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1 Introduction

This paper describes a puzzling new feature of the line defect Schur index inN = 2 theories,

introduced in [1] and recently reconsidered in [2]. In short, there is an unexpectedly close

relation between:

• the Schur index in the presence of a supersymmetric (half) line defect L,

• the vevs 〈L〉 in U(1)r-invariant vacua of the theory compactified on S1.

The precise statements and some discussion appear in sections 1.7–1.9 below; the interven-

ing sections provide the necessary notation and background.

1.1 Schur indices and chiral algebras

In [3] a novel correspondence between 4d N = 2 SCFT and 2d chiral algebras was discov-

ered: given an N = 2 SCFT, there is a corresponding chiral algebra A. The operators in

the vacuum module of the chiral algebra A correspond to local operators in the original

N = 2 theory which contribute to the Schur index I(q) (and Macdonald index1).

The algebras A corresponding to Argyres-Douglas theories have been intensively stud-

ied in e.g. [3, 5–11]. In particular, the chiral algebra for the (A1, A2N ) Argyres-Douglas

theory2 was conjectured to be the Virasoro minimal model with (p, q) = (2, 2N + 3), and

the chiral algebra for (A1, D2N+1) Argyres-Douglas theories was conjectured to be ŝl(2)k
at level k = −4N/(2N + 1). The Schur indices for certain Argyres-Douglas theories have

been computed and indeed match the vacuum characters of the corresponding 2d chiral

algebra [2, 6, 7, 11].

1.2 Schur indices with half line defects and Verlinde algebra

In [2] this story was extended to include the non-vacuum characters of the chiral algebra A,

by considering a new Schur index IL(q), which counts operators of the N = 2 SCFT which

sit at the endpoint of a supersymmetric “half line defect” L. In various examples, [2] found

that IL(q) can be expressed as a linear combination of characters associated to modules

for the algebra A:

IL(q) =
∑
β

vL,β(q)χβ(q) (1.1)

where χβ(q) are the characters, and vL,β(q) are some simple Laurent polynomials in q, with

integer coefficients.

In the expansion (1.1), the index β is running over some finite collection of modules,

which moreover are closed under a canonical action of the modular S matrix. This being

so, we can use the Verlinde formula to define a commutative and associative algebra V,

generated by the “primaries” Φβ corresponding to the modules with characters χβ(q), with

product laws of the form

[Φβ ]× [Φα] = cγβα[Φγ ]. (1.2)

1Macdonald index and its relation to chiral algebra was studied in [4].
2Here and below we use the taxonomy of Argyres-Douglas theories from [12], in which they are labeled

by pairs of ADE type Lie algebras. Argyres-Douglas theories were first discovered in [13, 14].
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In (A1, A2N ) Argyres-Douglas theories this commutative product corresponds to the true

fusion operation in the (2, 2N + 3) Virasoro minimal model. More generally though, we do

not claim to interpret this product as any kind of fusion operation: we just use the formal

rule provided by the Verlinde formula. In the following we will often refer to these product

laws as modular fusion rules3 of the Verlinde-like algebra V.

Now, let us return to the expansion (1.1) and specialize the coefficients vL,β(q) to

q = 1, defining

VL,β = vL,β(q = 1). (1.3)

Then for every line defect L we get an element f(L) ∈ V by

f(L) =
∑
β

VL,β [Φβ ]. (1.4)

Remarkably, [2] found evidence that this map is actually a homomorphism of commutative

algebras,

f : L → V (1.5)

where L is the commutative OPE algebra of line defects in the original N = 2 theory.

f always maps the trivial line defect to the vacuum module, since the Schur index

without any line defect insertions is the vacuum character of A. Thus the fact that the

trivial line defect is the identity in the OPE algebra gets mapped to the fact that the

vacuum module is the identity in the Verlinde algebra V.

Evidence for the homomorphism property of the line defect Schur index was observed

in [2] in the (A1, A2) and (A1, A4) theories. In section 5.4 below we give evidence that the

same is true in the (A1, A6) theory. We also extend to the (A1, D3) and (A1, D5) theories,

in section 6.1 and section 6.2, but this involves a little twist: see section 1.8 below.

1.3 A simple example

Just to fix ideas, we quickly review here the case of the Argyres-Douglas theory of type

(A1, A2). The basic data are:

• There are five distinguished nontrivial line defects L1, . . . , L5 in the theory, which

generate all the rest by operator products. In fact one only needs products involving

consecutive Li: the most general simple line defect can be written [15]

L = Lmi L
n
i+1 (1.6)

for i ∈ {1, . . . , 5} and m,n ≥ 0 (letting L6 = L1). We also have the trivial line defect

which we write as 1.

• The chiral algebra A is the (2, 5) Virasoro minimal model, with c = −22/5. The

corresponding Verlinde algebra V has two generators [Φ1,1], [Φ1,2] corresponding to

the two primaries. [Φ1,1] is the identity element, so the only nontrivial product is

[Φ1,2]× [Φ1,2], which is

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,2]. (1.7)
3We thank Christopher Beem for suggesting us to make a distinction from the true fusion rules.
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The line defect Schur indices come out to [2]

I1(q) = χ1,1(q), ILi(q) = q−
1
2
(
χ1,1(q)− χ1,2(q)

)
. (1.8)

Thus the homomorphism f in this case is

f(1) = [Φ1,1], f(Li) = [Φ1,1]− [Φ1,2]. (1.9)

In particular, f forgets the index i, so it identifies the 5 generators Li.
4 Moreover, f

collapses the infinite-dimensional algebra L, spanned by the operators (1.6), down to the

two-dimensional algebra V.

1.4 Diagonalizing the Verlinde algebra

To explain the main new results of this paper, we need a brief digression to recall a struc-

tural fact about the Verlinde algebra V: the modular S operator gives a canonical diago-

nalization of V [16]. Concretely, if we choose an ordering of the n primaries, then we can

represent the operation of fusion with Φi by an n × n matrix NΦi , and likewise S by an

n× n matrix; then the statement is that the matrices

N̂Φ = SNΦS
−1 (1.10)

are all diagonal.

For example, in the (2, 5) Virasoro minimal model, if we choose the ordering of the

primaries (Φ1,1,Φ1,2), then we have [17]

NΦ1,1 =

(
1 0

0 1

)
, NΦ1,2 =

(
0 1

1 1

)
, S =

2√
5

(
− sin 2π

5 sin 4π
5

sin 4π
5 sin 2π

5

)
, (1.11)

from which we can compute

N̂Φ1,1 =

(
1 0

0 1

)
, N̂Φ1,2 =

(
1−
√

5
2 0

0 1+
√

5
2

)
. (1.12)

The representation of V by the diagonal matrices N̂Φ shows that V is naturally iso-

morphic to a direct sum of copies of C. Moreover these copies correspond canonically to

the primaries themselves, using the ordering of the primaries we have chosen. Another

way of saying this is: V is canonically isomorphic to the algebra of functions on the set of

primaries of A. We will use the statement in this form, in section 1.5 below.

1.5 Verlinde algebra and U(1)r-fixed points in three dimensions

Now we recall another place where the Verlinde algebra of A has recently appeared.

We consider the compactification of our superconformal N = 2 theory to three dimen-

sions on S1. As is well known, beginning with [18], the Coulomb branch of the compactified

theory is a hyperkähler space N . For example, if our theory is a theory of class S, say

4We will give a derivation of this property of f in section 2.4.
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S[g, C], then N is a moduli space of solutions of Hitchin equations on C with gauge algebra

g [19, 20].

The U(1)r symmetry of the theory acts geometrically onN . This action is an important

tool in the study of this space. For example, it can be used to compute the Betti numbers

of the Hitchin moduli spaces, as was noted already in [20]. More recently [21, 22] this

U(1)r action has been used to define and compute a new “U(1)r-equivariant index” for N ,

related to a Coulomb branch index in the N = 2 theory. In both computations the starring

role is played by the fixed locus F ⊂ N of the U(1)r symmetry. The points of F are the

U(1)r-invariant vacua of the compactified theory.

For our purposes the key fact about F is the following recent observation: the points

of F are naturally in 1-1 correspondence with the primaries of A [12, 23–25].5 Combining

this correspondence with the picture of V reviewed in section 1.4, we conclude that there

is a canonical isomorphism

h : V → O(F ), (1.13)

where O(F ) means the algebra of functions on F . Concretely, h maps [Φ] to the vector of

diagonal entries of N̂Φ, using the correspondence above to match up the points of F with

the positions along the diagonal.

1.6 Fixed points and vevs

We consider the vacuum expectation values of 1
2 -BPS line defects wrapped around S1 in

S1 × R3. These vevs are functions on the vacuum moduli space N ; the process of taking

vevs gives a homomorphism of commutative algebras

L → O(N ) (1.14)

from the OPE algebra of 1
2 -BPS line defects to the algebra O(N ) of holomorphic functions

on N .6 Now consider the restriction of these vevs to the U(1)r-fixed locus F ⊂ N : this

gives another homomorphism of commutative algebras,

g : L → O(F ). (1.15)

In Argyres-Douglas theories, the map g is very far from being an isomorphism: it

forgets most of the details of a line defect, remembering only its vevs at the finitely many

U(1)r-invariant vacua. This is reminiscent of the fact that the map f , built from line

defect Schur indices IL, likewise forgets most of the details of the line defects L. In the

next section we flesh this out into a precise sense in which f and g are “the same.”

5Some early hints of this appeared in [12], and a precise correspondence of this sort in the case of

(Am, An) Argyres-Douglas theories with (m + 1, n + 1) = 1 is developed in [23], first reported in [24].

This correspondence was used extensively in [25], where the U(1)R weights at the fixed points were also

worked out; that work also substantially broadened the scope of the correspondence, well beyond the class of

(Am, An) theories. Despite all this, as far as we know, nobody has yet provided a first-principles explanation

of why the correspondence between points of F and primaries of A exists. In this paper we just take this

correspondence as a given.
6In fact, in all examples we know, this is an isomorphism L ' O(N ), though we do not need this fact

in anything that follows.
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Before we state our main result, we would like to point out that the 1
2 -BPS line defects

that we are talking about in this section are full line defects, which are by definition different

from the half line defects in 1.2. However, away from the endpoints of the half line defects

they are “locally” the same object. In particular the OPE algebra of half line defects is

isomorphic to the OPE algebra of full line defects, both of which we denote as L.

1.7 The commutative diagram

So far in this introduction we have described three a priori unrelated commutative algebras

associated to an N = 2 SCFT:

• The OPE algebra L of 1
2 -BPS line defects,

• The Verlinde algebra V associated to the chiral algebra A,

• The algebra O(F ) of functions on the set of U(1)r-invariant vacua of the theory

compactified on S1.

We also described three a priori unrelated maps between these algebras:

• The map f : L → V obtained by computing Schur indices in the presence of half line

defects and expanding them in terms of characters of A,

• The isomorphism h : V → O(F ), constructed using the mysterious identification

between U(1)r-invariant vacua and chiral primaries, and using also the modular S

matrix,

• The map g : L → O(F ) obtained by compactifying the theory on S1 and evaluating

line defect vevs in U(1)r-invariant vacua of the reduced theory.

These ingredients can be naturally assembled into a diagram:

L V

O(F )

f

g h

This raises the natural question of whether the diagram commutes, i.e. whether

h ◦ f = g. (1.16)

In section 5 below, we verify by direct computation that (1.16) indeed holds, in the Argyres-

Douglas theories of type (A1, A2), (A1, A4), and (A1, A6). In section 6 we verify a similar

statement in (A1, D3) and (A1, D5) theories: see section 1.8 below for more on this.

The commutativity (1.16) is the main new result of this paper. In a sense it is not

surprising — once you realize that this diagram exists, it is hard to imagine that it would

not commute — but on the other hand its physical meaning is not at all transparent, at

least to us. It should be interesting to unravel. We comment a bit further on this question

in section 1.9 below.

– 6 –
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1.8 Flavor symmetries

In N = 2 theories with flavor symmetries the story described above can be enriched. The

Schur index, rather than being a function IL(q), is promoted to IL(q, z) where z stands for

the flavor fugacities. The chiral algebra A also contains currents for the flavor symmetry

group, and thus its characters are promoted to χi(q, z). It is natural to ask whether there

are analogues of the homomorphisms f , g, h in such theories with the extra parameters

z included.7

In section 6 below we consider this question for the (A1, D3) and (A1, D5) Argyres-

Douglas theories, which have flavor symmetry SU(2). The Cartan subgroup of SU(2) con-

sists of matrices diag(z, z−1) for |z| = 1; thus the fugacity in this case is just a single number

z. The chiral algebras in these theories are A = ŝl(2)− 4
3

and A = ŝl(2)− 8
5

respectively.

In the compactification of the theory on S1, turning on the fugacity z, with |z| = 1,

corresponds to switching on a “flavor Wilson line” around the S1. Such a Wilson line leads

to a deformation of N which does not break the U(1)r symmetry. Thus for any fixed z we

can consider the fixed locus Fz ⊂ Nz, which turns out to be discrete, just as in the (A1, A2n)

theories we considered above. Evaluating line defect vevs at Fz we get a homomorphism

gz : L → O(Fz). (1.17)

Now we would like to repeat the story of section 1.7 here, i.e. to construct maps fz and

hz, and to verify (1.16). A key question arises: what should we use as “Verlinde algebra”?

There are no conventional two-dimensional conformal field theories with A as symmetry

algebras; the usual candidate with symmetry ŝl(2)k would be the WZW model, but that

only makes sense for positive integer k. Thus there is no clear physically-defined notion of

Verlinde algebra. Still, it was realized in [27] that at admissible levels there is a finite set

of admissible representations of A whose characters span a representation of the modular

group SL(2,Z). A Verlinde-like algebra built from the admissible representations V1 was

constructed in [28] where the fusion rules were given by naive application of the Verlinde

formula [27]. V1 has the odd feature that some of the structure constants are equal to −1.8

Nevertheless, we could try to construct fz and hz, and verify (1.16), using this algebra

V1. What we find experimentally in section 6 below is that this does not quite work: we

need to use a deformed Verlinde-like algebra Vz. Vz is obtained from V1 by replacing each

structure constant −1 by −z2. Once we make this modification, the whole story goes

through as in section 1.7 above.

7In [2] the case of (A1, D3) was considered, after specializing to z → 1 to “forget” the flavor symmetry.

Though this limit is very special in the sense that characters of the two non-vacuum admissible representa-

tions diverge in this limit and only one linear combination of the two characters is well-defined. This linear

combination and the vacuum character transform into each other under modular transformations [26].
8Fusion rules of ŝl(2)k at admissible negative fractional level have been studied intensively over the years

and have been completely solved and understood recently in [29, 30] (see also references therein). From

this point of view, the negative structure constants have to do with the fact that admissible representations

are not closed under fusion. In any case, in our context we are simply considering a Verlinde-like algebra

V1 defined by naive application of the Verlinde formula, and not worrying too much about whether it has

a fusion interpretation.
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1.9 Interpretations and comments

• The main new result of this paper is the commutative diagram in section 1.7. What

is the physical interpretation of this commutative diagram? One tempting possibility

is that there is a new localization computation of the Schur index. Indeed, if we

think of the Schur index as a kind of partition function on S3×S1, we could imagine

computing it by first reducing on S1 and then making some computation in the

resulting effective theory on S3. After this reduction the line defects become local

operators, which are determined by their vevs on N . In a localization computation

using U(1)r, they could get further reduced to just their vevs in the U(1)r-invariant

vacua. This would match our observation that the object f(L) — which contains

much9 of the information of the Schur index IL — is linearly related to g(L), i.e. to

the vevs of L in the U(1)r-invariant vacua.

• Our verification of the commutativity (1.16) requires us to evaluate explicitly the

vacuum expectation values of 1
2 -BPS line defects at the fixed points of the U(1)r

action on N . In the language of the Hitchin system, this amounts to solving an

instance of the nonabelian Hodge correspondence: for some specific Higgs bundles,

we determine the corresponding complex flat connections up to equivalence. It would

be very interesting to see how far one can push these ideas: can we compute the vevs

in every case where the vacua are isolated? Can we extend beyond the fixed points,

say to get some information about their infinitesimal neighborhoods? Can we say

anything about non-isolated fixed points?

• It is natural to ask how broadly the commutative diagram of section 1.7 exists;

so far we have checked it only in five theories. We conjecture that it exists more

generally whenever it makes sense, i.e. whenever the U(1)r-invariant vacua of the

theory reduced on S1 are all isolated. The U(1)r-invariant vacua are isolated in all

Argyres-Douglas theories where the question has been investigated, e.g. the (Am, An)

theories for gcd(m+ 1, n+ 1) = 1, but more generally they are usually not isolated.

• One of the simplest examples where the U(1)r-invariant vacua are not isolated is

N = 2 super Yang-Mills with G = SU(2) and Nf = 4, compactified on S1 with

generic flavor Wilson lines. In this theory it appears that there are 4 isolated U(1)r-

invariant vacua, but also an S2 of U(1)r-invariant vacua, as explained e.g. in [31]. In

this theory [25] argued that nevertheless there is a correspondence between connected

components of the space of U(1)r-invariant vacua and chiral primaries. It would be

very interesting to understand how the diagram (1.16) can be extended to this case.

(An obstacle to the most naive extension is that the line defect vevs are not constant

on the S2 of invariant vacua. Perhaps one needs instead to take the average over

this S2.)

• In this paper one of the main players is the homomorphism f : L → V . The observa-

tion that there is some relation between algebras of line defects and Verlinde algebras

9Though not quite all, because of the need to take q → 1 in the coefficients v.
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was made already in [12]. Indeed, that paper described a map f ′ : L → V in the

(A1, A2N ) theories, constructed in a different way, by mapping certain distinguished

line defects directly to minimal model primaries.10 To forestall a possible confusion,

we emphasize that f and f ′ are not the same. For example, in the (A1, A2) theory

we have f ′(Li) = [Φ1,2], while (1.9) says f(Li) = [Φ1,1]− [Φ1,2].

• Beyond line defects one could also consider surface defects and interfaces between

surface defects. The Schur index in the presence of surface defects, and its relation

to 2d chiral algebra, were studied quite recently in [32, 33] and also featured in the

ongoing work [34]. It might be interesting to incorporate surface defects into the

story of this paper.

• In this paper we focused on examples of (A1, A2N ) and (A1, D2N+1) Argyres-Douglas

theories, mainly because their chiral algebras have been relatively well understood

and computation of line defect generators is not too complicated. What about

other (A1, g) Argyres-Douglas theories? There is one more example which we expect

should be relatively straightforward, namely (A1, D4), for which the chiral algebra is

ŝl(3)−3/2 [6, 7, 35, 36]. Beyond this:

– The chiral algebra for (A1, A2N−1) Argyres-Douglas theories with N > 2 is con-

jectured to be the BN+1 algebra, the subregular quantum Hamiltonian reduction

of ŝl(N)−N2/(N+1) [8, 26].11 As pointed out in [25], the relevant modules associ-

ated with the U(1)r fixed points depend on the parity of N , and for even N , the

relevant modules are suitable representatives of local modules which are closed

under modular transformation [8, 26, 39, 40]. For odd N , S-transformation turns

local modules into twisted modules [8, 26, 39, 40], which makes the matching

of U(1)r fixed points with relevant modules very subtle [25]. These local and

twisted modules and their modular properties are studied in [26, 39, 40].

– The situation is similar for (A1, D2N ) Argyres-Douglas theories with N > 2.

Here the chiral algebra has been conjectured to be the WN algebra coming from

a non-regular quantum Hamiltonian reduction of ̂sl(N + 1)−(N2−1)/N [8]. For

even N , [25] confirmed that the relevant modules are suitable representatives

of local modules listed in [8], while for odd N the situation becomes subtle

again [25] since S-transformation turns local modules into twisted modules [8].

– Chiral algebras for (A1, E6,7,8) Argyres-Douglas theories were conjectured in [7,

9], and at least for (A1, E6) and (A1, E8) there is a natural guess for the relevant

class of modules. However, in these theories the computation of line defect

generators and their framed BPS spectra has not been worked out; it would be

interesting to develop it.

10The distinguished line defects in question actually coincide with the generators Ai, Bi, . . . which we use

in section 5.
11Chiral algebra for (A1, A2N−1) and (A1, D2N ) Argyres-Douglas theories were reproduced in [9] along

with new results for generalized Argyres-Douglas theories in the sense of [37, 38].
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2 Schur indices and their IR formulas

In this section we review the definition and IR formula for the ordinary Schur index and

the Schur index with half line defects inserted.

2.1 The Schur index

The superconformal index of a four-dimensional N = 2 SCFT is defined as [41, 42]

I(p, q, t, ai) = Tr(−1)F pj2−j1−rqj2+j1−rtR+r
∏
i

afii e
−βδ2−̇ , (2.1)

where

2δ2−̇ = {Q̃2−̇, Q̃
†
2−̇} = E − 2j2 − 2R+ r. (2.2)

Here p, q, t are three superconformal fugacities, ai are flavor symmetry fugacities, E is the

scaling dimension, j1 and j2 are Cartan generators of SU(2)1 × SU(2)2, R and r are the

Cartan generators of the SU(2)R × U(1)r R-symmetry group. The trace is taken over the

Hilbert space on S3 in radial quantization.

The Schur index is obtained by taking the q = t limit [42, 43],

I(q, ai) = Tr(−1)F qE−R
∏
i

afii . (2.3)

Here the contributing states are 1
4 -BPS, annihilated by four supercharges: Q1

−, Q̃2−̇, S−1
and S̃2−̇. Their quantum numbers satisfy

E − j1 − j2 − 2R = 0, j1 − j2 + r = 0. (2.4)

2.2 The IR formula for the Schur index

Recently an IR formula for the Schur index was conjectured in [7],12 relating the Schur

index to the trace of the “quantum monodromy” operator, a q-series introduced in [12]:

I(q) = (q)2r
∞Tr[M(q)], (q)∞ :=

∞∏
j=0

(1− qj+1). (2.5)

In this section we review the mechanics of this formula.

12We follow the convention of [2, 7] for fermion number, (−1)F = e2πiR.
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To write down the operator M(q), we need to perturb to a point of the Coulomb branch

of the theory, where the only massless fields are those of abelian N = 2 gauge theory. M(q)

will be built out of the massive BPS spectrum of the theory.

Recall that massive BPS states in an N = 2 theory lie in representations of SU(2)J ×
SU(2)R, where SU(2)J is the little group. The one-particle Hilbert space is graded by the

IR charge lattice Γ, consisting of electromagnetic and flavor charges:13 thus H = ⊕γ∈ΓHγ .

Factoring out the center-of-mass degrees of freedom, we have:

Hγ = [(2, 1)⊕ (1, 2)]⊗ hγ . (2.6)

To count BPS particles refined by representations of SU(2)J × SU(2)R, one consider the

protected spin character [44]

Trhγ [yJ(−y)R] =
∑
n∈Z

Ωn(γ)yn, (2.7)

with integers Ωn(γ) ∈ Z, and packages the Ωn(γ) into the “Kontsevich-Soibelman factor”:

K(q;Xγ ; Ωi(γ)) :=
∏
n∈Z

Eq((−1)nqn/2Xγ)(−1)nΩn(γ). (2.8)

K is a q-series valued in the algebra of formal variables Xγ ; these variables themselves are

valued in the “quantum torus” algebra, obeying the relations

XγXγ′ = q〈γ
′,γ〉Xγ′Xγ = q

1
2
〈γ,γ′〉Xγ+γ′ , (2.9)

where 〈, 〉 is the Dirac pairing on Γ. Eq(z) is the quantum dilogarithm defined as

Eq(z) =

∞∏
j=0

(1 + qj+
1
2 z)−1 =

∞∑
n=0

(−q
1
2 z)n

(q)n
. (2.10)

The quantum monodromy operator M(q) is defined as

M(q) =

x∏
γ∈Γ

K(q;Xγ ; Ωi(γ)). (2.11)

The ordering in this product is based on the central charges Zγ : if arg(Zγ1) > arg(Zγ2) then

K(Xγ1) is to the right of K(Xγ2). The flavor charges — which have zero Dirac pairing with

other charges — form a sublattice Γf ⊂ Γ. The trace operation is defined by a truncation

to this sublattice:

Tr(Xγ) =

{
0 if γ /∈ Γf ,

Xγ otherwise.
(2.12)

If we denote a basis for Γf by (γfa), then the trace is a function of the Xγfa
, which are

related to the flavor fugacities ai in the UV definition of the Schur index [2, 7].

13The lattice Γ strictly speaking is the fiber of a local system, depending on the point u of the Coulomb

branch, so we should really write it as Γu; we will suppress this in the notation.
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TrM(q) is invariant when crossing walls of marginal stability in the Coulomb

branch [19, 44–46]. Of course this is a necessity for (2.5) to make sense, since I(q) is

defined directly in the UV and does not depend on a point of the Coulomb branch.

As pointed out in [2, 7], (2.5) is only a formal definition: in principle, in evaluating

it, we could meet infinitely many terms contributing to the same power of q. In practice

we may hope that these infinitely many terms will come with alternating signs so that

they leave a well-defined Laurent series in q, but at least we need to have some definite

prescription for how we will order the terms. In [2] the authors propose a prescription to

tackle this problem. First they rewrite (2.5) as

I(q) = (q)2r
∞Tr[S(q)S(q)], (2.13)

where S(q) is the “quantum spectrum generator” (so called because it contains enough

information to reconstruct the full BPS spectrum),

S(q) =

x∏
arg(Zγ)∈[0,π)

K(q;Xγ ; Ωi(γ)), S(q) =

x∏
arg(Zγ)∈[π,2π)

K(q;Xγ ; Ωi(γ)). (2.14)

Next, they conjecture that S(q) and S(q) can be expanded as Taylor series in q, with no

negative powers of q appearing. If this is so, then one can try to compute the coefficient of

qk in TrM(q) by expanding S(q) and S(q) up to some large finite order qN . The conjecture

is that for large enough N the coefficient of qk will stabilize to some limiting value (in the

examples investigated in [2] it is sufficient to take N larger than some theory-dependent

linear function of k.) In the examples we consider in this paper, we find that the necessary

stabilization does indeed occur, and thus we can use the prescription of [2].

2.3 The Schur index with half line defects

Supersymmetric line defects in N = 2 theories have been studied extensively: a small

sampling of references is [2, 15, 47–49].

The line defects which have been studied most extensively are full line defects. These

are 1
2 -BPS objects extended along a straight line in some fixed direction nµ ∈ R4. For

example, there are 1
2 -BPS line defects that extend along the time direction and sits at

a point in R3, preserving four Poincaré supercharges, time translation, SU(2)J rotation

around the defect in R3, and SU(2)R R-symmetry. The choices of half-BPS subalgebra

which can be preserved by such a line defect are parameterized by ζ ∈ C×. When |ζ| = 1,

so that ζ = e−iθ, the line defect can be interpreted as a heavy external BPS source particle,

whose central charge has phase θ.

In this section, following [2], we will be interested in half line defects in superconformal

N = 2 theories. A half line defect extends along a ray in R4 and terminates at a point,

say the origin. The half line defect looks like a full line defect except near its endpoint;

in particular, the indexing set labeling half line defects is the same as that for full line

defects, and it will sometimes be convenient to let the symbol L stand simultaneously for

a half line defect and for its corresponding full line defect. The endpoint, however, only

preserves two Poincaré supercharges, and breaks all translation symmetry. Moreover the
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endpoint supports a variety of local endpoint operators; these are the operators which will

be counted by the line defect Schur index.

More generally we can consider a junction of multiple half line defects Li. To preserve

some common supersymmetry, these half line defects must lie in a common spatial plane

R2 ⊂ R3. Each Li ends at the origin and has orientation

nµi = (cos θi, sin θi, 0, 0), (2.15)

where θi is the phase of the central charge of Li. After conformal mapping to S3 × S1,

each half line defect wraps S1 and sits at a point on a common great circle on S3. This

configuration preserves one Poincaré supercharge and one conformal supercharge,

Q = Q1
− + Q̃2−̇, S = S−1 + S̃2−̇. (2.16)

Recall from [42] thatQ1
−, Q̃2−̇, S−1 and S̃2−̇ are exactly the four supercharges that annihilate

Schur operators. Thus the definition of Schur index can be extended to include these half

line defect insertions [1, 2]:

IL1(θ1)L2(θ2)···Ln(θn)(q) = TrH′ [e
2πiRqE−R]. (2.17)

Here the trace is over the Hilbert space H′ on S3 with half line defects Li inserted along

the great circle at angles θi. H′ consists of states annihilated by Q and S in (2.16).

For Lagrangian gauge theories with ’t Hooft-Wilson half line defects, one could use

a localization formula to compute the Schur index, as formulated in [1, 2]. In this paper

we consider half line defects in Argyres-Douglas theories, for which we do not have a

Lagrangian description available. Instead, we will use the IR formula conjectured by [2],

which we describe next.

2.4 The IR formula for the line defect Schur index

Suppose we fix a full line defect L in R4 and go to a point u in the Coulomb branch. Let

HL,u denote the Hilbert space of the theory with line defect L inserted. In this setting

there is a new class of BPS states, called framed BPS states [15], which saturate the bound

M ≥ Re(Z/ζ), ζ = eiθ. (2.18)

Framed BPS states form a subspace HBPS
L,u ⊂ HL,u. As usual HBPS

L,u has a decomposition

into sectors labeled by electromagnetic and flavor charges,

HBPS
L,u =

⊕
γ∈Γ

HBPS
L,u,γ . (2.19)

The degeneracies of framed BPS states are counted by the “framed protected spin charac-

ter” defined in [15]:

Ω(L, γ, u, q) = TrHBPS
L,u

[qJ(−q)R]. (2.20)

In the infrared the line defect L has a description as a sum of IR line defects, which can

be thought of as infinitely heavy dyons with charges γ ∈ Γ. These IR line defects are
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represented by formal quantum torus variables Xγ with OPE given by (2.9). Then, for

each L one can define a generating function counting the framed BPS states:

F (L(θ)) =
∑
γ∈Γ

Ω(L, γ, u, q)Xγ . (2.21)

These generating functions are different in different chambers of the Coulomb branch,

undergoing framed wall-crossing at the BPS walls [15].

The IR formula of [2] for the Schur index with insertion of a half line defect L with

phase θ is:

IL(θ)(q) = (q)2r
∞Tr[F (L(θ))Sθ(q)Sθ+π(q)], (2.22)

where

Sθ(q) =
x∏

arg(Zγ)∈[θ,θ+π)

K(q;Xγ ; Ωi(γ)). (2.23)

As demonstrated in [2], the right side of (2.22) is invariant under framed wall-crossing, as

is needed since the left side manifestly does not depend on a point of the Coulomb branch.

When computing half line defect Schur index we often choose θ = 0, in which case Sθ(q)

and Sθ+π(q) reduce to S(q) and S(q) respectively.

More generally, for multiple half line defects Li, i = 1, . . . , k, with phase relations

θ1 < θ2 < · · · < θk, where there are no ordinary BPS particles with phases in the interval

[θ1, θk], the IR formula of [2] for the Schur index is

IL1(θ1)···Lk(θk) = (q)2r
∞Tr[F (L1(θ1)) . . . F (Lk(θk))Sθk(q)Sθk+π(q)]. (2.24)

We note that this formula is “compatible with operator products”, in the following

sense. The Schur index with two half line defects inserted, IL1(θ)L2(θ+δθ) with δθ small,

only depends on sgn(δθ). In particular, in the limit of δθ → 0 this looks like taking the

non-commutative OPE of two parallel half line defects with phase θ. Therefore comput-

ing IL1(θ)L2(θ+δθ) and taking the q → 1 limit in the character expansion coefficient does

correspond to the commutative OPE of two parallel half line defects in L.

Given the IR formula for half line defect Schur index we would like to point out a general

property of half line defect index in Argyres-Douglas theories. Line defect generators in

Argyres-Douglas theories can be labeled as Lρi where the index i is related to the underlying

discrete symmetry of the theory. In particular, suppose Lρj and Lρi are two half line defect

generators that are related by a monodromy action, namely

F (Lρj) = M(q)F (Lρi)M
−1(q). (2.25)

Then according to the IR formula

ILρj (q) = (q)2r
∞Tr[F (Lρj)S(q)S(q)] = (q)2r

∞Tr[F (Lρj)M(q)]

= (q)2r
∞Tr[M(q)F (Lρi)M

−1(q)M(q)]

= ILρi(q).

In particular this proves that Schur index with one half line defect generator insertion does

not depend on the i-index, as first observed in some examples in [2].
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3 Fixed points of the U(1)r action

3.1 The U(1)r action

Because the four-dimensional theories we consider are superconformal, they have a U(1)r
symmetry in the UV. Note that the U(1)r charges need not be integral (indeed they are

not integral in Argyres-Douglas theories), though they are rational in all examples we will

consider. Thus the action of Rt ∈ U(1)r is not necessarily trivial when t = 2π, but there is

some k for which R2πk is trivial.

The U(1)r symmetry of the four-dimensional superconformal theory acts in particular

on the 1
2 -BPS line defects. Recall from [15] that each 1

2 -BPS line defect preserves some

subalgebra of the N = 2 algebra, with the different possible subalgebras parameterized by

ζ ∈ C×. Given a line defect L preserving the subalgebra with parameter ζ ∈ C×, a rotation

Rt ∈ U(1)r maps L to a new operator L(t) preserving the subalgebra with parameters eitζ.

Now suppose we consider the dimensional reduction to three dimensions on S1. The

U(1)r symmetry acts on the moduli space N of vacua of the three-dimensional theory. In

what follows we will be particularly interested in the U(1)r-invariant vacua.

3.2 Line defect vevs in U(1)r-invariant vacua

Let FL denote the vev of the line defect L wrapped on S1. FL is a function on the moduli

space N . We specialize to a U(1)r-invariant vacuum: after this specialization FL is just a

number. Moreover, since the vacuum is invariant, FL is invariant under U(1)r acting on

L, i.e. for any t, t′

FL(t) = FL(t′). (3.1)

This simple statement has surprisingly strong consequences, which put constraints on

the possible U(1)r-invariant vacua, as follows. We imagine making a small perturbation

away from the invariant vacuum. After this perturbation the UV line defect L(t) can be

decomposed into IR line defects LIRγ (t),

L(t)→
∑
γ

Ω(L, γ, t)LIR(t) (3.2)

with a corresponding decomposition of the vev FL(t) as a sum of monomials Xγ(t),

FL(t) =
∑
γ

Ω(L, γ, t)Xγ(t). (3.3)

Here both sides may depend nontrivially on t, since our perturbation is not U(1)r invariant.

The expansion coefficients Ω(L, γ, t) ∈ Z appearing in (3.3) are the framed BPS state counts

which we discussed earlier in (2.20), evaluated in the perturbed vacuum, and specialized

to q = 1.

Now let us take the limit where the perturbation → 0, and optimistically assume that

the Ω(L, γ, t) and Xγ(t) remain well defined in this limit. In that case we get an interesting
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equation:14 ∑
γ

Ω(L, γ, t)Xγ(t) =
∑
γ

Ω(L, γ, t′)Xγ(t′). (3.4)

Requiring (3.4) to hold for all UV line defects L gives a relation on the Xγ(t). For

example, if t′ is sufficiently close to t, so that Ω(L, γ, t) = Ω(L, γ, t′) for all L and γ,

then (3.4) says simply that Xγ(t) = Xγ(t′). More generally, though, the Ω(L, γ, t) will

jump as t is varied. Then we get a more general relation, of the form [15, 44]

Xγ(t′) = (St,t′X )γ(t). (3.5)

Here St,t′ denotes a birational map (C×)n → (C×)n which can be written concretely in

the form

St,t′ =
x∏

arg(Zγ)∈(t,t′)

TΩ(γ)
γ , (3.6)

where Tγ : (C×)n → (C×)n is a transformation of the form [44, 45]15

Tγ : (Xµ)→ (Xµ(1− σ(γ)Xγ)〈µ,γ〉) (3.7)

and σ : Γ→ {±1} is a quadratic refinement of the mod 2 intersection pairing.

The equation (3.5) is an interesting relation, but so far not useful in producing a

constraint: it just relates the values of Xγ(t) for different t.

Now let us specialize to t′ = t+ π. In that case we have the key relation from [19]

Xγ(t+ π) = X−γ(t) (3.8)

so we conclude that

St,t+πXγ(t) = X−γ(t). (3.9)

This is a closed equation for the numbers Xγ(t), with fixed t. To make it really concrete, of

course, we need some way of computing the “classical spectrum generator” St,t+π. We could

do so by first computing the BPS spectrum (e.g. by the mutation method) and then directly

using the definition (3.6), but there are also various methods available for computing it

directly. In general theories of class S some of these methods have appeared in [19, 50–52].

In the theories we consider, we will explain a simple method below in section 3.3.

We believe that (3.9) is likely to be a useful equation for the study of U(1)r-invariant

vacua in general N = 2 theories, and it would be interesting to explore it further. For

the Argyres-Douglas theories which we consider in this paper, though, a simpler equation

suffices. Namely, instead of taking t′ = t+ π we take t′ = t+ 2π. Then we get the relation

Xγ(t+ 2π) = Xγ(t), (3.10)

14We emphasize that (3.4) is supposed to hold only in a U(1)r-invariant vacuum. Indeed, when considered

as functions on the whole moduli space N , Xγ(t) and Xγ(t′) are holomorphic in different complex structures,

so they could hardly obey such a relation.
15Tγ should be thought of as the q → 1 limit of the operation of conjugation by the operator K appearing

in (2.8).
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leading to the fixed-point constraint

St,t+2πXγ(t) = Xγ(t). (3.11)

The constraint (3.11) has the advantage that it is purely algebraic, not involving a complex

conjugation. (3.9) implies (3.11), but not the other way around: (3.11) can have additional

“spurious” solutions not associated to actual U(1)r-invariant vacua.16 In the Argyres-

Douglas theories we consider in this paper, such spurious solutions do not occur, as we

will see directly just by counting the number of solutions. Thus we will use (3.11) as our

criterion for a U(1)r-invariant vacuum.

There is one more point which will be important below: we will need to keep track of

some discrete information attached to the fixed points p ∈ N , namely the weights of the

U(1)r action on the tangent space TpN . These weights are easily computable if we have

a Higgs bundle description of the fixed point as in [23, 25]. On the other hand, suppose

that we only know the fixed point as a solution of the constraint (3.11): how then can we

compute the U(1)r weights? We will use a trick, as follows. St,t+2π acts as exp(2πiV ) where

V is a holomorphic vector field on the twistor space of N generating the U(1)r action. Thus

we have dSt,t+2π = exp(2πiV ) acting on TpN . Thus, by computing dSt,t+2π at the fixed

point, we can get the U(1)r weights mod 1.

Fortunately, in the (A1, A2N ) cases we treat in section 5, knowing the U(1)r weights

mod 1 is sufficient to determine which fixed point we are looking at. For the (A1, D2N+1)

cases it is not sufficient, which will cause us some headaches in section 6.

3.3 Classical monodromy action in Argyres-Douglas theories

To use (3.11) in practice we need a way of computing St,t+2π, which we call the classical

monodromy map. In this section we describe a convenient way of doing so in (A1, Am)

Argyres-Douglas theories.

The starting point is to use the realization of these theories as class S theories. This

implies that the space N is a moduli space of flat connections — in this case, flat SL(2,C)-

connections defined on CP1 with an irregular singularity at z = ∞. In [19] the functions

Xγ appearing in section 3.2 were described from this point of view; we now review that

description.

Given a point of the Coulomb branch and generic ζ ∈ C×, [19] gives a construction of a

triangulation of an (m+3)-gon, the “WKB triangulation.” The vertices of this (m+3)-gon

are asymptotic angular directions on the “circle at infinity,”

arg(z) =
2θ + 2πj

m+ 3
, j = 1, · · · ,m+ 3, (3.12)

where θ = arg ζ. Now, given a vacuum in N and the parameter ζ ∈ C×, there is a

corresponding flat connection ∇ on CP1, with irregular singularity at z = ∞. For each

16For an extreme example, we could consider any superconformal theory in which the U(1)r charges are

all integral, such as the SU(2) gauge theory with Nf = 4; in such a theory St,t+2π is the identity operator,

so that (3.11) reduces to the triviality Xγ(t) = Xγ(t), which of course imposes no constraint at all on the

vacuum. In contrast, even in these theories, (3.9) is a nontrivial constraint.
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Figure 1. The quadrilateral QE associated to edge E.

of the m + 3 asymptotic directions, there is a unique ∇-flat section si whose norm is

exponentially small as z →∞. Thus altogether we get m+ 3 flat sections

(s1, s2, . . . , sm+3). (3.13)

Moreover, this tuple of flat sections is enough information to completely determine the

vacuum; one gets coordinates on N by computing SL(2,C)-invariant cross-ratios from the

sections si.

From (3.12) we see that continuously varying θ → θ + 2π is equivalent to making a

shift j → j + 2, i.e. relabeling

(s1, . . . , sm+3)→ (s3, s4, . . . , sm+3, s1, s2). (3.14)

This is the classical monodromy action on N .

Now we would like to understand concretely what this monodromy looks like, relative

to the local coordinates Xγ on N . The first step is to explain what the Xγ are. For each

internal edge E of the triangulation, there is an associated coordinate function XE . E is

bounded by two triangles which make up a quadrilateral QE , as shown in figure 1. Each

vertex Pi is associated with a small flat section si. XE is then defined as:

XE = −(s1 ∧ s2)(s3 ∧ s4)

(s2 ∧ s3)(s4 ∧ s1)
, (3.15)

where the si are evaluated at a common point in QE . If E is a boundary edge of the

(m+ 3)-gon, by convention, we write XE = 0. Finally to go from the XE to the desired Xγ
one uses a dictionary decribed in [19] which maps the set of internal edges Ei to a basis

(γEi) of the charge lattice Γ.

In practice, to use this description for computing the classical monodromy, we will

need one more fact: we need to know how the coordinates XE change when we change the

triangulation. A flip of the edge E is the transformation from a triangulation T to another

triangulation T ′, where the edge E = E13 in T is replaced by E′ = E24 in T ′, as in figure 2.

Using the standard relations between cross-ratios one gets the transformation rules:

X T ′E′ =
1

X TE
, X T ′E12

= X TE12
(1 + X TE ),

X T ′E23
=
X TE23

X TE
1 + X TE

, X T ′E34
= X TE34

(1 + X TE ),

X T ′E41
=
X TE41

X TE
1 + X TE

.

(3.16)

In examples below, we will compute the classical monodromy as a composition of these flips.
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Figure 2. Action of a flip on the quadrilateral QE .

For (A1, D2N+1) Argyres-Douglas theories the story is very similar: the only difference

is that the Hitchin system is defined on CP1 with an irregular singularity at z =∞ plus a

regular singularity at z = 0. The construction of monodromy and coordinates Xγ is parallel

to what we wrote above, except that the WKB triangulations have one more “internal”

vertex, at the location of the regular singularity.

4 Line defects and their framed BPS states in class S[A1]

In this paper we use two different methods for describing the algebra of line defects in

Argyres-Douglas theories of type (A1, g) and computing their framed BPS spectra:

• In [49] it was proposed that generators of the ring of line defects and their framed

BPS spectra can be computed by methods of quiver quantum mechanics. The cal-

culation of framed BPS spectra is in parallel to the approach previously used for

ordinary BPS spectra. In simple cases this leads to an algorithm for determining

the spectrum, the “mutation method” as introduced in [12, 15, 53, 54]. This method

is easy to implement on a computer. We use it in section 5 below to compute line

defect generators and their generating functions in (A1, A2N ) Argyres-Douglas the-

ories. However, for the (A1, D2N+1) Argyres-Douglas theories which we consider in

section 5, the framed BPS spectrum in general contains higher spin states, which

defeat the mutation method.17

• Alternatively, we can use the class S[A1] realization of the (A1, A2N ) or (A1, D2N+1)

theories. In this realization, line defect generators are in 1-to-1 correspondence with

isotopy classes of simple laminations on the disc or punctured disc [15]. This leads

to an algorithm for computing the framed BPS indices, as described in [15]. For our

purposes in this paper, this algorithm is not quite sufficient: we also want to know

the spin content of the framed BPS spectra. In [55, 56] a method for computing such

BPS spectra in class S theories has been proposed, extending [15].18 What we use in

17In these cases the framed BPS spectra could in principle be obtained by studying the Hodge diamond

of the moduli space of stable framed quiver representations [49]. However, this is not as automated as the

“mutation method,” which prompts us to use an alternative method introduced below.
18The paper [55] treated the spin content for framed BPS spectra associated to certain interfaces between

surface defects; [56] gave the first complete prescription applicable directly to ordinary line defects.
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this paper is a slight extension of the method in [56] to treat the case of an irregular

singularity.

In section 4.1-section 4.2 we review the approach via mutations; in section 4.3-

section 4.5 we review the geometric methods of [15, 55–58]. These two methods will be

used for the examples in sections 5–6 below.

4.1 Line defect generators in N = 2 theories of quiver type

4d N = 2 theories of quiver type are N = 2 theories whose BPS spectra can be computed

via a four-supercharge multi-particle quantum mechanics system encoded in a quiver [53,

59–61]. In particular, Argyres-Douglas theories are examples of theories of quiver type,

as discussed e.g. in [12]. For 4d N = 2 theories of quiver type, there is a nice way of

constructing distinguished line defect generators via quiver mutation, developed in [49],

which we review in this section.

Fix a point of the Coulomb branch, and fix a half-plane inside the plane of central

charges:

hθ = {Z ∈ C | θ < arg(Z) < θ + π}, θ ∈ [0, 2π). (4.1)

Then the BPS one-particle representations in the theory can be divided into “particles”

and “antiparticles”: particles are those whose central charges lie in hθ, antiparticles are

the rest. For theories of quiver type there is a canonical positive integral basis {γi} for Γ,

such that the cone

C =

{
rank(Γ)∑
i=1

aiγi | ai ∈ R≥0

}
(4.2)

contains the charges of all BPS particles. We call such a basis a seed. The corresponding

quiver has one node for each basis charge γi, with the number of arrows from γi to γj given

by 〈γi, γj〉.
Correspondingly, in the half-plane hθ there is a cone Z(C) given by the central charge

function Z. The cone of particles is piecewise constant as one varies the parameter θ or

the point of the Coulomb branch, but jumps when one boundary ray Zγi of Z(C) hits the

boundary of hθ, i.e. when the central charge of a BPS particle with charge γi exits the

particle half-plane. At this point the quiver description also jumps discontinuously, by a

process of “mutation.” Depending on whether Zγi exits hθ on the right or on the left, the

mutation is denoted as right mutation µRi or left mutation µLi. The explicit transformation

of the basis charges is [49, 53]

µRi(γj) = −δijγj + (1− δij)(γj −Min[〈γi, γj〉, 0]γi), (4.3)

µLi(γj) = −δijγj + (1− δij)(γj + Max[〈γi, γj〉, 0]γi). (4.4)

Now let us see how the quiver technology is related to the spectrum of line defects in

the theory. Recall that at low energy a UV line defect L decomposes into a sum of IR

line defects, as in (3.2). Among these IR line defects, the one with the smallest Re(Zγ/ζ)

corresponds to the ground state of the UV line defect. The charge of this line defect is

called the core charge of the UV line defect. One could define a RG map which maps the
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UV line defect to its core charge γc. As discussed in [15, 49] the RG map is a bijection in

N = 2 theories of quiver type. This nice property allows one to identify the set of UV line

defects with the IR charge lattice Γ.

The RG map is piecewise constant and jumps at the locus where Re(Zγ/ζ) = 0 for

some γ, which is the same locus where quiver mutation happens. In particular when γ

itself is the charge of some BPS state the jump of γc is given by ([49]):

µRi(γc) = γc −Min[〈γi, γc〉, 0]γi, µLi(γc) = γc + Max[〈γi, γc〉, 0]γi. (4.5)

For a given seed {γi} and its associated particle cone C, there exists a dual cone Č
defined as:

Č =
{
γ̌ ∈ Γu ⊗Z R|〈γ̌, γ〉 ≥ 0 ∀γ ∈ C

}
. (4.6)

Using the inverse of the RG map we see that the integral points of Č correspond to a

distinguished set of UV line defects by the inverse of the RG map. Within this set, the

OPE relations turn out to be extremely simple. Indeed, if γi the core charge of a UV line

defect Li, and all γi ∈ Č, then we have simply [49]

L1L2 = q
〈γ1,γ2〉

2 L3, (4.7)

where γ3 = γ1 + γ2.

Now pick a point of the Coulomb branch and a particle half-plane hθ. This fixes an

initial seed s. In addition to the dual cone Čs, there are other dual cones Čµ(s), corresponding

to the seeds µ(s) mutated from s. In these other dual cones the line defect OPE also has

the nice form (4.7). To put everything in the same footing one can trivialize Γ using the

initial seed s, then mutate Čµ(s) back to s using (4.5). After so doing, one has a collection

of dual cones meeting along codimension-one faces in Zrank(Γ) ⊗Z R. In a general N = 2

theory, the dual cones obtained in this way cover only some subset of the charge lattice.

For Argyres-Douglas theories, however, there are only finitely many dual cones, and they

fill up the full charge lattice [49]. Thus the full set of UV line defects is generated by the

line defects whose core charges lie at the boundaries of the dual cones.

Concretely, in the (A1, A2N ) Argyres-Douglas theories, although the boundaries of dual

cones are in general codimension-1 hyperplanes, these hyperplanes intersect at half-lines,

such that line defects with core charges along those half-lines generate the whole space of

UV line defects. In these theories we thus obtain a unique and canonical choice of line

defect generators, which is very convenient for computational purposes. (In the (A1, A2)

theory we have already mentioned these generators in section 1.3.)

In contrast, in the (A1, D2N+1) Argyres-Douglas theories, due to the flavor symmetry,

the dual cone picture does not quite give a unique choice of UV line defect generators. In

these theories we will use the class S picture instead.

4.2 Framed BPS states from framed quivers

In N = 2 theories of quiver type, framed BPS spectra associated to line defects can

be computed using framed quivers [49].19 One extends the charge lattice Γ by an extra

19As emphasized in [49], this method does not in general produce the correct framed BPS spectrum, but

it does work for a large class of theories including Argyres-Douglas theories.
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direction spanned by a new “infinitely heavy” flavor charge γF , which has zero pairing with

all charges. The line defect with core charge γc is then regarded as a particle carrying the

charge γc + γF , and framed BPS states supported by the defect are similarly regarded as

particles with charges of the form

γc + γF + γh, where γh =

rank(Γ)∑
i=1

aiγi, ai ∈ Z≥0. (4.8)

One then defines a new “framed quiver,” obtained by adding to the original quiver a new

framing node representing the bare line defect and corresponding arrows. The framed BPS

states are given by the unframed BPS states of the framed quiver whose charges are of the

form (4.8).

BPS states in quiver quantum mechanics can be conveniently computed by the “mu-

tation method” as introduced in [12, 15, 53, 54]. Concretely, we first fix a point in the

Coulomb branch and a choice of half-plane hθ, then rotate hθ counterclockwise20 until θ

has increased by π. In this process the original seed undergoes a series of right mutations

µRi, and for each mutation the node γi that exits to the right of hθ corresponds to a BPS

particle. Conversely each BPS particle will be rightmost at some stage of the rotation, so

the γi obtained in this way exhaust all BPS particles in this chamber. In [53] this method

was applied to the ordinary BPS quiver to compute the ordinary (vanilla, unframed) BPS

spectrum; here instead we apply it to the framed quiver constructed above, to get the

framed BPS spectrum.

4.3 Line defects in class S[A1] theories

In class S[A1] theories there is a natural geometric picture of the 1
2 -BPS line defects: they

correspond to paths (up to homotopy) on the internal Riemann surface C [15, 47, 48, 62].

For class S[A1] theories with irregular punctures, one has to consider not only closed paths

but also certain combinations of open paths, called laminations in [15] (following [63] where

the same combinations of open paths were considered.)

The laminations we consider are drawn on a disc, which we think of as the complex

plane compactified by adding the “circle at infinity.” The boundary circle is divided into

arcs by marked points corresponding to the Stokes directions (see [15] for more on this.)

Then a lamination is a collection of paths on the disc, carrying integer weights, subject

to some conditions [15, 63]: the sum of weights meeting each boundary arc must be zero,

and all paths with negative weights must be deformable into a small neighborhood of

the boundary.

4.4 Framed BPS indices in class S[A1] theories, without spin

In [15], a scheme is presented for computing the framed BPS indices associated to a given

line defect in a theory of class S[A1], without spin information. In this scheme one needs

two pieces of data:

20The choice of counterclockwise vs. clockwise is just a convention.
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Figure 3. An example of a WKB triangulation of the once-punctured triangle and a lamination,

corresponding to the line defect B2 in the (A1, D3) Argyres-Douglas theory.

• the lamination representing the line defect,

• the WKB triangulation determined by the chosen point of the Coulomb branch and

phase of the line defect.

It is easiest to illustrate this rule by an example. So, consider the triangulation of the

once-punctured triangle and the lamination shown in figure 3. (This example arises in the

(A1, D3) theory considered in section 6.1 below: it corresponds to the line defect called

B2 there.)

We fix an orientation of each component of the lamination. Then we divide each

component of the lamination into arcs crossing triangles. To each arc we assign the matrix

L (R) if the arc turns left (right),21

L =

(
1 0

1 1

)
, R =

(
1 1

0 1

)
. (4.9)

When the lamination crosses an internal edge Ei we assign the matrix

ME =

(√
XE 0

0 1/
√
XE

)
. (4.10)

To the initial and final points of each component we assign the vectors

ER =
(

0 1
)
, EL =

(
1 0
)
, BR =

(
1

0

)
, BL =

(
0

1

)
, (4.11)

choosing L or R according to whether the endpoint is on the left or the right of the marked

point of the boundary edge. Then we multiply these matrices in order, with the beginning

21The matrices we present here are the transpose of the matrices in [15], and correspondingly we take

the products in the reverse of the order taken in [15]; this corresponds to the usual order of composition of

parallel transports, and makes the construction directly compatible with [58], which will be useful below.
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of the path corresponding to the rightmost matrix, to get a number for each component. If

the component has weight k we raise this number to the k-th power. Finally we multiply

the contributions from all components to get the vev.

In the example of figure 3 above, the contribution from the left long component with

weight +1 is

ERLME2LME3RME1LME2LB
R =

1√
X1X3

+
1√

X1X3X2
+ 2

√
X3√
X1

+
√
X1X3 +

√
X3√
X1X2

+
X2

√
X3√
X1

+ X2

√
X1X3. (4.12)

Similarly, the contribution from the right long component with weight +1 is
√
X3/X1.

The short components with weight −1 contribute 1. The total contribution from this

lamination is
1

X1
+

1

X1X2
+ X3 + 2

X3

X1
+
X3

X1X2
+ X2X3 +

X2X3

X1
. (4.13)

Thus (4.13) gives the generating function of framed BPS states associated to this line

defect, without spin information.

4.5 Framed BPS indices in class S[A1] theories, with spin

We continue with our example from section 4.4. Incorporating the spin information requires

us to take each term in (4.13) and assign it the correct power of q. The work of [55, 56]

provides a rule for determining these powers. The first step is to associate the terms

in (4.13) to arcs on a branched double cover Σ of the disc22 following the “path lifting”

rules of [58], as follows.

The double cover Σ is presented concretely: in each triangle we fix one branch point

and three branch cuts, as in the left side of figure 4; the double cover has sheets labeled

1 and 2, and at each cut sheet 1 is glued to sheet 2 and vice versa. Next, note that each

term in (4.13) comes from products of two specific chains of matrix elements: e.g. the term
1
X1

comes from product of two contributions. As an example, the first contribution comes

from taking the (2, 2) entries of the matrices from the beginning to the second-to-last L,

then taking the (2, 1) entry of that L, then the (1, 1) entries of all the rest. Each of these

matrix elements corresponds to an arc on the double cover, which we regard as a “lift” of

the corresponding arc of the lamination. In figure 4 we show three arcs corresponding to

the three nonzero matrix elements of each of L and R; the arc for the (i, j) matrix element

begins on sheet j and ends on sheet i.

Concatenating these arcs gives a long path P on Σ, associated to the term in (4.13)

which we are studying. If P has no self-intersections then we assign this term the factor

q0. If there are self-intersections then each contributes a factor q
1
2 or q−

1
2 , according to

figure 6, where the arc which appears later in the path is drawn higher.

To illustrate how this works, we consider the term

2
X3

X1
(4.14)

22The double cover Σ is the Seiberg-Witten curve of the N = 2 theory at a point of its Coulomb branch,

or the corresponding spectral curve of the Hitchin system.
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Figure 4. Left: a triangle with branch point and branch cuts marked. Middle: lifted left-turn

paths. Right: lifted right-turn paths.

in (4.13). The factor 2 here means (4.14) is a sum of two contributions, associated to two

different lifted paths: we show one of them in figure 5. There is one crossing in figure 5,

where both strands are lifted to sheet 1.23 Comparing this crossing to figure 6, we see that

this term should be weighted by q
1
2 . Drawing a similar picture for the other contribution

to (4.14) we see that it gets weighted by q−
1
2 . Thus altogether (4.14) is replaced by

(q
1
2 + q−

1
2 )
X3

X1
, (4.15)

which tells us that the 2 framed BPS states with charge γ3 − γ1 come in a 2-dimensional

multiplet of the rotation group SO(3). Carrying out similar computations for the other

terms one finds (as expected) that all of them come with the factor q0, i.e. they are in the

trivial representation of SO(3). Thus altogether the q-deformed version of the generating

function (4.13) turns out to be

1

X1
+

1

X1X2
+ X3 + (q

1
2 + q−

1
2 )
X3

X1
+
X3

X1X2
+ X2X3 +

X2X3

X1
. (4.16)

This is exactly the generating function for the line defect generator B2 in section 6.1 below.

5 (A1, A2N) Argyres-Douglas theories

In this section we present the results of explicit computations verifying the commutativ-

ity (1.16) in the Argyres-Douglas theories of type (A1, A2), (A1, A4) and (A1, A6).

5.1 (A1, A2) Argyres-Douglas theory

We consider (A1, A2) Argyres-Douglas theory and choose the chamber24 represented by

the BPS quiver in figure 7 containing two BPS particles: (in increasing central charge

phase order)

γ1, γ2. (5.1)

23The projection of the path to the base has two crossings, but at one of these crossings the two strands

are lifted to different sheets, so it is not a crossing for the lifted path.
24In all the examples considered in this paper, to simplify computation, we always work in a chamber for

which the number of number of BPS particles is the minimum possible — with one exception in the case

of (A1, A6) as noted below.
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Figure 5. One of the lifted paths contributing to the term (4.14).

Figure 6. Rules for assigning powers of q to self-crossings of the lifted path.

Figure 7. A BPS quiver for (A1, A2) Argyres-Douglas theory.

There are five non-identity line defect generators. Assuming the line defect phase is smaller

than the phases of all BPS particles, the generating functions are [15, 49]:

F (L1) = Xγ1 ,

F (L2) = Xγ2 +Xγ1+γ2 ,

F (L3) = X−γ1 +X−γ1+γ2 +Xγ2 ,

F (L4) = X−γ1−γ2 +X−γ1 ,

F (L5) = X−γ2 .

(5.2)

In the geometric picture these generators Li correspond to five laminations which are

rotated into each other under the monodromy action. As a result their generating functions

are related to each other by the action of powers of the monodromy operator.

The Schur index with Li inserted is computed via [2]:

ILi(q) = (q)2
∞Tr[F (Li)S(q)S(q)], S(q) = Eq(Xγ1)Eq(Xγ2). (5.3)
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The corresponding 2d chiral algebra is the (2, 5) minimal model [3, 5, 7], which has two

primaries: the vacuum Φ1,1 and Φ1,2 with weight −1/5. In general, characters of Φs,r in

the (p, p′) minimal model (1 ≤ s ≤ p− 1, 1 ≤ r ≤ p′ − 1) are given by [17]:

χs,r(q) = q
− (rp−sp′)2−(p−p′)2

4pp′ + 1
24

(1− 6(p−p′)2
pp′ )

(
Kp,p′
s,r (q)−Kp,p′

−s,r(q)

)
,

Kp,p′
s,r (q) =

1

q
1
24 (q)∞

∑
n∈Z

q
(2pp′n+pr−p′s)2

4pp′ .
(5.4)

The line defect Schur index ILi(q) does not depend on the index i and admits the

following character expansion [2]:

IL(q) = q−
1
2
(
χ1,1(q)− χ1,2(q)

)
. (5.5)

Similarly, the Schur index with two Li inserted is given by [2]:

ILiLj (q) = (q)2
∞Tr[F (Li)F (Lj)S(q)S(q)]. (5.6)

Unlike ILi(q), ILiLj (q) does depend on i and j, though this dependence disappears in the

limit q → 1. Expansions of ILiLj (q) in terms of characters are given as follows:

ILiLi(q) = ILiLi−1(q) = (q−1 + q−2)χ1,1(q)− q−2χ1,2(q),

ILiLi+1(q) = ILiLi−2(q) = (1 + q−1)χ1,1(q)− q−1χ1,2(q),

ILiLi+2(q) = 2χ1,1(q)− χ1,2(q).

(5.7)

The map f is given by

I
f−→ [Φ1,1], Li

f−→ [L] := [Φ1,1]− [Φ1,2]. (5.8)

Moreover,

LiLj
f−→ [LL] := 2[Φ1,1]− [Φ1,2]. (5.9)

Recall that the non-trivial fusion rule in (2, 5) minimal model is given by

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,2]. (5.10)

Combining with (5.8) and (5.9) we have

[LL] = [L]× [L], (5.11)

as first observed in [2].

Next we consider the fixed points of U(1)r. For this purpose we found it convenient to

use the geometric picture as described in section 3.3. The classical monodromy action M is

directly given by a single flip: see figure 8. According to (3.16) the concrete transformation

is given by

Xγ1 →
1

Xγ2
, Xγ2 →

Xγ1Xγ2
1 + Xγ2

. (5.12)
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Figure 8. The classical monodromy action in the (A1, A2) theory, which rotates the triangulation

of the pentagon clockwise by 2 units, is equivalent to a single flip which replaces the 35 edge by a

14 edge.

Thus the fixed locus is

X 2
γ1 −Xγ1 − 1 = 0, Xγ2 =

1

Xγ1
. (5.13)

This locus consists of two points, which we label I, II. At these points the Xγ evaluate to:

I : (Xγ1 ,Xγ2) =

(
1−
√

5

2
,−1 +

√
5

2

)
, II : (Xγ1 ,Xγ2) =

(
1 +
√

5

2
,−1−

√
5

2

)
. (5.14)

To construct the map g : L → O(F ), for any line defect generator Li we evaluate F (Li) at

these two fixed points, using (5.2). As expected, the dependence on Li disappears in the

process:

Li
g−→ (F I

Li , F
II
Li) =

(
1−
√

5

2
,

1 +
√

5

2

)
. (5.15)

Of course we also have the trivial line defect, whose vev is 1 at every fixed point:

1
g−→ (1, 1). (5.16)

Finally, we follow the recipe described in sections 1.4, 1.5 to construct the isomorphism

h : V → O(F ). We need the fusion matrices, which are given by25

NΦ1,1 =

(
1 0

0 1

)
, NΦ1,2 =

(
0 1

1 1

)
. (5.17)

The modular S-matrix is [17]:

S =
2√
5

(
− sin 2π

5 sin 4π
5

sin 4π
5 sin 2π

5

)
. (5.18)

Thus the fusion matrices are diagonalized by the S matrix,

N̂Φ1,1 = SNΦ1,1S
−1 =

(
1 0

0 1

)
, N̂Φ1,2 = SNΦ1,2S

−1 =

(
1−
√

5
2 0

0 1+
√

5
2

)
. (5.19)

25Our convention is to order the primaries as (Φ1,1,Φ1,2).
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As we explained in sections 1.4–1.5, the map h takes each of Φ1,1 and Φ1,2 to its eigenvalues.

So, it takes h(Φ1,1) = (1, 1) and either h(Φ1,2) = (1−
√

5
2 , 1+

√
5

2 ) or h(Φ1,2) = (1+
√

5
2 , 1−

√
5

2 ).

To decide which is the right ordering, we need to know the dictionary between U(1)r fixed

points and eigenspaces of the fusion operators. These eigenspaces themselves correspond

to primary fields, so equivalently, we need the dictionary between the fixed points I, II and

the primary fields Φ1,1, Φ1,2. This dictionary is determined by the table below:

fixed point weights of M weights of U(1)r primary field

I e2πi(3/5), e2πi(2/5) 3
5 ,

2
5 Φ1,2

II e2πi(6/5), e−2πi(1/5) 6
5 ,−

1
5 Φ1,1

In this table, to determine the weights of M at each fixed point, we computed directly the

linearization of the classical monodromy (5.12). On the other side, the dictionary between

primary fields and U(1) weights is taken from [25]. At any rate, we can now read off that

Φ1,1 corresponds to fixed point II and Φ1,2 corresponds to fixed point I. Combining this

with (5.19), h is given by:

[Φ1,1]
h−→ (1, 1), [Φ1,2]

h−→
(

1 +
√

5

2
,

1−
√

5

2

)
. (5.20)

Composing this with f from (5.8) we have

Li
h◦f−−→

(
1−
√

5

2
,

1 +
√

5

2

)
. (5.21)

Comparing this with (5.15) we see that the diagram indeed commutes.

5.2 An intermission on the homomorphism property

To make sure f is a homomorphism, (5.11) needs to hold not only for the generators Li
but also for arbitrary line defects. This would involve checking e.g.

[LLL]
?
= [L]× [L]× [L] (5.22)

and similar relations for higher number of line defect generators.26 As an example let us

consider the case of three line defect generators. The line defect Schur index is given by

ILiLjLk(q) = (q)2
∞Tr[F (Li)F (Lj)F (Lk)S(q)S(q)]. (5.23)

There are many relations between ILiLjLk ,

ILi−1LiLi+2 = ILi−1LiLi+1 = ILi−2LiLi+1 ,

ILiLiLi+2 = ILi−2LiLi+2 = ILi−2LiLi ,

ILi+2LiLi+1 = ILiLiLi+1 = ILi+2LiLi = ILi−1LiLi = ILiLiLi−2 = ILi−1LiLi−2 ,

ILi+1LiLi = ILiLiLi = ILiLiLi−1 = q−2ILi−1LiLi−2 ,

ILi+1LiLi+1 = ILi−1LiLi−1 = ILi+1LiLi−1 = q−1ILi−1LiLi−2 ,

ILi+2LiLi+2 = ILi+1LiLi+2 = ILi+2LiLi−1 = ILi−2LiLi−1 = ILi+1LiLi−2 = ILi−2LiLi−2 .

26We would like to comment that the product of F (L) is associative (due to associativity of the quantum

torus algebra of Xγ) and so is the fusion product.
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The independent indices admit the following character expansions,

ILi−2LiLi+1 = q−
1
2
(
(1 + 2q)χ1,1(q)− (1 + q)χ1,2(q)

)
,

ILi−2LiLi = q−
1
2
(
(2 + q)χ1,1(q)− 2χ1,2(q)

)
,

ILi−1LiLi−2 = q−
1
2
(
(1 + q−1 + q−2)χ1,1(q)− (1 + q−2)χ1,2(q)

)
,

ILi+2LiLi−2 = q−
1
2
(
3χ1,1(q)− 2χ1,2(q)

)
,

ILi−2LiLi−2 = q−
1
2
(
(2 + q−1)χ1,1(q)− (1 + q−1)χ1,2(q)

)
.

We immediately see that

LiLjLk
f−→ [LLL] := 3[Φ1,1]− 2[Φ1,2] = [L]× [L]× [L]. (5.24)

In principal, to prove that f is a homomorphism we need to repeat the above calculation

for arbitrary number of line defect generator insertions. We are not able to prove it in this

paper. Instead we offer some arguments about why we believe f is indeed a homomorphism.

We have seen explicitly that the images of LiLj and LiLjLk under f does not depend on

the index i. In other examples that we consider in this paper we also checked the image

of LρiLµj
27 does not depend on i. Although we don’t have a proof for now, we conjecture

this phenomenon is general, i.e. the image of Lρ1i1Lρ2i2 . . . Lρnin under f does not depend

on i1, . . . , in. Combining this conjecture with relations between line defect generating

functions one could see that f is indeed a homomorphism.

We revisit the situation of three line defect generators. To compute the image of

LiLjLk under f we could pick any three line defect generators. Let’s recall the following

relation between F (Li) [15, 49]:

F (Li)F (Li+2) = 1 + q
1
2F (Li+1), (5.25)

from which follows [L] × [L] = [Φ1,1] + [L].28 Schur index with insertion of Li, Li+2, Lk is

then given by

ILiLi+2Lk(q) = ILk(q) + q
1
2ILi+1Lk(q), (5.26)

from which it follows that

[LLL] = [L] + [LL] = [L]× [L]× [L]. (5.27)

Similarly one could consider insertion of more line defect generators. By the conjecture,

to compute the image of Li1 . . . Lin under f , it doesn’t matter what i1, . . . , in are. Then

we could again use (5.25) to reduce the number of line defect generators. Moreover this

process is consistent with the fusion rules such that

[L . . . L] = [L]× · · · × [L]. (5.28)

For other Argyres-Douglas theories that we are considering in this paper, there are al-

ways enough relations between F (Lαi) such that the same argument goes through provided

our conjecture would hold.

27Here ρ, µ label different types of line defect generators, see section 5.3, 5.4, 6.1, 6.2.
28As discussed in section 1.9, in (A1, A2N ) theories the line defect generators themselves correspond to a

basis which also realizes fusion rules.
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Figure 9. A BPS quiver for (A1, A4) Argyres-Douglas theory.

5.3 (A1, A4) Argyres-Douglas theory

We consider the (A1, A4) Argyres-Douglas theory. We choose a chamber represented by the

BPS quiver shown in figure 9. Moreover our choice is made such that there are four BPS

particles in this chamber. Their charges are (in increasing central charge phase order):

γ1, γ3, γ2, γ4 (5.29)

Line defect generators in (A1, A4) Argyres-Douglas theory and their generating func-

tions were computed in [2]. For completeness we reproduce their results here. Starting

from the initial seed, we apply all possible left mutations to generate other seeds. There

are in total 42 seeds. Correspondingly there are 42 dual cones. Each dual cone is bounded

by four half-hyperplanes. Moreover, every three out of the four half-hyperplanes intersect

at a half line. In total there are four such half-lines for each dual cone and they form edges

of the dual cone. Each edge corresponds to the core charge of one line defect generator.

For example, the dual cone for the initial seed is given by:

Č{γ1,γ2,γ3,γ4} =

{
4∑
i=1

aiγi | a2 ≤ 0, a1 + a3 ≥ 0, a2 + a4 ≤ 0, a3 ≥ 0

}
. (5.30)

Then we get four line defect generators whose core charges are given by

γ1,−γ1 + γ3,−γ2 + γ4,−γ4. (5.31)

Repeating this procedure for all 42 dual cones we get 14 edges. Thus the line defects in

(A1, A4) Argyres-Douglas theory are generated by the identity operator and 14 nontrivial

generators. Recall that the (2, 7) minimal model has two non-vacuum modules; therefore

we have an expected multiplicity of 7. In the class S realization of the theory this would

correspond to the Z7 symmetry of the 7-gon.

We assume that the line defect phase is smaller than the phases of all vanilla BPS

particles, and calculate the generating function using consecutive right mutations on the

framed quiver. For example, the line defect generator with core charge γc = γ1 − γ3 goes

through the following mutation sequence:

{γ1, γ2, γ3, γ4, γc}
µRγc−−→ {γ1, γ2, γ3, γ4 + γc,−γc}

µRγ4+γc−−−−→

{γ1, γ2, γ3 + γ4 + γc,−γ4 − γc, γ4}
µRγ3+γ4+γc−−−−−−→ {γ1, γ2,−γ3 − γ4 − γc, γ3, γ4},

(5.32)

which implies that its generating function is

F (L) = Xγ1−γ3 +Xγ1−γ3+γ4 +Xγ1+γ4 .
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The generating functions for all 14 line defect generators are (as given also in [2]):

F (A1) = X−γ2+γ4 ,

F (A2) = X−γ1+γ3 ,

F (A3) = Xγ2−γ4 +Xγ1+γ2−γ4 ,

F (A4) = Xγ1−γ3−γ4 +Xγ1−γ3 ,

F (A5) = X−γ1−γ4 +X−γ1+γ2−γ4 +Xγ2−γ4 ,

F (A6) = X−γ1−γ2+γ4 +X−γ1+γ4 +X−γ1+γ3+γ4 ,

F (A7) = Xγ1−γ3 +Xγ1−γ3+γ4 +Xγ1+γ4 ,

F (B1) = Xγ1 ,

F (B2) = X−γ4 ,

F (B3) = X−γ1−γ2 +X−γ1 ,

F (B4) = Xγ4 +Xγ3+γ4 ,

F (B5) = X−γ1 +X−γ1+γ2 +Xγ2 +X−γ1+γ2+γ3 +Xγ2+γ3 ,

F (B6) = X−γ2−γ3 +X−γ3 +X−γ2−γ3+γ4 +X−γ3+γ4 +Xγ4 ,

F (B7) = X−γ3−γ4 +Xγ2−γ3−γ4 +Xγ1+γ2−γ3−γ4 +X−γ3 +Xγ2−γ3 +Xγ1+γ2−γ3

+Xγ2 +Xγ1+γ2 .

The generating functions for Ai (Bi) are related to each other by the action of powers of

the monodromy operator. The Schur index with line defect Ai (Bi) inserted is computed

using [2]

IAi(q) = (q)4
∞Tr[F (Ai)S(q)S(q)], IBi(q) = (q)4

∞Tr[F (Bi)S(q)S(q)] (5.33)

where in this particular chamber S(q) is given by

S(q) = Eq(Xγ1)Eq(Xγ3)Eq(Xγ2)Eq(Xγ4). (5.34)

As described in [2], the Schur index with one line defect inserted does not depend on

i ∈ {1, . . . , 7}:

IA(q) = q + q4 + q5 + q6 + 2q7 + 2q8 + 3q9 + 3q10 + · · · ,

IB(q) = −q
1
2 − q

5
2 − q

7
2 − q

9
2 − 2q

11
2 − 3q

13
2 − 3q

15
2 − 4q

17
2 − 5q

19
2 + · · · .

(5.35)

The chiral algebra in this case is the (2, 7) Virasoro minimal model [3, 5, 7]. There are

three primary fields: the vacuum Φ1,1, Φ1,2 with weight −2/7 and Φ1,3 with weight −3/7.

Line defect Schur indices admit the following expansions in terms of characters:

IA(q) = q−1
(
χ1,3(q)− χ1,2(q)

)
,

IB(q) = q−
1
2
(
χ1,1(q)− χ1,2(q)

)
.

(5.36)

The map f between the line defect algebra L and the Verlinde algebra V is then given by:

I
f−→ [Φ1,1],

Ai
f−→ [A] = [Φ1,3]− [Φ1,2],

Bi
f−→ [B] = [Φ1,1]− [Φ1,2].

(5.37)
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Figure 10. The classical monodromy action in the (A1, A4) theory is realized by a sequence of

flips of triangulations of the 7-gon. The initial triangulation differs from the final one by a clockwise

rotation by 2 units.

The non-trivial fusion rules in the (2, 7) Virasoro minimal model are:

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,3],

[Φ1,3]× [Φ1,3] = [Φ1,1] + [Φ1,2] + [Φ1,3],

[Φ1,2]× [Φ1,3] = [Φ1,2] + [Φ1,3].

(5.38)

As first checked in [2],

[AA] = [A]× [A],

[BB] = [B]× [B],

[AB] = [A]× [B],

(5.39)

which gives evidence f is indeed a homomorphism L → V .

Now we turn to study the fixed points under the classical monodromy action M . By

doing a series of flips (see figure 10, the initial zigzag triangulation corresponds to the BPS

quiver in figure 9 using the dictionary in [19]. The monodromy action is given as follows:

Xγ1 →
1 + Xγ2 + Xγ4 + Xγ2Xγ4 + Xγ2Xγ3Xγ4

Xγ2Xγ3
,

Xγ2 →
Xγ1Xγ2Xγ3

(1 + Xγ2 + Xγ2Xγ3)[1 + Xγ4 + Xγ2(1 + Xγ1)(1 + Xγ4 + Xγ3Xγ4)]
,

Xγ3 →
(1 + Xγ2 + Xγ1Xγ2)[1 + Xγ4 + Xγ2(1 + Xγ4 + Xγ3Xγ4)]

Xγ1Xγ2Xγ3Xγ4
,

Xγ4 →
Xγ3Xγ4

1 + Xγ4 + Xγ2(1 + Xγ1)(1 + Xγ4 + Xγ3Xγ4)
.

(5.40)

There are exactly three fixed points, which we label I, II, III. On the fixed points Xγ
evaluate to

Xγ4 : (α1, α2, α3),

Xγ3 : (4 + α1 − 2α2
1, 4 + α2 − 2α2

2, 4 + α3 − 2α2
3),

Xγ2 : (α1 − α2
1, α2 − α2

2, α3 − α2
3),

Xγ1 : (2 + α1 − α2
1, 2 + α2 − α2

2, 2 + α3 − α2
3),

(5.41)
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where αi are the three roots of the cubic equation

α3 − α2 − 2α+ 1 = 0. (5.42)

Concretely,

α1 =
1

3

(
1− 7

a
(−1)1/3 + a(−1)2/3

)
, α2 =

1

3

(
1 +

7

a
(−1)2/3 − a(−1)1/3

)
,

α3 =
1

3

(
1 +

7

a
+ a

)
, with a =

(
7

2

) 1
3 (
− 1 + i3

√
3
) 1

3 .

Evaluating the F (Ai) at the fixed points we find that the values are independent of i =

1, . . . , 7, and similarly for F (Bi), as expected. Concretely, we get

Ai
g−→
(

1

1− α1
,

1

1− α2
,

1

1− α3

)
,

Bi
g−→
(

1

α1
,

1

α2
,

1

α3

)
.

(5.43)

Finally we want to construct h. We have the following Verlinde matrices for [Φ1,2]

and [Φ1,3]:

NΦ1,2 =

0 1 0

1 0 1

0 1 1

 , NΦ1,3 =

0 0 1

0 1 1

1 1 1

 . (5.44)

As before, we obtain h by simultaneously diagonalizing NΦ1,2 and NΦ1,3 using S-matrix

and then comparing with the correspondence between U(1) fixed points and primaries of

(2, 7) Virasoro minimal model. The S-matrix for the (2,7) minimal models is [17]:

S =
2√
7


cos3π

14 −cos π14 sinπ7

−cos π14 −sinπ7 cos3π
14

sinπ7 cos3π
14 cos π14

 . (5.45)

NΦ1,2 and NΦ1,3 are simultaneously diagonalized by S:

SNΦ1,2S
−1 =

α1 0 0

0 α2 0

0 0 α3

 , SNΦ1,3S
−1 =

β1 0 0

0 β2 0

0 0 β3

 , (5.46)

where

β1 =
1

3

(
2 +

7

b
(−1)2/3 − b(−1)1/3

)
, β2 =

1

3

(
2− 7

b
(−1)1/3 + b(−1)2/3

)
β3 =

1

3

(
2 +

7

b
+ b

)
, with b =

(
7

2

) 1
3 (

1 + i3
√

3
) 1

3 .

– 34 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
5

Figure 11. A BPS quiver for (A1, A6) Argyres-Douglas theory.

According to [23, 25], the corresponding wild Hitchin moduli space has exactly three

U(1)r-fixed points, each of which corresponds to a primary field in the (2, 7) minimal model:

fixed point weights of M U(1)r weights primary field

I e2πi(3/7), e2πi(4/7), e2πi(5/7), e2πi(2/7) 3
7 ,

4
7 ,

5
7 ,

2
7 Φ1,3

II e2πi(8/7), e−2πi(1/7), e2πi(10/7), e−2πi(3/7) 8
7 ,−

1
7 ,

10
7 ,−

3
7 Φ1,1

III e2πi(8/7), e−2πi(1/7), e2πi(5/7), e2πi(2/7) 8
7 ,−

1
7 ,

5
7 ,

2
7 Φ1,2

Using this table and (5.46), the isomorphism h between V and O(F ) is:

[Φ1,1]
h−→ (1, 1, 1),

[Φ1,2]
h−→ (α3, α1, α2),

[Φ1,3]
h−→ (β3, β1, β2).

(5.47)

The image of Ai and Bi under h ◦ f is then:

Ai
h◦f−−→ (β3 − α3, β1 − α1, β2 − α2),

Bi
h◦f−−→ (1− α3, 1− α1, 1− α2).

(5.48)

Although it is not obvious, one can check that this indeed agrees with (5.43), so the diagram

commutes, as desired.

5.4 (A1, A6) Argyres-Douglas theory

Here we consider the (A1, A6) Argyres-Douglas theory. This theory has a new feature: at

one of the fixed points (fixed point I below), some of the cluster coordinates Xγ associated to

the canonical chamber blow up. This being so, computing the fixed points of the classical

monodromy in that chamber actually misses one fixed point. Thus, with the benefit of

hindsight, we choose a different chamber, whose BPS quiver is shown in figure 11.

There are eight BPS particles in this chamber, with the following charges (in increasing

central charge phase order):

γ4, γ6, γ4 + γ5, γ5, γ3, γ1 + γ3, γ2, γ1. (5.49)

Quiver mutation starting from this chamber generates in total 429 seeds. After mutat-

ing back to the original seed the 429 dual cones span the whole charge lattice. Each dual
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cone is bounded by six half-hyperplanes. Every five of the six half-hyperplanes intersect

at a half line which forms an edge of the dual cone and there are six edges for each dual

cone. For example, the six edges of the dual cone for the initial seed Č{γ1,γ2,γ3,γ4,γ5,γ6} are

spanned by:

γ2 + γ4 + γ5 + γ6,−γ1 + γ4 + γ5 + γ6, γ4 + γ5 + γ6,

− γ1 − γ2 − γ3,−γ1 − γ2 − γ3 + γ6,−γ1 − γ2 − γ3 − γ5.
(5.50)

Repeating this for all 429 dual cones we get in total 27 edges. Correspondingly there are 27

nontrivial line defect generators in the (A1, A6) theory. The (2, 9) minimal model has three

non-vacuum modules, so there is a multiplicity of 9, corresponding to the Z9 symmetry of

the 9-gon. Assuming that the line defect phase is smaller than central charge phases of all

vanilla BPS particles, their generating functions are:

F (A1) = Xγ1+γ2+γ3−γ6 +Xγ1+γ2+γ3+γ5−γ6 +Xγ1+γ2+γ3+γ5 ,

F (A2) = X−γ2−γ4−γ5−γ6 +Xγ1−γ2−γ4−γ5−γ6 +Xγ1−γ4−γ5−γ6 ,

F (A3) = X−γ1−γ2−γ3−γ5 ,

F (A4) = Xγ2+γ4+γ5+γ6 ,

F (A5) = X−γ1−γ2−γ3+γ6 ,

F (A6) = Xγ1+γ2+γ3+γ5 +Xγ1+γ2+γ3+γ5+γ6 +Xγ1+γ2+γ3+γ4+γ5+γ6 ,

F (A7) = Xγ1−γ4−γ5−γ6 +Xγ1+γ2−γ4−γ5−γ6 +Xγ1+γ2+γ3−γ4−γ5−γ6

+Xγ1+γ2+γ3−γ5−γ6 +Xγ1+γ2+γ3−γ6 ,

F (A8) = X−γ1−γ2−γ3−γ4−γ5−γ6 +X−γ1−γ2−γ4−γ5−γ6 +X−γ2−γ4−γ5−γ6 ,

F (A9) = X−γ1+γ4+γ5+γ6 ,

F (B1) = X−γ5−γ6 +X−γ6 ,

F (B2) = Xγ1 +Xγ1+γ2 ,

F (B3) = Xγ5 +Xγ5+γ6 ,

F (B4) = X−γ1−γ2 +X−γ2 ,

F (B5) = Xγ6 +Xγ4+γ6 ,

F (B6) = X−γ1−γ3 +X−γ1 ,

F (B7) = X−γ2−γ3−γ4−γ5 +X−γ3−γ4−γ5 +X−γ4−γ5 +X−γ5 ,

F (B8) = X−γ4−γ6 +X−γ4 +Xγ3−γ4−γ6 +Xγ3−γ4 +Xγ3 +Xγ1+γ3−γ4−γ6

+Xγ1+γ3−γ4 +Xγ1+γ3 ,

F (B9) = Xγ2 +Xγ2+γ3 +Xγ2+γ3+γ4 +Xγ2+γ3+γ4+γ5 ,

F (C1) = X−γ1−γ2−γ3 ,

F (C2) = Xγ4+γ5+γ6 ,

F (C3) = Xγ1+γ2+γ3 +Xγ1+γ2+γ3+γ4 +Xγ1+γ2+γ3+γ4+γ5 ,
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F (C4) = X−γ2−γ3−γ4−γ5−γ6 +X−γ3−γ4−γ5−γ6 +X−γ4−γ5−γ6 ,

F (C5) = Xγ1−γ4−γ6 +Xγ1−γ4 +Xγ1+γ2−γ4−γ6 +Xγ1+γ2−γ4 +Xγ1+γ2+γ3−γ4−γ6

+Xγ1+γ2+γ3−γ4 +Xγ1+γ2+γ3 ,

F (C6) = X−γ4−γ5−γ6 +Xγ3−γ4−γ5−γ6 +Xγ3−γ5−γ6 +Xγ3−γ6 +Xγ1+γ3−γ4−γ5−γ6

+Xγ1+γ3−γ5−γ6 +Xγ1+γ3−γ6 ,

F (C7) = X−γ1−γ2−γ3−γ4−γ5 +X−γ1−γ2−γ4−γ5 +X−γ1−γ2−γ5 +X−γ2−γ4−γ5 +X−γ2−γ5 ,

F (C8) = Xγ2+γ5 +Xγ2+γ5+γ6 +Xγ2+γ3+γ5 +Xγ2+γ3+γ5+γ6 +Xγ2+γ3+γ4+γ5+γ6 ,

F (C9) = X−γ1−γ3+γ6 +X−γ1+γ6 +X−γ1+γ4+γ6 .

In this chosen chamber the spectrum generator S(q) is given by

S(q) = Eq(Xγ4)Eq(Xγ6)Eq(Xγ4+γ5)Eq(Xγ5)Eq(Xγ3)Eq(Xγ1+γ3)Eq(Xγ2)Eq(Xγ1)

=

∞∑
l1,··· ,l8=0

(−1)
∑8
i=1 liq

A
2

(q)l1 . . . (q)l8
X(l1+l7)γ1+l2γ2+(l3+l7)γ3+(l4+l8)γ4+(l5+l8)γ5+l6γ6 ,

where

A =

8∑
i=1

li− l1(l7− l2 + l3)+ l3(l2 + l4 + l8− l7)− l4(l8 + l5− l6− l7)+ l8(l7− l5)+ l5l6. (5.51)

For sufficiently large enough N the truncated SN (q) stabilizes to

SN (q) = 1−
6∑
i=1

Xγiq
1
2 + (X2γ1 +X2γ2 +X2γ3 +Xγ1+γ2+γ3 +X2γ4 +Xγ1+γ4

+Xγ2+γ4 +X2γ5 +Xγ1+γ5 +Xγ2+γ5 +Xγ3+γ5 +X2γ6

+Xγ1+γ6 +Xγ2+γ6 +Xγ3+γ6 +Xγ4+γ5+γ6)q + . . .

The Schur index with line defect L (L = Ai, Bi, Ci) inserted is given by

IL(q) = (q)6
∞Tr[F (L)S(q)S(q)]. (5.52)

In particular the line defect Schur index forgets the i index as expected:

IA(q) = −q
3
2 (1 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + · · · ),

IB(q) = −q
1
2 (1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 4q7 + 6q8 + · · · ),

IC(q) = q(1 + q2 + q3 + q4 + 2q5 + 3q6 + 3q7 + 5q8 + · · · ).

(5.53)

The chiral algebra in this case is conjectured to be the (2, 9) Virasoro minimal model [3,

5, 7]. There are four primary fields: Φ1,1 which is the vacuum, Φ1,2 with weight −1/3,

Φ1,3 with weight −5/9, and Φ1,4 with weight −2/3. The line defect Schur indices have the

following expansions in terms of the characters:

IA(q) = q−
3
2
(
χ1,3(q)− χ1,4(q)

)
,

IB(q) = q−
1
2
(
χ1,1(q)− χ1,2(q)

)
,

IC(q) = q−1
(
− χ1,2(q) + χ1,3(q)

)
.

(5.54)
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Figure 12. Monodromy action via a sequence of flips of triangulations of the 9-gon.

Thus the map f between the line defect OPE algebra L and the Verlinde algebra V of the

(2, 9) minimal model is:

I
f−→ [Φ1,1],

Ai
f−→ [A] = [Φ1,3]− [Φ1,4],

Bi
f−→ [B] = [Φ1,1]− [Φ1,2],

Ci
f−→ [C] = −[Φ1,2] + [Φ1,3].

(5.55)

Non-trivial fusion rules in the (2, 9) minimal model are given by:

[Φ1,2]× [Φ1,2] = [Φ1,1] + [Φ1,3],

[Φ1,2]× [Φ1,3] = [Φ1,2] + [Φ1,4],

[Φ1,2]× [Φ1,4] = [Φ1,3] + [Φ1,4],

[Φ1,3]× [Φ1,3] = [Φ1,1] + [Φ1,3] + [Φ1,4],

[Φ1,3]× [Φ1,4] = [Φ1,2] + [Φ1,3] + [Φ1,4],

[Φ1,4]× [Φ1,4] = [Φ1,1] + [Φ1,2] + [Φ1,3] + [Φ1,4].

(5.56)

Using these fusion rules one can check that [AA] = [A] × [A], [AB] = [A] × [B], and

[BB] = [B]× [B].

Now we study the fixed points under the classical monodromy action. By considering

the sequence of flips shown in figure 12 we compute that the classical monodromy is:

Xγ1 → Xγ2(1 + Xγ3 + Xγ3Xγ4), Xγ2 →
Xγ3Xγ4Xγ5

1 + Xγ3 + Xγ3Xγ4
,

Xγ3 →
Xγ1

1 + Xγ3(1 + Xγ4)(1 + Xγ1)
,
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Xγ4 →
(1 + Xγ3 + Xγ3Xγ4)(1 + Xγ3 + Xγ3Xγ1)

Xγ3Xγ4Xγ1
,

Xγ5 →
Xγ6 [1 + Xγ3(1 + Xγ4)(1 + Xγ1)]

1 + Xγ3 + Xγ3Xγ1
, Xγ6 →

Xγ4
1 + Xγ3(1 + Xγ4)(1 + Xγ1)

. (5.57)

There are exactly four fixed points which we label I, II, III, IV. At the fixed points Xγ

evaluate to:

Xγ1 : (−1, α1, α2, α3), Xγ2 : (−1, 1− α2, 1− α3, 1− α1),

Xγ3 : (−1, α2, α3, α1), Xγ4 : (−1, 1− α3, 1− α1, 1− α2),

Xγ5 : (−1, α1, α2, α3), Xγ6 : (−1, 1− α2, 1− α3, 1− α1),

where

α1 = (−1)
4
9 − (−1)

5
9 , α2 = (−1)

8
9 − (−1)

1
9 , α3 = (−1)

2
9 − (−1)

7
9 .

The line defect vevs evaluated at the fixed points satisfy:

F (Ai) = F (Aj), F (Bi) = F (Bj), F (Ci) = F (Cj). (5.58)

Explicitly, the evaluation map is:

Ai
g−→
(
1,−α3,−α1,−α2),

Bi
g−→
(
0, 1 + α1, 1 + α2, 1 + α3

)
,

Ci
g−→
(
− 1, 1− α3, 1− α1, 1− α2

)
.

(5.59)

The fusion matrices for [Φ1,2], [Φ1,3] and [Φ1,4] are:

NΦ1,2 =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

 , NΦ1,3 =


0 0 1 0

0 1 0 1

1 0 1 1

0 1 1 1

 , NΦ1,4 =


0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

 . (5.60)

The S-matrix for (2,9) minimal model is given by [17]:

S =
2

3


−sin2π

9 cos π18 −sinπ3 sinπ9

cos π18 −sinπ9 −sinπ3 sin2π
9

−sinπ3 −sinπ3 0 sinπ3

sinπ9 sin2π
9 sinπ3 cos π18

 . (5.61)

The fusion matrices are simultaneously diagonalized by S:

SNΦ1,2S
−1 =


−α3 0 0 0

0 −α1 0 0

0 0 1 0

0 0 0 −α2

 , SNΦ1,3S
−1 =


1 + α1 0 0 0

0 1 + α2 0 0

0 0 0 0

0 0 0 1 + α3

 ,

SNΦ1,4S
−1 =


1− α3 0 0 0

0 1− α1 0 0

0 0 −1 0

0 0 0 1− α2

 .

(5.62)
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Figure 13. A BPS quiver for the (A1, D3) Argyres-Douglas theory.

According to [23, 25], the correspondence between U(1)r-fixed points in N and the

primaries of the (2, 9) Virasoro minimal model is:

fixed point U(1) weights primary field

I 4
9 ,

5
9 ,

7
9 ,

2
9 ,

10
9 ,−

1
9 Φ1,3

II 7
9 ,

2
9 ,

10
9 ,−

1
9 ,

4
3 ,−

1
3 Φ1,2

III 1
3 ,

2
3 ,

4
9 ,

5
9 ,

7
9 ,

2
9 Φ1,4

IV 4
3 ,−

1
3 ,

10
9 ,−

1
9 ,

14
9 ,−

5
9 Φ1,1

Based on this table and (5.62), the isomorphism h : V → O(F ) is:

[Φ1,1]
h−→
(
1, 1, 1, 1

)
,

[Φ1,2]
h−→
(
1,−α1,−α2,−α3

)
,

[Φ1,3]
h−→
(
0, 1 + α2, 1 + α3, 1 + α1

)
,

[Φ1,4]
h−→
(
− 1, 1− α1, 1− α2, 1− α3

)
.

(5.63)

Combining (5.55), (5.59) and (5.63) confirms that h ◦ f = g in the (A1, A6) Argyres-

Douglas theory.

6 (A1, D2N+1) Argyres-Douglas theories

In this section we present the results of explicit computations verifying the commutativ-

ity (1.16) in the Argyres-Douglas theories of type (A1, D3) and (A1, D5), with the appro-

priate modifications to take care of the flavor symmetry in these theories.

6.1 (A1, D3) Argyres-Douglas theory

We consider (A1, D3) Argyres-Douglas theory. This is equivalently the (A1, A3) Argyres-

Douglas theory. Line defect generators and their generating functions in this description

were studied in [2, 15]. Line defect Schur indices and the relation to the Verlinde algebra

were studied in [2]. Here we use the (A1, D3) description instead.
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(a)
(b)

Figure 14. (a): CP1 \D∞ where D∞ is a disk around z =∞ bounded by S1 with three marked

points colored in blue. The regular singularity at z = 0 is colored in black. (b): a triangulation in

the (A1, D3) Argyres-Douglas theory. There are three boundary edges. The blue marks correspond

to the positions of three Stokes rays.

We choose a chamber where the BPS quiver is as in figure 13, containing BPS particles

with charges (in increasing phase order):

γ1, γ2, γ3.

Note that γ1 + γ3 has zero Dirac pairing with any charge, and thus is a pure flavor charge.

The corresponding Hitchin system is defined on CP1, with one irregular singularity at

z =∞ and one regular singularity at z = 0. There are three Stokes rays emerging from the

irregular singularity. Correspondingly there are three marked points on the S1 bounding

the cut-out disc around z = ∞, as in figure 14a. The WKB triangulation for the chosen

chamber is shown in figure 14b. Here Xγ1 corresponds to edge 14, Xγ2 corresponds to edge

13, and Xγ3 corresponds to edge 34.

Now we use the method reviewed in section 4.3 to describe a generating set of line

defects. There are seven generators, including a pure flavor line defect C whose corre-

sponding lamination is a loop around the regular singularity. The other six generators

come in two types, A and B, corresponding to two different kinds of laminations: see fig-

ure 15. We denote the six generators as Ai, Bi (i = 1, 2, 3), where A1 and B1 correspond

to the laminations shown in figure 15. The lamination for Ai+1 (Bi+1) is given by rotating

the lamination for Ai (Bi) counterclockwise by 2π/3. The flavor charge is normalized to

be (γ1 + γ3)/2, and the corresponding Xγ is equal to the SU(2) flavor fugacity z:

z = X γ1+γ3
2

. (6.1)

Moreover we define

Xγ′ := X γ1−γ3
2

. (6.2)

We computed generating functions of line defect generators using the method reviewed in

section 4.3. They are listed below (these differ slightly from the analogous formulas in [2]
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(a) Type A. (b) Type B.

(c) Type C.

Figure 15. Three types of laminations in (A1, D3) Argyres-Douglas theory.

because we are computing in a different chamber):

F (A1) = z−1X−γ2 +X−γ′ +X−γ′−γ2 ,

F (A2) = X−γ′ +X−γ′+γ2 + zXγ2 ,

F (A3) = Xγ′ ,

F (B1) = X−γ2 + z−1X−γ2+γ′ ,

F (B2) = X−2γ′+γ2 +X−2γ′−γ2 + zX−γ′+γ2 + (q
1
2 + q−

1
2 )X−2γ′

+ (z + z−1)X−γ′ + z−1X−γ′−γ2 ,

F (B3) = Xγ2 + zXγ2+γ′ ,

F (C) = z + z−1.

The pure flavor line defect C is a Wilson line in the fundamental representation of the

SU(2) flavor symmetry.

The Schur index with one line defect L inserted is computed as

IL(q, z) = (q)2
∞Tr[F (L)S(q)S(q)], with S(q) = Eq(Xγ1)Eq(Xγ2)Eq(Xγ3). (6.3)
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As usual the Schur indices with defects Ai and Bi inserted do not depend on the index i;

concretely (these do match [2], as they should since they are chamber-independent):

IA(q, z) = − q
1
2 (χ2 + χ4q + χ2⊕4⊕6q

2 + χ2⊕2⊕4⊕2⊕6⊕8q
3 + χ2⊕3⊕4⊕3⊕6⊕3⊕8⊕10q

4

+ χ2⊕4⊕4⊕6⊕6⊕4⊕8⊕3⊕10⊕12q
5 + · · · ),

IB(q, z) = − q
1
2 (1 + χ3q

2 + χ1⊕3q
3 + χ1⊕3⊕5q

4 + χ1⊕3⊕2⊕5q
5

+ χ1⊕2⊕3⊕3⊕5⊕2⊕7q
6 + · · · ),

where framed BPS states organize themselves into representations of SU(2).29

The associated chiral algebra is ŝl(2)− 4
3

[3, 5–7, 10]. There are three admissible repre-

sentations [17, 27] with highest weights:

Φ0 =

[
−4

3
, 0

]
, Φ1 =

[
−2

3
,−2

3

]
, Φ2 =

[
0,−4

3

]
(6.4)

where Φ0 is the highest weight for the vacuum module. Their characters were computed

using the Kazhdan-Lusztig formula in [2, 17]. In particular the line defect Schur indices

could be written as:

IA(q, z) = q−
1
2 z−1

(
− χ1(q, z) + χ2(q, z)

)
,

IB(q, z) = q−
1
2
(
χ0(q, z)− χ1(q, z) + z−2χ2(q, z)

)
.

(6.5)

The expansions of IAiAj , IBiBj and IAiBj in terms of characters are:

IAiAi(q, z) = IAiAi+1(q, z) = (1 + q−1)χ0(q, z)− q−1χ1(q, z) + q−1z−2χ2(q, z),

IAiAi−1(q, z) = 2χ0(q, z)− χ1(q, z) + z−2χ2(q, z),

IBiBi(q, z) = IBiBi+1(q, z) = (1 + q−1 + q−2)χ0(q, z)− [q−1(1 + z−2) + q−2]χ1(q, z)

+ [q−1(1 + z−2) + q−2z−2]χ2(q, z),

IBiBi−1(q, z) = (2 + q)χ0(q, z)− (2 + z−2)χ1(q, z) + (1 + 2z−2)χ2(q, z),

IAiBi(q, z) = q−1(z + z−1)χ0(q, z)−(q−1 + q−2)z−1
(
χ1(q, z)−χ2(q, z)

)
,

IAiBi+1(q, z) = IAiBi−1(q, z) = (z + z−1)χ0(q, z)− (1 + q−1)z−1
(
χ1(q, z)− χ2(q, z)

)
.

In [2] the authors take the limit q → 1, z → 1 and relate the line defect algebra to the

Verlinde-like algebra of ŝl(2)− 4
3
. Here we keep z general while taking q → 1. In this limit

the expansion coefficients do not depend on the i index anymore, just as in the (A1, A2N )

case. We introduce a z-deformed Verlinde-like algebra Vz with the z-deformed modular

fusion rules:

[Φ1]× [Φ1] = [Φ2],

[Φ1]× [Φ2] = −z2[Φ0],

[Φ2]× [Φ2] = −z2[Φ1].

(6.6)

29We label irreducible SU(2) representations by their dimensions.
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Figure 16. Classical monodromy action via two flips in (A1, D3) Argyres-Douglas theory.

If we take z = 1, this reduces to the naive modular fusion rules of ŝl(2)− 4
3

[2, 17]. The

homomorphism f : L → Vz is given by:

I
f−→ [Φ0],

Ai
f−→ [A] = z−1

(
[Φ2]− [Φ1]

)
,

Bi
f−→ [B] = [Φ0]− [Φ1] + z−2[Φ2].

(6.7)

f is believed to be a homomorphism since

[AA] = 2[Φ0]− [Φ1] + z−2[Φ2] = [A]× [A],

[BB] = 3[Φ0]− (2 + z−2)[Φ1] + (1 + 2z−2)[Φ2] = [B]× [B],

[AB] = (z + z−1)[Φ0]− 2z−1
(
[Φ1]− [Φ2]

)
= [A]× [B].

(6.8)

We emphasize that this holds if and only if the z-deformed modular fusion rules are as

given in (6.6).

The fusion matrices for [Φ1] and [Φ2] are:

NΦ1 =

 0 1 0

0 0 1

−z2 0 0

 , NΦ2 =

 0 0 1

−z2 0 0

0 −z2 0

 . (6.9)

These two matrices are simultaneously diagonalizable for z 6= 0, with eigenvalues:

eigenvector λΦ1 λΦ2

(1,−z2/3, z4/3) −z2/3 z4/3

(1, (−1)1/3z2/3, (−1)2/3z4/3) (−1)1/3z2/3 (−1)2/3z4/3

(1,−(−1)2/3z2/3,−(−1)1/3z4/3) −(−1)2/3z2/3 −(−1)1/3z4/3

Now we turn to study fixed loci of the classical monodromy in this chamber. Through

a composition of two flips (see figure 16) the monodromy action is:

Xγ1 →
1 + Xγ3 + Xγ2Xγ3

Xγ2
,

Xγ2 →
1

Xγ3 + Xγ2Xγ3
,

Xγ3 →
Xγ1Xγ2Xγ3

1 + Xγ3 + Xγ2Xγ3
.

(6.10)
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The fixed locus is determined by the equations

Xγ2(1 + Xγ2)Xγ3 = 1, Xγ1 = Xγ3(2 + Xγ2 + Xγ3 + Xγ2Xγ3). (6.11)

To make connection with the flavor fugacity, we rewrite these equations in terms of Xγ2 , z

and x := Xγ′ ; this gives

X 3
γ2z

2 = 1, x = Xγ2(1 + Xγ2)z. (6.12)

One can check that this is exactly the same locus where F (Ai) = F (Aj) and F (Bi) =

F (Bj). In particular, this implies the evaluation map g forgets the i index as expected.

Now recall that the value of z corresponds to the SU(2) flavor holonomy that could be

turned on when compactifying the 4d theory on S1. With this in mind we first fix z and

then look for the U(1)r-fixed points. For each value of z 6= 0, there are three U(1)r-fixed

points, which matches the number of admissible representations of ŝl(2)− 4
3
. The evaluation

map g is concretely given by:

1
g−→
(
1, 1, 1

)
,

Ai
g−→
(
z1/3 + z−1/3,−(−1)1/3z1/3 + (−1)2/3z−1/3,

− (−1)1/3z−1/3 + (−1)2/3z1/3
)
,

Bi
g−→
(
1 + z2/3 + z−2/3, 1 + (−1)2/3z2/3 − (−1)1/3z−2/3,

1 + (−1)2/3z−2/3 − (−1)1/3z2/3
)
.

(6.13)

Now, in contrast to the cases we studied in section 5, in this case the weights of the

classical monodromy action are not sufficient to distinguish the three U(1)r-fixed points,

as we see from the following table (U(1)r weights and correspondence between fixed points

and primary fields taken from results of [23, 25]):

fixed point weights of M weights of U(1)r primary field

I −1±i
√

3
2

1
3 ,

2
3 Φ1

II −1±i
√

3
2 −1

3 ,
4
3 Φ0

III −1±i
√

3
2 −1

3 ,
4
3 Φ2

Thus we cannot determine a priori which U(1)r-fixed point should correspond to which

eigenspace of the fusion matrices. This gives an S3 ambiguity in constructing the map h.

Still, we can just try all of the 6 possible mappings and see if one of them works. Indeed,

suppose we take:

[Φ1]
h−→
(
− z2/3,−(−1)2/3z2/3, (−1)1/3z2/3

)
,

[Φ2]
h−→
(
z4/3,−(−1)1/3z4/3, (−1)2/3z4/3

)
.

(6.14)

Combining this with (6.7) and (6.13), we find that indeed h ◦ f = g for every z 6= 0.
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Figure 17. A BPS quiver for the (A1, D5) Argyres-Douglas theory.

Figure 18. CP1 \D∞ where D∞ is a disk around z =∞ bounded by S1 with five marked points

colored in blue. The regular singularity at z = 0 is colored in black.

6.2 (A1, D5) Argyres-Douglas theory

We choose the canonical chamber represented by the BPS quiver given in figure 17, with

five BPS particles (in increasing central charge phase order):

γ1, γ4, γ3, γ2, γ5.

The corresponding Hitchin system is defined on CP1 with one regular singularity at

z = 0 and one irregular singularity at z = ∞ with five stokes rays emerging from it,

i.e. there are five marked points on the S1 which bounds D∞, the disk around z = ∞
that’s cut out from CP1. The situation is depicted in figure 18. The corresponding WKB

triangulation for this chamber is given in figure 19, where Xγ1 corresponds to edge 13, Xγ2
corresponds to edge 35, Xγ3 corresponds to edge 45, Xγ4 corresponds to edge 56 and Xγ5
corresponds to edge 46.

The line defect generators correspond to laminations that can not be expressed as

sum of other laminations. In this case there are 21 such laminations. The lamination (E)

which is a loop around the regular singularity corresponds to the pure flavor line defect.

The other 20 laminations come in four types A,B,C and D. We label their corresponding

generators as Ai, Bi, Ci and Di (i = 1, . . . , 5) and list laminations corresponding to the

generators A1, B1, C1, D1 and E in figure 20. Laminations corresponding to e.g. generators

Ai+1 are obtained by rotating laminations for Ai clockwise by 4π/5. We define the flavor

charge γf and γ′ as follows:

γf =
γ4 + γ5

2
, γ′ =

γ4 − γ5

2
. (6.15)
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Figure 19. A triangulation in the (A1, D5) Argyres-Douglas theory. There are five boundary

edges. The blue marks correspond to positions of five Stokes rays.

The SU(2) flavor fugacity is z := Tr(Xγf ). The generating functions are computed using

the method as reviewed in section 4.3. In particular, the line defect generator D2 has

framed BPS states with charge 2γ2 in a 3-dimensional multiplet of SO(3):

F (A1) = X−γ1 +X−γ1−γ2 ,

F (A2) = X−γ1 +Xγ2 +X−γ1+γ2 +Xγ2+γ3 +X−γ1+γ2+γ3 + zXγ2+γ3+γ′

+ zX−γ1+γ2+γ3+γ′ ,

F (A3) = Xγ2 +Xγ1+γ2 +X−γ3 +Xγ2−γ3 +Xγ1+γ2−γ3 + z−1X−γ3+γ′ + z−1Xγ2−γ3+γ′

+ z−1Xγ1+γ2−γ3+γ′ ,

F (A4) = Xγ1 ,

F (A5) = (z + z−1)X−γ′ + z−1X−γ3−γ′ + z−1X−γ2−γ3−γ′ + zXγ3−γ′

+ (q1/2 + q−1/2)X−2γ′ +X−γ2−2γ′ +X−γ3−2γ′ +X−γ2−γ3−2γ′ +Xγ3−2γ′ ,

F (B1) = X−γ1−γ′ +X−γ1−γ2−γ′ +X−γ1+γ3−γ′ + zX−γ1+γ3 ,

F (B2) = X−γ1+γ′ +Xγ2+γ′ +X−γ1+γ2+γ′ ,

F (B3) = Xγ2+γ′ +Xγ1+γ2+γ′ ,

F (B4) = z−1Xγ1−γ3 +Xγ1−γ′ +Xγ1−γ3−γ′ ,

F (B5) = X−γ2−γ′ ,

F (C1) = X−γ′ +Xγ3−γ′ + zXγ3 ,

F (C2) = (q1/2 + q−1/2)
(
X−γ1−γ′ +Xγ2−γ′ +X−γ1+γ2−γ′ +X−γ1−γ3−γ′ + z−1X−γ1−γ3

)
+X−γ′ +X−γ3−γ′ +X−γ1−γ2−γ3−γ′ +Xγ2−γ3−γ′ +X−γ1+γ2−γ3−γ′

+Xγ2+γ3−γ′ +X−γ1+γ2+γ3−γ′ + (z + z−1)X−γ1 + (z + z−1)Xγ2

+ (z + z−1)X−γ1+γ2 + z−1X−γ3 + z−1X−γ1−γ2−γ3 + z−1Xγ2−γ3

+ z−1X−γ1+γ2−γ3 + zXγ2+γ3 + zX−γ1+γ2+γ3 ,

F (C3) = Xγ′ ,

F (C4) = (q1/2 + q−1/2)
(
Xγ2−γ′ +Xγ1+γ2−γ′

)
+X−γ′ +X−γ3−γ′ +Xγ2−γ3−γ′

+Xγ1+γ2−γ3−γ′ +Xγ2+γ3−γ′ +Xγ1+γ2+γ3−γ′ + z−1Xγ2 + z−1Xγ1+γ2
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(a) Type A (b) Type B

(c) Type C (d) Type D

(e) Type E

Figure 20. Five types of laminations in (A1, D5) Argyres-Douglas theory.
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+ z−1X−γ3 + z−1Xγ2−γ3 + z−1Xγ1+γ2−γ3 + zXγ2 + zXγ1+γ2

+ zXγ2+γ3 + zXγ1+γ2+γ3 ,

F (C5) = X−γ′ +X−γ3−γ′ +X−γ2−γ3−γ′ + z−1X−γ3 + z−1X−γ2−γ3 ,

F (D1) = X−γ1+γ3 + zX−γ1+γ3+γ′ ,

F (D2) = (q1/2 + q−1/2)Xγ2 + (q1/2 + q−1/2)X−γ1+γ2 + (1 + 1 + q + q−1)X2γ2

+ (q1/2 + q−1/2)X−γ1+2γ2 + (q1/2 + q−1/2)Xγ1+2γ2 +X−γ1−γ3

+ (q1/2 + q−1/2)Xγ2−γ3 + (q1/2 + q−1/2)X−γ1+γ2−γ3 + (q1/2 + q−1/2)X2γ2−γ3

+X−γ1+2γ2−γ3 +Xγ1+2γ2−γ3 + (q1/2 + q−1/2)X2γ2+γ3 +X−γ1+2γ2+γ3

+Xγ1+2γ2+γ3 + (z + z−1)Xγ2+γ′ + (z + z−1)X−γ1+γ2+γ′

+ (z + z−1)(q1/2 + q−1/2)X2γ2+γ′ + (z + z−1)X−γ1+2γ2+γ′

+ (z + z−1)Xγ1+2γ2+γ′ + z−1X−γ1−γ3+γ′ + (q1/2 + q−1/2)z−1Xγ2−γ3+γ′

+ (q1/2 + q−1/2)z−1X−γ1+γ2−γ3+γ′ + (q1/2 + q−1/2)z−1X2γ2−γ3+γ′

+ z−1X−γ1+2γ2−γ3+γ′ + z−1Xγ1+2γ2−γ3+γ′ + (q1/2 + q−1/2)zX2γ2+γ3+γ′

+ zX−γ1+2γ2+γ3+γ′ + zXγ1+2γ2+γ3+γ′ ,

F (D3) = Xγ1−γ3 + z−1Xγ1−γ3+γ′ ,

F (D4) = (q1/2 + q−1/2)Xγ1−2γ′ +Xγ1−γ3−2γ′ +Xγ1+γ3−2γ′ + z−1Xγ1−γ′

+ z−1Xγ1−γ3−γ′ + zXγ1−γ′ + zXγ1+γ3−γ′ ,

F (D5) = (q1/2 + q−1/2)
(
X−γ1−2γ′+X−γ1−γ2−2γ′+X−γ1−γ2−γ3−2γ′ + z−1X−γ1−γ2−γ3−γ′

)
+X−γ1−γ3−2γ′ +X−γ1−2γ2−γ3−2γ′ +X−γ1+γ3−2γ′ + (z + z−1)X−γ1−γ′

+ (z + z−1)X−γ1−γ2−γ′ + z−1X−γ1−γ3−γ′

+ z−1X−γ1−2γ2−γ3−γ′ + zX−γ1+γ3−γ′ ,

F (E) = z + z−1.

The line defect Schur index is

IL(q, z) = (q)4
∞Tr[F (L)S(q)S(q)], with

S(q) = Eq(Xγ1)Eq(Xγ4)Eq(Xγ3)Eq(Xγ2)Eq(Xγ5).
(6.16)

After inserting generating functions the calculation boils down to computing the following:

(q)4
∞Tr[Xaγ1+bγ2+cγ3+dγ′S(q)S(q)]

= (q)4
∞

∞∑
li,ki=0

(−1)a+b+c+dqA/2zl4+l5−k4−k5

(q)l1 . . . (q)l5(q)k1 . . . (q)k5
δk1,l1+aδk2,l2+bδk3,l3+cδk4,l4−l5+k5+d,

with

A =
1

2

(
a+ b+ ab+ c+ bc− cd+ d(1 + 2c+ 2l3)

+ 2
(
l1 + l2 + al2 + cl2 + l1l2 + l3 + l2l3 + k5(1 + c+ l3) + l4 + l3l4

))
.
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Within the same class line defect Schur indices are the same. The coefficients in q are again

characters of certain SU(2) representations:

IA(q, z) = −q
1
2 (1 + χ3q + χ1⊕3⊕5q

2 + χ1⊕3⊕2⊕5⊕7q
3 + · · · ),

IB(q, z) = q(χ2 + χ4q + χ2⊕4⊕6q
2 + χ2⊕2⊕4⊕2⊕6⊕8q

3 + · · · ),

IC(q, z) = −q
1
2 (χ2 + χ4q + χ2⊕2⊕4⊕6q

2 + χ2⊕2⊕4⊕3⊕6⊕8q
3 + · · · ),

ID(q, z) = q(1 + χ3q
2 + χ1⊕3q

3 + · · · ).

(6.17)

The chiral algebra corresponding to the (A1, D5) Argyres-Douglas theory is ŝl(2)− 8
5

[3, 5,

7, 10], which has five admissible representations with the following highest weights:

Φ0 =

[
−8

5
, 0

]
, Φ1 =

[
−6

5
,−2

5

]
, Φ2 =

[
−4

5
,−4

5

]
,

Φ3 =

[
−2

5
,−6

5

]
, Φ4 =

[
0,−8

5

]
,

(6.18)

where Φ0 is the highest weight for the vacuum module. The characters of these represen-

tations can be worked out using the Kac-Wakimoto formula [27], which is a special case

of the Kazhdan-Lusztig formula [64] (see also [17] for expressions in terms of generalized

theta functions):

χ0(q, z) =

∑∞
m=0(−1)mz2m+1−z−(2m+1)

z−z−1 q
5m(m+1)

2∏∞
n=1(1− qn)(1− z2qn)(1− z−2qn)

,

χ1(q, z) =
1 +

∑∞
m=1(−1)m(z−2mq

m(5m−3)
2 + z2mq

m(5m+3)
2 )

(1− z−2)
∏∞
n=1(1− qn)(1− z2qn)(1− z−2qn)

,

χ2(q, z) =
1 +

∑∞
m=1(−1)m(z−2mq

m(5m−1)
2 + z2mq

m(5m+1)
2 )

(1− z−2)
∏∞
n=1(1− qn)(1− z2qn)(1− z−2qn)

,

χ3(q, z) =
1 +

∑∞
m=1(−1)m(z2mq

m(5m−1)
2 + z−2mq

m(5m+1)
2 )

(1− z−2)
∏∞
n=1(1− qn)(1− z2qn)(1− z−2qn)

,

χ4(q, z) =
1 +

∑∞
m=1(−1)m(z2mq

m(5m−3)
2 + z−2mq

m(5m+3)
2 )

(1− z−2)
∏∞
n=1(1− qn)(1− z2qn)(1− z−2qn)

.

(6.19)

The S matrix for these five admissible representations, in the order (6.18), is [17]:

S =
1√
5


1 −1 1 −1 1

−1 −(−1)3/5 (−1)1/5 (−1)4/5 −(−1)2/5

1 (−1)1/5 (−1)2/5 (−1)3/5 (−1)4/5

−1 (−1)4/5 (−1)3/5 (−1)2/5 (−1)1/5

1 −(−1)2/5 (−1)4/5 (−1)1/5 −(−1)3/5

 . (6.20)

Working out the conjugation matrix C = S2 it’s clear that Φ1 and Φ4 are conjugate to each

other, Φ2 and Φ3 are conjugate to each other. Using the Verlinde formula [16] the modular
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fusion rules for ŝl(2)− 8
5

are given by:

[Φ1]× [Φ1] = [Φ2], [Φ1]× [Φ2] = [Φ3], [Φ1]× [Φ3] = [Φ4],

[Φ1]× [Φ4] = −[Φ0], [Φ2]× [Φ2] = [Φ4], [Φ2]× [Φ3] = −[Φ0],

[Φ2]× [Φ4] = −[Φ1], [Φ3]× [Φ3] = −[Φ1], [Φ3]× [Φ4] = −[Φ2],

[Φ4]× [Φ4] = −[Φ3].

(6.21)

As we will see shortly, multiplications in the deformed Verlinde-like algebra are again given

by multiplying the −1 coefficients in the original modular fusion rules by a factor of z2.

The line defect Schur indices for defect generators of type A, B, C and D admit the

following character expansions:

IA(q, z) = q−1/2
(
χ0(q, z)− χ1(q, z) + z−2χ4(q, z)

)
,

IB(q, z) = q−1z−1
(
χ2(q, z)− χ3(q, z)

)
,

IC(q, z) = q−1/2z−1
(
− χ1(q, z) + χ2(q, z)− χ3(q, z) + χ4(q, z)

)
,

ID(q, z) = χ0(q, z)− q−1
(
χ1(q, z)− χ2(q, z) + z−2χ3(q, z)− z−2χ4(q, z)

)
.

(6.22)

Now we again take the q → 1 limit while keeping z general, giving the map

I
f−→ [Φ0],

Ai
f−→ [A] = [Φ0]− [Φ1] + z−2[Φ4],

Bi
f−→ [B] = z−1([Φ2]− [Φ3]),

Ci
f−→ [C] = z−1(−[Φ1] + [Φ2]− [Φ3] + [Φ4]),

Di
f−→ [D] = [Φ0]− [Φ1] + [Φ2]− z−2[Φ3] + z−2[Φ4].

(6.23)

This map is believed to be a homomorphism f : L → Vz, when we define the deformed

Verlinde-like algebra Vz by the following z-deformed modular fusion rules:

[Φ1]× [Φ1] = [Φ2], [Φ1]× [Φ2] = [Φ3], [Φ1]× [Φ3] = [Φ4],

[Φ1]× [Φ4] = −z2[Φ0], [Φ2]× [Φ2] = [Φ4], [Φ2]× [Φ3] = −z2[Φ0],

[Φ2]× [Φ4] = −z2[Φ1], [Φ3]× [Φ3] = −z2[Φ1], [Φ3]× [Φ4] = −z2[Φ2],

[Φ4]× [Φ4] = −z2[Φ3].

(6.24)

To check the homomorphism property we consider Schur indices with insertion of two half

line defects, which can also be expanded in terms of characters of admissible representa-

tions. After setting q → 1 the expansion coefficients do not depend on the i-index anymore:

AiAj
f−→ 3[Φ0]− 2[Φ1] + [Φ2]− z−2[Φ3] + 2z−2[Φ4],

AiBj
f−→ z−1(−[Φ1] + 2[Φ2]− 2[Φ3] + [Φ4]),

AiCj
f−→ (z + z−1)[Φ0]− 2z−1([Φ1]− [Φ4]) + 3z−1([Φ2]− [Φ3]),

AiDj
f−→ 3[Φ0]− 3[Φ1] + (2 + z−2)[Φ2]− (1 + 2z−2)[Φ3] + 3z−2[Φ4],
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BiBj
f−→ 2[Φ0]− [Φ1] + z−2[Φ4],

BiCj
f−→ 2[Φ0]− 2[Φ1] + [Φ2]− z−2[Φ3] + 2z−2[Φ4],

BiDj
f−→ (z + z−1)[Φ0] + 2z−1(−[Φ1] + [Φ2]− [Φ3] + [Φ4]),

CiCj
f−→ 4[Φ0]− 3[Φ1] + (2 + z−2)[Φ2]− (1 + 2z−2)[Φ3] + 3z−2[Φ4],

CiDj
f−→ 2(z + z−1)[Φ0]− (z + 3z−1)[Φ1] + 4z−1([Φ2]− [Φ3]) + (3z−1 + z−3)[Φ4],

DiDj
f−→ 5[Φ0]− (4 + z−2)[Φ1] + (3 + 2z−2)[Φ2]− (2 + 3z−2)[Φ3] + (1 + 4z−2)[Φ4].

f is a homomorphism if and only if the z-deformed fusion rules are as defined in (6.24).

The fusion matrices for non-vacuum modules are given as follows:

NΦ1 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−z2 0 0 0 0

 , NΦ2 =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−z2 0 0 0 0

0 −z2 0 0 0

 ,

NΦ3 =


0 0 0 1 0

0 0 0 0 1

−z2 0 0 0 0

0 −z2 0 0 0

0 0 −z2 0 0

 , NΦ4 =


0 0 0 0 1

−z2 0 0 0 0

0 −z2 0 0 0

0 0 −z2 0 0

0 0 0 −z2 0

 .

(6.25)

For generic z these four matrices are simultaneously diagonalizable with the following

eigenvalues:

eigenspace λΦ1 λΦ2 λΦ3 λΦ4

1 −z2/5 z4/5 −z6/5 z8/5

2 (−1)1/5z2/5 (−1)2/5z4/5 (−1)3/5z6/5 (−1)4/5z8/5

3 −(−1)2/5z2/5 (−z)4/5 (−1)1/5z6/5 −(−1)3/5z8/5

4 (−1)3/5z2/5 −(−1)1/5z4/5 −(−1)4/5z6/5 (−1)2/5z8/5

5 −(−1)4/5z2/5 −(−1)3/5z4/5 −(−1)2/5z6/5 −(−1)1/5z8/5

The classical monodromy action in this chamber can be worked out as a composition of

flips, as in figure 21:

Xγ1 →
1 + Xγ5 + Xγ3Xγ5 + C

Xγ2Xγ3Xγ4
,

Xγ2 →
Xγ1Xγ2Xγ3Xγ4(

1 + Xγ2(1 + Xγ3 + Xγ3Xγ4)
)(

1 + Xγ5 + Xγ3Xγ5 + (1 + Xγ1)C
) ,

Xγ3 →
(
1 + (1 + Xγ1)Xγ2(1 + Xγ3)

)
(1 + Xγ5 + Xγ3Xγ5 + C)

Xγ1Xγ2Xγ3(1 + Xγ3)Xγ4Xγ5
,
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Figure 21. Monodromy action as a sequence of flips in the (A1, D5) Argyres-Douglas theory.

Xγ4 →
1 + Xγ5 + Xγ3Xγ5 + (1 + Xγ1)C

Xγ3
,

Xγ5 →
Xγ3Xγ4Xγ5

1 + Xγ5 + Xγ3Xγ5 + (1 + Xγ1)C
,

where

C = Xγ2(1 + Xγ3)
(
1 + Xγ5(1 + Xγ3 + Xγ3Xγ4)

)
.

For generic fixed z 6= 0, there are exactly five fixed points, matching the number of admis-

sible representations of ŝl(2)− 8
5
. Concretely, at the fixed locus Xγ3 satisfies the following

quintic equation:

z6X 5
γ3 − 5z4X 3

γ3 − 10z4X 2
γ3 − 5z4Xγ3 − (z4 + z2 + 1) = 0, (6.26)

and Xγ1 ,Xγ2 ,Xγ′ are all determined by Xγ3 and z (by complicated algebraic expressions

which we will not present here.) As in previous examples, the values of line defect vevs at

the fixed points do not depend on the index i.

The Galois group of the quintic (6.26) is solvable according to sage, so in principle

one can give a solution in radicals; we have not carried this out, however. Thus, here we
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cannot give a closed form for the values of the Xγ at the fixed points. Moreover, we also

have the same problem as in section 6.1 above: we do not know a priori how to match

the five fixed points and the five primaries. Nevertheless we numerically sampled various

values of z and confirmed that, for each z, there does exist a matching between fixed points

and primaries, such that the corresponding h makes the diagram commute.

7 Verlinde algebra from fixed points analysis

Given the relations that we have discussed between the three algebras, one might ask

whether we could say something about the Verlinde algebra through values of generating

functions at the fixed points.30 The answer is that we can not determine Verlinde alge-

bra from fixed points analysis alone, but we do obtain useful information about Verlinde

algebra31 and expansion of line defect Schur index in terms of characters.

First we would like to stress that, in principal one could obtain the (deformed) Verlinde

algebra through computing Schur index with one half line and two half lines inserted and

studying their images under the homomorphism f . In fact this is practically how we found

the deformed Verlinde algebra in the D3 and D5 cases. However, in practice (at least for

us) character expansions of line defect Schur index (especially Schur index with more than

one line defect inserted) are not very easy to obtain. It would be nice if there is some way

to simplify this procedure.

To begin with, suppose that we already know the image of [Φα] under the isomor-

phism h, then the modular fusion rules among them are very easy to obtain since the

corresponding multiplication in O(F ) is given directly by pointwise multiplication. Con-

cretely, suppose that

[Φα]
h−→ φα := (λ1

α, . . . , λ
n
α),

then by expanding e.g.

φαφβ =
∑
γ

cγαβφγ ,

the modular fusion coefficients are given by cγαβ .32 Now how do we determine φα? Since we

know the values of FLαi at the U(1)r fixed points, if in addition we also know the image of

Lαi under f , then φα is given by taking the inverse of the linear relations. So we still need

to work out the character expansions for single line defect Schur index. But this already

saves the effort of working out the character expansions of two line defect Schur index.

Now suppose that the only data given are generating functions of line defect generators

and their values at the U(1)r fixed points, what “constraints” could we possibly put on

the (deformed) Verlinde algebra? We illustrate this by looking at two simplest examples

A2 and D3 Argyres-Douglas theories. Of course the Verlinde algebra in these cases were

30We thank Shu-Heng Shao for mentioning this interesting perspective.
31More precisely we mean Verlinde-like algebra of the set of highest weight modules that correspond to

the U(1)r fixed points, from direct application of the Verlinde formula.
32Here to get the fusion coefficients we don’t need to “order” the fixed points. We don’t need to know

the exact correspondence between U(1)r fixed points and primaries.
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already known for a long time (see [17] and references therein), the hope is that this might

shed light on unknown Verlinde algebras of certain 2d chiral algebras.

In A2 case there are two fixed points, the values of FLi don’t depend on i at the fixed

points so we denote them as FL. Over the fixed points

F 2
L = I + FL. (7.1)

This equation is understood in the context of values of line defects at fixed points. This

could be obtained either by direct computation or through the relation

LiLi+2 = 1 + q
1
2Li+1. (7.2)

As discussed in section 1.9 in (A1, A2N ) theories the vev of line defect generators themselves

realize fusion rules over U(1)r fixed points. In particular (7.1) is the non-trivial fusion rule

of the (2, 5) minimal model. However this is a special phenomenon only in (A1, A2N )

theories. We would like to rediscover fusion rules in the basis of [Φα] instead for the

purpose of generalization.

We make the following ansatz for the image of Li under f :

Li
f−→ [L] := a[Φ0] + b[Φ1], (7.3)

where Φ0 is the vacuum. We also make an ansatz for the fusion rule:

[Φ1]× [Φ1] = c[Φ0] + d[Φ1].

Eq. (7.1) would imply

[LL] = [L]× [L] = (a+ 1)[Φ0] + b[Φ1], (7.4)

by comparing coefficients we get the following equations for a, b, c, d:

a2 + b2c = a+ 1, 2ab+ b2d = b. (7.5)

Now, a and b have to be integers. This was the observation made in [2]. We do not have

an explanation but it is true in all the examples that we considered in this paper so we

use this as an assumption. The fusion coefficients c and d have to be 0 or 1.33 Moreover

given each candidate fusion rule one could check whether the solution is consistent with

eigenvalues of the Verlinde matrix. These constraints pin down the only possible fusion

rule to be the desired one in (2, 5) minimal model namely c = 1 and d = 1. There are two

solutions for a and b:

(a, b) = (1,−1) or (a, b) = (0, 1). (7.6)

The wrong answer could be easily ruled out by computing the single line defect Schur

index. In more complicated cases the finite number of solutions of (a, b) also offers ansatz

for the character expansion of single line defect Schur index.

33We will discuss how this works for modular fusion rules with apparent −1 coefficients momentarily.
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In the D3 case we have more constraints due to the z-deformed Verlinde algebra. We

take an assumption that the z-deformed Verlinde algebra always replaces the −1 coefficient

by −z2.34 In that case by taking z = i all the fusion coefficients are either 0 or 1. So this

reduces to a similar case as in A2. When z = i,

[AB] = 2[A], [AA] = [Φ0] + [B], [BB] = 2[Φ0] + [B]. (7.7)

Again this was obtained either by directly looking at values of F (L) at fixed points or

through relations between generating functions. Similarly by making ansatz and comparing

coefficients one could obtain the consistent fusion rules. Note that in this case there is one

more constraint coming into play, namely the fusion matrices NΦ1 and NΦ2 have to be

simultaneously diagonalizable. The only fusion rules passing these constraints are

[Φ1]× [Φ1] = [Φ2],

[Φ1]× [Φ2] = [Φ0],

[Φ2]× [Φ2] = [Φ1].

(7.8)

Note that here we can not physically distinguish [Φ1] and [Φ2], e.g. we can not compute

their conformal weights etc in our setup. They only appear in our ansatz (for z = i) for

[A] and [B]. This is the reason why we can’t actually pin down the fusion rules. Now in

the deformed fusion rules each +1 coefficient in (7.8) could be either +1 or −z2. We again

make ansatz for [A] and [B], only now the coefficients are monomials in z with integer

coefficients. Again this is an assumption that we make through observations of known

examples. For general z the following holds:

[AB] = (z + z−1)[Φ0] + 2[A],

[AA] = [Φ0] + [B],

[BB] = 2[Φ0] + (z + z−1)[A] + [B].

(7.9)

Imposing constraints and comparing coefficients gives us two possibilities. One of them,

which is also the correct one, is

[Φ1]× [Φ1] = [Φ2],

[Φ1]× [Φ2] = −z2[Φ0],

[Φ2]× [Φ2] = −z2[Φ1],

with the following images of Ai and Bi under f :

[A] =
1

z
([Φ2]− [Φ1]),

[B] = [Φ0]− [Φ1] + z−2[Φ2].

The other solution is simply given by swapping [Φ1] with [Φ2]. Note that this is reasonable

since we can not physically distinguish [Φ1] and [Φ2]. So this is the best we could do with

the available ansatz. In reality given access to characters of admissible representations it

would be easy to rule out the wrong answer.

34We conjecture this is true at least for (A1, D2N+1) Argyres-Douglas theories. For other theories one

could first work out simple examples to find out patterns of deformed modular fusion rules.
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[17] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory, Springer, Germany

(1997).

[18] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions,

hep-th/9607163 [INSPIRE].

– 57 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://arxiv.org/abs/1112.5179
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5179
https://doi.org/10.1007/JHEP11(2016)106
https://doi.org/10.1007/JHEP11(2016)106
https://arxiv.org/abs/1606.08429
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08429
https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5344
https://doi.org/10.1007/JHEP08(2017)044
https://arxiv.org/abs/1612.08956
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08956
https://doi.org/10.1007/JHEP03(2016)183
https://arxiv.org/abs/1412.7541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7541
https://doi.org/10.1088/1751-8113/49/1/015401
https://doi.org/10.1088/1751-8113/49/1/015401
https://arxiv.org/abs/1505.05884
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05884
https://doi.org/10.1007/JHEP01(2016)040
https://arxiv.org/abs/1506.00265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00265
https://arxiv.org/abs/1701.05926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05926
https://arxiv.org/abs/1706.01607
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01607
https://arxiv.org/abs/1604.02155
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.02155
https://doi.org/10.1007/JHEP09(2017)066
https://arxiv.org/abs/1705.07173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.07173
https://arxiv.org/abs/1006.3435
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3435
https://doi.org/10.1016/0550-3213(95)00281-V
https://arxiv.org/abs/hep-th/9505062
https://inspirehep.net/search?p=find+EPRINT+hep-th/9505062
https://doi.org/10.1016/0550-3213(95)00671-0
https://arxiv.org/abs/hep-th/9511154
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511154
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://arxiv.org/abs/1006.0146
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0146
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1016/0550-3213(88)90603-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B300,360%22
https://arxiv.org/abs/hep-th/9607163
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607163


J
H
E
P
1
1
(
2
0
1
7
)
0
3
5

[19] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB

approximation, arXiv:0907.3987 [INSPIRE].

[20] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55

(1987) 59.

[21] S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices, Commun.

Math. Phys. 355 (2017) 1 [arXiv:1501.01310] [INSPIRE].

[22] S. Gukov, D. Pei, W. Yan and K. Ye, Equivariant Verlinde algebra from superconformal

index and Argyres-Seiberg duality, arXiv:1605.06528 [INSPIRE].

[23] L. Fredrickson and A. Neitzke, From S1-fixed points to W-algebra representations,

arXiv:1709.06142 [INSPIRE].

[24] L. Fredrickson, A circle action on wild Hitchin moduli spaces, talk given at the workshop

New perspectives on Higgs bundles, branes and quantization, June 13–17, Simons Center for

Geometry and Physics, Stony Brooks, U.S.A. (2016).

[25] L. Fredrickson, D. Pei, W. Yan and K. Ye, Argyres-Douglas theories, chiral algebras and wild

Hitchin characters, arXiv:1701.08782 [INSPIRE].

[26] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches and modular differential

equations, arXiv:1707.07679 [INSPIRE].

[27] V.G. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional Lie

algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988) 4956.

[28] I. Koh and P. Sorba, Fusion rules and (sub)modular invariant partition functions in

nonunitary theories, Phys. Lett. B 215 (1988) 723.

[29] T. Creutzig and D. Ridout, Modular data and verlinde formulae for fractional level WZW

models I, Nucl. Phys. B 865 (2012) 83 [arXiv:1205.6513] [INSPIRE].

[30] T. Creutzig and D. Ridout, Modular data and verlinde formulae for fractional level WZW

models II, Nucl. Phys. B 875 (2013) 423 [arXiv:1306.4388] [INSPIRE].

[31] T. Hausel, Geometry of the moduli space of Higgs bundles, Ph.D. thesis, Oxford University,

Oxford, U.K. (1998), math/0107040 [INSPIRE].

[32] C. Cordova, D. Gaiotto and S.-H. Shao, Surface defect indices and 2d-4d BPS states,

arXiv:1703.02525 [INSPIRE].

[33] C. Cordova, D. Gaiotto and S.-H. Shao, Surface defects and chiral algebras, JHEP 05 (2017)

140 [arXiv:1704.01955] [INSPIRE].

[34] C. Beem, W. Peelaers and L. Rastelli, work in progress.

[35] C. Beem, Chiral symmetry algebras from superconformal symmetry in four dimensions,

seminar at Crete Center for Theoretical Physics, Crete, Greece (2014).

[36] L. Rastelli, Infinite chiral symmetry in four and six dimensions, seminar at Harvard

University, Harvard, U.K. (2014).

[37] D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

[38] Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev.

D 94 (2016) 065012 [arXiv:1509.00847] [INSPIRE].

[39] J. Auger, T. Creutzig, S. Kanade and M. Rupert, to appear.

– 58 –

https://arxiv.org/abs/0907.3987
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3987
https://doi.org/10.1007/s00220-017-2931-9
https://doi.org/10.1007/s00220-017-2931-9
https://arxiv.org/abs/1501.01310
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.01310
https://arxiv.org/abs/1605.06528
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06528
https://arxiv.org/abs/1709.06142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.06142
https://arxiv.org/abs/1701.08782
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08782
https://arxiv.org/abs/1707.07679
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07679
https://doi.org/10.1016/j.nuclphysb.2012.07.018
https://arxiv.org/abs/1205.6513
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6513
https://doi.org/10.1016/j.nuclphysb.2013.07.008
https://arxiv.org/abs/1306.4388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4388
https://arxiv.org/abs/math/0107040
https://inspirehep.net/search?p=find+EPRINT+math/0107040
https://arxiv.org/abs/1703.02525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.02525
https://doi.org/10.1007/JHEP05(2017)140
https://doi.org/10.1007/JHEP05(2017)140
https://arxiv.org/abs/1704.01955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.01955
https://doi.org/10.1007/JHEP01(2013)100
https://arxiv.org/abs/1204.2270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2270
https://doi.org/10.1103/PhysRevD.94.065012
https://doi.org/10.1103/PhysRevD.94.065012
https://arxiv.org/abs/1509.00847
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00847


J
H
E
P
1
1
(
2
0
1
7
)
0
3
5

[40] C. Beem and W. Peelaers, work in progress.

[41] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[42] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald

polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

[43] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from

q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].

[44] D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via

three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723]

[INSPIRE].

[45] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants

and cluster transformations, arXiv:0811.2435 [INSPIRE].

[46] T. Dimofte, S. Gukov and Y. Soibelman, Quantum wall crossing in N = 2 gauge theories,

Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [INSPIRE].

[47] N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville

theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

[48] N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on

Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [INSPIRE].
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