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Via Irnerio 46, 40126 Bologna, Italy
cDepartment of Physics, The University of Tokyo,

Bunkyo-ku, Tokyo, Japan

E-mail: bourgine@kias.re.kr, fukuda@hep-th.phys.s.u-tokyo.ac.jp,

harada@hep-th.phys.s.u-tokyo.ac.jp, matsuo@phys.s.u-tokyo.ac.jp,

nick zrd@hep-th.phys.s.u-tokyo.ac.jp

Abstract: Instanton partition functions of N = 1 5d Super Yang-Mills reduced on S1

can be engineered in type IIB string theory from the (p, q)-branes web diagram. To this

diagram is superimposed a web of representations of the Ding-Iohara-Miki (DIM) algebra

that acts on the partition function. In this correspondence, each segment is associated

to a representation, and the (topological string) vertex is identified with the intertwiner

operator constructed by Awata, Feigin and Shiraishi. We define a new intertwiner acting

on the representation spaces of levels (1, n)⊗ (0,m)→ (1, n+m), thereby generalizing to

higher rank m the original construction. It allows us to use a folded version of the usual

(p, q)-web diagram, bringing great simplifications to actual computations. As a result,

the characterization of Gaiotto states and vertical intertwiners, previously obtained by

some of the authors, is uplifted to operator relations acting in the Fock space of horizontal

representations. We further develop a method to build qq-characters of linear quivers based

on the horizontal action of DIM elements. While fundamental qq-characters can be built

using the coproduct, higher ones require the introduction of a (quantum) Weyl reflection

acting on tensor products of DIM generators.
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1 Introduction

Duality has been one of the most fundamental issues in string/gauge theories, and it has

been studied from many different viewpoints and in various contexts. One of the standard

approaches to the problem is to assign a brane configuration to the gauge dynamics, and

interpret the duality in graphical ways. Such an approach has been taken in N = 2 super-

Yang-Mills in 4 dimensions (and N = 1 in 5d). The corresponding graphical object, the

Seiberg-Witten curve, is expressed through various configurations of D- and NS-branes.

For example, supersymmetric gauge theories with N = 1 supercharges in five dimensions

can be engineered in type IIB string theory using the methods developed in [1]. Linear

quiver gauge theories with U(m) gauge groups are obtained from webs of (p, q)-branes that

are bound states of p D5 branes and q NS5 branes [2, 3].

A useful algebraic tool to analyze brane configurations is the topological vertex [4].

It has been introduced to reproduce the topological string amplitude on toric Calabi-Yau

manifolds. In fact, the toric diagram of Calabi-Yau threefold can be identified with the

(p, q)-branes web diagrams of type IIB string theory [5]. From this identification, it is

possible to build the instanton partition function of the gauge theory using the machinery

of topological string theory. In order to recover the Nekrasov partition function [6] in a

general Omega-background, it is necessary to refine the definition of the topological vertex

to include the gravi-photon background [7]. The importance of this representation of gauge

theories in the context of the BPS/CFT correspondence was first realized in [8, 9] where

the connection with the decomposition of conformal blocks was also investigated.

In [10, 11], Nekrasov partition functions have been studied from a different perspective,

namely through the representation of underlying quantum algebras: the spherical double

affine Hecke algebra with central charges (SHc) [12] for the 4d gauge theory, and its quantum

deformation, the Ding-Iohara-Miki (DIM) algebra [13–15] for the 5d gauge theory. The

representations of these algebras coincide with those of (quantum) WN -algebra [12, 16–18]

while the basis of the representation coincides with the set of fixed points which represent

the equivariant cohomology of the instanton moduli space. This observation was essential

in the proof of the AGT conjecture elaborated in [12]. In addition, the presence of these

algebras reflects the integrable nature of the BPS sector of the gauge theory. It led to

the construction of R and T matrices satisfying the standard RT T relation of quantum

integrable systems [19–22].

The main focus of our previous works [10, 11] was the derivation of the qq-characters

from SHc/DIM algebras. These particular correlators of the gauge theory were first in-

troduced in [23], and further studied in [24–28]. They have the essential property to be

polynomials, thus defining a resolvent for the matrix model representing the localized gauge

partition function. These quantities generalize the q-characters of quantum groups defined

in [29, 30], and naturally associated to the T -operators of integrable systems. In [10, 11],

we have shown that the representation theoretical properties of the Gaiotto state and the

intertwiner associated with bifundamental matter are directly translated into the regularity

property of qq-characters.
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A different construction of qq-characters has been presented by Kimura and Pestun

(KP) in [31] (see also [32]). While both constructions are based on quantum W-algebras,

the action of these algebras is seemingly different. In our approach, a copy of the DIM

algebra is associated to each node of the quiver diagram, so that a quantum Wm algebra is

attached to each gauge group U(m). On the other hand, the quiver W-algebras constructed

in [31] is based on a Lie algebra whose Dynkin diagram coincides with the gauge theory

quiver. In a sense, the two approaches are S-dual to each-other: in our approach the rank

is the number of D-branes while it is the number of NS5-branes in KP’s work. On the

algebraic level, the S-duality is believed to be realized by Miki’s automorphism [14] that

exchanges the labels (l1, l2) of DIM representations, here identified with the (p, q) charge

of the branes.1

It was realized in [33, 34] that the two different pictures can be better understood

using the refined topological vertex. Indeed, in [35], Awata, Feigin and Shiraishi (AFS)

have reconstructed this object using the generators of the DIM algebra where it plays the

role of an intertwiner between vertical (0,m) (associated to m D-branes) and horizontal

(1, n) (associated to a NS5-brane bound to n D-branes) representations [35]. Hence, like

a string junction, it interpolates between the representations associated to different brane

charges. In this way, different representations of DIM algebra can be combined to form a

representation web [33, 34] that can be identified with the (p, q)-web diagram engineering

the gauge theory.2 This presentation clarifies the two approaches for the construction of

qq-characters: KP employed DIM generators in horizontal representations [36] while we

used similar generators but in vertical representations [16, 33].

The purpose of this paper is to propose a unified method to build qq-characters and

prove their regularity property. As suggested in [33], the method is based on insertions

of DIM operators in the horizontal representations. However, it also makes use of the

commutation of vertical actions which was instrumental in our previous derivation [11].

The link is made by a set of lemmas that intertwines horizontal and vertical actions on AFS

intertwiners. The AFS lemmas can be regarded as an uplift in the horizontal representation

space of the relation characterizing Gaiotto state and vertical intertwiners obtained in [11].

With this new method, we derive all the (higher) qq-character of linear quiver theories

with U(m) gauge groups, thus largely extending our previous results that were restricted

to fundamental qq-characters. In order to achieve this general treatment of quivers, several

new insights were necessary. First, we generalized the AFS intertwiner to higher level m

of vertical representations, allowing us to treat gauge groups of arbitrary rank. Most of

the previous considerations, including results on integrability, were restricted to gauge

groups of rank one or two. Then, in order to build higher qq-characters, a Weyl reflection

acting on (tensor products of) DIM generators has been introduced. Called quantum Weyl

1Due to a different choice of conventions for DIM representations, the usual representation of (p, q)-

branes webs is rotated by 90 degrees, with the NS charge q in the horizontal direction and the Ramond

(D-brane) charge p in the vertical one. Thus, a brane with charge (p, q) corresponds to a representation of

label (q, p).
2In [33, 34] this structure was called a network matrix model. However, since we do not use the matrix

model presentation of partition functions, we prefer not to employ this terminology here.
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transformation, it keeps the qq-character invariant. In practice, it is used to build operators

commuting with a T -operator, the vacuum expectation value (vev) of which reproduces

the instanton partition function. This commutation property is directly related to the

regularity property of the qq-character, thus providing another link with the manifestation

of integrability in supersymmetric gauge theories.

This paper is organized as follows. The second section provides the main properties

of DIM algebra and its vertical and horizontal representations. We put some emphasis

on the various duality properties, including the SL(2,Z) automorphisms. This section also

includes a brief reminder on N = 1 5d gauge theories. The third section starts from the

definition of the AFS intertwiners and proposes a generalization obtained from horizontal

composition. The generalized intertwiners simplify the computation of amplitudes associ-

ated to the brane-web. In sections 3.3 and 3.4, these intertwiners are used to reconstruct

the Gaiotto state and the vertical intertwiner built in [11]. In the fourth section, the hor-

izontal intertwiner is defined by taking vertical contractions of generalized AFS vertices.

It is shown that it commutes with the co-product of DIM generators. The quantum Weyl

transformation is defined in the section 4.2 as an operation on the tensor product of gener-

ators. It leads to a systematic method to construct qq-character which is the main result

of the paper. Finally, the details of computations can be found in the appendix, along with

several useful identities.

2 DIM algebra and representations

2.1 DIM algebra

The Ding-Iohara-Miki algebra E [13, 14] can be presented in terms of the Drinfeld currents

x±(z) =
∑
k∈Z

z−kx±k , ψ+(z) =
∑
k≥0

z−kψ+
k , ψ−(z) =

∑
k≥0

zkψ−−k. (2.1)

The modes x±k and ψ±±k are usually associated to points of a Z⊗2-lattice representing the

elements of the algebra (see figure 1). We assign Z⊗2-degree for generators as deg(x±n ) =

(±1, n), deg(ψ±n ) = (0, n). The notations and conventions used here are mostly borrowed

from [21], up to minor differences in the normalization of operators. The q-commutation

relations satisfied by the currents read

[ψ±(z), ψ±(w)] = 0, ψ+(z)ψ−(w) =
g(γ̂w/z)

g(γ̂−1w/z)
ψ−(w)ψ+(z)

ψ+(z)x±(w) = g(γ̂∓1/2w/z)∓1x±(w)ψ+(z), ψ−(z)x±(w)=g(γ̂∓1/2z/w)±1x±(w)ψ−(z)

x±(z)x±(w) = g(z/w)±1x±(w)x±(z)

[x+(z), x−(w)] =
(1− q1)(1− q2)

(1− q1q2)

(
δ(γ̂−1z/w)ψ+(γ̂1/2w)− δ(γ̂z/w)ψ−(γ̂−1/2w)

)
, (2.2)

with γ̂ a central element. This algebra has two independent parameters encoded in the

qα with α = 1, 2, 3 under the relation q1q2q3 = 1. It is sometimes more convenient to use

instead the parameters q = q2 and t = q−1
1 , in particular in the context of representations
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Figure 1. DIM generators represented on a Z⊗2lattice where the S-transformation of the modular

group SL(2,Z) acts a 90 degrees rotation.

over Macdonald polynomials. We will also introduce the notation γ = q
1/2
3 = t1/2q−1/2.

These parameters appear through the functions

g(z) =
∏

α=1,2,3

1− qαz
1− q−1

α z
=

S(z)

S(q3z)
, S(z) =

(1− q1z)(1− q2z)

(1− z)(1− q−1
3 z)

, (2.3)

that obey the unitarity properties g(z)g(1/z) = 1 and S(γz) = S(γ/z) necessary to the

consistency of the algebraic relations (2.2). Since these functions arise from the exchange

of two operators, they are sometimes called scattering factors.

In this paper, representations of level (l1, l2) ∈ Z× Z with a weight u will be denoted

ρ
(l1,l2)
u or sometimes simply (l1, l2)u. The levels are defined through the representations of

the central element γ̂ and the zero modes ψ±0 ,

ρ(l1,l2)
u (γ̂) = q

l1/2
3 ,

ρ
(l1,l2)
u (ψ−0 )

ρ
(l1,l2)
u (ψ+

0 )
= ql23 . (2.4)

Here, we will focus on the so-called vertical representations (0,m) and horizontal represen-

tations (1, n). The intertwiner defined in the next section relates three different represen-

tations, it will be portrayed as a three-legged vertex. Products and tensor products of such

operators can be described using diagrams resembling the (p, q)-web diagrams of brane

configurations in type IIB theory, they will be called representation webs. Note however,

that here diagrams are rotated by 90◦, such that vertical lines (0,m) are associated to m

D5 branes and the horizontal line (1, 0) to a NS5 brane. Note also that we will take no care

of the precise slope of horizontal lines: vertical lines in the diagrams will always refer to a

vertical representation (0,m), while horizontal and inclined lines can represent any of the

horizontal representations (1, n). To avoid confusion, the representation space associated

to each line will be explicitly written on every figure.
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The DIM algebra is a Hopf algebra with the following coproduct:

∆(x+(z)) = x+(z)⊗ 1 + ψ−(γ̂
1/2
(1) z)⊗ x+(γ̂(1)z)

∆(x−(z)) = x−(γ̂(2)z)⊗ ψ+(γ̂
1/2
(2) z) + 1⊗ x−(z)

∆(ψ+(z)) = ψ+(γ̂
1/2
(2) z)⊗ ψ+(γ̂

−1/2
(1) z)

∆(ψ−(z)) = ψ−(γ̂
−1/2
(2) z)⊗ ψ−(γ̂

1/2
(1) z)

(2.5)

with ∆(γ̂) = γ̂ ⊗ γ̂, γ̂(1) = γ̂ ⊗ 1 and γ̂(2) = 1⊗ γ̂.

2.2 Quantum torus and DIM

Before we start the detailed explanation of DIM representations, it is illuminating to men-

tion the simplest representation with level (0, 0) which may be identified with the symmetry

of a quantum mechanical system. We consider the noncommutative torus generated by the

two operators U, V satisfying

V U = q1UV. (2.6)

where q1 is not a root of unity. The enveloping algebra of U, V is generated by the elements

wrs = U rV s identified as the degree (r, s) generators defining the algebra

[wr1s1 , wr2s2 ] = (qs1r21 − qs2r11 )wr1+s1,r2+s2 . (2.7)

This algebra has a SL(2,Z) duality realized as the redefinition of the basis, U ′ =

AUaV b, V ′ = BU cV d (a, b, c, d ∈ Z) which satisfies V ′U ′ = q1U
′V ′ as long as ad− bc = 1.3

In particular, the S-transformation is realized as S : (U, V )→ (V,U−1).

In this simple set-up, the DIM algebra with (l1, l2) = (0, 0) is realized as

ρ(0,0)
u (x+(z)) =

1

1− q1
Uδ(V/z), ρ(0,0)

u (x−(z)) =
∑
n

x−n z
−n =

−1

1− q−1
1

δ(V/z)U−1,

ρ(0,0)
u (ψ±(z)) =

(1−(q2V/z)±1)(1−(q3V/z)±1)

(1−(V/z)±1)(1−(q−1
1 V t/z)±1)

= exp

( ∞∑
r=1

1

r
(1− q±r2 )(1− q±r3 )V ±rz∓r

)
(2.8)

with δ(z) =
∑

n∈Z z
n. In this representation, the expression (2.5) of the coproduct simplifies

as ρ
(0,0
u (γ̂) = 1. In the vector representation, the generators U, V are represented on a basis

labeled by a single integer,

ρ(0,0)
u (U)|u, i〉 = |u, i+ 1〉, ρ(0,0)

u (V )|u, i〉 = uqi1|u, i〉 , (2.9)

where u is the weight of the representation.

3A different but similar duality structure is realized by writing q1 =: e2πiτ1 and defining a SL(2,Z)

modular transformation for τ1: τ ′1 = aτ1+b
cτ1+d

. Then, there exists two generators Ũ , Ṽ they satisfy the

quantum torus algebra with q′1 = e2πiτ
′
1 and that commute with the original generators [UnV m, ŨrṼ s] =

0. This duality is known as the Morita equivalence, it plays a fundamental role in non-commutative

geometry [37, 38], and is also relevant in more recent works such as [39].
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It is of some interest to compare the DIM algebra with the loop algebra ĝ of a Lie

algebra g. The generators of ĝ (without the central extension) are defined in terms of the

generator ta of the Lie algebra as Jan = taUn where U is a formal variable. DIM algebra

is a natural generalization of this setting in which two formal variables are introduced. It

sometimes referred to as a two-loop symmetry. The algebra (2.7) depending on a single

deformation parameter q1 can be extended by two central charges, c1, c2 [14],

[wr1s1 , wr2s2 ] = (qs1r21 − qs2r11 )wr1+s1,r2+s2 + δr1+r2δs1+s2(r1c1 + s1c2)qr1s11 . (2.10)

In this formulation, the SL(2,Z) symmetry is manifest, and the S-transformation is realized

on the central charges as S : c1 → c2, c2 → −c1. The introduction of a second quantization

parameter q2 leads to the DIM algebra [14]. One may identify the levels (l1, l2) with the

representation of the two central charges, ρ
(l1,l2)
u (c1) = ql23 , ρ

(l1,l2)
u (c2) = ql13 .

2.3 Vertical (0,m) representation

The vertical representation (0, 1) has been formulated in [15, 16], it is equivalent to the

rank m representation studied in [11] with m = 1 and up to a normalization. Here we

employ conventions similar to the ones used in [11], but with different states normalization

(the change of the convention is summarized in appendix A).

The (0,m) representations depend on a m-vector of weights ~v = (v1, · · · vm) and act

on a space spanned by states in one-to-one correspondence with m-tuple Young diagrams
~λ = (λ(1), · · · , λ(m)),

ρ
(0,m)
~v (x+(z))|~v,~λ〉〉 = γm−1z−(m−1)

∑
x∈A(~λ)

δ(z/χx) Res
z=χx

1

zY~λ(z)
|~v,~λ+ x〉〉,

ρ
(0,m)
~v (x−(z))|~v,~λ〉〉 = γ−2m+1zm−1

∑
x∈R(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(zq−1
3 )|~v,~λ− x〉〉,

ρ
(0,m)
~v (ψ±(z))|~v,~λ〉〉 = γ−m

[
Ψ~λ

(z)
]
± |~v,~λ〉〉.

(2.11)

where A(~λ) and R(~λ) denote respectively the set of boxes that can be added to or removed

from the set of the Young diagrams λ1, · · · , λm. These expressions involve the functions

Ψ~λ
(z) and Y~λ(z) that depend on a m-tuple Young diagram. Their expression can be

factorized in terms of individual Young diagram contributions,

Y~λ(z) =

m∏
l=1

Yλl(z), Ψ~λ
(z) =

m∏
l=1

Ψλ(l)(z), (2.12)

Ψλ(z) =
Yλ(zq−1

3 )

Yλ(z)
, Yλ(z) =

(
1− v

z

)∏
x∈λ

S(χx/z) =

∏
x∈A(λ) 1− z−1χx∏

x∈R(λ) 1− (zq3)−1χx
, (2.13)

Here, each box x ∈ ~λ is defined by three integer labels (l, i, j) such that (i, j) indicates the

position of the box in λ(l). The associated box coordinate reads χx = vlq
i−1
1 qj−1

2 .

As in [11], it will be important to add a set of diagonal operators Y±(z) such that

Y±(z)|~v,~λ〉〉 =
[
Y~λ(z)

]
± |~v,~λ〉〉 . (2.14)

– 7 –
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The notation [· · · ]± refers to an expansion in powers of z∓1 of the quantity inside the

brackets. They will be used to define the qq-character.

The action on the bra states will be referred to as the dual vertical representation. In

this representation, the roles of x+ and x− are exchanged:

〈〈~v,~λ|ρ̂(0,m)
~v (x+(z)) = −γ−1

∑
x∈R(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(zq−1
3 )〈〈~v,~λ− x|,

〈〈~v,~λ|ρ̂(0,m)
~v (x−(z)) = −γ−m+1

∑
x∈A(~λ)

δ(z/χx) Res
z=χx

1

zY~λ(z)
〈〈~v,~λ+ x|,

〈〈~v,~λ|ρ̂(0,m)
~v (ψ±(z)) = γ−m

[
Ψ~λ

(z)
]
± 〈〈~v,~λ|.

(2.15)

and ρ̂
(0,m)
v (γ̂) = 1. Strictly speaking, this is not a representation of the DIM algebra

because some of the q-commutation relations are no longer satisfied. Instead, it should be

seen as a representation on the dual states 〈〈~v,~λ| that are orthogonal to the basis |~v,~λ〉〉,4

〈〈~v,~λ|~v,~λ′〉〉 = δ~λ,~λ′ a
−1
~λ
, (2.16)

such that we have the property(
〈〈~v,~λ|ρ̂(0,m)

~v (e)
)
|~v,~λ′〉〉 = 〈〈~v,~λ|

(
ρ

(0,m)
~v (e)|~v,~λ′〉〉

)
(2.17)

for any element e of the DIM algebra. The norm of the states involves the coefficients

a~λ which will play an important role in the construction of instanton partition functions.

They are defined in terms of the vector multiplet contribution to the instanton partition

function Zvect.(~v,~λ) as follows,

a~λ = Zvect.(~v,~λ)

m∏
l=1

(−γvl)−|
~λ|
∏
x∈~λ

χx. (2.18)

The vector contribution Zvect.(~v,~λ) will be defined in the section 2.5 below, it is expressed

in terms of the Nekrasov factor (2.33) as a result of localization. As shown in [11, 40], the

Nekrasov factor obeys a set of discrete Ward identities. Consequently, the coefficients a~λ
also obey similar identities. They can be written in terms of the function Y~λ(z) as

a~λ+x

a~λ
=

1− q1q2

(1− q1)(1− q2)
γmχ−mx Res

z=χx

1

Y~λ(z)Y~λ(zq−1
3 )

,

a~λ−x
a~λ

= − 1− q1q2

(1− q1)(1− q2)
γ−mχm−2

x Res
z=χx

Y~λ(z)Y~λ(zq−1
3 ).

(2.19)

4Due to the change of states normalization performed in appendix A, and since the original states were

orthonormal, the coefficient a~λ is expected to be proportional to N (~λ)−2. The additional factors are chosen

to simplify the formulation of the AFS lemmas below.
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2.4 Horizontal (1, n) representations

Horizontal representations [36] of level (1, n) act as a vertex operator algebra in the Fock

space of q-bosonic modes with the commutation relations5

[ak, a−l] = k
1− qk

1− tk
δk,l, k, l > 0. (2.21)

The representations involve the positive/negative modes of the vertex operator

V±(z) = exp

(
∓
∞∑
k=1

1− t±k

k
z∓ka±k

)
, (2.22)

and can be defined in terms of the following operators:

η(z) = V−(z)V+(z), ξ(z) = V−(γz)−1V+(z/γ)−1, ϕ±(z) = V±(γ±1/2z)V±(γ∓3/2z)−1.

(2.23)

Explicitly, we have

η(z) = exp

( ∞∑
k=1

1− t−k

k
zka−k

)
exp

(
−
∞∑
k=1

1− tk

k
z−kak

)
,

ξ(z) = exp

(
−
∞∑
k=1

1− t−k

k
γkzka−k

)
exp

( ∞∑
k=1

1− tk

k
γkz−kak

)
,

ϕ+(z) = exp

(
−
∞∑
k=1

1− tk

k
(1− γ2k)γ−k/2z−kak

)
,

ϕ−(z) = exp

( ∞∑
k=1

1− t−k

k
(1− γ2k)γ−k/2zka−k

)
.

(2.24)

Useful commutation relations involving these operators are presented in appendix B. The

horizontal representation (1, n)u reads

ρ(1,n)
u (x+(z)) = uγnz−nη(z), ρ(1,n)

u (x−(z)) = u−1γ−nznξ(z),

ρ(1,n)
u (ψ+(z)) = γ−nϕ+(z), ρ(1,n)

u (ψ−(z)) = γnϕ−(z), (2.25)

and ρ
(1,n)
u (γ̂) = γ. Similarly, it is possible to define the representation (−1, n)u using the

same vertex algebra,

ρ(−1,n)
u (x+(z)) = u−1γnznξ(z−1), ρ(−1,n)

u (x−(z)) = uγ−nz−nη(z−1),

ρ(−1,n)
u (ψ+(z)) = γ−nϕ−(z−1), ρ(−1,n)

u (ψ−(z)) = γnϕ+(z−1), (2.26)

with ρ
(−1,n)
u (γ̂) = γ−1.

5Here we use parameters q, t instead of qα to follow the convention of [35]: q = q2, t = q−1
1 . The oscillator

modes can be represented on symmetric polynomials as follows:

ρMacdonald(a−k) = pk, ρMacdonald(ak) = k
1− qk

1− tk
∂

∂pk
, (2.20)

where pk denotes the power-sum symmetric polynomials.
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By definition, the vacuum state |∅〉(1,n)u is annihilated by the positive modes ak, and

ϕ+(z)|∅〉(1,n)u = |∅〉(1,n)u . The dual vacuum state (1,n)u〈∅| is annihilated by negative modes,

and (1,n)u〈∅|ϕ−(z) = (1,n)u〈∅|. The normal ordering, denoted : · · · :, corresponds to write

all the positive modes on the right, and all the negative modes on the left. Correlators of

operators Oi(zi) acting in the Fock space are defined as the vacuum expectation values

〈O1(z1) · · · ON (zN )〉 = (1,n)u〈∅|O1(z1) · · · ON (zN )|∅〉(1,n)u , (2.27)

with the radial ordering |z1| > |z2| > · · · > |zN |.

2.5 Reminder on 5d N = 1 instanton partition functions

The quiver Super Yang-Mills gauge theories with N = 1 in 5d reduced on S1 are charac-

terized by a simply laced Dynkin diagram Γ. Each node i ∈ Γ is associated to a vector

multiplet with gauge group U(mi), and an exponentiated gauge coupling qi. To each edge

< ij >∈ Γ corresponds a bifundamental matter multiplet of mass µij that transforms un-

der the gauge group U(mi)×U(mj). In addition, a Chern-Simons term of level κi coupled

to the gauge group U(mi) can be introduced at each node i. Thus, each node bears two

integer labels (mi, κi) with mi > 0 that will later be related to the levels (l1, l2) of DIM

representations. Extra matter fields in the fundamental/antifundamental representation of

the gauge group U(mi) can also be attached to each node, and the corresponding masses

will be denoted µ
(f)
i,j with j = 1 · · · fi, and µ

(af)
i,j with j = 1 · · · f̃i respectively.

The expression of the instanton contribution to the (K-theoretic) partition function

reflects the particle content of the theory. It is written as a sum over mi-tuple Young

diagrams ~λi, and each term is factorized into vector, Chern-Simons, (anti)fundamental

and bifundamental contributions:

Zinst.[Γ] =
∑
{~λi}

∏
i∈Γ

q
|~λi|
i Zvect.(~vi, ~λi)ZCS(κi, ~λi)Zfund.(~µ

(f)
i ,
~λi)Za.f.(~µ

(af)
i , ~λi)

×
∏

<ij>∈Γ

Zbfd.(~vi~λi, ~vj , ~λj |µij), (2.28)

where the (exponentiated) Coulomb branch vevs ~vi are related to the vacuum expectation

value of the scalar field in the gauge multiplets. From this expression, it is possible to

define a normalized trace of functions depending on the realization of the set of (tuple)

Young diagrams {~λi} as follows,

〈
F [{~λi}]

〉
gauge

=
1

Zinst.[Γ]

∑
{~λi}

F [{~λi}]
∏
i∈Γ

q
|~λi|
i Zvect.(~vi, ~λi)ZCS(κi, ~λi)Zfund.(~µ

(f)
i ,
~λi)

×Za.f.(~µ
(af)
i , ~λi)

∏
<ij>∈Γ

Zbfd.(~vi~λi, ~vj , ~λj |µij). (2.29)

This operation will be very useful in order to express the qq-characters of the gauge theory.
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The bifundamental contribution with U(m)× U(m′) gauge group can be decomposed

as a product of Nekrasov factors,6

Zbfd.(~v,~λ,~v
′, ~λ′|µ) =

m∏
l=1

m′∏
l′=1

N(vl, λ
(l), µv′l′ , λ

(l′)′). (2.31)

Various expressions of the Nekrasov factors have been written, the one given here has been

obtained by solving the discrete Ward identities derived in [11, 40],

N(v1, λ1, v2, λ2) =
∏
x∈λ1
y∈λ2

S

(
χx
χy

)
×
∏
x∈λ1

(
1− χx

q3v2

)
×
∏
x∈λ2

(
1− v1

χx

)
. (2.32)

The vector multiplet contribution is expressed in terms of the Nekrasov factors as follows:

Zvect.(~v,~λ) =

m∏
l,l′=1

1

N(vl, λ(l), vl′ , λ(l′))
. (2.33)

Finally, the Chern-Simons and fundamental/antifundamental contributions are expressed

in terms of a simple product over all boxes in the Young diagrams,

ZCS(κ,~λ) =
∏
x∈~λ

(χx)κ , Zfund.(~µ
(f)
i ,
~λi) =

∏
x∈~λ

fi∏
j=1

(
1− χxq−1

3 (µ
(f)
i,j)
−1
)
,

Za.f.(~µ
(af)
i , ~λi) =

∏
x∈~λ

f̃i∏
j=1

(1− µ(af)
i,j χ

−1
x ). (2.34)

The instanton partition functions defined in (2.28) are invariant under the rescaling

~vi → αi~vi, qi → α−κii qi, ~µ
(f)
i → αi~µ

(f)
i , ~µ

(af)
i → αi~µ

(af)
i and µij → (αi/αj)µij . This

invariance can be used to set the bifundamental masses to a specific value which simplifies

the algebraic formulation developed here. Thus, from now on, all bifundamental masses

will be set to µij = γ−1.

These N = 1 supersymmetric gauge theories can be engineered in type IIB string

theory [1]. Linear quiver gauge theories with U(m) gauge groups are obtained from webs

of (p, q)-branes that are bound states of p D5 branes and q NS5 branes [2, 3]. The branes

occupy the dimensions 01234 corresponding to the space-time of the 5d gauge theory, plus

an extra one-dimensional object (line) in the 56-planes. In order to preserve supersymme-

try, the lines have the slope ∆x6/∆x5 = p/q, so that the world-volume of D5-branes with

charge (1, 0) occupy the dimensions 012346, i.e. they are vertical segments in the 56-plane.

On the other hand, NS5 branes of charge (0, 1) are extended in the 012345 directions, and

correspond to an horizontal line in the 56-plane. A representation of DIM algebra has been

6The Nekrasov factors enjoy the property

N(v2, λ2, v1q
−1
3 , λ1) = (−v1)−|λ2|(−q3v2)|λ1|

∏
x∈λ1

χ−1
x

∏
x∈λ2

χx N(v1, λ1, v2, λ2). (2.30)
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associated to each brane of the (p, q)-web diagram [33, 34]. Representations of level (l1, l2)

correspond to (l2, l1)-branes so that horizontal (1, 0) representations are associated to NS5

branes and vertical (0, 1)-representations to D5 branes. The topological vertex play the

role of creation/annihilation operators for the (p, q)-branes, they will be identified with the

generalized AFS intertwiners in the next section.

2.6 Discrete symmetries of DIM algebra

In [14], Miki has introduced an automorphism of the DIM algebra that he denoted Ψ. Since

it can be identified with the action of S-duality on the (p, q)-branes, it will be denoted by S
here. This automorphism leaves the DIM algebra invariant, but map degree (r, l) generator

into degree (l,−r) and representations of different levels:

S · (l1, l2) = (−l2, l1). (2.35)

Although the explicit transformation of the modes is rather complicated (it can be found

in [14]), the square of the automorphism takes a rather simple form: ψ+
n ↔ ψ−−n, x±n ↔ x∓−n

and γ̂ ↔ γ̂−1, or in terms of generating series, ψ+(z) ↔ ψ−(1/z) and x±(z) ↔ x∓(1/z).

The action of S2 transforms horizontal representations (1, n)u into the representations

(−1,−n)u, so that ρ
(1,n)
u (S2 · e) = ρ

(−1,−n)
u (e).

By examination of the commutation relations, it is possible to define another transfor-

mation T acting on the Drinfeld currents as

T · x±(z) =

(
γ̂

z

)±1

x±(z), T · ψ±(z) = γ̂∓1ψ±(z), (2.36)

or, in terms of modes,

T · x±k (z) = γ̂±1x±k∓1, T · ψ±k = γ̂∓1ψ±k . (2.37)

Again, the DIM algebra is invariant, but representations of different levels are mapped to

each-other,

T · (l1, l2) = (l1, l1 + l2). (2.38)

Vertical representations are invariant under the action of T , and horizontal representations

of level n are mapped to horizontal representations of level n + 1. The operations S and

T obey the properties S4 = 1 and (ST )3 = 1, so that they generate a group of SL(2,Z)

transformations. To some extent, this group can be identified with the modular group of

type IIB string theory. In particular, the Miki automorphism S would correspond to the

S-duality that rotates the (p, q)-web diagrams by 90◦, exchanging NS5 and D5 branes.

The second duality symmetry in DIM algebra is permutation of three parameters

q1, q2, q3, which is manifest at the level of algebra. This S3 symmetry is sometimes re-

ferred to as a “triality” [18] in connection with higher spin gravity [41]. We note that

the representations of DIM are constructed with the reference to q1, q2. In this sense, the

exchange between q1 and q2 is manifest. In 2D CFT language, such permutation is realized

as β ↔ 1/β where β parametrizes the central charge c = (n − 1)(1 − Q2n(n + 1)) with
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Q =
√
β −
√
β
−1

. In terms of the vertical representation basis, it is realized by taking the

transpose of each Young diagram, λ↔ λ′. The other transformations, such as q1 ↔ q3, are

less obvious. When the parameters are suitably chosen, they are identified with the level-

rank duality [41–43] where the correspondence between basis is also more involved [18].

While the SL(2,Z) transformation may be regarded as a M-theoretical target space duality

since it interchanges D-brane and NS-brane, the S3 duality may be interpreted as a world-

sheet symmetry since it acts on the Hilbert space of equivalent 2D conformal field theories.

From the viewpoint of super Yang-Mills, q1, q2 represent the graviphoton background in

the Euclidean planes (01) and (23). In this sense, we sometime denotes the symmetry

q1 ↔ q2 as σ(01)(23). On the other hand q1 ↔ q3 does not have an immediate woldvolume

interpretation.

Another reflection symmetry σ5 is obtained by replacing the parameters qα by their

inverse, effectively exchanging S(z) with S(q3z), and g(z) with g(z)−1 = g(z−1).7 The

transformation of DIM generators resemble the action of S2, except that x+ and x− are

not exchanged: ψ±(z)↔ ψ∓(1/z), x±(z)↔ x±(1/z), and the central parameter γ̂ remains

invariant. Thus, representations of level (l1, l2) are mapped to representations of level

(−l1, l2) and vertical representations are left invariant.The σ5 reflection of vertical (0,m)

representations follows from the transformation of the functions

Y~λ(z)→ z−m
m∏
l=1

(−vl)−1 Y~λ(z−1), Ψ~λ
(z)→ qm3 Ψ~λ

(z−1), (2.39)

provided that the weights transform as vl → 1/vl so that χx → 1/χx for x ∈ ~λ. On the other

hand, (1, n)u representations are sent to (−1, n)u representations so that σ5 · ρ(1,n)
u (e) =

ρ
(−1,n)
u (σ5 · e) where the transformation σ5 sends the background parameters qα → q−1

α

together with the modes ak → tkγ|k|ak and the weights u→ γ2nu−1. In this manner, η(z)

and ξ(z) are exchanged but ϕ±(z) remain invariant.

The action of the σ5 symmetry on instanton partition functions is closely related to

the reflection symmetry studied in [45], where it relates two dual TQ equations in the

Nekrasov-Shatashvili limit. However, here the Coulomb branch vevs behave differently,

since vl → 1/vl. Vector and Chern-Simons contributions transform as

Zvect.(~v,~λ)→ q
−m|~λ|
3 Zvect.(~v,~λ), ZCS(κ,~λ)→ ZCS(−κ,~λ), (2.40)

and the A1 pure U(m) partition function is invariant provided that the sign of the Chern-

Simons level is flipped, and the extra q3-factor is absorbed in the transformation q→ qm3 q.

On the other hand, the bifundamental contribution transforms into itself, but with the two

nodes exchanged:

Zbfd.(~v1, ~λ1, ~v2, ~λ2|µ)→ Zbfd.(~v2, ~λ2, ~v1, ~λ1|q−1
3 µ′) (2.41)

7Obviously, the two reflections σ(01)(23) and σ5 commute. The composition σ(01)(23)σ5 acts on the DIM

parameters as the exchange q1 ↔ q−1
2 , or t↔ q. This is a well-known symmetry in the context of Macdonald

polynomials, see for instance [44].
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where µ′ is the reflection of µ (µ′ = γ when µ = γ−1). As a result, the σ5 symmetry

for the instanton partition function of linear Ar quiver consists in reflecting the order of

the nodes 123 · · · r → r(r − 1) · · · 1. Hence, this S2-symmetry can be interpreted as the

reflection symmetry of the (p, q)-web diagram with respect to the horizontal (x5) axis. In

fact, the symmetry σ5 also acts as a reflection along the horizontal axis in the graphical

representation of the DIM modes x±n and ψ±n (see figure 1).

3 Generalized AFS intertwiners

3.1 Definition of the generalized intertwiners

The AFS intertwiner operator has been introduced in [35], it generalizes the free fermion

presentation [46] of the topological string vertex to the refined case. It is built over bosonic

fields that coincide with those introduced in the horizontal representation of DIM algebra,

thus providing a direct link with the representation theory. The original intertwiner acts

in the tensor product of the representation spaces (0, 1)v and (1, n)u, and takes values

in the space (1, n + 1)−uv. The vertical space (0, 1)v is spanned by states in one to one

correspondence with Young diagrams λ. Hence, the intertwiner is a vector in this space

with index λ,

Φ(n)[u, v] =
(

Φ
(n)
λ [u, v]

)
λ
, Φ

(n)
λ [u, v] : (1, n)u → (1, n+ 1)−uv. (3.1)

Both horizontal spaces (1, n)u and (1, n+1)−uv can be identified with the same Fock space

of q-bosonic modes, and the elements Φ
(n)
λ are expressed in terms of the modes as follows:

Φ
(n)
λ [u, v] = tn(λ, u, v) : Φ∅(v)

∏
x∈λ

η(χx) : . (3.2)

The vacuum component is defined in terms of a new vertex operator

Φ∅(v) = Ṽ−(v)Ṽ+(v), Ṽ±(z) = exp

(
±
∞∑
k=1

1

k

z∓k

1− q∓k
a±k

)
, (3.3)

which is related to the previous operator V±(z) defined in (2.22) as

V±(z) = Ṽ±(q1z)Ṽ±(q2z)Ṽ±(z)−1Ṽ±(q−1
3 z)−1. (3.4)

In fact, the vacuum operator can be obtained as a (normal-ordered) product of η(χx)

factors associated to an infinite Young diagram since

Ṽ±(v) =

∞∏
i,j=1

V±(vqi−1
1 qj−1

2 )−1 ⇒ Φ∅(v) =:

∞∏
i,j=1

η(vqi−1
1 qj−1

2 )−1 : . (3.5)

Thus, this operator is associated to the perturbative part of the partition function, ex-

tending the arguments developed in [47] for the degenerate limit relevant to 4d gauge

theories. Indeed, the prefactors obtained from the normal ordering of two vacuum inter-

twiner and involving the function G(z) (defined in appendix B) should be interpreted as
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perturbative (one loop) contributions to the gauge theory partition function. However, to

keep our arguments simple, we will simply neglect these factors and no longer refer to this

interpretation here.

The normalization factor tn(λ, u, v) is the vev of the operator Φ
(n)
λ , i.e. the correlator〈

Φ
(n)
λ [u, v]

〉
. It is chosen in order to recover the exact form of the AFS relations presented

below. Its explicit expression depends on the form of the vertical representation, which is

slightly different than the original one employed by AFS,

tn(λ, u, v) = (−uv)|λ|
∏
x∈λ

(γ/χx)n+1. (3.6)

The reason for this different choice of normalization is that Awata, Feigin and Shiraishi

were using the action on Macdonald polynomials to investigate the connection with the

refined topological vertex [48]. On the other hand, here we have chosen to keep a certain

symmetry in the way the boxes of Young diagrams enter the formulas. It also makes the

connection with our previous results on qq-characters more explicit [11].

The AFS intertwiner can be generalized to vertical representations of higher level,

Φ(n,m)[u,~v] : (0,m)~v ⊗ (1, n)u → (1, n+m)u′ , with u′ = u

m∏
l=1

(−vl), (3.7)

where the vector in the vertical space (0,m)~v has components labeled by the m-tuple ~λ

that reads

Φ
(n,m)
~λ

[u,~v] = tn,m(~λ, u,~v) :

m∏
l=1

Φ∅(vl)
∏
x∈~λ

η(χx) :, tn,m(~λ, u,~v) = (u′)|
~λ|
∏
x∈~λ

(γ/χx)n+1.

(3.8)

This operator can be constructed as a product of vertical level one intertwiners coupled in

the horizontal channel, as represented in the figure 3. The contraction in the horizontal

channel simply corresponds to a product of operators in the q-boson Fock space. However,

it is only possible if the weights of the intermediate representation spaces coincide. The

resulting product can be normal ordered, and commutations produce a bifundamental

contribution,

Φ
(n+1)
λ2

[u2, v2]Φ
(n)
λ1

[u1, v1] =
G(v1/γ

2v2)

N(v1, λ1, v2, λ2)
: Φ

(n)
λ1

[u1, v1]Φ
(n+1)
λ2

[u2, v2] :, (3.9)

with the requirement u2 = −u1v1. The function G(z) is defined in appendix, formula (B.4).

It only depends on the ratio v1/v2 and thus can be easily discarded. The (vertical) level

m intertwiner is obtained by repeating this operation m times,

Φ
(n+m−1)
λm

[um, vm] · · ·Φ(n+1)
λ2

[u2, v2]Φ
(n)
λ1

[u1, v1]

=

m∏
l,l′=1
l<l′

G(vl/γ
2vl′)

N(vl, λl, vl′ , λl′)
×
∏m
l=1 tn+l−1(λl, ul, vl)

tn,m(~λ, u,~v)
Φ

(n,m)
~λ

[u,~v], (3.10)
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with for each intermediate horizontal space the weight

ul = u
l−1∏
l′=1

(−vl′). (3.11)

The extra factors in (3.10) and in (3.15) below will be absorbed in the replacement of

products of aλ(l) by a~λ in the definition of the gauge theory operators (see the next section).

The AFS dual intertwiner can be generalized in the same way. It is defined as the

operator8

Φ(n,m)∗[u,~v] : (1, n+m)u′ → (1, n)u ⊗ (0,m)~v, with u′ = u

m∏
l=1

(−vl), (3.12)

with vertical components

Φ
(n,m)∗
~λ

[u,~v] = t∗n,m(~λ, u,~v) :
m∏
l=1

Φ∗∅(vl)
∏
x∈~λ

ξ(χx) :,

where: Φ∗∅(v) = Ṽ−(γv)−1Ṽ+(γ−1v)−1, t∗n,m(~λ, u,~v) = (γu)−|
~λ|
∏
x∈~λ

(χx/γ)n.

(3.13)

Again, it can be constructed from the original dual intertwiners of vertical level one as a

product in the horizontal channel using the relation

Φ
(n∗)∗
λ2

[u2, v2]Φ
(n∗+1)∗
λ1

[u1, v1] (3.14)

= G(v1/v2)(−v2)|λ1|(−q3v1)−|λ2|
∏
x∈λ1 χ

−1
x

∏
x∈λ2 χx

N(v2, λ2, v1, λ1)
: Φ

(n∗+1)∗
λ1

[u1, v1]Φ
(n∗)∗
λ2

[u2, v2] :

Repeating the operation m times reproduces the dual intertwiner of level m,

Φ
(n)∗
λm

[um, vm]· · ·Φ(n+m−1)∗
λ1

[u1, v1]=
m∏

l,l′=1
l>l′

(−vl)|λl′ |(−q3vl′)
−|λl|G(vl′/vl)

N(vl, λl, vl′ , λl′)
(3.15)

×
m∏
l=1

∏
x∈λl

χ−m+2l−1
x ×

∏m
l=1 t

∗
n+m−l(λl, ul, vl)

t∗n,m(~λ, u,~v)
Φ

(n,m)∗
~λ

[u,~v],

with the intermediate horizontal weights ul such that ul = −vl+1ul+1 and um = u:

ul = u′
m∏

l,l′=1
l′≤l

(−vl)−1. (3.16)

8Note that we have exchanged the role of u and v with respect to the original definition so that ~v is

always the weight in the vertical space.
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(0,m)~v

(1, n)u

(1, n+m)u′

Φ(n,m)[u,~v]

(1, n+m)u′

(1, n)u

(0,m)~v

Φ(n,m)∗[u,~v]

x5 (NS5)

x6 (D5)

Figure 2. Φ(n,m)[u,~v] and Φ(n,m)∗[u,~v].

(0,m)~v

(1, n)u

(1, n+m)u′

Φ(n,m)[u,~v] ≡

(0, 1)v1 (0, 1)v2 (0, 1)vm

(1, n)u1 (1, n+ 1)u2

(1, n+m)u′

Φ(n)[u1, v1] Φ(n+1)[u2, v2]

Φ(n+m−1)[um, vm]

Figure 3. Construction of the generalized intertwiners Φ(n,m)[u,~v].

Representation web. In order to form a particular web of representations relevant to

a given gauge theory, the AFS interwiners can be coupled in two different ways: either

along the horizontal (1, n) or the vertical (0,m) channels. These two contraction channels

will be discussed below. To anticipate, an horizontal contraction corresponds to the op-

erator product of the q-Heisenberg algebra describing the horizontal representation. On

the other hand, the vertical contraction will be associated a scalar product that generates

the trace of a tensor product. These contractions are represented by joining the vertex

drawn in the figure 2 along horizontal/vertical legs.9 Taking only AFS intertwiners of rank

m = 1, we recover the (p, q)-web diagram giving the brane configuration engineering the

gauge theory. From the NS5 brane perspective, the operators Φ and Φ∗ are interpreted as

creation/annihilation operators of D5 branes since they increase/decrease the horizontal

level by one respectively. Branes charge conservation takes the form of representation lev-

els conservation, with horizontal edges oriented from left to right, and vertical edges from

bottom to top.

The introduction of intertwiners with higher rank allows us to simplify the diagram,

effectively folding it m times in the horizontal direction. In this way, it describes the

creation/annihilation of m coinciding D5 branes in one go. The resulting web diagram

corresponds to the (p, q)-web diagram of the gauge theory where all gauge groups have

been replaced by U(1) groups. Although the information contained in this diagram become

less visible, calculations are much more efficient in this setting.

Mass-deformed intertwiners. For simplicity, the parameters of the gauge theory have

been rescaled in order to set all the bifundamental masses to γ−1. It is however possi-

ble to keep arbitrary masses upon the introduction of mass-deformed intertwiners. This

9We remind the reader that we call “horizontal” every segment that is not vertical.
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can be achieved by using the twisted operators ξµ(z) = V−(zµ−1)−1V+(zq−1
3 µ−1)−1 and

Φ∗µ,∅(v) = Ṽ−(zµ−1)−1Ṽ+(zq−1
3 µ−1)−1 to construct the dual intertwiner Φ

(n,m)∗
µ,~λ

[u,~v]. Then,

the interwiner products of the form Φ1Φ∗2 reproduces the bifundamental contribution cou-

pled to the nodes 1 and 2 with an arbitrary bifundamental mass µ. Since such a deforma-

tion brings only little new insight to our discussion, in the following we will keep all the

bifundamental masses set to γ−1 to lighten the notations.

3.2 AFS lemmas

In [35], a series of commutation relations were derived, involving the intertwiners Φ, Φ∗ and

the DIM generators in the appropriate representations. These relations can be extended

to the generalized intertwiners defined here. They are expressed formally as

ρ
(1,n+m)
u′ (e)Φ(n,m)[u,~v] = Φ(n,m)[u,~v] ·

(
ρ

(0,m)
~v ⊗ ρ(1,n)

u

)
∆(e),

Φ(n,m)∗[u,~v]ρ
(1,n+m)
u′ (e) =

(
ρ(1,n)
u ⊗ ρ(0,m)

~v

)
∆(e) · Φ(n,m)∗[u,~v],

(3.17)

for any element e ∈ E of the algebra. A proof is briefly sketched in appendix C. To be a

little more explicit, the lemmas can be expressed as an action in the q-boson Fock space

of the horizontal representation of DIM generators on the vertical components Φ~λ
of the

intertwiner operators:

ψ+(γ−1/2z)Φ
(n,m)
~λ

[u,~v]− γ−mΨ~λ
(z) Φ

(n,m)
~λ

[u,~v]ψ+(γ−1/2z) = 0 (3.18)

ψ−(γ1/2z)Φ
(n,m)
~λ

[u,~v]− γ−mΨ~λ
(z) Φ

(n,m)
~λ

[u,~v]ψ−(γ1/2z) = 0

x+(z)Φ
(n,m)
~λ

[u,~v]− γ−mΨ~λ
(z)Φ

(n,m)
~λ

[u,~v]x+(z) =

=
(γ
z

)m−1 ∑
x∈A(~λ)

δ(z/χx) Res
z=χx

1

zY~λ(z)
Φ

(n,m)
~λ+x

[u,~v],

x−(γ−1z)Φ
(n,m)
~λ

[u,~v]− Φ
(n,m)
~λ

[u,~v]x−(γ−1z) =

= zm−1γ−2m+1
∑

x∈R(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(zq−1
3 )Φ

(n,m)
~λ−x

[u,~v]ψ+(γ−1/2z).

In these relations, the representation in the horizontal space of the DIM operators has

been omitted: for instance x±(z) reads ρ
(1,n)
u (x±(z)) on the right of the intertwiner Φ~λ

,

and ρ
(1,n+m)
u′ (x±(z)) on the left. For the dual intertwiner, x±(z) is understood to be

ρ
(1,n)
u (x±(z)) on the left and ρ

(1,n+m)
u′ (x±(z)) on the right. Symmetric relations can be

written for the dual intertwiner,

Φ
(n,m)∗
~λ

[u,~v]ψ+(γ1/2z)− γ−mΨ~λ
(z) ψ+(γ1/2z)Φ

(n,m)∗
~λ

[u,~v] = 0 (3.19)

Φ
(n,m)∗
~λ

[u,~v]ψ−(γ−1/2z)− γ−mΨ~λ
(z) ψ−(γ−1/2z)Φ

(n,m)∗
~λ

[u,~v] = 0,

Φ
(n,m)∗
~λ

[u,~v]x+(γ−1z)− x+(γ−1z)Φ
(n,m)∗
~λ

[u,~v] =

= −γ−1
∑

x∈R(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(zq−1
3 ) ψ−(γ−1/2z)Φ

(n,m)∗
~λ−x

[u,~v],
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Φ
z

z

=
Φ

z

Φ∗

z

=
Φ∗

z

z

Figure 4. Representation of the AFS lemma for the intertwiner and its dual, the symbol z denotes

the insertion of an operator e ∈ E .

Φ
(n,m)∗
~λ

[u,~v]x−(z)− γ−mΨ~λ
(z)x−(z)Φ

(n,m)∗
~λ

[u,~v] =

= −γ−m+1
∑

x∈A(~λ)

δ(z/χx) Res
z=χx

1

zY~λ(z)
Φ

(n,m)∗
~λ+x

[u,~v].

In fact, it is possible to re-write the r.h.s. of the relations involving x± in a slightly more

condensed way,

x+(z)Φ
(n,m)
~λ

[u,~v]− γ−mΨ~λ
(z)Φ

(n,m)
~λ

[u,~v]x+(z)=ρ
(0,m)
~v (x+(z)) · Φ(n,m)

~λ
[u,~v], (3.20)

x−(γ−1z)Φ
(n,m)
~λ

[u,~v]− Φ
(n,m)
~λ

[u,~v]x−(γ−1z)=
[
ρ

(0,m)
~v (x−(z))·Φ(n,m)

~λ
[u,~v]

]
ψ+(γ−1/2z),

Φ
(n,m)∗
~λ

[u,~v]x+(γ−1z)− x+(γ−1z)Φ
(n,m)∗
~λ

[u,~v]=ψ−(γ−1/2z)
[
ρ̂

(0,m)
~v (x+(z))·Φ(n,m)∗

~λ
[u,~v]

]
,

Φ
(n,m)∗
~λ

[u,~v]x−(z)−γ−mΨ~λ
(z)x−(z)Φ

(n,m)∗
~λ

[u,~v]= ρ̂
(0,m)
~v (x−(z)) · Φ(n,m)∗

~λ
[u,~v],

where the dot denotes the action in the vertical space. The AFS lemmas are represented

on the figure 4, in a very simplified manner. The insertion of the symbol z denotes the

action of DIM generators e ∈ E , and two insertions the action of the coproduct.

3.3 Gaiotto state

The q-deformed Gaitto state is a Whittaker state for the q-Virasoro (or q-W) alge-

bra [49–53], it is a deformed version of the original Gaiotto state defined for the Vira-

soro algebra [54–57]. The intertwiners Φ and Φ∗ defined in the previous section can be

interpreted as an uplift of the Gaiotto state to the horizontal representation space. In-

deed, the Gaiotto state can be recovered by taking the vacuum expectation value in the

horizontal spaces,

|G,~v〉〉 = (1,n∗)u∗〈∅|Φ
(n∗,m)∗[u∗, ~v]|∅〉(1,n∗+m)u∗′

=
∑
~λ

a~λ

〈
Φ

(n∗,m)∗
~λ

[u∗, ~v]
〉
|~v,~λ〉〉,

〈〈G,~v| = (1,n+m)u′
〈∅|Φ(n,m)[u,~v]|∅〉(1,n)u =

∑
~λ

a~λ

〈
Φ

(n,m)
~λ

[u,~v]
〉
〈〈~v,~λ|,

(3.21)

where we have used the definitions

Φ
(n∗,m)∗
~λ

[u∗, ~v] = 〈〈~v,~λ|Φ(n∗,m)∗[u∗, ~v], Φ
(n,m)
~λ

[u,~v] = Φ(n,m)[u,~v]|~v,~λ〉〉 (3.22)

and introduced the closure relation in the vertical space

1 =
∑
~λ

a~λ |~v,~λ〉〉〈〈~v,~λ|. (3.23)
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The characterization of the Gaiotto state under the transformation x±(z) given in [11]

can be recovered by taking the vev of the AFS lemmas, evaluating the horizontal action

of the generators using the formulas (B.7) given in appendix. As an example, we consider

the action of x+(z) on the Gaiotto state. Using the property (2.17), the vertical action on

the coordinate Φ∗~λ
becomes the dual action on the Gaiotto state, and the vev of the third

relation in (3.20) can be written in the form

ρ
(0,m)
~v (x+(z))|G,~v〉〉 = u∗γnz−n

(
Y−(zq−1

3 )− Y+(zq−1
3 )
)
|G,~v〉〉. (3.24)

where the operators Y±(z) were defined as the diagonal operators in the basis |~λ,~v〉〉 with

the eigenvalues [Y~λ(z)]± consisting of power series in z∓1. In order to compare with the

reference [11], we need to change the normalization and define e(z) = zmρ
(0,m)
~v (x+(z)).

The operator e+(z) is the defined as the projection of e(z) on the strictly negative powers

of z. Assuming n ≤ 0, the operator z−n+mY−(zq−1
3 ) does not contribute to the projection

as its eigenvalues generate only positive powers, and we recover

e+(z)|G,~v〉〉 = −u∗γnP−∞
[
z−n+mY+(zq−1

3 )
]
|G,~v〉〉. (3.25)

where P−∞ as been introduced in [11] as the projection on the strictly negative powers of

an expansion at z → ∞. Similarly, e−(z) is defined as the projection of e(z) on positive

powers of z. Assuming n > m, this time the operator z−n+mY+(zq−1
3 ) does not contribute,

so that10

e−(z)|G,~v〉〉 = u∗γnP+
0

[
z−n+mY−(zq−1

3 )
]
|G,~v〉〉. (3.26)

where P+
0 denotes the projection on positive powers of an expansion around z = 0.

Hence, up to minor differences in states normalization, we recover here the results

previously obtained on the transformation of the Gaiotto state under the DIM symmetry

generators. This identification provides an interpretation for the index κR and κL associ-

ated to the Gaiotto state (and its dual respectively). These two ad hoc parameters were

introduced in [11] in order to reproduce the Chern-Simons coupling κ = κR − κL of the

gauge theory, despite the lack of an interpretation for themselves. From our observation,

it is clear that these parameters are identified with the horizontal level of the intertwiners,

κR = n∗ and κL = n.

3.4 Vertical intertwiner

The contraction of the intertwiner Φ
(n1,m1)
~λ1

[u1, ~v1] with the dual intertwiner Φ
(n2,m2)∗
~λ2

[u2, ~v2]

in the horizontal channel is realized as a product in the q-boson space. This product is

possible only if the two representations in the intermediate space coincide, e.g. if u1 = u2

and n1 = n2 for the product Φ1Φ∗2. In the case of the opposite product Φ∗2Φ1, the condition

is n1 + m1 = n2 + m2 and u′1 = u′2. Both are represented on the figure 5. Using the q-

commutation relations from appendix B, the two products can be normal-ordered and

10When comparing with the results of reference [11], one should keep in mind the difference of notations:

Y+
there(z) = Y+

here(z) but Y−there(z) = νzmY−here(zq
−1
3 ).
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(0,m1)~v1

(1, n1)u1
Φ(n1,m1)[u1, ~v1]

(1, n1 +m1)u′1 = (1, n2 +m2)u′2

Φ(n2,m2)∗[u2, ~v2] (1, n2)u2

(0,m2)~v2

(0,m1)~v1

(1, n)u

Φ(n,m1)[u,~v1]

(1, n+m1)u′1

Φ(n,m2)∗[u,~v2]

(1, n+m2)u′2

(0,m2)~v2

Figure 5. Π(n1,n2,m1,m2)[u1, ~v1, u2, ~v2] and Π(n,m1,m2)∗[u1, ~v1, ~v2].

reproduce the bifundamental contribution (2.31):11

Π
(n1,n2,m1,m2)
~λ1,~λ2

[u1, ~v1, u2, ~v2] =
Zbfd.(~v1, ~λ1, ~v2, ~λ2|γ−1)∏m1
l=1

∏m2
l′=1 G(v

(1)
l /γv

(2)
l′ )

: Φ
(n2,m2)∗
~λ2

[u2, ~v2]Φ
(n1,m1)
~λ1

[u1, ~v1] :

Π
(n,m1,m2)∗
~λ1,~λ2

[u,~v1, ~v2] =
Zbfd.(~v2, ~λ2, ~v1, ~λ1|γ−1)∏m1
l=1

∏m2
l′=1 G(v

(2)
l′ /γv

(1)
l )

: Φ
(n,m2)∗
~λ2

[u,~v2]Φ
(n,m1)
~λ1

[u,~v1] :,

(3.28)

where we have introduced the notations

Π
(n1,n2,m1,m2)
~λ1,~λ2

[u1, ~v1, u2, ~v2] = Φ
(n2,m2)∗
~λ2

[u2, ~v2]Φ
(n1,m1)
~λ1

[u1, ~v1] : (1, n1)u1 → (1, n2)u2 ,

Π
(n,m1,m2)∗
~λ1,~λ2

[u,~v1, ~v2] = Φ
(n,m1)
~λ1

[u,~v1]Φ
(n,m2)∗
~λ2

[u,~v2] : (1, n+m2)u′2 → (1, n+m1)u′1 .

(3.29)

In fact, the quantity Π
(n1,n2,m1,m2)
~λ1,~λ2

[u1, ~v1, u2, ~v2] with nα = mα = 1 has already been

studied in [21] where it has been interpreted as a T-matrix, and it was further shown

that it obeys RTT-relations with the R-matrix canonically associated to the coproduct ∆

defined in (2.5). In this paper, we will not refer to this interpretation anymore, although

we expect it to hold beyond the restricted case studied in [21].

Due to the associativity of the product in the q-boson Fock space, the horizontal

channel contraction satisfies (Φλe)Φ
∗
λ = Φλ(eΦ∗λ) for any element e in the appropriate

representation. This property is depicted on the figure 7 (right). When combined with the

11A priori, this result allows us to write the following formal relation between Π and Π∗,

Π
(n1,n2,m1,m2)
~λ1,~λ2

[u1, ~v1, u2, ~v2] (3.27)

=

(
γm1u′1
u1

)|~λ2| (γm2u′2
u2

)−|~λ1| ∏
x∈~λ1

χm2
x

∏
x∈~λ2

χ−m1
x

∏m1
l=1

∏m2
l′=1 G(v

(2)

l′ /γv
(1)
l )∏m1

l=1

∏m2
l′=1 G(v

(1)
l /γv

(2)

l′ )
Π

(n,m1,m2)∗
~λ1,~λ2

[u,~v1, ~v2],

that could be interpreted as the q-commutation of creation and annihilation operators for D5 branes.

However, this relation does not make sense in the representation formalism of DIM algebra due to the

mismatch of the representation spaces. It only makes sense if all the horizontal representation spaces are

identified as the Fock space for the free bosonic modes. We will not use this relation further in this paper.
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AFS lemmas, it produces some important q-commutation relations:

x+(z)Π~λ1,~λ2
− γ−m1Ψ~λ1

(z)Π~λ1,~λ2
x+(z)

= Φ∗~λ2

(
ρ

(0,m1)
~v1

(x+(z)) · Φ~λ1
)
− ψ−(γ1/2z)

(
ρ̂

(0,m2)
~v2

(x+(γz)) · Φ∗~λ2
)

Φ~λ1

γ−m2Ψ~λ2
(z)x−(z)Π~λ1,~λ2

−Π~λ1,~λ2
x−(z)

= Φ∗~λ2

(
ρ

(0,m1)
~v1

(x−(γz)) · Φ~λ1
)
ψ+(γ1/2z)−

(
ρ̂

(0,m2)
~v2

(x−(z)) · Φ∗~λ2
)

Φ~λ1

γ−m2Ψ~λ2
(z)x−(z)Π∗~λ1,~λ2

−Π∗~λ1,~λ2
x−(z)

=
(
ρ

(0,m1)
~v1

(x−(γz)) · Φ~λ1
)

Φ∗~λ2
ψ+(γ1/2z)− Φ~λ1

(
ρ̂

(0,m2)
~v2

(x−(z)) · Φ∗~λ2
)
,

x+(z)Π∗~λ1,~λ2
− γ−m1Ψ~λ1

(z)Π∗~λ1,~λ2
x+(z)

=
(
ρ

(0,m1)
~v1

(x+(z)) · Φ~λ1
)

Φ∗~λ2
− ψ−(γ1/2z)Φ~λ1

(
ρ̂

(0,m2)
~v2

(x+(γz)) · Φ∗~λ2
)
,

(3.30)

where arguments nα, mα, uα, and ~vα have been omitted for a better readability.

In [58], Carlsson and Okounkov have introduced an operator intertwining between two

vertical (0, 1) representations in order to describe the matter multiplet in the bifundamental

representation of U(1) × U(1). This operator was later generalized to U(m1) × U(m2)

bifundamental representations in [11], and related to the Gaiotto state in the formal limit

m2 → 0. It is defined as an intertwiner between (0,m1) and (0,m2) vertical representation

spaces, obtained as the horizontal vev of the operator Π,

V
(m1,m2)

12 =

m1∏
l=1

m2∏
l′=1

G(v
(2)
l′ /γv

(1)
l )

〈
Φ(n1,m1)∗[u1, ~v1]Φ(n2,m2)[u2, ~v2]

〉
. (3.31)

This operator V
(m1,m2)

12 will be called the vertical interwiner to distinguish it from the

AFS intertwiners. In Toda field theory, V
(m,m)

12 is identified with the degenerate primary

field [40] multiplied by the Carlsson-Okounkov U(1) factor. By definition, its matrix ele-

ments reproduce the bifundamental contribution,

〈〈~v1, ~λ1|V (m1,m2)
12 |~v2, ~λ2〉〉 =

m1∏
l=1

m2∏
l′=1

G(v
(2)
l′ /γv

(1)
l )

〈
Φ

(n1,m1)∗
~λ1

[u1, ~v1]Φ
(n2,m2)
~λ2

[u2, ~v2]
〉

= t∗n1,m1
(~λ1, u1, ~v1)tn2,m2(~λ2, u2, ~v2)Zbfd.(~v2, ~λ2, ~v1, ~λ1|γ−1).

(3.32)

Because of a different choice of conventions here, the role of the two nodes is exchanged.

This is a feature we will encounter again later when discussing qq-characters. We also

observe the presence of the extra prefactor of the form 〈Φ∗1〉 〈Φ2〉. Since the dependence

on the two nodes is factorized, this term can be absorbed in a renormalization of the

basis. Note however that the presence of this prefactor slightly modifies the commutation

relations with the action of DIM generators.

The constraint n1 +m1 = n2 +m2 coming from the horizontal contraction has already

been observed in [11]. Furthermore, the q-commutation relations with DIM generators
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(1, n∗ +m)u′∗

(1, n)u
Φ(n,m)[u,~v]

(1, n+m)u′

Φ(n∗,m)∗[u∗, ~v] (1, n∗)u∗

(0,m)~v

Figure 6. TU(m) operator for U(m) instanton partition function.

that were obtained there can be recovered by taking the vev of the relations (3.30). For

instance, focusing on the first relation in (3.30) that involves x+(z), we find

V
(m1,m2)

12 ρ̂
(0,m2)
~v2

(x+(z))− γn1ρ
(0,m1)
~v1

(x+(γz))V
(m1,m2)

12

= u1γ
n1z−n1

(
Y+(zγ−1)V

(m1,m2)
12

1

Y+(z)
− Y−(zγ−1)V

(m1,m2)
12

1

Y−(z)

)
.

(3.33)

Upon projection, we recover here the relations obtained previously in [11], up to the dif-

ference in normalization of states and operators.

4 Quantum Weyl reflection and qq-characters

4.1 Horizontal intertwiner and qq-character for the A1 quiver

4.1.1 Definition of the horizontal intertwiner

In contrast with the horizontal contraction, the vertical contraction is defined as a scalar

product between the intertwiner and its dual in a shared vertical representation space.

Because of this shared vertical space, the weights ~v and the label m of the two intertwiners

must be equal. As a result, we obtain a tensor product of operators acting in two different

Fock spaces, traced over the basis of the common vertical space,

TU(m) = Φ(n,m)[u,~v] · Φ(n∗,m)∗[u∗, ~v] =
∑
~λ

a~λ Φ
(n∗,m)∗
~λ

[u∗, ~v]⊗ Φ
(n,m)
~λ

[u,~v]

: (1, n∗ +m)u∗′ ⊗ (1, n)u → (1, n∗)u∗ ⊗ (1, n+m)u′

(4.1)

Here the second equality has been obtained using the definitions (3.22) after introduction

of the closure relation (3.23) between the two intertwiners. For later convenience, the two

Fock spaces have been exchanged. Since it intertwines two horizontal spaces, it will be

referred to as the horizontal intertwiner.

The vertical contraction channel is represented on the figure 6. It defines an operator

TU(m) associated to the pure U(m) A1 gauge theory. Indeed, the instanton partition func-

tion of the gauge theory is equal to the vev of this operator TU(m) in the tensored horizontal
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spaces,

Zinst.[A1] =
(

(1,n∗)u∗〈∅| ⊗ (1,n+m)u′
〈∅|
)
TU(m)

(
|∅〉(1,n∗+m)u∗′

⊗ |∅〉(1,n)u

)
=
∑
~λ

q|
~λ|Zvect.(~v,~λ)ZCS(κ,~λ), (4.2)

under the following identification of the Chern-Simons level and the exponentiated gauge

coupling

κ = n∗ − n, q = γ−κ−m
u

u∗
. (4.3)

This identification confirms the relation between the horizontal level of representations and

the Chern-Simons level. It also leads to interpret the weights u and u∗ of the two horizontal

channels as the position of the NS5 branes (dressed by coinciding D5 branes).

The standard expression of the instanton partition function as a scalar product of

Gaiotto states can be recovered from the definition (4.1) by introducing the definition (3.21)

of the Gaiotto states,

Zinst.[A1] =
〈

Φ(n,m)[u,~v] · Φ(n∗,m)∗[u∗, ~v]
〉

= 〈〈G,~v|G,~v〉〉. (4.4)

Contrary to the expression given in [11], there is no need to insert an extra gauge coupling

operator qD in this formula. The reason being that here the gauge coupling dependence is

naturally shared between the two Gaiotto states as it appears from the ratio u/u∗ of the

horizontal weights entering in the intertwiners normalization.

At first sight, it might seem artificial to inject the vector contribution into the coef-

ficients a~λ inside the trace in the definition of the operator TU(m). However, it should be

noted that the form of the vertical representations (and the dual ones) is mostly determined

from the constraints of the AFS lemmas, once the horizontal representations and the in-

tertwiners are defined. Then, the equivalence of vertical representations (2.17) imposes the

constraints (2.19) on the coefficients a~λ (defined as the inverse norm of the states). These

recursion relations look very similar to the discrete Ward identities satisfied by the vector

contribution. Indeed, up to the few extra factors present in (2.18), the vector contribution

solves these constraints. It thus enters naturally in the definition of the T -operator of

the U(m) gauge theory through the scalar product. In summary, our construction is very

rigid, and the form of this operators is already determined from the choice of horizontal

representations and normalization of intertwiners.

R-matrix. In [35], partition functions of U(m) N = 1 gauge theories have been con-

structed in a similar way if we take into account the decomposition (3.10) and (3.15) of

the generalized intertwiners, and the property of the coefficients a~λ,

m∏
l=1

aλl Φ
(n∗)∗
λm

[u∗m, vm] · · ·Φ(n∗+m−1)∗
λ1

[u∗1, v1]⊗ Φ
(n+m−1)
λm

[um, vm] · · ·Φ(n)
λ1

[u1, v1]

=

m∏
l,l′=1
l>l′

G(vl′/vl)G(vl′/γ
2vl)× a~λ Φ

(n∗,m)
~λ

[u∗, ~v]⊗ Φ
(n,m)
~λ

[u,~v].

(4.5)
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In the end, the only difference with the operator used in [35] is the harmless prefactor of G-

functions depending only on the ratio of the vertical weights (Coulomb branch vevs). The

normal ordering of operators involved in the definition of generalized intertwiners brings

extra Nekrasov factors that have been interpreted as elements of a diagonal R-matrix

in [21]. Here, these factors are absorbed in a change of states normalization, in agreement

with the definition (2.11) of the (0,m) vertical representation. More precisely, they are

compensated by the replacement of the product over aλl by the inverse norm coefficient a~λ.

Remark on the reflection symmetry. The intertwiner is exchanged with its dual

under the σ5 reflection symmetry, up to a normalization factor that can be absorbed in

the transformation of the coefficients a~λ. The operator TU(m) = Φ · Φ∗ becomes Φ∗ · Φ.

The exchange of the horizontal spaces corresponds to a reflection of the representation web

with x5 axis. Since the tensor product is commutative, the vev of the operator TU(m), and

so the instanton partition function, remains invariant. However, in the process n and n∗

are exchanged, which has the effect to flip the sign of the Chern-Simons level κ.

4.1.2 Horizontal intertwiner as screening current and fundamental qq-

character

The contraction in the vertical channel commutes with the action of the DIM genera-

tors x±(z), (
1⊗ ρ(0,m)

~v (e)
)
· TU(m) =

(
ρ̂

(0,m)
~v (e)⊗ 1

)
· TU(m). (4.6)

Here, the product notation · has been introduced to emphasize the action in vertical rep-

resentation spaces. Explicitly, this identity reads∑
~λ

a~λ Φ
(n∗,m)
~λ

[u∗, ~v]⊗
(
ρ

(0,m)
~v (e) · Φ(n,m)

~λ
[u,~v]

)
=
∑
~λ

a~λ

(
ρ̂

(0,m)
~v (e) · Φ(n∗,m)

~λ
[u∗, ~v]

)
⊗ Φ

(n,m)
~λ

[u,~v]. (4.7)

It expresses the fact that the action on the vertical ket states of arbitrary algebra element

should be equated with the action on the bra states. This relation can be easily deduced

from the properties (2.19) obeyed by the coefficients a~λ. The invariance property of the

vertical contraction is represented on the figure 7 (left), it is the non-trivial equivalent of the

associativity property (Φλe)Φ
∗
λ = Φλ(eΦ∗λ) for the horizontal channel. The commutation

of x±(z) in the vertical representation has been exploited in [10, 11] in order to establish

the regularity property of qq-characters. Here instead, it will prove more convenient to

work in the horizontal channel.

Combining this vertical commutation property with the AFS lemmas (3.17) provides

the commutation of the coproduct of DIM elements in the tensored horizontal channels:(
ρ

(1,n∗)
u∗ ⊗ ρ(1,n+m)

u′

)
∆(e) TU(m) = TU(m)

(
ρ

(1,n∗+m)
u′∗ ⊗ ρ(1,n)

u

)
∆(e). (4.8)

The proof is sketched on the figure 8, it follows from the application of the AFS lemma

on the dual intertwiner, then the use of formula (4.6) to commute the vertical actions,
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Φ

Φ∗

z

=

Φ

Φ∗

z Φ

Φ∗
z =

Φ

Φ∗
z

Figure 7. Commutation relations in the vertical and horizontal channels (respectively) for the

insertion of DIM operators, here denoted by the symbol z.

Φ

Φ∗
z

z

=

Φ

Φ∗

z

z

z

=

Φ

Φ∗

z

z

z

=

Φ

Φ∗
z

z

Figure 8. Heuristic proof of the invariance of the qq-character for a U(m) gauge theory.

and finally the application of AFS lemma again but on the intertwiner Φ. This relation

generalizes the results obtained in [34] to m > 1. Since the operator T commutes with (the

coproduct of) every generator of DIM, it can be interpreted as a screening operator.

In order to build the qq-characters, we define the operator X±(z) as the coproduct of

x±(z),

X±(z) = ∆(x±(z)). (4.9)

It results from the commutation relation (4.8) that the quantities defined as the vev in

the horizontal spaces of the products X±(z)TU(m) are polynomials, up to a possible mul-

tiplication by a negative power of z. This follows from the radial ordering of operators

in the q-boson Fock spaces. Indeed, the correlators
〈
X±(z)TU(m)

〉
are well-defined for

|z| > |χx|, so that they have to be expanded for z near infinity. Similarly, the correlators〈
TU(m)X±(z)

〉
have to be expanded near z = 0. The non-trivial equality between the two

expansions implies that the correlators are polynomials multiplied by a power of z. Just

like the equality of the two expansions of any holomorphic function f(z),

f(z) ∼∞

∞∑
k=−p

fkz
−k, f(z)∼

0

∞∑
k=−q

f̃kz
k, (4.10)

implies the restriction of the summations to a finite extent, f(z) =
∑p

k=−q fkz
k =

z−q × Poly(z). These polynomial quantities are the qq-characters introduced by Nekrasov
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in [24, 25]. Explicitly, the quantity defined as

χ+(z) =
νzn

∗+m

u∗γ2n∗

〈
X+(zγ−1)TU(m)

〉〈
TU(m)

〉 , ν−1 =
m∏
l=1

(−q3vl), (4.11)

can be evaluated in the horizontal representation spaces by exploiting the commutation

relation of q-bosonic modes and their action on the vacuum state. Doing so, we recover

the expression of the fundamental qq-character already obtained in [11],

χ+(z) =

〈
νzmY~λ(zq−1

3 ) + q
zκ

Y~λ(z)

〉
gauge

=
1

Zinst.[A1]

∑
{~λ}

q|
~λ|Zvect.(~v,~λ)ZCS(κ,~λ)

(
νzmY~λ(zq−1

3 ) + q
zκ

Y~λ(z)

)
.

(4.12)

Note that the average of operators in the gauge theory defined in (2.29) is in fact a

weighted sum over the m-tuple Young diagrams ~λ so that the l.h.s. is effectively inde-

pendent of ~λ. Due to the asymptotic properties of the function Y~λ(z), namely Y~λ(z) ∼∞1

and Y~λ(z)∼
0
(u′/u)z−m, the correlator in the r.h.s. of (4.12) is a polynomial of degree m in

the physical range |κ| ≤ m of the Chern-Simons level. This asymptotic behavior explains

retrospectively the power of z chosen for the prefactor in the definition (4.11). Note that

an equivalent qq-character χ−(z) would have be obtained by considering the commutation

relations of ∆(x−(z)). On the other hand, the commutations of ∆(ψ±(z)) only provide

trivial identities.

Although the derivation of the qq-character has been performed in the horizontal

representation, exploiting the Fock space structure, the final expression coincides with

the one obtained in the vertical representation. In fact, this expression is closer to the

vertical direction, in the sense that it can be expressed as the expectation value of the

operators Y±(z) in the Gaiotto state (either plus or minus since the resulting expression is

a polynomial):

χ+(z) =
〈〈G,~v|νzmY±(zq−1

3 ) + qzκY±(z)−1|G,~v〉〉
〈〈G,~v|G,~v〉〉

. (4.13)

The reason for the equivalence of the two derivation is to be found in the AFS lemma

that translates between vertical and horizontal actions. The vertical derivation is closer

to the AGT dual presentation [49] in terms of q-Virasoro (q-Toda) theory [59]. On the

other hand, the main advantage of the horizontal derivation lies in the simplification of the

effective calculations since it relies only on q-bosonic modes commutations. It will allow

us to propose the expression of higher qq-characters in the following sections.

In this paper, our construction is parallel to the one given by Kimura and Pestun

in [31]. The precise connection between the two algebraic approaches is discussed in the

appendix D. In their work, a partition function state is obtained by application of screening

operators to the vacuum. A similar state can be constructed here by applying the T -

operator to the tensored horizontal vacuum |∅〉⊗|∅〉. However, a major difference lies in the

absence of the (Kadomtsev-Petviashvili) times deformation introduced in [31] and identified

with the positive q-bosonic modes of their Fock space. Nevertheless, both approaches
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consist in constructing a screening operator, together with an operator commuting with it.

It is shown in appendix D that the latter coincide with the operator X+(z) used here, up

to a q-Heisenberg “U(1)” factor. In both cases, the qq-character is obtained by taking the

vacuum expectation value of the product of the two commuting operators.

Remark on a useful identity. The coproduct symmetrizes the insertion of DIM gen-

erators in one of the tensor spaces, so that the resulting expression commutes with the

operator TU(m). In fact, it is also possible to define an operator with two insertions of DIM

generators such as

X++(z) = ψ−(γ̂
−1/2
(1) z)x+(γ̂(1)z)⊗ x+(z), (4.14)

so that it again commutes with TU(m). This property will play an important role in the

construction of qq-characters for linear quivers of higher rank. It can be obtained by normal

ordering the products X++T and T X++ independently. The resulting expressions have

no extra poles appart from the points z = 0 and z = ∞, so that they can be analytically

continued to the whole complex plane in which they are equal. However, due to the absence

of any extra singularity, taking the vev of the commutation relation only provides a trivial

identity, and no non-trivial qq-character can be associated to this operator.

4.1.3 Higher qq-characters

In our formalism, higher qq-characters are simply obtained by taking products of coprod-

ucts of DIM elements. Since these coproducts commute with TU(m) individually, so will

their product. As an illustration, consider the qq-character associated to the symmetric

representation that can be obtained using

X+(z, w) = ∆(x+(z)x+(w)) = ∆(x+(z))∆(x+(w)). (4.15)

Explicitly,

X+(z, w) = x+(z)x+(w)⊗ 1 + ψ−(γ̂
1/2
(1) z)x+(w)⊗ x+(γ̂(1)z) (4.16)

+ x+(z)ψ−(γ̂
1/2
(1) w)⊗ x+(γ̂(1)w) + ψ−(γ̂

1/2
(1) z)ψ−(γ̂

1/2
(1) w)⊗ x+(γ̂(1)z)x+(γ̂(1)w).

Evaluating the vev in the horizontal Fock spaces

χ+(z, w) = S(w/z)

(
ν

u∗γ2n∗

)2

(zw)n
∗+m

〈
X+(zγ−1, wγ−1)TU(m)

〉〈
TU(m)

〉 , (4.17)

gives

χ+(z, w) =

〈(
νzmY~λ(zq−1

3 ) + q
zκ

Y~λ(z)

)(
νwmY~λ(wq−1

3 ) + q
wκ

Y~λ(w)

)〉
gauge

(4.18)

+ νq
(1− q1)(1− q2)zw

z − w

〈
zmwκY~λ(zq−1

3 )

(zq−1
3 − w)Y~λ(w)

−
zκwmY~λ(wq−1

3 )

(wq−1
3 − z)Y~λ(z)

〉
gauge

,

where extra scattering factors arise from normal ordering products of DIM operators. Writ-

ing z = z1ζ, w = z2ζ, it is shown that the quantity χ+(z, w) is a polynomial in ζ as a

consequence of the commutation between X+ and TU(m). In fact, it is possible to prove a

stronger result: the ratio of χ+(z, w) by the scattering factor S(w/z) is a polynomial in

both variables z and w.
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(1, n2 +m2)u′2

(1, n1 +m1)u′1

(1, n∗2 +m1)u′∗2

(1, n∗1 +m2)u′∗1

(1, n2)u2

(1, n∗1)u∗1

(1, n∗2)u∗2

(0,m2)~v2

(0,m1)~v1

Φ(n2,m2)[u2, ~v2]

Φ(n∗2,m2)∗[u∗2, ~v2] Φ(n1,m1)[u1, ~v1]

Φ(n∗1,m1)∗[u∗1, ~v1]

Figure 9. Configuration relevant to the U(m2)×U(m1) gauge theory.

4.2 Quantum Weyl reflection

4.2.1 Horizontal intertwiner for the A2 quiver

The A2 quiver gauge theory, with gauge group U(m2)×U(m1) is described by an operator

TU(m2)×U(m1) involving two vertical contractions (for the vector multiplet contributions),

and a single horizontal contraction (the bifundamental contribution):

TU(m2)×U(m1) =
∑
~λ1,~λ2

a~λ1a~λ2Φ
(n∗1,m1)∗
~λ1

[u∗1, ~v1]⊗Φ
(n1,m1)
λ1

[u1, ~v1]Φ
(n∗2,m2)∗
λ2

[u∗2, ~v2]⊗Φ
(n2,m2)
~λ2

[u2, ~v2]

: (1, n∗1 +m1)u′∗1 ⊗ (1, n∗2 +m2)u′2 ⊗ (1, n2)u2

→ (1, n∗1)u∗1 ⊗ (1, n1 +m1)u′1 ⊗ (1, n2 +m2)u′2 , (4.19)

with the constraints n∗2 = n1 and u∗2 = u1 in order to match the representation levels and

weights in the horizontal channel. The relevant configuration of DIM representations can

be seen on figure 9. Actually, this operator can be obtained from the combination of the

operators TU(m1) and TU(m2) associated to the two gauge groups, using a new product ◦
to represent the horizontal contraction, TU(m2)×U(m1) = TU(m1) ◦ TU(m2). The new product

corresponds to the concatenation of two chains of tensor products of respective length r

and s, in order to form a chain of length r + s− 1:

(a1 ⊗ · · · ⊗ ar) ◦ (b1 ⊗ · · · ⊗ bs) = a1 ⊗ · · · ⊗ ar−1 ⊗ arb1 ⊗ b2 · · · ⊗ bs. (4.20)

As before, the instanton partition function of the gauge theory corresponds to the vev

in the horizontal spaces, up to a factor of G-functions depending only on the Coulomb

branch vevs,

Zinst.[A2] =

m1∏
l=1

m2∏
l′=1

G(v
(2)
l′ /γv

(1)
l )×

〈
TU(m2)×U(m1)

〉
(4.21)

=
∑
~λ1,~λ2

q
|~λ1|
1 q

|~λ2|
2 Zvect.(~v1, ~λ1)ZCS(κ1, ~λ1)Zvect.(~v2, ~λ2)ZCS(κ2, ~λ2)Zbfd.(~v2, ~λ2, ~v1, ~λ1|γ−1),
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with the identification qα = γ−κα−mαuα/u
∗
α and κα = n∗α − nα for the gauge coupling and

the Chern-Simons level associated to the two gauge groups α = 1, 2.

4.2.2 Fundamental qq-character for the A2 quiver

A different qq-character is associated to each node of the quiver diagram, in correspondence

with antisymmetric representations of the Lie algebra. In the case of the A2 quiver, the

two relevant representations are the fundamental and the fully antisymmetric ones.

We focus first on the construction of the fundamental qq-character χ+(z), leaving the an-

tisymmetric representation for the next section. Within our conventions, the fundamental

representation is associated to the action of x+(z) on the first node.

The commutation property (4.6) of the vertical channel is valid at each node in the form(
ρ̂

(0,m1)
~v1

(e)⊗ 1⊗ 1
)
· TU(m2)×U(m1) =

(
1⊗ ρ(0,m1)

~v1
(e)⊗ 1

)
· TU(m2)×U(m1)(

1⊗ ρ̂(0,m2)
~v2

(e)⊗ 1
)
· TU(m2)×U(m1) =

(
1⊗ 1⊗ ρ(0,m2)

~v2
(e)
)
· TU(m2)×U(m1).

(4.22)

The operator leading to the fundamental qq-character can be obtained using the double

coproduct

∆ = (∆⊗ 1)∆ = (1⊗∆)∆. (4.23)

The action of this double co-product on the DIM generators reads

∆ (x+(z))=x+(z)⊗ 1⊗ 1 + ψ−(γ̂1/2 ⊗ 1⊗ 1 z)⊗ x+(γ̂ ⊗ 1⊗ 1 z)⊗ 1 (4.24)

+ ψ−(γ̂1/2 ⊗ 1⊗ 1 z)⊗ ψ−(γ̂ ⊗ γ̂1/2 ⊗ 1 z)⊗ x+(γ̂ ⊗ γ̂ ⊗ 1 z)

∆ (x−(z))= 1⊗ 1⊗ x−(z) + 1⊗ x−(1⊗ 1⊗ γ̂ z)⊗ ψ+(1⊗ 1⊗ γ̂1/2 z)

+ x−(1⊗ γ̂ ⊗ γ̂ z)⊗ ψ+(1⊗ γ̂1/2 ⊗ γ̂ z)⊗ ψ+(1⊗ 1⊗ γ̂1/2 z)

∆ (ψ±(z))=ψ±(1⊗γ̂±1/2 ⊗ γ̂±1/2 z)⊗ ψ±(γ̂∓1/2 ⊗1⊗ γ̂±1/2 z)⊗ψ±(γ̂∓1/2 ⊗ γ̂∓1/2⊗1 z).

Combining the general commutation properties of the vertical and horizontal contractions,

together with the AFS lemmas (3.17), it is possible to show that the horizontal action of

the generators commutes with the T -operator:(
ρ

(1,n∗1)
u∗1

⊗ ρ(1,n1+m1)
u′1

⊗ ρ(1,n2+m2)
u′2

)
∆ (e) TU(m2)×U(m1)

= TU(m2)×U(m1)

(
ρ

(1,n∗1+m1)

u′∗1
⊗ ρ(1,n∗2+m2)

u′2
⊗ ρ(1,n2)

u2

)
∆ (e).

(4.25)

The proof is a tedious but straightforward calculation, using the same method as in the

single node case.

Introducing the operator X+(z) = ∆ (x+(z)) that commutes with TU(m2)×U(m1), the

fundamental qq-character can be written (omitting the horizontal representations):

χ+(z) =
ν1

u∗1γ
2n∗1

zn
∗
1+m1

〈
X+(zγ−1)TU(m2)×U(m1)

〉〈
TU(m2)×U(m1)

〉 (4.26)

with να = uα/(q
mα
3 u′α). Again, this quantity is a polynomial in z because X+ commutes

with T . The power of z in the prefactor is fixed by consideration of the asymptotic behavior.

– 30 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
4

Evaluating the correlators in the q-bosonic Fock spaces, we recover the expression given

in [11] for the fundamental A2 qq-character with a bifundamental mass µ = γ−1 in the

vertical channel:12

χ+(z) =

〈
ν1z

m1Y~λ1(zγ−2) + q1z
κ1
Y~λ2(zγ−1)

Y~λ1(z)
+ q1q2

ν1

ν2
γκ2+2m1−m2

zκ1+κ2+m1−m2

Y~λ2(γz)

〉
gauge

.

(4.27)

4.2.3 Quantum Weyl reflection and the second qq-character

There are two ways to obtain the second qq-character. The simplest one is to consider the

insertion of the operator X−(z) = ∆ (x−(zγ−1)) that also commutes with the T -operator.

Defining

χ−(z) = ν2u
′
2γ

2(n2+m2)z−n2

〈
X−(zγ−1)TU(m2)×U(m1)

〉〈
TU(m2)×U(m1)

〉 (4.28)

gives after evaluation of each horizontal actions,

χ−(z) =

〈
ν2z

m2Y~λ2(zγ−2) + q2ν1γ
m1zm1+κ2

Y~λ1(zγ−1)

Y~λ2(z)
+ q1q2γ

κ1 z
κ1+κ2

Y~λ1(γz)

〉
gauge

, (4.29)

which is indeed the second qq-character of the A2 quiver found in [11]. In fact, because of

the reflection symmetry obeyed by the A2 quiver, we have χ−(z) = χ+(z) which explains

why we have obtained the correct qq-character. This property seems to be a consequence

of the σ5 symmetry of the representation web combined with the S2 rotation of the DIM

algebra.

There is a more natural way to derive the second qq-character, which is to start from

insertions of x+(z) in two of the three horizontal lines at the end of the diagram, with

spectral parameters fine-tuned to obtain the commutation with the T -operator. Indeed,

the first term of the qq-character, that is proportional to Y~λ2(zγ−2), can be obtained from

the insertion of the operator

ψ−(γ̂−1/2 ⊗ 1⊗ 1z)x+(γ̂ ⊗ 1⊗ 1 z)⊗ x+(z)⊗ 1 (4.30)

on the left of the representation web. The other terms entering the expression of the

qq-characters are known to be obtained by acting with the Weyl reflection on the first

term [31].

The Weyl reflection for the A2 quiver diagram sends the co-weight w2 attached to the

second node to

w2
α2−→ w1 − w2

α1−→ −w1 ⇐⇒ Y~λ2
α2−→
Y~λ1
Y~λ2

α1−→ 1

Y~λ1
, (4.31)

where αi denote the roots of the Lie algebra with the Dynkin diagram A2. To each interme-

diate expression has been associated a term of the qq-character. A similar transformation

12To simplify formulas, the labels corresponding to the two nodes have been exchanged here with respect

to the conventions employed in [11].
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can be defined on the DIM generator x+(z) involved in tensorial expressions like (4.30). It

will be called the quantum Weyl reflection. The quantum Weyl reflection with respect to

the root αi consists in replacing the insertion of x+ in the ith tensor space with an insertion

of ψ− in the ith space and x+ in the (i+ 1)th space, together with the appropriate shifts

of the spectral parameters:13

· · · ⊗ x+(z)⊗i 1⊗ · · · αi−→ · · · ⊗ ψ−(γ̂
1/2
(i) z)⊗i x+(γ̂(i)z)⊗ · · · (4.33)

where γ̂(i) = (1⊗)i−1 ⊗ γ̂(⊗1)r+1−i. The transformation is forbidden if two x+ were to

collide in the same space. In a sense, the generators x+ obey a fermionic statistics in

the tensor spaces. It is further assumed that the operators ψ− are ordered on the left of

operators x+, although this fact does not modify the derivation of the qq-characters.

Before applying the quantum Weyl reflection to obtain the operator relevant to the

second node of the A2 quiver, let us review how this transformation works in the known

cases. The A1 quiver is described by two horizontal spaces, it has a single weight w
α−→ −w

and the qq-character χ+(z) has only two terms. The application of the quantum Weyl

reflection on x+(z)⊗ 1 leads to the coproduct ∆(x+(z)).

Turning to the A2 quiver, the quantum Weyl reflections of

x+(z)⊗ 1⊗ 1
α1−→ ψ−(γ̂1/2 ⊗ 1⊗ 1 z)⊗ x+(γ̂ ⊗ 1⊗ 1 z)⊗ 1
α2−→ ψ−(γ̂1/2 ⊗ 1⊗ 1 z)⊗ ψ−(γ̂ ⊗ γ̂1/2 ⊗ 1 z)⊗ x+(γ̂ ⊗ γ̂ ⊗ 1 z)

(4.34)

reproduces the three terms in the expression of the operator X+(z) constructed from the

application of the squared coproduct ∆ . Thus, the quantum Weyl reflection defines a

generalization of the coproduct that implements the action of an operator into three copies

of the initial space.

Now, we apply the Weyl reflection to the operator (4.30) of the A2 quiver, and sum

over the three terms in order to define

∆ (x+(z)) = ψ−(γ̂−1/2 ⊗ 1⊗ 1 z)x+(γ̂ ⊗ 1⊗ 1 z)⊗ x+(z)⊗ 1

+ ψ−(γ̂−1/2 ⊗ 1⊗ 1 z)x+(γ̂ ⊗ 1⊗ 1 z)⊗ ψ−(1⊗ γ̂1/2 ⊗ 1 z)⊗ x+(1⊗ γ̂ ⊗ 1 z)

+ ψ−(γ̂−1/2 ⊗ 1⊗ 1 z)ψ−(γ̂3/2 ⊗ 1⊗ 1 z)⊗ ψ−(1⊗ γ̂1/2 ⊗ 1 z)

× x+(γ̂2 ⊗ 1⊗ 1 z)⊗ x+(1⊗ γ̂ ⊗ 1 z). (4.35)

After a tedious but straightforward computation, it can be shown that the operator

X+(z) = ∆ (x+(z)) commutes with T . The commutation of the operator defined in (4.14)

with TU(m) (seen here as a subdiagram) is essential for the various cancellations to occur.

The corresponding qq-character is defined as

χ+(z) =
ν2

u∗1u
′
1

γ−2(n1+n∗1+m1)zn1+n∗1+m1+m2

〈
X−(zγ−1)TU(m2)×U(m1)

〉
〈
TU(m2)×U(m1)

〉 . (4.36)

13The quantum Weyl transformation can be defined in a similar manner on the generator x−(z), i.e. in

such a way that it reproduces the coproduct in the case of the fundamental representation:

· · · ⊗ 1⊗i x−(z)⊗ · · · αi−→ · · · ⊗ x−(γ̂(i+1)z)⊗i ψ+(γ̂
1/2

(i+1)z)⊗ · · · . (4.32)
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The evaluation of the vev in the horizontal spaces reproduces the expression of χ−(z) given

in (4.29), showing that indeed χ+(z) = χ−(z).

4.2.4 Generalization to the Ar quivers

The results obtained for the A2 quiver are easily generalized to linear quivers with an

arbitrary number of nodes r. The T -operator is constructed using r − 1 contractions in

the horizontal channel, rendered by the product ◦ defined in (4.20),

TU(mr)×···×U(m1) = TU(m1) ◦ · · · ◦ TU(mr), (4.37)

where the order of indices labeling gauge groups has been reversed for convenience.

Schematically, it reads

TU(mr)×···×U(1) =
∑

~λ1,···~λr

r∏
s=1

a~λs Φ∗λ1 ⊗ Φλ1Φ∗λ2 ⊗ · · · ⊗ Φλr−1Φ∗λr ⊗ Φλr , (4.38)

where we have omitted all the weights and level parameters. This expression implies

the constraints ns = n∗s+1 and us = u∗s+1 in order to match the representation spaces

in horizontal channels. Then, up to a prefactor of G-functions, the vev reproduces the

instanton partition function (2.28) for the quiver Γ = Ar under the identification κs =

n∗s − ns for the Chern-Simons levels, and qs = γ−κs−msus/u
∗
s for the gauge couplings.

As before, the fundamental qq-character, attached to the first node, can be obtained

by multiple applications of the coproduct. The Ar fundamental coproduct ∆ is defined

recursively as

∆ = (∆(⊗1)r−1) · (∆(⊗1)r−2) · · ·∆, (4.39)

and acts on the DIM generators as follows:

∆ (x+(z)) =
r+1∑
s=1

ψ−(γ̂
1/2
(1) z)⊗ · · · ⊗ ψ−(γ̂(s−2)!γ̂

1/2
(s−1) z)⊗ x+(γ̂(s−1)! z) (⊗1)r+1−s,

∆ (x−(z)) =

r+1∑
s=1

(1⊗)r+1−sx−(γ̂>(s−1)! z)⊗ ψ+((γ̂(s−2)!γ̂
1/2
s−1)> z)⊗ · · · ⊗ ψ+(γ̂

1/2
(r+1) z),

∆ (ψ±(z)) = ψ±(1(⊗γ̂±1/2)r z)⊗ ψ±(γ̂∓1/2 ⊗ 1(⊗γ̂±1/2)r−1 z)⊗ · · · ⊗ ψ±((γ̂∓1/2⊗)r1 z),

(4.40)

with γ̂(s)! = γ̂(1)γ̂(2) · · · γ̂(s) = (γ̂⊗)s1(⊗1)r−s, and the tensorial transpose defined as (a1 ⊗
a2 ⊗ · · · ⊗ ar+1)> = ar+1 ⊗ ar ⊗ · · · ⊗ a1.

The fundamental coproduct of DIM generators commutes with the T -operator,

∆ (e) · TU(mr)×···×U(1) = TU(mr)×···×U(1) ·∆ (e), (4.41)

where we have omitted to indicate the horizontal representations. As a result, the funda-

mental qq-character defined as

χ+(z) =
ν1

u∗1
γ−2n∗1zn

∗
1+m1

〈
X+(zγ−1)TU(mr)×···×U(1)

〉〈
TU(mr)×···×U(1)

〉 , X+(z) = ∆ (x+(z)), (4.42)
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is a polynomial. Explicit evaluation of the correlators for each horizontal space provides

the formula

χ+(z) =

〈
ν1z

m
1 Y~λ1(zγ−2) +

r−1∑
s=1

ν1

νs

(
s∏
i=1

qiz
κiγ2mi−ms+

∑s
j=i+1 κj

)
zm1−msγ−ms

Y~λs+1
(zγs−2)

Y~λs(zγ
s−1)

+
ν1

νr

(
r∏
i=1

qiz
κiγ2mi−mr+

∑r
j=i+1 κj

)
zm1−mrγ−mr

1

Y~λr(zγ
r−1)

〉
gauge

. (4.43)

The qq-character associated to the sth node corresponds to the antisymmetric repre-

sentation denoted by the Young diagram (s) with s boxes, all in the first column. The

corresponding operator X+
(s)(z) is obtained by application of quantum Weyl reflections on

the operator

ψ−[1](z)x+(γ̂(s−1)!z)⊗ ψ−[2](z) x+(γ̂(s−2)!z)⊗ · · · ⊗ ψ−[s−1](z)x+(γ̂(1)z)⊗ x+(z)(⊗1)r+1−s,

with: ψ−[i](z) =
s−i∏
j=1

ψ−

(
γ̂(j−1)!γ̂

−1/2
(i)

s−j∏
k=i+1

γ̂−1
(k)

)
. (4.44)

Note that since the operator is evaluated in horizontal representations, the position of the

central element γ̂ in the arguments of operators is somewhat arbitrary here. As an illus-

tration, the A3 quiver is treated in details in the appendix E. This construction can also be

applied to the generator x−(z). Because of the reflection symmetry of the quiver diagram,

the corresponding qq-characters are expected to obey the relation χ−(s)(z) = χ+
(r+1−s)(z).

In fact, it is possible to define qq-characters associated to arbitrary representations

of the Lie algebra. To a representation labeled by a Young diagram λ is associated the

operator X+
λ (~z) obtained by taking the product over the columns λi of the operators

X+
(λi)

(zi) defined previously. This construction works if the first column of the Young

diagram contains at most r boxes. By construction, these operators commute with the T -

operator of the gauge theory, and the vev
〈
X+
λ (~z)T

〉
is a polynomial up to multiplication

by a monomial of the variables zi.

4.2.5 Inclusion of fundamental/antifundamental matter fields

Matter fields are introduced by semi-infinite D5 branes that are vertical edges in the rep-

resentation web. These can be inserted either in the bottom or top part of the diagram,

leading to fundamental (Φ) or antifundamental (Φ∗) matter respectively. It is well-known

in gauge theory that such matter fields can be obtained by introducing extra gauge groups,

sending the corresponding gauge coupling q to zero. This constraints the Young diagrams
~λ associated to this gauge group in the partition function expansion (2.28) to be empty,

hence generating the contributions

Zfund.(γ
−1~µ(f), ~λ) = Zbfd.(~v,~λ, ~µ

(f),~∅|γ−1), Za.f.(γ~µ
(af), ~λ) = Zbfd.(~µ

(af),~∅, ~v, ~λ|γ−1).

(4.45)

In this spirit, we can regard the massive A1 quiver as the limit of the A3 quiver as

q1, q3 → 0. This procedure corresponds to send two NS5 branes at infinity. Taking the
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(1, n+m)u′

(1, n∗ +m)u′∗

(1, n+ f)u′′

(1, n∗3)u∗3

(1, n∗)u∗

(0,m)~v

(0, f̃)~µ(af)

Φ(n,m)[u,~v]

Φ(n∗,m)∗[u∗, ~v]

Φ
(n,f̃)∗
~∅

[u, ~µ(af)]

Figure 10. Representation web of the A1 quiver with antifundamental matter.

formula from appendix E for the A3 qq-character χ+(z) associated to the second node, and

sending the gauge couplings q1, q3 → 0 while q2 = q is held fixed, we indeed recover the

massive A1 qq-character χ+(z) obtained in [11],

χ+(z) =

〈
νzmY~λ(zγ−2) + qzκ

pfund.(zγ
−2)pa.f.(z)

Y~λ(z)

〉
gauge

, (4.46)

since

ν1γ
m1zm1Y~∅1(zγ−1) =

f∏
l=1

(1− zγ−1(µ
(f)
l )−1) = pfund.(zγ

−2),

Y~∅3(zγ−1) =

f̃∏
l=1

(1− γµ(af)
l z−1) = pa.f.(z), (4.47)

and we have dropped the label 2 of the middle node.

In our formalism, the gauge coupling q is obtained as a ratio of horizontal weights u/u∗.

The limiting procedure q→ 0 corresponds to send either u to zero for some intertwiner Φλ,

or u∗ to infinity for the dual intertwiner Φ∗λ. In either case, the normalization coefficients,

tn,m or t∗n,m, vanishes except when the Young diagrams ~λ are empty. The case of the

antifundamental matter is the easiest one to consider. Indeed, it is observed from the

AFS lemma that since R(~∅) = ∅, the vacuum intertwiner Φ∗∅ commutes with the action of

x+(z). As a result, an additional horizontal contraction with this operator, as represented

on the figure 10, does not spoil the commutation with the operator X+(z). In this case,

the T -operator is simplified as the extra Φ∅ can be decoupled,14

T (af)
U(m) =

∑
~λ

a~λ Φ
(n∗,m)∗
~λ

[u∗, ~v]⊗ Φ
(n,m)
~λ

[u,~v]Φ
(n,f̃)∗
~∅

[u, ~µ(af)]. (4.48)

14Said it otherwise, the action of x+(z) on Φ∅ being proportional to u→ 0, the extra horizontal channel

can be dropped.
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On the other hand, in the case of fundamental matter, it does not seem possible to

fully decouple the extra horizontal channel, and we are forced to define the T -operator

within three different Fock spaces,

T (af)
U(m) =

∑
~λ

a~λ Φ
(n,f)∗
~∅

[u, ~µ(f)]⊗ Φ
(n,f)
~∅

[u, ~µ(f)]Φ
(n∗,m)∗
~λ

[u∗, ~v]⊗ Φ
(n,m)
~λ

[u,~v], (4.49)

in order to observe the commutation relation with the operator X+(z).15 This problem

is related to the non-commutation of Φ~∅ with x+(z), it can be solved by considering the

commutation with the operator X−(z) instead. However, the problem persists if both

fundamental and antifundamental matter are introduced, in which case the only solution

is to consider a third horizontal channel with a trivial vertical contraction as in (4.49).

The treatment of fundamental matter here is rather different from the usual brane

description. In particular, we do not observe a limitation on the number of fields in this

algebraic construction, which may be an effect of the presence of Chern-Simons terms. It

would be advisable to achieve a deeper understanding of the precise difference between the

two constructions.

Since our understanding of fundamental matter is based on gauging the flavor group,

the generalization of these results to all linear quivers would require to construct arbitrary

quiver theories, which is way beyond the scope of our paper. However, we hope to be able

to address this issue in a near future.

5 Perspectives

We have proposed an algebraic method to derive qq-characters of linear quiver N = 1

gauge theories with U(m) gauge groups. It is based on the insertion of DIM generators in

a tensored horizontal representation, symmetrized in order to define an operator commuting

with the T -operator of the gauge theory. This method provides an efficient way to derive

the explicit expression of the qq-characters as correlators in the gauge theory.

There are several directions in which this work can be extended. The most natural one

is the treatment of DE-type quivers. In the case of D-type quivers, the brane construction of

Kapustin [60] involving an orientifold brane seems relevant. Progress along this direction

will be reported elsewhere. Affine quivers could also be considered. There, the extra

compact dimension seems to impose the consideration of a ring of tensor spaces in the

horizontal representations in which an infinite number of quantum Weyl transformations

can be applied. A much harder problem would consist in studying gauge theories with

DE-type gauge groups, i.e. Sp(m) or SO(m) groups. The recent construction of Hayashi

and Ohmori [61] could be helpful in this context.

In [62], a deformation of the refined topological vertex has been introduced, that

corresponds to a further (q, t)-deformation of the horizontal representation. It would be

interesting to further study the underlying algebraic structure.

15Taking the limit u∗1 → ∞ in the A3 operator X+(z), the dominant terms are those with a x+(z)

generator inserted in the first space. They are of order ∼ u∗1 and reproduce the two terms in the massive

qq-character (4.46).
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We hope that the generalized intertwiners introduced here will also be useful in the

description of the underlying integrability, leading to a generalization of the R-matrix

construction [21, 22].

Finally, the action of a similar quantum algebra has been observed in the context

of higher spins [63], and it would be interesting to investigate the role played by these

fundamental objects that are interwiners and qq-characters.
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A Different expressions for the vertical representation

In [11], a different-looking vertical representation has been employed. At the level (0, 1),

it reads16

e(z)|v, λ〉 = z−1
∑

x∈A(λ)

δ(z/χx)Λx(λ)|v, λ+ x〉

f(z)|v, λ〉 =
∑

x∈R(λ)

δ(z/χx)Λx(λ)|v, λ− x〉,

ψ±(z)|v, λ〉 = −γ1 [Ψλ(z)]± |v, λ〉, γ1 = (1− q1)(1− q2)(1− q3),

(A.2)

with function Ψλ(z) defined in (2.12), and the coefficients being the square root of the

residues Λx(λ)2 = ±Resz=χx Ψλ(z). However, the normalization of the states can be

16Here the generators have been multiplied by a constant factor without altering the commutation rela-

tions as follows:

e(z)→ z−1
√

(1− q3)ve(z), f(z)→ z
√

(1− q3)vf(z), ψ±(z)→ (1− q3)vψ±(z). (A.1)

The definition of the function Ψλ(z) has also been modified in order to reflect this change of normalization.
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modified by an arbitrary factor: letting |v, λ〉〉 = N (λ)|v, λ〉, we have in general

e(z)|v, λ〉〉 = z−1
∑

x∈A(λ)

δ(z/χx)Λx(λ)
N (λ)

N (λ+ x)
|v, λ+ x〉〉,

f(z)|v, λ〉〉 =
∑

x∈R(λ)

δ(z/χx)Λx(λ)
N (λ)

N (λ− x)
|v, λ− x〉〉,

(A.3)

Note that the action of the Cartan is not modified since they are diagonal in this basis.

Choosing the normalization factor as17

N (λ) =
1√

Zvect.(v, λ)

∏
x∈λ

(
(1− q3)v1/2

γ
1/2
1 χx

)
, ⇒ N (λ)

N (λ+ x)
=

Λx(λ)

Yλ(q−1
3 χx)

, (A.5)

using the fact that

Res
z=χx∈A(λ)

Ψλ(z) = Yλ(χxq
−1
3 ) Res

z=χx∈A(λ)

1

Yλ(z)
,

Res
z=χx∈R(λ)

Ψλ(z) =
1

Yλ(χx)
Res

z=χx∈R(λ)

Yλ(zq−1
3 ), (A.6)

and the property Λx(λ) = Λx(λ− x), the new representation can be written

e(z)|v, λ〉〉 =
∑

x∈A(λ)

δ(z/χx) Res
z=χx

1

zYλ(z)
|v, λ+ x〉〉,

f(z)|v, λ〉〉 =
∑

x∈R(λ)

δ(z/χx)Yλ−x(q−1
3 χx)|v, λ− x〉〉.

(A.7)

The second relation simplifies after a careful treatment of the limit z → χx in the expression

Yλ−x(zq−1
3 ) = Yλ(zq−1

3 )/S(q3χx/z),

f(z)|v, λ〉〉 =
(1− q3)2

γ1q3

∑
x∈R(λ)

δ(z/χx) Res
z=χx

z−1Yλ(zq−1
3 )|v, λ− x〉〉. (A.8)

Finally, we notice that the coefficient in front of the commutator [e, f ] is different from the

one in (2.2) for [x+, x−]. In order to recover the same convention, we need to multiply

f(z)→ γ1q3

(1− q3)2
f(z), ψ±(z)→ −γ−1

1 ψ±(z). (A.9)

Under the identification of the renormalized f(z) with x−(z), and e(z) with x+(z), we end

up with the vertical representation (2.11). In addition, an extra cosmetic factor of γ−1

has been added in front of x−(z) and ψ±(z) in order to simplify some expressions. It is

important to stress that our renormalized vertical representation here does not coincide

with the one used in AFS’s paper in which the normalization of the intertwiners Φλ and

Φ∗λ is also different.

17The recursive property is inherited from the discrete Ward identity obeyed by the vector contribu-

tion [11],
Zvect.(v, λ+ x)

Zvect.(v, λ)
=

(1− q3)2v

γ1χ2
x

1

Yλ(χxq
−1
3 )

Res
z=χx

1

Yλ(z)
=

(1− q3)2v

γ1χ2
x

Λx(λ)2

Yλ(χxq
−1
3 )2

. (A.4)
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B Useful formulas for the horizontal representation

B.1 q-bosons vertex operators

The vertex operators η, ξ and ϕ± satisfy the relations

η(z)η(w) = S(w/z)−1 : η(z)η(w) :, ξ(z)ξ(w) = S(z/w)−1 : ξ(z)ξ(w) :,

η(z)ξ(w) = S(γw/z) : η(z)ξ(w) :, ξ(w)η(z) = S(γz/w) : η(z)ξ(w) :,

ϕ+(γ−1/2z)η(w) =
S(z/w)

S(w/z)
: ϕ+(γ−1/2z)η(w) :, η(w)ϕ+(γ−1/2z) =: ϕ+(γ−1/2z)η(w) :,

ϕ+(γ1/2z)ξ(w) =
S(w/z)

S(z/w)
: ϕ+(γ1/2z)ξ(w) :, ξ(w)ϕ+(γ1/2z) =: ϕ+(γ1/2z)ξ(w) :,

ϕ−(γ1/2z)η(w) =: ϕ−(γ1/2z)η(w) :, η(w)ϕ−(γ1/2z) =
S(w/z)

S(z/w)
: ϕ−(γ1/2z)η(w) :,

ϕ−(γ−1/2z)ξ(w) =: ϕ−(γ−1/2z)ξ(w) :, ξ(w)ϕ−(γ−1/2z) =
S(z/w)

S(w/z)
: ϕ−(γ−1/2z)ξ(w) : .

(B.1)

Explicitly, the vacuum intertwiners read

Φ∅(v) = exp

(
−
∞∑
k=1

1

k

1

1− qk
vka−k

)
exp

( ∞∑
k=1

1

k

1

1− q−k
v−kak

)
,

Φ∗∅(v) = exp

( ∞∑
k=1

1

k

1

1− qk
γkvna−k

)
exp

(
−
∞∑
k=1

1

k

1

1− q−k
γkv−kak

)
,

(B.2)

they obey the relations

η(z)Φ∅(w) =
1

1− w/z
: η(z)Φ∅(w) :,

Φ∅(w)η(z) =
1

1− z/(γ2w)
: η(z)Φ∅(w) :,

ξ(z)Φ∅(w) = (1− γw/z) : ξ(z)Φ∅(w) :,

Φ∅(w)ξ(z) = (1− z/(γw)) : ξ(z)Φ∅(w) :

ϕ+(γ−1/2z)Φ∅(w) =
1− γ2w/z

1− w/z
: ϕ+(γ−1/2z)Φ∅(w) :,

Φ∅(w)ϕ+(γ−1/2z) =: ϕ+(γ−1/2z)Φ∅(w) :,

ϕ−(γ1/2z)Φ∅(w) =: ϕ−(γ1/2z)Φ∅(w) :,

Φ∅(w)ϕ−(γ1/2z) =
1− z/w

1− z/(γ2w)
: ϕ−(γ1/2z)Φ∅(w) :,

η(z)Φ∗∅(w) = (1− γw/z) : η(z)Φ∗∅(w) :,

Φ∗∅(w)η(z) = (1− z/(γw)) : η(z)Φ∗∅(w) :,

ξ(z)Φ∗∅(w) =
1

1− γ2w/z
: ξ(z)Φ∗∅(w) :,
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Φ∗∅(w)ξ(z) =
1

1− z/w
: ξ(z)Φ∗∅(w) :,

ϕ+(γ1/2z)Φ∗∅(w) =
1− w/z

1− γ2w/z
: ϕ+(γ1/2z)Φ∗∅(w) :,

Φ∗∅(w)ϕ+(γ1/2z) =: ϕ+(γ1/2z)Φ∗∅(w) :,

ϕ−(γ−1/2z)Φ∗∅(w) =: ϕ−(γ−1/2z)Φ∗∅(w) :,

Φ∗∅(w)ϕ−(γ−1/2z) =
1− z/(γ2w)

1− z/w
: ϕ−(γ−1/2z)Φ∗∅(w) : . (B.3)

Note also the properties

Φ∅(z)Φ∅(w) = G(w/γ2z) : Φ∅(z)Φ∅(w) :, Φ∗∅(z)Φ∗∅(w) = G(w/z) : Φ∗∅(z)Φ∗∅(w) :,

Φ∅(z)Φ∗∅(w) = G(w/(γz))−1 : Φ∅(z)Φ∗∅(w) :, Φ∗∅(w)Φ∅(z) = G(z/(γw))−1 : Φ∅(z)Φ∗∅(w) :,

with G(z) = exp

(
−
∞∑
k=1

1

k

zk

(1− qk)(1− t−k)

)
=

∞∏
i,j=1

(
1− zqi−1

1 qj−1
2

)
, (B.4)

and the fact that

ϕ+(γ1/2z) =: ξ(z)η(γz) :, ϕ−(γ−1/2z) =: ξ(z)η(γ−1z) : . (B.5)

B.2 Commutation relations in horizontal representations

The simplest relations are the commutations between the operators ψ± and the inter-

twiners, they can be derived easily by combining the properties given previously and the

formula (2.12):18

|z| > |χx| : ψ+(γ−1/2z)Φ
(n,m)
~λ

[u,~v] = γ−(n+m)Ψ~λ
(z) : ϕ+(γ−1/2z)Φ

(n,m)
~λ

[u,~v] :

ψ−(γ1/2z)Φ
(n,m)
~λ

[u,~v] = γn+m : ϕ−(γ1/2z)Φ
(n,m)
~λ

[u,~v] :

ψ+(γ1/2z)Φ
(n,m)∗
~λ

[u,~v] = γ−nΨ~λ
(z)−1 : ϕ+(γ1/2z)Φ

(n,m)∗
~λ

[u,~v] :

ψ−(γ−1/2z)Φ
(n,m)∗
~λ

[u,~v] = γn : ϕ−(γ−1/2z)Φ
(n,m)∗
~λ

[u,~v] :

|z| < |χx| : Φ
(n,m)
~λ

[u,~v]ψ+(γ−1/2z) = γ−n : ϕ+(γ−1/2z)Φ
(n,m)
~λ

[u,~v] :

Φ
(n,m)
~λ

[u,~v]ψ−(γ1/2z) = γn+2mΨ~λ
(z)−1 : ϕ−(γ1/2z)Φ

(n,m)
~λ

[u,~v] :

Φ
(n,m)∗
~λ

[u,~v]ψ+(γ1/2z) = γ−n−m : ϕ+(γ1/2z)Φ
(n,m)∗
~λ

[u,~v] :

Φ
(n,m)∗
~λ

[u,~v]ψ−(γ−1/2z) = γn−mΨ~λ
(z) : ϕ−(γ−1/2z)Φ

(n,m)∗
~λ

[u,~v] :

(B.6)

In these expressions, the representation (1, n + m)u′ of the DIM generator is understood

(but omitted) on the left of the operator Φ
(n,m)
~λ

, while the representation on the right is

(1, n)u. The two representations are exchanged for the dual operator: (1, n)u is on the left

18Operators are supposed to be radially ordered.
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of Φ
(n,m)∗
~λ

while (1, n+m)u′ is on the right. Similar expressions can be derived for x±:

|z| > |χx| : x+(z)Φ
(n,m)
~λ

[u,~v] =
γn+mu′

zn+mY~λ(z)
: η(z)Φ

(n,m)
~λ

[u,~v] :

x−(z)Φ
(n,m)
~λ

[u,~v] =
zn+m

u′γn+m
Y~λ(zγ−1) : ξ(z)Φ

(n,m)
~λ

[u,~v] :

x+(z)Φ
(n,m)∗
~λ

[u,~v] = uγnz−nY~λ(zγ−1) : η(z)Φ
(n,m)∗
~λ

[u,~v] :

x−(z)Φ
(n,m)∗
~λ

[u,~v] =
zn

uγnY~λ(zq−1
3 )

: ξ(z)Φ
(n,m)∗
~λ

[u,~v] :

|z| < |χx| : Φ
(n,m)
~λ

[u,~v]x+(z) = γmΨ~λ
(z)−1 u′γn+m

zn+mY~λ(z)
: η(z)Φ

(n,m)
~λ

[u,~v] :

Φ
(n,m)
~λ

[u,~v]x−(z) =
zn+m

u′γn+m
Y~λ(zγ−1) : ξ(z)Φ

(n,m)
~λ

[u,~v] :

Φ
(n,m)∗
~λ

[u,~v]x+(z) = uγnz−nY~λ(zγ−1) : η(z)Φ
(n,m)∗
~λ

[u,~v] :

Φ
(n,m)∗
~λ

[u,~v]x−(z) = γ−mΨ~λ
(z)

zn

uγnYλ(zq−1
3 )

: ξ(z)Φ
(n,m)∗
~λ

[u,~v] :

(B.7)

C Derivation of the AFS lemmas

The proof of the relations involving ψ±(z) is a matter of writing the commutation rela-

tions (B.6). Hence the focus here is on the generators x±(z). We first examine the product

of x+(z) and Φ
(n,m)
~λ

[u,~v], the proof is based on the following decomposition for the function

1

zY~λ(z)
=

∑
x∈A(~λ)

1

z − χx
Res
z=χx

1

zY~λ(z)
. (C.1)

As a consequence, we can write the right product of x+(z) on Φλ in (B.7) as

x+(z)Φ
(n,m)
~λ

[u,~v]

= u′γn+mz−n−m+1
∑

x∈A(~λ)

1

z − χx
Res
z=χx

1

zY~λ(z)
: η(z)Φ

(n,m)
~λ

[u,~v] :

= u′γn+mz−n−m+1
∑

x∈A(~λ)

1

z − χx
Res
z=χx

1

zY~λ(z)
: η(χx)Φ

(n,m)
~λ

[u,~v] :

+ u′γn+mz−n−m+1
∑

x∈A(~λ)

: η(z)Φ
(n,m)
~λ

[u,~v] : − : η(χx)Φ
(n,m)
~λ

[u,~v] :

z − χx
Res
z=χx

1

zY~λ(z)
.

(C.2)

This expression is valid for |z| > |χx|, however the second line of the last equality has no

pole at z = χx and can be analytically continued to |z| < |χx|. This is not true for the first

line, and the fraction should be expanded in positive powers of z. A similar expression can
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be obtained for |z| < |χx| by considering the left product of x+(z) on Φλ:

γ−mΨ~λ
(z)Φ

(n,m)
~λ

[u,~v]x+(z)

= u′γn+mz−n−m+1
∑

x∈A(~λ)

1

z − χx
Res
z=χx

1

zY~λ(z)
: η(z)Φ

(n,m)
~λ

[u,~v] :

= u′γn+mz−n−m+1
∑

x∈A(~λ)

1

z − χx
Res
z=χx

1

zY~λ(z)
: η(χx)Φ

(n,m)
~λ

[u,~v] :

+ u′γn+mz−n−m+1
∑

x∈A(~λ)

: η(z)Φ
(n,m)
~λ

[u,~v] : − : η(χx)Φ
(n,m)
~λ

[u,~v] :

z − χx
Res
z=χx

1

zY~λ(z)
.

(C.3)

Taking the difference of the two, the terms with no singularity cancel each-other. The

remaining expression is a difference of expansions in powers of z and z−1 that forms a

delta function,

x+(z)Φ
(n,m)
~λ

[u,~v]− γ−mΨ~λ
(z)Φ

(n,m)
~λ

[u,~v]x+(z)

= u′γn+mz−n−m
∑

x∈A(~λ)

δ(z/χx) Res
z=χx

1

zY~λ(z)
: η(χx)Φ

(n,m)
~λ

[u,~v] : (C.4)

Then, since Φ
(n,m)
~λ

is built as a product of operators η(χx) for all x ∈ λ, the vertex operator

: η(χx)Φ
(n,m)
~λ

: can be written as Φ
(n,m)
~λ+x

. Taking into account the prefactor

tn(~λ, u, v)

tn(~λ+ x, u, v)
=

χn+1
x

u′γn+1
, (C.5)

we recover the AFS lemma in the form (3.18).

A similar argument can be employed to treat the action of x−(z), with the poles

located at the points z = γ−1χ
x∈R(~λ)

, and the operator :ξ(z)Φ
(n,m)
~λ

: simplified using the

property (B.5) of the appendix B.19 However, in this case, a more elegant proof is also

possible. It is based on the formula for the commutation relation between the modes x−k
and Φ

(n)
λ that can be found in [64] (formula (6.15)). By definition, we have

x−k =

∮
0

dz

2iπ
zk−1x−(z) (C.7)

so that

[x−k ,Φ
(n,m)
~λ

[u,~v]] =

∮
z=0

|z|>|χx|

dz

2iπ
zk−1x−(z)Φ

(n,m)
~λ

[u,~v]−
∮

z=0
|z|<|χx|

dz

2iπ
zk−1Φ

(n,m)
~λ

[u,~v]x−(z)

=
∑

x∈R(~λ)

∮
χxγ−1

dz

2iπ

zk+n+m−1

u′γn+m
Y~λ(zγ−1) : ξ(z)Φ

(n,m)
~λ

[u,~v] :

(C.8)

19The following property is useful here,

Res
z=γ−1α

f(z) = γ−1 Res
z=α

f(zγ−1). (C.6)
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The second equality is the consequence of several cancellations between poles, such that

only the poles of Y~λ(zγ−1) will contribute. The expression for the product of operators is

taken from (B.7). The contour integral can be reduced to the residue contributions of the

integrand, which simplifies thanks to the properties (B.5) and (C.6) to give

[x−k ,Φ
(n,m)
~λ

[u,~v]] =
∑

x∈R(~λ)

χk+m−2
x γ−2m−k+1 Res

z=χx
Y~λ(zq−1

3 ) Φ
(n,m)
~λ−x

[u,~v]ψ+(γ−1/2χx). (C.9)

Summing over the index k with the spectral parameter at the power z−k, we recover the

AFS lemma (3.18). This short computation gives some insight on the interpretation of the

AFS lemma: it is valid for each power of z in a formal expansion.

D Connection with quiver W-algebras

In [31, 32], Kimura and Pestun have introduced quantum W-algebras based on the Dynkin

diagram Γ of simple Lie algebras of ADE type. These algebras are constructed upon a set

of q-bosonic modes s
(i)
k with k ∈ Z and i ∈ Γ that obey the commutation relations

[s
(i)
k , s

(i′)
−k′ ] = −1

k

1− qk

1− tk
δk,k′c

[k]
ii′ , k > 0, (D.1)

where c
[k]
ii′ denotes the k-th Adams operation applied to the mass-deformed Cartan matrix.

For instance, in the case of the A3 quiver with bifundamental masses µii′ = γ−1, this matrix

reads

c
[k]
ii′ =

 1 + qk3 −γk 0

−γk 1 + qk3 −γk

0 −γk 1 + qk3

 . (D.2)

Since this algebra is also acting on Nekrasov partition functions, it should be related to

the DIM algebra considered in our paper. The aim of this appendix is to highlight this

connection. It is based on the decomposition of the tensor product of two (1, 0) DIM repre-

sentations into q-Heisenberg⊕q-Virasoro algebras. This decomposition has been described

by Mironov, Morozov and Zenkevich in [33], and this appendix is just a reformulation of

their results in our notations.

In order to simplify the discussion, we will neglect the role of zero modes, Φ∅,. . . We

will also restrict ourselves to U(1) gauge groups at each node of the quiver diagram. It

is an easy exercise to extend the argument to more general cases. We first focus on the

A1 quiver for which the T -operator is built as a vertical contraction of two intertwiners,

TU(1) = tr Φ∗ ⊗ Φ. Since two horizontal spaces are involved, we need two copies of the

q-bosonic modes in order to represent the horizontal action of the intertwiner and its dual.

We denote these modes a
(i)
k with i = 1, 2. By definition, modes with a different value of the

label i commute, while modes with the same label obey the commutation relation (2.21):

[a
(i)
k , a

(i′)
−k′ ] = k

1− qk

1− tk
δk,k′δi,i′ , k > 0. (D.3)
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The operator T involves a trace over Young diagram realizations of a product over the box

content of the diagram. Each factor contains the following operator evaluated at z = χx
for some x ∈ λ,

ξ(z)⊗ η(z) = exp

(
−
∞∑
k=1

1− t−k

k
zk
(
a

(1)
−kγ

k − a(2)
−k

))
exp

( ∞∑
k=1

1− tk

k
z−k

(
a

(1)
k γk − a(2)

k

))
.

(D.4)

It leads to identify the modes ksk = −γ|k|a(1)
k + a

(2)
k . They indeed obey the commuta-

tion relation (D.1) with the deformed A1 Cartan matrix c[k] = 1 + qk3 . As a result, the

operator (D.4) can be expressed in terms of the screening operator defined in [31],

ξ(z)⊗ η(z) ': S(z)−1S(q2z) :, S(z) =: exp

(∑
k∈Z

zks−k

)
: . (D.5)

Taking the product over the boxes x ∈ λ, several cancellations occur, and the final result

is expressed in terms of a product over each column i of height λi,

:
∏
x∈λ

ξ(χx)⊗ η(χx) : ' :
∏
i

S(vqi−1
1 qλi2 ) : (D.6)

where we have neglected the boundary terms S(vqi−1
1 ) that can be taken care of using zero

modes. In the r.h.s. , the product is taken over the elements of the set X defined in [31],

and we can formally identify the state |ZT 〉 representing the partition function with the

action of TU(m) over the horizontal vacuum states:

|ZT 〉 '
∑
λ

:
∏
i

S(vqi−1
1 qλi2 ) : |∅〉 ' TU(1) (|∅〉 ⊗ |∅〉) . (D.7)

The modes sk can be used to build the stress-energy tensor of the q-Virasoro algebra.

The orthogonal combination kbk = a
(1)
k + γ|k|a

(2)
k , which by definition commutes with sk,

obeys the q-bosonic commutation relation

[bk, b−k′ ] = −1

k

1− qk

1− tk
δk,k′(1 + qk3 ) k > 0. (D.8)

Thus, we have obtained the formal decomposition

(1, 0)⊗ (1, 0) = q-Heisenberg⊕ q-Virasoro. (D.9)

It is also interesting to rewrite the coproduct of x+(z) in terms of the modes bk, sk:

: ∆(x+(z)) : ' : exp

(
−
∑
k∈Z

1− tk

1 + q
|k|
3

z−kbk

)
:
[
Y (zγ−1)+ : Y (zγ)−1 :

]
(D.10)

where, following Kimura and Pestun, we have introduced the operator

Y (z) =: exp

(∑
k∈Z

z−kyk

)
:, yk =

1− tk

1 + qk3
sk. (D.11)
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Hence, up to a U(1) factor, we recover in ∆(x+(z)) the operator T of Kimura and Pestun,

identified with the fundamental current (stress-energy tensor) of q-Virasoro [59].20

For a general linear quiver diagram Ar, the modes s
(i)
k i = 1 · · · r are associated to

the nodes of the diagram. On the other hand, the T -operator is written as an (r + 1)th

tensorial product

TU(mr)×···×U(m1) = tr
12···r

Φ∗1 ⊗ Φ1Φ∗2 ⊗ · · · ⊗ Φr−1Φ∗r ⊗ Φr (D.12)

'
∑

λ(1),··· ,λ(r)

 ∏
x∈λ(1)

ξ(χx)⊗ η(χx)

◦
 ∏
x∈λ(2)

ξ(χx)⊗ η(χx)

◦ · · · ◦
 ∏
x∈λ(r)

ξ(χx)⊗ η(χx)

 .

In this expression, a different set of modes a
(i)
k is attached to each tensor space, with

i = 1 · · · r + 1. It leads to identify the modes as follows:

ks
(i)
k = −γ|k|a(i)

k + a
(i+1)
k , kbk =

r+1∑
i=1

γ|k|ia
(i)
k . (D.13)

Under this identification, the modes s
(i)
k reproduce the commutation relation (D.1) with

the deformed Cartan matrix of the Ar Dynkin diagram. In addition, they all commute

with the modes bk. Thus, for a general linear quiver, we have the formal decomposition

(1, 0)⊗(r+1) = q-Heisenberg⊕Wr. (D.14)

E Derivation of the qq-characters for the A3 quiver

The qq-characters associated to the three nodes of the A3 quiver are labeled by the Young

diagrams , and . They can be constructed from the following operators:

∆ (x+(z)) =x+
:0 ⊗ 1⊗ 1⊗ 1 + ψ−:1/2 ⊗ x

+
:1 ⊗ 1⊗ 1 + ψ−:1/2 ⊗ ψ

−
:3/2 ⊗ x

+
:2 ⊗ 1

+ ψ−:1/2 ⊗ ψ
−
:3/2 ⊗ ψ

−
:5/2 ⊗ x

+
:3

∆ (x+(z)) =ψ−:−1/2x
+
:1 ⊗ x

+
:0 ⊗ 1⊗ 1 + ψ−:−1/2x

+
:1 ⊗ ψ

−
:1/2 ⊗ x

+
:1 ⊗ 1

+ ψ−:−1/2ψ
−
:3/2 ⊗ ψ

−
:1/2x

+
:2 ⊗ x

+
:1 ⊗ 1

+ ψ−:−1/2x
+
:1 ⊗ ψ

−
:1/2 ⊗ ψ

−
:3/2 ⊗ x

+
:2 + ψ−:−1/2ψ

−
:3/2 ⊗ ψ

−
:1/2x

+
:2 ⊗ ψ

−
:3/2 ⊗ x

+
:2

+ ψ−:−1/2ψ
−
:3/2 ⊗ ψ

−
:1/2ψ

−
:5/2 ⊗ ψ

−
:3/2x

+
:3 ⊗ x

+
:2

∆ (x+(z)) =ψ−:−3/2ψ
−
:1/2x

+
:2 ⊗ ψ

−
:−1/2x

+
:1 ⊗ x

+
:0 ⊗ 1

+ ψ−:−3/2ψ
−
:1/2x

+
:2 ⊗ ψ

−
:−1/2x

+
:1 ⊗ ψ

−
:1/2 ⊗ x

+
:1

+ ψ−:−3/2ψ
−
:1/2x

+
:2 ⊗ ψ

−
:−1/2ψ

−
:3/2 ⊗ ψ

−
:1/2x

+
:2 ⊗ x

+
:1

+ ψ−:−3/2ψ
−
:1/2ψ

−
5/2 ⊗ ψ

−
:−1/2ψ

−
:3/2x

+
:3 ⊗ ψ

−
:1/2x

+
:2 ⊗ x

+
:1

(E.1)

20Note that we have chosen to denote the Q-operator of Kimura and Pestun as T since the partition

function is obtained as the vev of this operator. On the other hand, their T-operator has been denoted X±

to emphasize the fact that it comes from the generators x± of the DIM algebra, and that the TQ-relation

only holds if we forget about the difference of representations.
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(1, n+m)u′

(1, n3 +m3)u′3

(1, n1 +m1)u′1

(1, n∗ +m)u′∗

(1, n∗3 +m3)u′∗3

(1, n∗1 +m1)u′∗1

(1, n∗3)u∗3

(1, n∗1)u∗1

(1, n3)u3

(1, n∗)u∗

(0,m)~v

(0,m3)~v3

(0,m1)~v1

Φ(n,m)[u,~v]

Φ(n3,m3)[u3, ~v3]

Φ(n∗,m)∗[u∗, ~v]

Φ(n∗3,m3)∗[u∗3, ~v3]

Φ(n1,m1)[u1, ~v1]

Φ(n∗1,m1)∗[u∗1, ~v1]

Figure 11. Representation web of the A3 quiver.

where we have introduced the shortcut notations x+
:k = x+(γkz), ψ−:k = ψ−(γkz). Note

that the argument of operators has been simplified taking advantage of the fact that they

act in the horizontal representations where γ̂ becomes γ. After a long and tedious com-

putation, it is possible to show that these expressions do commute with the operator

TU(m3)×U(m2)×U(m1) represented on figure 11. In practice, we have used a short program in

Python to perform the algebraic manipulations.

Defining the qq-characters as

χ+(z) =
ν1

u∗1γ
2n∗1

zn
∗
1+m1

〈
∆ (x+(zγ−1))TU(m3)×U(m2)×U(m1)

〉〈
TU(m3)×U(m2)×U(m1)

〉
χ+(z) =

ν2

u′1u
∗
1γ

2n∗1+2n1+2m1
zn
∗
1+n1+m1+m2

〈
∆ (x+(zγ−1))TU(m3)×U(m2)×U(m1)

〉
〈
TU(m3)×U(m2)×U(m1)

〉
χ+(z) =

ν3

u′1u
∗
1u
′
2γ

2n∗1+2n1+2m1+2n2+2m2
zn
∗
1+n1+n2+m1+m2+m3

×

〈
∆ (x+(zγ−1))TU(m3)×U(m2)×U(m1)

〉
〈
TU(m3)×U(m2)×U(m1)

〉 ,

(E.2)

we find the following expressions after evaluation in the four independent Fock spaces,

χ+(z) =

〈
ν1z

m1Y~λ1(zγ−2) + q1z
κ1
Y~λ2(zγ−1)

Y~λ1(z)
+ q1q2

ν1

ν2
γκ2+2m1−m2zκ1+κ2+m1−m2

Y~λ3(z)

Y~λ2(zγ)

+ q1q2q3
ν1

ν3
γκ2+2κ3+2m1+2m2−2m3

zκ1+κ2+κ3+m1−m3

Y~λ3(zγ2)

〉
gauge

– 46 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
4

χ+(z) =

〈
ν2z

m2Y~λ2(zγ−2)+q2ν1γ
m1zκ2+m1

Y~λ1(zγ−1)Y~λ3(zγ−1)

Y~λ2(z)
+q1q2γ

κ1zκ1+κ2
Y~λ3(zγ−1)

Y~λ1(zγ)

+ q2q3
ν1ν2

ν3
γ−κ2+m2(zγ)κ2+κ3+m1+m2−m3

Y~λ1(zγ−1)

Y~λ3(zγ)

+ q1q2q3
ν2

ν3
γ−κ2+m2(zγ)κ1+κ2+κ3+m2−m3

Y~λ2(z)

Y~λ1(zγ)Y~λ3(zγ)

+ q1q
2
2q3

ν1

ν3
γ2m1

(zγ)κ1+2κ2+κ3+m1−m3

Y~λ2(zγ2)

〉
gauge

χ+(z) =

〈
ν3z

m3Y~λ3(zγ−2) + q3ν2γ
m2zκ3+m2

Y~λ2(zγ−1)

Y~λ3(z)

+ q2q3ν1γ
κ2+2m1zκ2+κ3+m1

Y~λ1(z)

Y~λ2(zγ)
+ q1q2q3γ

2κ1+κ2 z
κ1+κ2+κ3

Y~λ1(zγ2)

〉
gauge

. (E.3)
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