paper which has a different value for the Wilson line.

3.5 Multiple point principle and prediction on the neutrino mass

Here we briefly review the multiple point principle and apply this principle to the SM

landscape. See also ref. [33] for the original argument, and appendix D of ref. [35] for a

review of this material. In the standard argument of statistical mechanics, the fundamental

concept is the principle of equal a priori probabilities in the micro-canonical ensemble.

The canonical ensemble is derived by dividing a large system into a heat bath and a small

system, and applying the micro-canonical ensemble to the whole system. On the other

hand, the starting point of quantum field theory is the path integral which may correspond

to the canonical ensemble of statistical mechanics. The natural question is what happens

if we start from a micro-canonical type path integral.

With this motivation in mind, Froggatt and Nielsen [33] started from the micro-

canonical type path integral ∫
Dφδ

(∫
d4x|H|2 − I2

)
e−S , (3.23)

where the delta function is the analogue of micro-canonical ensemble where the energy is

fixed. Instead of the energy, the spacetime integral of the Higgs field squared is fixed to

be some constant I2. Here S is the action of the SM other than the Higgs mass term.

They argued that, if there is a new vacuum around the Planck scale which is degenerate in

energy with the electroweak vacuum, then the delta functional constraint can be satisfied

by considering the coexisting phase/superposition of the high scale and the electroweak

scale vacua.

Here, we further speculate that there is a micro-canonical type constraint

δ

(∫
d4xL2 − I ′2

)
, (3.24)

in the path integral, and the coexisting phase/superposition of the two vacua of the radion

field realizes the delta functional constraint. In this respect, it is interesting that the S1

vacuum can be dS3, M3 or AdS3. If we apply the multiple point principle, it would be

natural to require that the three dimensional vacuum to be close to M3, otherwise either

the 3 dimensional or the 4 dimensional vacuum is favored from energetic considerations,

and it is difficult to maintain the coexisting phase/superposition. Then, we can predict that

15In table 1 in ref. [2], the coefficients of the Casimir energy at each mass threshold were presented for a

fixed Wilson line zero or π.
16Because the lightest charged particle (electron) is much heavier than the neutrino, the potential of the

Wilson line is exponentially suppressed [2].
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the mass of the lightest neutrino to be O(1–10) meV. The multiple point principle provides

an interesting suggestion that the measure of the possibility of the vacuum selection in the

string landscape is not equally distributed, but there is some bias. It is important to clarify

the phenomenological predictions of the multiple point principle, and compare them with

experiment.

3.6 Flux vacua

So far, we have considered a constant background for the Wilson line. However, in general,

we can also consider flux vacua if we add an axion-like particle a to the theory. Then, the

following term is added to the action:

∆S =

∫
d4x
√
−g
(
−1

2
f2
a (∂µa)2

)
'
∫

(2πL) d3x

√
−g(3)

(
−1

2
f2
ag

ij∂ia∂ja−
f2
a

2L2
(∂3a)2 + . . .

)
=

∫
d3x

√
−gE(3)

(
− L3

0

2(2π)2L4
f2
a (∂3a)2 + . . .

)
(3.25)

where fa is the decay constant of the axion. The flux vacua is given by a = wx3 where

w is the winding number, which gives a positive contribution to the tree-level potential in

the Einstein frame,

∆V (E) =
L3

0

2(2π)2L4
w2f2

a . (3.26)

The contribution of the flux is stronger than the Casimir energy but weaker than the

cosmological constant for large L. Typically, this erases the vacua with L & f−1
a . This is

reasonable because the flux effect is classical while the Casimir effect is quantum, and the

classical term is expected to be dominant at low energy, i.e., large radius.

If we consider the high scale vacuum with Λ4 < 0, we have many AdS3 × S1 minima

corresponding to w. Indeed, the classical potential in the Einstein frame becomes

V (E) =
L3

0

(2πL)2

(
Λ4 +

w2

2

f2
a

L2

)
. (3.27)

The expression in the parenthesis in the potential is shown in figure 9. We can see that

there are many AdS minima. This vacuum is stable at least at tree level. Thus, the SM

supplemented by an axion (and nothing else) seems to be at odd with the conjecture [30, 31]

if the high scale vacuum has negative cosmological constant.17 It would be interesting to

look for the corresponding extremal black hole solutions. Notice that this potential is

similar to that employed by Bousso and Polchinski [47] in illustrating the flux landscape.

17In section 2, we have seen that the SM with the high scale AdS4 vacuum is at odd with the conjecture.

Here we point out that this potential conflict with the conjecture can also be found in S1 compactification.
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Figure 9. The tree level potential of S1 compactification of the SM with the high scale vacuum,

eq. (3.27).

4 The SM vacua from T 2 compactification

In this section, we consider the vacuum structure of T 2 compactification of the SM. The

same issue was discussed in refs. [3–5], where only periodic fermion and the potential around

the neutrino mass scale was discussed. In contrast to these earlier works, the generalized

formulae and analysis we present here allow for general spin structures of the fermions. As a

result, we can carefully consider the vacuum condition for general compactifications on T 2.

4.1 Effective action

In the T 2 compactification, the metric is decomposed as

ds2 = gαβdx
αdxβ + ργijdy

idyj +Bi
αdx

αdyi, (4.1)

where τ is the shape moduli, ρ is the volume moduli of T 2, α, β = 0, 1, i, j = 2, 3, Bi
α are

graviphotons, and γij is the metric of the two-torus:

γij =
1

τ2

(
1 τ1

τ1 |τ |2

)
. (4.2)

The Laplacian on T 2 is

∆f =
1

ρ τ2

(
∂2

2f − τ1∂1∂2f +
(
τ2

1 + τ2
2

)
∂2

1f
)
, (4.3)

and hence the normalized eigenfunction which is periodic on T 2 is obviously

ψm,n =
1

2π
√
ρ

exp [imy2 + iny1] ,

∫
d2y
√
ργijψ

∗
m,nψm,n = δm,n, 0 ≤ y1, y2 ≤ 2π.

(4.4)

The corresponding eigenvalue is

∆ (exp [imy2 + iny1]) = −|m− nτ |
2

ρ τ2
exp [imy2 + iny1] . (4.5)
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The extension to other boundary conditions is not difficult:

ψ(y1+2π) = e2πiθ1ψ(y1), ψ(y2+1) = e2πiθ2ψ(y2),

ψm,n =
1

2π
√
ρ

exp[i(n+θ1)y1+i(m+θ2)y2], ∆ψm,n =−|(m+θ2)−(n+θ1)τ |2

ρτ2
ψm,n .

(4.6)

Once we solve the eigenvalue problem, we can calculate the one-loop potential with

general boundary conditions by evaluating the one-loop determinant. As calculated in

appendix B, the total Casimir energy after renormalization is

V all
T 2 (ρ, τ, θ1, θ2) =

∑
particle

(−1)2spnpV
(1)
T 2

(
ρ, τ, qpA1 +

1− z1p

2
, qpA2 +

1− z2p

2

)
, (4.7)

where sp is the spin, np is the number of degrees of freedom, zp = 0(1) corresponds to anti-

periodic (periodic) boundary condition. If θ1 = θ2 = 0, there is modular invariance in the τ

plane, and the potential has its extrema at τ = eiπ/2 and eiπ/3. As in S1 compactification,

we have to specify the boundary conditions for two 1-cycles of T 2 in order to define the

theory. The fermions can have non-trivial spin structures corresponding to U(1)L and

U(1)B. As in S1 compactification, for simplicity, we choose the same boundary condition

for the leptons and baryons in the numerical analysis. Here V
(1)
T 2 is

V
(1)
T 2 (ρ,τ,θ1,θ2) =−

∞∑
l=1

τ2M
2

8π4l2ρ
cos(2πlθ1)K2

(
2πl
√
ρM

√
τ2

)
(4.8)

− 1

64π5ρ2τ2

∞∑
n=−∞

[
2π
√

(n+θ1)2τ2
2 +M2ρτ2 {Li2 (eσ+)+Li2 (eσ−)}+{Li3 (eσ+)+Li3 (eσ−)}

]
,

where

σ± := 2π

(
±i {−(n+ θ1)τ1 + θ2} −

√
(n+ θ1)2τ2

2 +Mρ2τ2

)
. (4.9)

Now the action including the Casimir energy is

S =

∫
d4x
√
−g
(

1

2
M2
PR− Λ4 − V all

T 2 −
1

4
FµνF

µν + . . .

)
'
∫
d2x
√
−g(2)

[
1

2
M2
P

{
ρR(2) −

ρ

2τ2
2

{
(∂ατ1)2 + (∂ατ2)2

}}
− ρΛ4 − ρV all

T 2

− ρ

2
F01F

01 − ρ

2
F23F

23 − ρ

2

{
(∂αA2)2 + (∂αA3)2

}
+ . . .

]
. (4.10)

Note that, in addition to the T 2 moduli τ and ρ, we have the Wilson line moduli

corresponding to the extra dimensional component of the gauge field. The conditions

of a vacuum for these moduli to be stable against localized perturbations is derived in

appendix C.3. It should be stressed that, among τ, gαβ and ρ, only τ has dynamical

degrees of freedom with a kinetic term in the action.
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The condition of vacuum stability is summarized as follows (see appendix C.3 for the

derivation). First, in order to obtain the 2d spacetime independent solution, it is needed

V = 0, ∂τa,wV = 0. (4.11)

Here V is the full 2 dimensional potential term, ∂τa and ∂w refer to the derivatives with

respect to τa and the Wilson line moduli, respectively. Since the ρ field is not dynamical,

it is fixed by the constraint equation V = 0. The curvature of 2d, R(2), is not determined

by the height of the potential, but by R(2) = 2∂ρV/M
2
P . Therefore, ∂ρV > 0, ∂ρV = 0 and

∂ρV < 0 correspond to dS2, M2 and AdS2, respectively. Next, to guarantee the stability

of the vacuum against localized perturbations, it is required that

∂τa∂τbV ≥ 0, ∂w∂wV ≥ 0, for dS2 and M2,

16τ2
2

ρM2
P

∂τa∂τbV ≥ R(2), ∂w∂wV ≥ R(2), for AdS2, (4.12)

where w is the dimensionless Wilson line field. In terms of the field in eq. (4.10), w corre-

sponds to Ai = wi/
√
ρ. Notice that, in the case of AdS2 vacua, some amount of tachyonic

mass is not in contradiction with the stability condition, known as BF bound [48, 49].

4.2 U(1) gauge theory on T 2

4.2.1 With charged matter

As in the S1 compactification case, we start as a warmup analyzing the compactification

of U(1) gauge theory with matter, before turning to the more complicated structure of the

SM landscape. As we will see, just as in the S2 case, we can not find perturbatively stable

solution of T 2 compactification. More explicitly, the potential is given by

V charged
T 2 = Λ4 + 2V

(1)
T 2 (ρ, τ, 0, 0)

∣∣∣∣
M=0

− 4V
(1)
T 2

(
ρ, τ, qeA1 +

1− z1e

2
, qeA2 +

1− z2e

2

)
,

(4.13)

where the second and the third terms correspond to the photon and electron contributions,

respectively.

We plot V charged
T 2 as a function of the Wilson line moduli in the left panel of figure 10,

from which we can see that the potential is minimized when the Wilson line is at

qeA1 + 1−z1e
2 = 1

2 and qeA2 + 1−z2e
2 = 1

2 . However, stabilization of the τ moduli can-

not be achieved in this case. In the right panel, the potential of the τ moduli is plotted,

from which we can see that the potential is unbounded, and so there is no vacuum in this

compactification.

4.2.2 With neutral matter

Next we consider T 2 compactification of U(1) gauge theory with neutral matter. We show

that perturbatively stable dS2,M2 or AdS2 vacua can be obtained. The potential is

V neutral
T 2 = Λ4 + 2V

(1)
T 2 (ρ, τ, 0, 0)

∣∣∣∣
M=0

− 4V
(1)
T 2

(
ρ, τ,

1− z1e

2
,

1− z2e

2

)
, (4.14)
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Figure 10. U(1) gauge theory with charged matter. Left: the potential as a function of the Wilson

line moduli. Right: the potential as a function of the τ moduli.

First, we consider a neutral Dirac fermion with periodic boundary condition. In this

case, the potential possesses modular invariance, and the fixed points τ = eiπ/3, eiπ/2 are

extrema of the potential. Therefore, we fix τ = eiπ/3 or eiπ/2, and analyze the potential

for ρ, which is shown in figure 11. Depending on the value of Λ4, there exists two, one or

zero solution(s) of the Hamiltonian constraint V = 0. These are candidates for a vacuum.

Notice that ∂ρ−1/2V < 0, ∂ρ−1/2V = 0 and ∂ρ−1/2V > 0 correspond to dS2, M2 and AdS2,

respectively.

By looking at the figure, we can see that, for τ = eiπ/3 and Λ4 . 10−2M4
e , we have

one vacuum candidate for dS2, and one for AdS2. For Λ4 ' 10−2M4
e , we have a vacuum

candidate for M2. Similarly, for τ = eiπ/2, dS2 and AdS2 vacuum candidates exist for

Λ4 . 10−2M4
e , and a M2 vacuum candidate appears for Λ4 ' 10−2M4

e .

Next, we need to check the perturbative stability of the vacua, whose condition is

summarized in eq. (4.12). In order to examine the vacuum stability, the mass-to-curvature

ratio, 8m2
τa/|R

(2)| is plotted in figure 12. If this is smaller than 0 (for dS2/M2) or −1

(for AdS2), the vacuum is perturbatively unstable. It can be seen that only the τ = eiπ/3

AdS2 vacuum is stable for Λ4 . 10−2M4
e . Furthermore, if Λ4 is close to 10−2M4

e both

the τ = eiπ/3 and the eiπ/2 dS2 vacua can be stable. These are the results for a periodic

fermion. The vacuum structure of this model is summarized in figure 13.

If we slightly change the boundary condition from a periodic one, we still have extrema

around τ = eiπ/3, eiπ/2. We found essentially the same result, i.e., the existence of AdS2

and dS2 vacua. More comprehensive analysis with general boundary conditions will be

presented elsewhere.

4.3 SM on T 2

Now we move on to consider the vacuum structure of T 2 compactification of the SM.

Unfortunately, it is difficult to completely analyze the extrema of a multi-dimensional

potential. Nevertheless even though a general analysis is too complicated, we can argue
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Figure 11. U(1) gauge theory with neutral matter. The potential as a function of ρ, the

volume of T 2.
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Figure 12. U(1) gauge theory with neutral matter. In the upper left figure, the value of ρ∗ which

satisfies V (ρ∗) = 0 is plotted. The ratio between the mass of the τ moduli and the curvature of

2-dimensional spacetime is depicted in the other plots. The vacuum is perturbatively unstable if

this is negative (dS2,M2) or smaller than −1 (AdS2).

that if the charged matter contribution dominates the potential, the global minimum in

the τ plane disappears. To see this, let us consider the τ2 →∞ limit. The potential is

V
(1)
T 2 (ρ, τ, θ1, θ2)→ − τ2

2

32π6ρ2

{
Li4(e2πiθ1) + c.c.

}
. (4.15)
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Figure 13. A schematic picture of the perturbatively stable vacuum structure of T 2 compactifica-

tion of U(1) gauge theory with neutral matter.

particle (potential at minimum)×(32π6ρ2/τ2
2 ) (Aγ1, Ag11, Ag21)

graviton, γ −8.7 (–, –, –)

+ν 4.3 (–, –, –)

+e −3.2 (1/2, –, –)

+µ −11 (1/2, –, –)

+π −9.2 (1/2, –, –)

+K −9.7 (1/2, –, –)

+η8 −11 (1/2, –, –)

SM+graviton wo/ t,W,Z,H −86 (1.3, 0.1, 0.7)

Full SM+graviton −110 (2.7, 0.1, 0.7)

Table 4. The minimum of eq. (4.15) as a function of the Wilson line is shown. Here the neutrino

is periodic and Majorana. The third column is the value of the Wilson line field corresponding to

the minimum.

For massless contribution, this is valid for τ2 � 1. A necessary condition for the existence of

a global minimum is the positivity of eq. (4.15), which we will check below. More precisely,

we check the positivity of eq. (4.15) for each ρ, where only the contribution from particles

whose mass
√
ρM < 1 is considered. The results are summarized in tables 4, 5, 6, 7 and 8.

In the tables, the minimum of −(Li4(e2πiθ1) + c.c.) as a function of the Wilson line moduli

is evaluated for Majorana and Dirac neutrinos with various boundary conditions. Then,

we can see that the τ moduli do not have a global minimum for ρ−1/2 & GeV and for

boundary conditions other than the periodic one. This situation does not change if we

start instead from the high energy vacuum in 4 dimensions.

When the neutrino term is dominant in the potential, we may have lower dimensional

vacua according to the discussion of section 4.2.2. We show the potential V = V all
T 2 + Λ4
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particle (potential at minimum)×(32π6ρ2/τ2
2 ) (Aγ1, Ag11, Ag21)

graviton, γ −8.7 (–, –, –)

+ν −20 (–, –, –)

+e −28 (0, –, –)

+µ −35 (0, –, –)

+π −42 (0, –, –)

+K −50 (0, –, –)

+η8 −44 (0, –, –)

SM+graviton wo/ t,W,Z,H −180 (1, 1, 0.3)

Full SM+graviton −220 (1, 1, 0.3)

Table 5. Same as figure 4, but for anti-periodic, Majorana neutrinos.

particle (potential at minimum)×(32π6ρ2/τ2
2 ) (Aγ1, Ag11, Ag21)

graviton, γ −8.7 (–, –, –)

+ν 17 (–, –, –)

+e 9.7 (1/2, –, –)

+µ 2.2 (1/2, –, –)

+π 3.8 (1/2, –, –)

+K 3.2 (1/2, –, –)

+η8 1.6 (1/2, –, –)

SM+graviton wo/ t,W,Z,H −73 (1.3, 0.1, 0.7)

Full SM+graviton −94 (2.7, 0.1, 0.7)

Table 6. Same as figure 4, but for periodic, Dirac neutrinos.

particle (potential at minimum)×(32π6ρ2/τ2
2 ) (Aγ1, Ag11, Ag21)

graviton, γ −8.7 (–, –, –)

+ν −10 (–, –, –)

+e −18 (3/4, –, –)

+µ −25 (3/4, –, –)

+π −28 (0.8, –, –)

+K −34 (0.8, –, –)

+η8 −30 (0.8, –, –)

SM+graviton wo/ t,W,Z,H −170 (1.8, 0, 0)

Full SM+graviton −182 (0.9, 1, 0.7)

Table 7. Same as figure 4, but for z = 1/2, Dirac neutrinos.
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particle (potential at minimum)×(32π6ρ2/τ2
2 ) (Aγ1, Ag11, Ag21)

graviton, γ −8.7 (–, –, –)

+ν −31 (–, –, –)

+e −39 (0, –, –)

+µ −47 (0, –, –)

+π −53 (0, –, –)

+K −62 (0, –, –)

+η8 −55 (0, –, –)

SM+graviton wo/ t,W,Z,H −188 (1, 1, 0.3)

Full SM+graviton −230 (1, 1, 0.3)

Table 8. Same as figure 4, but for anti-periodic, Dirac neutrinos.
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6(V ρ2)/τ2
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Figure 14. Periodic Majorana neutrino. The potential for the volume moduli ρ.

below the MeV scale in figures 14, 17 in the case of periodic boundary condition. Figure 14

corresponds to Majorana neutrino, and there are two solutions of V = 0 for any value

of mν,lightest allowed by the experiment, mν,lightest . 0.1 eV [50, 51]. In the left panel of

figure 15, we plot the value of ρ moduli, ρ∗, corresponding to the solution of V = 0. In

the right panel of figure 15, the perturbative stability of each solution is investigated, from

which it is concluded that only the AdS2 vacuum corresponding to τ = eiπ/3 is stable. This

result is summarized in figure 16, and is consistent with ref. [3].

In the figure 17, the potential corresponding to Dirac neutrino is plotted. If

m1 . 4.5 meV or m3 . 1.1 meV, no solution of V = 0 exist. The value of ρ corresponding

to the V = 0 is plotted in figure 18. The stability of the solution is shown in figure 19. Up-

per and lower figures corresponds to the NH and IH neutrinos, respectively. Regarding the

case of NH, there always exists the AdS2 vacuum where τ = eiπ/3 for m1 & 4.5 meV. The

dS2 vacua where τ = eiπ/3, eiπ/2 are perturbatively stable for 4.5 meV . m1 . 6.3 meV and

6.3 meV . m1 . 6.5 meV, respectively, as summarized in the left panel of figure 20. On the

other hand, in the case of IH, the stable AdS2 vacuum with τ = eiπ/3 can be obtained for

m3 & 1.1 meV. The dS2 vacua with τ = eiπ/3 and eiπ/2 appear if 1.1 meV . m3 . 1.5 meV

and 1.5 meV . m3 . 1.55 meV, respectively. The non-perturbative stability of these

– 24 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
3

τ=e
i
π

3 & e
i
π

2 , AdS IH

NH

τ=e
i
π

3 & e
i
π

2 , dS

IH

NH

-5 -4 -3 -2 -1

-10.5

-10.0

-9.5

log10(mν, lightest [eV])

νM, ρ*
-1/2 [GeV], V(ρ*)=0

τ=eiπ/2 , AdS, mτ2
NH

IH

τ=eiπ/3 , AdS, mτ1& τ2NH

IH
τ=eiπ/2 , dS, mτ1NH

IH τ=eiπ/3 , dS, mτ1& τ2NH
IH

τ=eiπ/2 , AdS, mτ2

NH
IH τ=eiπ/2 , AdS, mτ1

NH
IH

-5 -4 -3 -2 -1
-20

-10

0

10

20

30

40

log10(mν, lightest [eV])

νM , 8mτ
2/|R(2)|

Figure 15. Left: the value of ρ∗ which satisfies V (ρ∗) = 0. Right: the ratio between the mass

of the τ moduli and the curvature of the 2-dimensional spacetime. One can see that the only

perturbatively stable vacuum is the AdS minimum with τ = eiπ/3.

Figure 16. Same as figure 13, but for the SM with periodic Majorana neutrinos.
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Figure 17. Periodic Dirac neutrino with normal and inverted hierarchies.

vacua is not clear. It would be interesting to investigate this issue further. If it turns out

that these vacua are stable, we can constrain the neutrino parameters according to the

conjecture [30, 31].

Interestingly, if we apply the multiple point criticality principle, as in the S1 compact-

ification, the lightest neutrino mass is predicted to be around O(1–10) meV where the T 2

vacuum has a curvature close to the our four-dimensional vacuum.
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Figure 18. The value of ρ∗ which gives V (ρ∗) = 0 as a function of the lightest neutrino

mass, mν,lightest. In order to have a solution, we need to have 4.5 meV . mν,lightest for NH and

1.1 meV . mν,lightest for IH, which is consistent with the result of ref. [3].

Even if the values of z1,2 are away from 1, as long as they are close to 1, the minimum

in the τ plane survives though it is no longer a global one. Numerically, we have checked

that the local minima exists for 0.9 . z1,2 . 1.1, see figure 21. Indeed, we can find

perturbatively stable vacua for this range of boundary conditions. In the right panel of

figure 20, the condition for the neutrino mass to obtain perturbatively stable AdS2 vacua

with τ ∼ eiπ/3 is presented.

4.4 Flux vacua

Similarly to the S1 compactification, we can consider flux vacua at the tree level. One

crucial difference from the S1 compactification case is that we can introduce a magnetic

field without violating the Lorentz symmetry in 2 dimensions, with a contribution:

Sflux =

∫
d2x
√
−g(2)

[
− ρ

2
F23F

23 − ρΛ4

]
=

∫
d2x
√
−g(2)

[
− 1

2ρ
F23Fklγ

2kγ3l − ρΛ4

]
'
∫
d2x
√
−g(2)

[
− 1

2ρ
F 2

23 − ρΛ4

]
. (4.16)

In the last line, we have assumed a flat 2d spacetime. The magnetic flux in compactified

space should be quantized: F23 = 2πm where m ∈ Z.

Therefore, if we add a magnetic flux, the potential is modified to

V = ρΛ4 +
1

2

(2πm)2

ρ
. (4.17)

Then, we can find a solution to the Hamiltonian constraint, V = 0 for a negative cosmo-

logical constant. Note that the τ moduli does not acquire a tree-level potential from the

flux contribution, and we may need the Casimir energy to fix τ .
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Figure 19. Upper left: the mass and curvature ratio is plotted for the periodic Dirac neutrino with

NH. The AdS2 minimum corresponding to τ = eiπ/3 is always stable. Upper right: the enlarged

view of the upper left figure around 6 meV. One can see that the dS2 minimum where τ = eiπ/3

is stable for 4.5 meV . mν,lightest . 6.3 meV, while the dS2 minimum where τ = eiπ/2 is stable

for 6.3 meV . mν,lightest . 6.5 meV. Lower left: same as upper left figure, but for IH. Lower

right: the enlarged view of the lower left figure around 2 meV. If 1.1 meV . mν,lightest . 1.5 meV,

the dS2 minimum with τ = eiπ/3 is stable. The dS2 minimum where τ = eiπ/2 is stable for

1.5 meV . mν,lightest . 1.55 meV. The dS2 solutions were overlooked in ref. [3].

Next, let us consider the effect of the axion flux. If we add two axion-like particles, we

can fix the ρ and τ moduli at the tree level if Λ4 < 0. Explicitly, we have

Saxion =

∫
d4x
√
−g
[
Φ∗1∆Φ1 + Φ∗2∆Φ2 − Λ4

]
'
∫
d2x
√
−g(2) ρ

[
−|m1 − n1τ |2

ρτ2
f2
a,1 −

|m2 − n2τ |2

ρτ2
f2
a,2 − Λ4

]
(4.18)

where Φi is the U(1)PQ breaking field, and we have put Φi = fa,i exp [iniy1 + imiy2].

V = ρΛ4 +
|m1 − n1τ |2

τ2
f2
a,1 +

|m2 − n2τ |2

τ2
f2
a,2, mi, ni ∈ Z. (4.19)

This shows that if Λ4 < 0, we can fix all moduli at the tree level. The τ moduli can

be fixed by an appropriate choice of (m1,2, n1,2), and V can become zero for ρ ∼ −f2
a/Λ4.
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Figure 20. Same as figure 13, but for the SM with Dirac neutrino. Regarding the boundary

condition z1 = z2 = 0.9, we concentrate on the AdS2 vacuum where the value of τ is around eiπ/3.

The corresponding two-dimensional vacua is AdS2 × T 2. For example, if we take the

parameter set (m1, n1,m2, n2) = (1, 1, 1, 2), we can fix the τ moduli as shown in figure 22.

We can see that the minimum is around (τ1, τ2) = (0.6, 0.3). As discussed in section 3.6,

this may imply that metastable electroweak vacuum with the addition of axions cannot

be consistently embedded into a quantum theory of gravity. There is also a possibility

of moduli stabilization thanks to both the tree level potential and the one-loop Casimir

energy. The tree level potential fixes the τ moduli at τ1 = m/n, and the one-loop potential

fixes the τ2 moduli.

5 Summary and discussion

In this paper, we have investigated the vacuum structure of the standard model upon

compactification to lower dimensions. Our work was motivated by the weak gravity con-

jecture and the multiple point principle, though our results are of interest in their own

right. Understanding the myriad of vacua in the SM landscape may give us insights as to

how we evolve to our four-dimensional universe with the observed particle spectrum and

interactions. Results from the LHC suggest the possibility that we can extrapolate the SM

to rather high energies. Thus, studies along the lines of the present work may also eluci-

date what kinds of vacua (albeit lower-dimensional ones) are permissible in an ultraviolet

completable theory.

The vacuum structure of the SM (and the warmup U(1) gauge theory example) com-

pactified on S1 and T 2 is summarized in table 9. For an S1 compactification, we found that

there are no 3D vacua except for the neutrino one, and this neutrino vacuum is likely to be

unstable under tunneling. However, if the SM is supplemented with an additional axion,

we found a lot of flux vacua from compactifications of the high scale vacuum with a nega-

tive 4D cosmological constant. For a T 2 compactification, we have calculated the Casimir

energy for general boundary conditions of fields in the compact space. We have clarified the

criteria for a perturbatively stable vacuum upon compactifiying on an T 2. As a result, we

found new dS2 × T 2 vacua which were overlooked before. Moreover, previous studies have

– 28 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
3

0

0.012

0.024

0.036

0.048

0.048

0.06

0.06

0.072

0.072

0.084

0.084

0.084

0.096

0.096

0.108

0.108
0.12

0.12

0.132

0.132

0.1440.144

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.7

0.8

0.9

1.0

1.1

τ1

τ 2
νD, ρ

-1/2=10-9.5GeV, z1=0.9, z2=0.9, NH

0.036

0.048

0.048

0.06

0.06

0.072

0.072

0.084

0.084

0.096

0.096

0.096

0.108

0.108

0.12

0.12

0.132

0.132

0.144

0.144

0.156

0.156

0.168

0.168

0.18 0.18

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
0.7

0.8

0.9

1.0

1.1

τ1
τ 2

νD, ρ
-1/2=10-9.5GeV, z1=0.9, z2=1.1, NH

0.036

0.048

0.048

0.06

0.06

0.072

0.072

0.084

0.084

0.096

0.096

0.096

0.108

0.108

0.12

0.12

0.132

0.132

0.144

0.144

0.156

0.156

0.168

0.168

0.18 0.18

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
0.7

0.8

0.9

1.0

1.1

τ1

τ 2

νD, ρ
-1/2=10-9.5GeV, z1=1.1, z2=0.9, NH

0

0.012

0.024

0.036

0.048

0.048

0.06

0.06

0.072

0.072

0.084

0.084

0.084

0.096

0.096

0.108

0.108
0.12

0.12

0.132

0.132

0.1440.144

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.7

0.8

0.9

1.0

1.1

τ1

τ 2
νD, ρ

-1/2=10-9.5GeV, z1=1.1, z2=1.1, NH

Figure 21. The minimum around τ = eiπ/3 survives as a local minimum if the boundary condition

is close to periodic.

mostly been focussing on the compactifying the electroweak vacuum. In this work, we have

considered compactifications not only of the electroweak vacuum but also of the high scale

Higgs vacuum. The non-perturbative stability of T 2 vacuum is more subtle than the S1

case. Following the discussion in the first part of section 4.3 around tables 4, 5, 6, 7, 8, we

have found that for sufficiently small ρ, the potential for τ moduli is unbounded. However,

ρ is not dynamical field, and hence it is not clear that this unbounded potential implies

the instability of the neutrino vacuum. This point needs further investigation.

In the case of S1 compactification with Casimir energy, our results seem to be consistent

with a recent conjecture that all non-supersymmetric AdS solution are unstable [30, 31].
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Figure 22. The tree level stabilization of τ moduli.

model AdS flat dS

U(1), neutral Λ4 . 10−2.8M4
e Λ4 ' 10−2.8M4

e 10−2.8M4
e . Λ4 . 10−2.6M4

e

U(1), charged – – –

SM, νM always – –

S1 SM, νD, NH 8.4 meV . mν,lightest mν,lightest ' 8.4 meV 7.3 meV . mν,lightest . 8.4 meV

SM, νD, IH 3.1 meV . mν,lightest mν,lightest ' 3.1 meV 2.5 meV . mν,lightest . 3.1 meV

SM, νM , high scale – – –

SM, νD, high scale Λ4 � (neutrino mass)4 – –

axion Λ4 < 0 – –

U(1), neutral Λ4 . 10−2.1M4
e Λ4 ' 10−2.1M4

e 10−2.5M4
e . Λ4 . 10−2.1M4

e

U(1), charged – – –

T 2 SM, νM always – –

SM, νD, NH 4.5 meV . mν,lightest mν,lightest ' 4.5 meV 4.5 meV . mν,lightest . 6.5 meV

SM, νD, IH 1.1 meV . mν,lightest mν,lightest ' 1.1 meV 1.1 meV . mν,lightest . 1.55 meV

axion Λ4 < 0 – –

Table 9. A summary of the analysis in this paper. Here the periodic boundary condition is taken.

We also impose the current upper bound on the neutrino mass, mν,lightest . 0.1 eV [50, 51].

However, the fate of these AdS solutions is not entirely clear, and we leave the construction

of the solution which describes the decay of the lower dimensional vacuum for a future

publication. On the contrary, if it is found that the lower dimensional AdS vacuum cannot

decay (e.g., due to arguments alone the lines of ref. [44]), we can constrain the nature

(Majorana vs Dirac) and the mass of the lightest neutrino according to the discussion of

refs. [30, 31].

The present work fits in the broader context of distinguishing the landscape from the

swampland based on the requirement that quantum gravity should be well-behaved under

compactification. This consistency requirement has been tested against the weak gravity

conjecture [14, 27–29]. Recently, ref. [29] discussed the consistency of quantum gravity
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upon compactification to two dimensions. In this work, we presented the criterion to

obtain perturbatively stable vacuum in two dimensions, and thus we expect our findings

to have applications in this and related contexts.

Furthermore, we speculated on the nature and value of the neutrino mass, based on

the multiple point criticality principle. By requiring the existence of lower dimensional

vacua is close to the flat vacua. we predict that the neutrinos have a Dirac mass, with

the mass of the lightest neutrino ∼ O(1–10) meV. This prediction implies the absence

of the neutrino-less double beta decay. Current CMB measurements put a bound on the

sum of the neutrino mass to be ∼ 0.2 eV [50]. Our prediction for the sum of the neutrino

mass is
∑

imνi ∼ 0.06–0.07 eV for NH and 0.10–0.11 eV for IH. Future 21cm observations

such as SKA [52], CMB observation such POLARBEAR-2 and the Simons Array Experi-

ment [53], and baryon acoustic oscillation observations such as DESI [54] further constrain

the neutrino mass to a precision that our prediction could be tested [55, 56].

It would be also interesting to study the cosmological consequences of the existence of

anisotropic [57] vacua such as those arising from compactifications on S1 and T 2. We hope

to return to this issue in the future.
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A One-loop effective potential in curved spacetime

In this paper, we calculate the one-loop effective potential by the path-integral formalism.

Since we work in curved spacetime, a careful definition of the measure of the path integral

is needed.

The measure is determined once we fix the infinitesimal distance in the functional

space. Because we want to preserve general covariance, the following definition of the

distance might be most appropriate:

||δφ||2 :=

∫
d4x
√
−gδφ∗(x)δφ(x). (A.1)

Namely, by defining φ̃ := (−g)1/4φ, φ̃∗ := (−g)1/4φ∗, it is suitable to use Dφ̃Dφ̃∗ as a

measure of the path integral. This definition fixes our calculation of the one-loop effective

potential.

B Calculation of the Casimir energy

In this appendix, we present the calculation of the Casimir energy for S1 and T 2 compact-

ifications. A related reference is ref. [58]. The calculation of S1 compactification is the

review of known material. As for T 2 compactification, the new result is presented.
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B.1 S1 compactification

The effective potential is

V
(1)
S1 = (−1)2sp+1np

2

∞∑
n=−∞

1

2πL

∫
d3k

(2π)3 log

(
k2

0 + k2
1 + k2

2 +M2 +
(n+ θ)2

L2

)

= −(−1)2sp+1np
2

d

ds

∞∑
n=−∞

1

2πL

∫
d3k

(2π)3

(
k2

0 + k2
1 + k2

2 +M2 +
(n+ θ)2

L2

)−s ∣∣∣∣
s=0

= (−1)2sp+1np
2

1

12π2

1

L4
F

(
−3

2
; θ,ML

)
. (B.1)

Here sp is the spin of the particle while np is the real degrees of freedom, and F is [59]:

F (s; a, c) :=

∞∑
n=−∞

1

[(n+ a)2 + c2]s
(B.2)

=

√
π

Γ(s)
|c|1−2s

Γ

(
s− 1

2

)
+ 4

∞∑
p=1

(πp|c|)s−1/2 cos (2πpa)Ks−1/2 (2πp|c|)

 ,

In general, this is divergent. But if we consider sufficiently large s, this summation is

convergent, and we can define the summation with s = 0 by the analytic continuation.

Note that the factor 1/(2πL) in the above expression comes from the normalization of the

wavefunction in S1. Namely if we use

ψn =
1√
2πL

eik3x3 ,

∫ 2π

0
dx3
√
gS1ψ∗mψn = δnm (B.3)

as a normalized and orthogonal basis, the functional trace of the S1 part is

tr5D(−∂2
5D) =

∑
n

ψ∗ntr4D(−∂2
4D − L−2∂2

x3
)ψn =

1

2πL

∑
n

tr4D(−∂2
4D + L−2k2

3). (B.4)

Finally, we obtain

(Eq. (B.1)) = −1

2

M4

16π2
(−1)2spnp Γ(−2)− (−1)2spnp

∞∑
n=1

M2

8π4L2

K2(2πnML)

n2
cos(2πnθ),

(B.5)

where we have used Ks(x) = K−s(x). The first divergent term is removed by the coun-

terterm of the cosmological constant which is same as the flat space one. Explicitly, in the

case of the flat spacetime, we have18∫
d4k

(2π)4 log
(
k2

0 + k2
1 + k2

2 + k2
3 +M2

)
= − d

ds

∫
d4k

(2π)4

(
k2

0 + k2
1 + k2

2 + k2
3 +M2

)−s ∣∣∣∣
s=0

= − d

ds

[
1

(4π)2

Γ(s− 2)

Γ(s)
M4−2s

] ∣∣∣∣
s=0

= −1

2

(
1

4π

)2

Γ(−2)M4. (B.6)

18See e.g. (7.85) of ref. [60] for the calculation here.
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Therefore, only the second contribution should be taken into account. As a result, we have

V
(1)
S1 = −(−1)2spnp

M2

8π4L2

∞∑
n=1

cos(2πnθ)

n2
K2(2πnML). (B.7)

If M = 0, this reduces to

V
(1)
S1,M=0

= −(−1)2spnp
1

32π6L4

{
Li4(e−2πiθ) + c.c.

}
' −(−1)2spnp

1

16π6L4
cos (2πθ) . (B.8)

In the second line, we have made the approximation that only the leading term of the

polylogarithm is taken.

B.2 Generalized Chowla-Selberg formula for T 2 compactification

Our purpose is to calculate

f(s;A,B,C,D,E,Q) :=

∞∑
n,m=−∞

1

(Am2 +Bmn+ Cn2 +Dm+ En+Q)s
, (B.9)

under the zeta functional regularization. This summation naturally appears in the calcu-

lation of the Casimir energy on T 2, as we will see in the next subsection. First we divide

the summation as

f =

∞∑
n,m=−∞,n 6=0

1

(Am2 +Bmn+ Cn2 +Dm+ En+Q)s
+

∞∑
m=−∞

1

(Am2 +Dm+Q)s

=: f1(s;A,B,C,D,E,Q) + f2(s;A,D,Q). (B.10)

The second term can be calculated as

f2(s;A,D,Q) =
1

Γ(s)

∞∑
m=−∞

∫ ∞
0

dtts−1 exp

[
−

{
A

(
m+

D

2A

)2

+

(
Q−D

2

4A

)}
t

]

=
1

Γ(s)

√
π

A

∫ ∞
0

dtts−3/2 exp

[
−
(
Q−D

2

4A

)
t

]1+2

∞∑
p=1

cos

(
πpD

A

)
e
−π2p2

At


=

1

Γ(s)

√
π

A

(Q−D2

4A

)1/2−s
Γ(s−1/2)

+ 4

∞∑
p=1

cos

(
πpD

A

) πp
√
A
√
Q−D2

4A

s−1/2

Ks−1/2

(
2πp√
A

√
Q−D

2

4A

) , (B.11)

where we have used the formula

∞∑
n=−∞

e−(n+z)2w =

√
π

w

[
1 + 2

∞∑
n=1

e
−π2n2

w2 cos(2πnz)

]
, (B.12)

– 33 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
3

in the second line. This formula can be easily derived by using the Poisson summation

formula,
∞∑

k=−∞
f̂(k) =

∞∑
n=−∞

f(n), f̂(k) =

∫ ∞
−∞

f(x)e−2πikxdx, (B.13)

with f(x) = e−(x+z)2w. We have also used the property of the modified Bessel function of

the second kind, ∫ ∞
0

dt ts−1 exp

[
−α2t− β2

t

]
= 2

(
β

α

)s
Ks(2αβ), (B.14)

in the third line of eq. (B.11).

Similarly, the first term becomes

f1(s;A,B,C,D,E,Q)

=

∞∑
n 6=0

1

Γ(s)

∫
dtts−1 exp

[
−

{
A

(
m+

Bn+D

2A

)2

+

(
C−B

2

4A

)
n2+

(
E−BD

2A

)
n+

(
Q−D

2

4A

)}
t

]

=
∑
n 6=0

1

Γ(s)

∫ ∞
0

dtts−1

√
π

At

{
1+2

∞∑
m=1

e−
π2m2

At cos

(
2πm

Bn+D

2A

)}
exp

[
−
(

∆

4A
(n−n0)2+q

)
t

]

=
1

Γ(s)

√
π

A

∑
n 6=0

Γ(s−1/2){
∆
4A

(n−n0)2+q
}s−1/2

+
4

Γ(s)

√
π

A

n 6=0∑
m=1

cos

(
2πm

Bn+D

2A

) πm/
√
A√

∆
4A

(n−n0)2+q

s−1/2

Ks−1/2

(
2πm√
A

√
∆

4A
(n−n0)2+q

)

=
Γ(s−1/2)

Γ(s)

√
π

A

{
f2

(
s− 1

2
;

∆

4A
,− ∆

2A
n0,

∆

4A
n2

0+q

)
− 1(

∆
4A
n2

0+q
)s−1/2

}

+
4

Γ(s)

√
π

A

n 6=0∑
m=1

cos

(
2πm

Bn+D

2A

) πm/
√
A√

∆
4A

(n−n0)2+q

s−1/2

Ks−1/2

(
2πm√
A

√
∆

4A
(n−n0)2+q

)
,

(B.15)

where we define

n0 = −1

2

E − BD
2A

C − B2

4A

, q = Q− D2

4A
− 1

4

(
E − BD

2A

)2
C − B2

4A

, ∆ = 4AC −B2. (B.16)

For the application to T 2, we calculate the following quantities,

df2(A,D,Q) :=− d

ds

1

4π

1

1−s
f2(s−1;A,D,Q)

∣∣∣∣
s=0

=
1

8π3A

[
π3

3A

(
4AQ−D2

)3/2
+A

{
π
√

4AQ−D2 (Li2 (eη+)+Li2 (eη−))

+A{Li3 (eη+)+Li3 (eη−)}
}]
, (B.17)
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df1(A,B,C,D,E,Q) :=− d

ds

1

4π

1

1−s
f1(s−1;A,D,Q)

∣∣∣∣
s=0

=
1

3
√
A
f2

(
−3

2
;

∆

4A
,− ∆

2A
n0,

∆

4A
n2

0+q

)
− 1

3
√
A

(
∆

4A
n2

0+q

)3/2

(B.18)

+
1

8π3

∑
n 6=0

[
π
√

(n−n0)2∆+4Aq{Li2 (eσ+)+Li2 (eσ−)}+A{Li3 (eσ+)+Li3 (eσ−)}
]
,

where

η± :=
±iπD − π

√
4AQ−D2

A
, σ± :=

±iπ(Bn+D)− π
√

(n− n0)2∆ + 4Aq

A
. (B.19)

B.3 T 2 compactification

As discussed in eq. (4.6), the eigenvalue corresponding to the quadratic term in the action is

M2 +
|(m+ θ2)− (n+ θ1)τ |2

ρ τ2
=

1

ρ τ2
m2 − 2τ1

ρ τ2
nm+

|τ |2

ρ τ2
n2

+
2θ2 − 2τ1θ1

ρ τ2
m+

−2τ1θ2 + 2θ1|τ |2

ρ τ2
n+

(
M2 +

θ2
2 − 2τ1θ1θ2 + |τ |2θ2

1

ρ τ2

)
. (B.20)

Hence, the Casimir energy consists of

1

2

1

(2π)2ρ

∞∑
m,n=−∞

∫
d2k

(2π)2
ln

(
k2

0 + k2
1 +M2 +

1

ρ

1

τ2
|(m+ θ2)− (n+ θ1)τ |2

)

=
1

8π2ρ

d

ds

∞∑
m,n=−∞

∫
d2k

(2π)2

(
k2

0 + k2
1 +M2 +

1

ρ

1

τ2
|(m+ θ2)− (n+ θ1)τ |2

)−s ∣∣∣∣
s=0

=
1

8π2ρ

d

ds

∞∑
m,n=−∞

1

4π

1

1− s
1

{M2 + |(m+ θ2)− (n+ θ1)τ |2/(ρτ2)}s−1

∣∣∣∣
s=0

. (B.21)

Using the functions defined in appendix B.2, we find that the one field contribution is

V
(1)
T 2 (ρ,τ,θ1,θ2)

=
1

8π2ρ

d

ds

1

4π

1

1−s

×f
(
s−1;

1

ρτ2
,−2τ1

ρτ2
,
|τ |2

ρτ2
,
2θ2−2τ1θ1

ρτ2
,
−2τ1θ2+2θ1|τ |2

ρτ2
,M2+

θ2
2−2τ1θ1θ2+|τ |2θ2

1

ρτ2

)∣∣∣∣∣
s=0

=− 1

8π2ρ

[
df1

(
1

ρτ2
,−2τ1

ρτ2
,
|τ |2

ρτ2
,
2θ2−2τ1θ1

ρτ2
,
−2τ1θ2+2θ1|τ |2

ρτ2
,M2+

θ2
2−2τ1θ1θ2+|τ |2θ2

1

ρτ2

)
+df2

(
1

ρτ2
,
2θ2−2τ1θ1

ρτ2
,M2+

θ2
2−2τ1θ1θ2+|τ |2θ2

1

ρτ2

)]
. (B.22)
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Note that above parametrization gives

∆ =
4

ρ2
, n0 =−θ1, q=M2, η±= 2π

(
±i(θ2−τ1θ1)−

√
τ2

2 θ
2
1 +ρτ2M2

)
,

4AQ−D2 = 4

(
M2

A2τ2
+
θ2

1

A4

)
, σ±= 2π

(
±i{−(n+θ1)τ1+θ2}−

√
(n+θ1)2τ2

2 +M2ρτ2

)
.

(B.23)

The divergent cosmological constant term is contained in the df2 term

1

3
√
A
f2

(
−3

2
;

∆

4A
,− ∆

2A
n0,

∆

4A
n2

0 + q

)
=
ρ

4
M4Γ(−2) + (finite term), (B.24)

which should be subtracted by the counterterm of the cosmological constant in flat space-

time. The total Casimir energy is

V
(1)
T 2 (ρ,τ,θ1,θ2) =− 1

8π2ρ

ρ
4

M4Γ(−2)+4
∞∑
p=1

(√
τ2M

πp
√
ρ

)2

cos(2πpθ1)K2

(
2πp
√
ρM

√
τ2

)
+

1

8π3ρτ2

∑
n 6=0

[
2π
√

(n+θ1)2τ2
2 +M2ρτ2 {Li2 (eσ+)+Li2 (eσ−)}+{Li3 (eσ+)+Li3 (eσ−)}

]

+
1

8π3

2π

√
M2

ρτ2
+
θ2

1

ρ2
(Li2 (eη+)+Li2 (eη−))+

1

ρτ2
{Li3 (eη+)+Li3 (eη−)}


 . (B.25)

The finite Casimir energy after the subtraction is

V
(1)
T 2 (ρ,τ,θ1,θ2) =− 1

8π2ρ

[ ∞∑
l=1

τ2M
2

π2l2
cos(2πlθ1)K2

(
2πl
√
ρM

√
τ2

)
(B.26)

+
1

8π3ρτ2

∞∑
n=−∞

{
2π
√

(n+θ1)2τ2
2 +M2ρτ2 {Li2 (eσ+)+Li2 (eσ−)}+{Li3 (eσ+)+Li3 (eσ−)}

}]
.

The Casimir energy including all fields in the theory can be written as

V all
T 2 (ρ, τ, θ1, θ2) =

∑
particle

(−1)2spnpV
(1)
T 2

(
ρ, τ, qpA1 +

1− z1p

2
, qpA2 +

1− z2p

2

)
, (B.27)

where sp is the spin, np is the degrees of freedom, zp = 0(1) corresponds to anti-

periodic(periodic) boundary condition.
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B.3.1 Consistency with ref. [3]

For the periodic particles (θ1 = θ2 = 0), eq. (B.26) becomes

V
(1)
T 2 (ρ, τ, 0, 0)

= − 1

8π2ρ

[ ∞∑
l=1

τ2M
2

π2l2
K2

(
2πl
√
ρM

√
τ2

)
+

1

8π3ρτ2

∑
n 6=0

[
2π
√
n2τ2

2 +M2ρτ2 {Li2 (eσ+) + Li2 (eσ−)}+ {Li3 (eσ+) + Li3 (eσ−)}
]

+
1

8π3

[
2π

M
√
ρτ2
{Li2 (eη+) + Li2 (eη−)}+

1

ρτ2
{Li3 (eη+) + Li3 (eη−)}

]]
, (B.28)

where we have used

η± → −2πM
√
ρτ2, σ± → −2π

(
±inτ1 +

√
n2τ2

2 +M2ρτ2

)
. (B.29)

Moreover, in the massless limit, we have

V
(1)
T 2 (ρ,τ,0,0) (B.30)

→− 1

8π2ρ

[
τ2

2

180ρ
+
ζ(3)

4π3

1

ρτ2

+
1

8π3ρτ2

∞∑
n 6=0,−∞

[
2π|n|τ2 {Li2 (eσ+)+Li2 (eσ−)}+{Li3 (eσ+)+Li3 (eσ−)}

]]

=− 1

16π4ρ2

[
π2τ2

2

90
+
ζ(3)

2π

1

τ2

+
1

2πτ2

∞∑
n=1

{
2πnτ2

{
Li2
(
e−2πinτ̄

)
+Li2

(
e2πinτ

)}
+
{

Li3
(
e−2πinτ̄

)
+Li3

(
e2πinτ

)}}]
,

where

η± → 0, σ± → −2π (±inτ1 + |n|τ2) . (B.31)

Recalling the identity,

4
√
τ2

∞∑
n,p=1

(
n

p

)3/2

cos (2πnpτ1)K3/2 (2πnpτ2)

=
1

2πτ2

[
2πnτ2

{
Li2(e2πinτ ) + Li2(e−2πinτ̄ )

}
+
{

Li3(e2πinτ ) + Li3(e−2πinτ̄ )
}]
, (B.32)

our result in the massless and periodic case is consistent with eq. (17) in ref. [3].
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Next let us compare our massive periodic expression with eq. (16) in ref. [3]. Our

expression is

V
(1)
T 2 (ρ,τ,0,0) =− 1

8π2ρ

[ ∞∑
l=1

(
τ2M

2

π2l2

)
K2

(
2πl
√
ρM

√
τ2

)

+
1

4π3ρτ2

∞∑
n=1

[
2π
√
n2τ22 +M2ρτ2 {Li2 (eσ+)+Li2 (eσ−)}+{Li3 (eσ+)+Li3 (eσ−)}

]

+
1

8π3

[
2π

M
√
ρτ2
{Li2 (eη+)+Li2 (eη−)}+ 1

ρτ2
{Li3 (eη+)+Li3 (eη−)}

]]

=− 1

16π4ρ2

[ ∞∑
p=1

2ρτ2M
2

p2
K2

(
2πp
√
ρM

√
τ2

)

+
1

2πτ2

∞∑
n=1

{
2π
√
n2τ22 +M2ρτ2 {Li2 (eσ+)+Li2 (eσ−)}+{Li3 (eσ+)+Li3 (eσ−)}

}

+

√
ρM
√
τ2

Li2

(
e−2πM

√
ρτ2
)

+
1

2πτ2
Li3

(
e−2πM

√
ρτ2
)}]

. (B.33)

We confirmed that this is consistent with eq. (16) in ref. [3]. We note that the identities:

2(
√
ρM)3/2

τ
1/4
2

∞∑
p=1

K3/2(2πp
√
ρM
√
τ2) =

2π
√
ρM
√
τ2 Li2

(
e−2
√
ρMπ

√
τ2
)
+Li3

(
e−2
√
ρMπ

√
τ2
)

2πτ2
,

4
√
τ2

∞∑
n,p=1

(
1

p

)3/2(
n2+

ρM2

τ2

)3/4

cos(2πnpτ1)K3/2

2πpτ2

√
ρM2

τ2


=

1

2πτ2

[
Li3

(
e
−2inπτ1−2πτ2

√
ρM2

τ2
+n2

)
+Li3

(
e

2inπτ1−2πτ2

√
ρM2

τ2
+n2

)

+2πτ2

√
ρM2

τ2
+n2

{
Li2

(
e
−2inπτ1−2πτ2

√
ρM2

τ2
+n2

)
+Li2

(
e

2inπτ1−2πτ2

√
ρM2

τ2
+n2

)}]
,

(B.34)

are needed for comparison. More explicitly, the correspondence is V
(1)
T 2 = ρobs

(4) , where ρobs
(4)

is the quantity which appears in ref. [3], and we identify ρ = a2.

We recall the well-known equivalence between

F :=

∫
dNk

(2π)N
ln(k2 +M2 − iε)

(
= i

∫
dNkE
(2π)N

ln(k2
E +M2)

)
, (B.35)

and

G :=

∫
dN−1k

(2π)N−1

√
|~k|2 +M2, (B.36)

up to a M2-independent constant. The calculation in ref. [3] employs G for deriving

the Casimir energy. The equivalence can be easily seen by taking the derivative respect
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with M2:

∂

∂M2
F =

∫
dNk

(2π)N
1

k2 +M2 − iε

=

∫
dNk

(2π)N
−1

{k0 − (Ek − iε)} {k0 + (Ek − iε)}

= −i
∫

dN−1k

(2π)N−1

−1

2Ek
= i∂2

MG, (B.37)

where Ek =

√
|~k|2 +M2. Hence, one can see F = iG+ const..

B.4 Consistency between S1 and T 2 compactifications

If we take the limit where the one of the radius of T 2 becomes infinite, the potential should

becomes that of the S1 case. Note that

ρ = L1L2
τ2

|τ |
, L2 = L1|τ | (B.38)

where L1 and L2 are the radii of the two 1-cycles. If one take L1 to be fixed and L2 →∞,

then

|τ | → ∞, ρ→∞, L2
1 =

ρ

τ2
= fixed. (B.39)

We can see that the first term dominates eq. (4.8), and we have

V
(1)
T 2 → −

∞∑
l=1

τ2

ρ

M2

8π4l2
cos (2πlθ1)K2

(
2πlM

√
τ2

ρ

)
(B.40)

which is the same as eq. (3.9) under the identification ρ/τ2 ∼ L2.

C Vacuum condition

In this appendix, we examine the conditions for the stable vacuum against localized per-

turbations in S1 and T 2 compactifications. These conditions are different from that for the

conventional 4d flat spacetime because there can be negative curvature, and the dynamical

degrees of freedom is different in lower dimensions. The material in this appendix is new

except for appendix C.1.

C.1 Breitenlohner-Freedman bound in AdSd+1 spacetime

It is well-known that AdSd+1 spacetime allows some amount of tachyonic mass. In order

to see this quickly [61], we start from the equation of motion (EoM) of the scalar(
1√
−g

∂µ
(√
−ggµν∂ν

)
−M2

)
φ = 0, ds2 =

1

z2

(
dz2 + ηµνdx

µdxν
)
. (C.1)

More explicitly, we have (
∂2
z −

d− 1

z
∂z + ηµν∂µ∂ν −

M2

z2

)
φ = 0. (C.2)
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By performing the Fourier transformation except for the z direction, this becomes(
∂2
z −

d− 1

z
∂z − kµkµ −

M2

z2

)
ϕ = 0, φ(z, x) = ϕ(z)eik·x, (C.3)

which leads to(
−∂2

z + V (z)
)
ϕ(z) = ω2ϕ(z), V = ~k2 +

1

z2

(
M2 +

d2 − 1

4

)
, (C.4)

by ϕ(z) → z
−d+1

2 ϕ(z). Combining the fact that a time dependent Schrodinger equation

only admits a stable solution if V > −1/4, we get

M2L2
AdS > −

d2

4
, (C.5)

where L2
AdS is the radius of the AdS.

C.2 Vacuum condition of the S1 compactification

In the case of the AdS3 vacuum, the BF bound reads

− 1

L2
AdS

=
R(3)

6
≤M2. (C.6)

Let us derive the stability condition for the Wilson line moduli. The action is

S =

∫
d4x
√
−g
(
−1

4
FµνF

µν − V all
S1 + . . .

)
=

∫
x3d

(L0)

[
1

2
M2
PR

E(3) − 1

2L2
(∂iA3)2 − Λ4L

2
0

(2πL)2
−
V all
S1 L

2
0

(2πL)2
+ . . .

]
(C.7)

L0 is the arbitrary length parameter which is introduced just for convenience. As we will

see below, the physical condition eq. (C.6) does not depend on L0, as it should be. The

Einstein equation says

(L0M
2
P )

(
−RE(3)

µν +
1

2
gµνR

E(3)

)
=

1

2
V all
S1 L

3
0gµν , (C.8)

whose trace leads to

RE(3) =
3

(2π)2

V all
S1

M2
P

L2
0

L2
. (C.9)

On the other hand, the mass of the Wilson line a = A4 is

m2
a =

L2
0

(2π)2

∂2V all
S1

∂a2

∣∣∣∣
a=a∗

, (C.10)

where L∗, a∗ are the spacetime independent solutions. Now eq. (C.6) is

m2
a

RE(3)
=

1

3

L2
∗M

2
P

V all
S1

∂2V all
S1

∂a2

∣∣∣∣
a=a∗

≤ −1

6
. (C.11)

Practically, the value in the left hand side is too large to save the tachyonic Wilson

line field, because the MP factor in the numerator is much larger than the compactifica-

tion scale.
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C.3 Vacuum condition of the T 2 compactification

Unlike in other dimensions, we cannot go to the Einstein frame because of Weyl invariance

of the Einstein Hilbert action. The condition for perturbatively stable vacuum is briefly

analyzed in ref. [2] assuming a flat 2d spacetime. Here we present the extension to dS2 and

AdS2 spacetime.

First, we derive the equation of motion starting from

S =

∫
d2x
√
−g(2)

[
1

2
M2
P

(
ρR(2) −

ρ

2τ2
2

(
(∂ατ1)2 + (∂ατ2)2

))
− V (ρ, τ)

]
. (C.12)

The variations by ρ, gαβ , τa are given by

δρS =

∫
x

[
1

2
M2
P

(
R(2) −

1

2τ2
2

(
(∂ατ1)2 + (∂ατ2)2

))
− ∂ρV (ρ, τ)− 1

4
FαβF

αβ

]
δρ,

δgαβS =

∫
x

[
1

2
M2
Pρ
(
−gαβ∇2 +∇α∇β −Rαβ

)
δgαβ +

ρ

2
FαγF βδgγδδgαβ

+

{
1

4
M2
PρR(2) −

ρ

4τ2
2

(
(∂ατ1)2 + (∂ατ2)2

)
− 1

2
V − ρ

8
FαβF

αβ

}
gαβδgαβ

]
=

∫
x
δgαβ

[
1

2
M2
P

(
−gαβ∇2 +∇α∇β

)
ρ+

ρ

2

(
FαγF βγ −

1

2
FγδF

γδ

)
−
{

ρ

4τ2
2

(
(∂ατ1)2 + (∂ατ2)2

)
+

1

2
V

}
gαβ
]
,

δτaS =

∫
x

[
M2
P

2

ρ

τ3
2

(∂ατa)
2δτ2 −

M2
P

2

ρ

τ2
2

(∂ατa)(∂
αδτa)− (∂τaV )δτa

]
=

∫
x

[
δτ1

(
M2
P

2

ρ

τ2
2

∇2τ1 −M2
P

ρ

τ3
2

(∂ατ2)(∂ατ1)− ∂τ1V
)

+ δτ2

(
M2
P

2

ρ

τ3
2

(∂ατa)
2 +M2

P

ρ

τ3
2

(∂ατ2)(∂ατ2) +
M2
P

2

ρ

τ2
2

∇2τ2 − ∂τ2V
)]

, (C.13)

where
∫
x :=

∫
d2x
√
−g(2). Therefore, EoM is

1

2
M2
P

(
R(2)−

1

2τ22

(
(∂ατ1)2+(∂ατ2)2

))
−∂ρV (ρ,τ)− 1

4
FαβF

αβ = 0,

1

2
M2
P

(
−gαβ∇2+∇α∇β

)
ρ+

ρ

2

(
FαγF βγ−

1

2
FγδF

γδgαβ
)
−
{

ρ

4τ22

(
(∂ατ1)2+(∂ατ2)2

)
+

1

2
V

}
gαβ = 0,

M2
P

2

ρ

τ22
∇2τ1−M2

P

ρ

τ32
(∂ατ2)(∂ατ1)−∂τ1V = 0,

M2
P

2

ρ

τ32
(∂ατa)2+

M2
P ρ

τ32
(∂ατ2)(∂ατ2)+

M2
P

2

ρ

τ22
∇2τ2−∂τ2V = 0. (C.14)

If we focus on the solution which does not have spacetime dependence, the EoM

becomes

1

2
M2
PR(2) − ∂ρV = 0, V = 0, ∂τaV = 0. (C.15)

The curvature of the two-dimensional spacetime is determined by ∂ρV . Next, we con-

sider localized fluctuations of the solution, δgαβ , δρ, δτa, around the spacetime independent
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background in order to discuss the stability of the solution. The equations for the localized

fluctuations are written as

1

2
M2
P δR(2) − (∂2

ρV )δρ− (∂ρ∂τaV )δτa = 0,

1

2
M2
P

(
−gαβ∇2 +∇α∇β

)
δρ− 1

2
(∂ρV )gαβδρ = 0,

M2
P

2

ρ

τ2
2

∇2δτa − (∂τa∂ρV )δρ− (∂τa∂τbV )δτb = 0. (C.16)

The first equation is just the constraint. The perturbation of gravity, δR(2) is fixed by this

equation. The second equation is also not dynamical. By taking the trace, we have

M2
P∇2δρ+ 2(∂ρV )δρ = 0. (C.17)

By substituting this again, the second equation becomes

1

2
M2
P∇α∇βδρ+

1

2
(∂ρV )gαβδρ =

1

4
M2
P

(
−gαβ∇2 + 2∇α∇β

)
δρ = 0. (C.18)

By employing the conformally flat gauge, gαβ = e2ωηαβ , this leads to

{∂0∂1 − (∂1ω)∂0 − (∂0ω)∂1} δρ = 0,{
∂2

0 − (∂0ω)∂0 − (∂1ω)∂1 −
∂ρV

M2
P

e2ω

}
δρ = 0,{

∂2
1 − (∂0ω)∂0 − (∂1ω)∂1 +

∂ρV

M2
P

e2ω

}
δρ = 0. (C.19)

The e2ω = 1/x2
0, 1 and 1/x2

1 correspond to dS2, M2 and AdS2, respectively. In these

background, we can show δρ = 0 from{
∂2

0 + ∂2
1 − 2(∂0ω)∂0 − 2(∂1ω)∂1

}
δρ = 0, {∂0∂1 − (∂1ω)∂0 − (∂0ω)∂1} δρ = 0. (C.20)

More concretely, for dS2, we have{
∂2

0 + ∂2
1 +

2

x0
∂0

}
δρ =

{(
∂0 +

1

x0

)2

+ ∂2
1

}
δρ = 0,

(
∂0 +

1

x0

)
∂1δρ = 0. (C.21)

By introducing δρ = δρ̃dS/x0, this becomes

1

x0

(
∂2

0 + ∂2
1

)
δρ̃dS = 0,

1

x0
∂0∂1δρ̃dS = 0. (C.22)

Therefore, we cannot take the localized δρ as an initial condition. Similarly, we get following

equations in the case of M2 and AdS2,(
∂2

0 + ∂2
1

)
δρ = 0, ∂0∂1δρ = 0, for M2,(

∂2
0 + ∂2

1

)
δρ̃AdS = 0, ∂0∂1δρ̃AdS = 0, for AdS2, (C.23)

where δρ = δρ̃AdS/x1. Hence, we can safely put δρ = 0 to study the stability against

localized perturbation.
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Finally, let us move on the third equation of eq. (C.16). Now, it is

∇2δτa −
2τ2

2

ρM2
P

(∂τa∂τbV )δτb = 0. (C.24)

If the 2-dimensional space is flat or dS, this says that the matrix ∂τa∂τbV should be positive

definite. In the case of AdS2, the stability condition is given by the BF bound:

2τ2
2

ρM2
P

(∂τa∂τbV ) ≥ −1

4

1

L2
AdS

=
R(2)

8
, (C.25)

where R(2) = −2/L2
AdS.19

Note that, unlike the discussion in ref. [3], we conclude that dS2 and M2 are possible.

The point is that the discussion in ref. [3] is applicable only to 2 + ε dimensions. The limit

ε→ 0 is not smooth because the Einstein Hilbert action becomes Weyl invariant.

Indeed, our argument matches the number of physical degrees of freedom. The 4-

dimensional graviton has 2 physical degrees of freedom. In term of T 2 compactification,

this corresponds to the fluctuation of the τ moduli. So we only need to consider the stability

of the τ fluctuation, and the other fluctuations are determined by the constraint equations.

To summarize, we need to solve

V = 0, ∂τaV = 0, (C.26)

in order to obtain the 2d spacetime independent solution of T 2 compactification. The

curvature of 2d is determined by R(2)M
2
P /2 − ∂ρV = 0, namely, ∂ρV > 0, ∂ρV = 0 and

∂ρV < 0 correspond to dS2, M2 and AdS2, respectively. To guarantee the perturbative

stability of the vacuum, it is required that

∂τa∂τbV ≥ 0, for dS2 and M2,
(4τ2)2

ρM2
P

∂τa∂τbV ≥ R(2), for AdS2, (C.27)

The dynamics of the Wilson line is similar to that of the τ moduli. The EoM requires

that the Wilson line sits at the extremum of the potential. There is a lower bound on the

mass depending on whether the extremum is dS2,M2 or AdS2.
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