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fields. The solutions constitute an extension of the BPS three-charge smooth microstates.

These consist in general families of regular supersymmetric solutions with non-trivial topol-

ogy, i.e. bubbles, of N = 1, d = 5 Super-Einstein-Yang-Mills theory, having the asymptotic

charges of a black hole or black ring but with no horizon. The non-Abelian fields make their

presence at the very heart of the microstate structure: the physical size of the bubbles is

affected by the non-Abelian topological charge they carry, which combines with the Abelian

flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a

set of adjustable continuous parameters that do not alter the asymptotics of the solutions

but modify the local geometry. This feature can be used to obtain a classically infinite

number of microstate solutions with the asymptotics of a single black hole or black ring.
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1 Introduction

The construction and study of smooth microstate geometries in supergravity theories has

become a fruitful area of research since the pioneering work, more than a decade ago,

of Bena and Warner [1] and independently of Berglund, Gimon and Levi [2], where a

strategy to obtain ample families of microstate geometries was given, generalizing earlier

results [3–9]. This kind of solutions can be roughly described as a black hole configuration

in which the horizon and its interior have been replaced by some complicated, although

smooth horizonless geometry while keeping the rest of the field configuration looking like

the unmodified solution. Any solution with such remarkable properties is interesting per

se, although it is in the context of the fuzzball proposal [10] in which these configurations

acquire their greatest significance.

The proposal originated as a possible solution to the information paradox and con-

jectures that the entropy of a black hole has its microscopic origin in the degeneracy of a

quantum bound state, the fuzzball. In this picture, the classical black hole would provide

an effective description of the system, that would consist in a quantum ensamble of ge-

ometries. These microstate geometries, when considered individually, would correspond to

string theory configurations with unitary scattering and hopefully a subset of these states

might be captured as smooth horizonless supergravity solutions. Since the proposal sug-

gests a modification at the horizon scale, such geometries should have the same asymptotics

as the black hole.
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This conjecture opened a whole program in the quest to construct smooth microstate

geometries in theories of supergravity. Much progress has been made in this direction and

vast classes of such solutions have already been described in the literature, see [11–15] and

references therein. The direct identification of these configurations as representing typical

microstates of a particular black hole is generally unclear due to the absence of a description

in terms of a dual CFT. However very recently this identification has been performed for a

particular type of configurations known as superstrata, constituting a major achievement

of the fuzzball program [16]. Nevertheless, even though general microstate geometries lack

of this identification, they are still very useful in providing valuable information about the

physics of black holes in string theory, see for instance [17–21].

Typically these are described as topologically non-trivial spacetimes in five and six

dimensions, in the context of supergravity coupled to Abelian matter multiplets or pure

supergravity. In the present work we perform the inclusion of non-Abelian degrees of

freedom for the first time.1 The reason why this class of microstate geometries has remained

unexplored so far seems to be clear: the construction of explicit analytic non-Abelian

solutions in five- and six-dimensional supergravity theories has become accessible only in

the last few months [26–28]. The solutions that we present here constitute a non-Abelian

extension of the BPS three-charge smooth geometries described in [11]. We work in N = 1,

d = 5 Super-Einstein-Yang-Mills (SEYM) theories. One can think of these theories as an

extension of the five-dimensional STU model of supergravity, that describes a supergravity

multiplet coupled to two Abelian vector multiplets. SEYM theories are then obtained by

consistently coupling the STU model to a set of additional vector multiplets that transform

under the local action of a non-Abelian group.2 Although this nomenclature might seem

unfamiliar in the literature of microstate geometries, in fact the underlying theory where

this solutions are constructed is quite frequently the STU model: five-dimensional three-

charge configurations are naturally described in this framework.

It is worth mentioning howN = 1, d = 5 SEYM theories are embedded in string theory.

The 10-dimensional effective theory of the Heterotic string describes N = 1 supergravity

coupled to 16 Abelian vector multiplets. When the Heterotic string theory is compactified

on T 5, there are special points in the moduli space for which there is an enhancenment of

the gauge symmetry. Then, besides the Kaluza-Klein vectors, the effective supergravity de-

scription contains additional massless vector fields taking values in the algebra of some non-

Abelian group. A consistent truncation can reduce the supermultiplets content (as well as

their number) and result in the N = 1, d = 5 SEYM theories that we consider here. The ex-

plicit realization of this particular compactification and truncation might be interesting [29].

The procedure by which non-Abelian microstate geometries are found has a similar

structure than that of the Abelian case, but requires the introduction of some modifications.

Just like in the case of supersymmetric solutions of STU supergravity, the construction

of BPS configurations satisfying the equations of motion of SEYM theory relies on the

specification of a reduced set of seed functions defined in R3. In the case of the familiar

1Notice that globally regular non-Abelian gravitating configurations on contractible spaces have been

known since the late 80s, see [22–25]. These are usually referred as global monopoles.
2One can consider as well the introduction of additional Abelian vector multiplets.
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STU model, these are simply harmonic functions that satisfy certain differential equations

whose integrability condition is the Laplace equation. The SEYM procedure conserves

these harmonic functions and introduces a new set of seed functions satisfying the covariant

version of these differential equations.

We find that the bubbling equations, which determine the size of the bubbles leading

to physically sensible geometries, contain a new contribution that appears standing next

to the magnetic fluxes threading the bubbles, see (3.27). This new term can be given a

physical interpretation in terms of the topological charge, or instanton number, associated

to the endpoints of the bubble of a non-Abelian instanton that builds up the vector fields.

As a consequence it should be possible to have stable bubbles without some magnetic fluxes

placed on them or, inversely, a bubble can collapse even though the fluxes are non-zero.

Another interesting peculiarity introduced by the non-Abelian fields is that the solu-

tion depends on a set of continuous parameters that can be modified with no apparent

restriction whose influence is only local, i.e. their modification does not change any of

the asymptotic charges. This is a shocking feature that allows the construction of huge

amounts of microstate geometries with the same topology for a unique black hole, and its

proper interpretation requires further study.

Having said that, let us start talking about the details of non-Abelian microstate

geometries. We give a general description of the solutions that can be found using our

generating technique in section 2. In section 3 we describe how this method can be utilized

for the construction of smooth horizonless solutions. We conclude in section 4 with some

comments about the results and discuss future directions. In appendix A we give a brief

summary of N = 1, d = 5 SEYM theories, describing its matter content and its action.

Appendix B contains the solution generating technique written in a step-by-step language.

2 Supersymmetric solutions of N = 1, d = 5 super-Einstein-Yang-Mills

A technique to construct supersymmetric timelike solutions with a spacelike isometry in

these theories was recently developed in [26], where it was used to describe the first non-

Abelian analytic black holes in five dimensions.3 This method has also been used in [27]

to find non-Abelian generalizations of the Emparan-Reall black ring solution, [30], and

the BMPV rotating black hole, [31]. In the simplest settings, the configurations can be

roughly interpreted as three-charge Abelian solutions on top of which we place a non-

Abelian instanton that, interestingly, does not produce any change on the mass of the

solution while it reduces its entropy.

The solutions of N = 1, d = 5 SEYM4 are specified by the form of the metric ds2,

the vector fields AI and the scalars φx. The indices labeling the vectors take values in

{I, J, . . . = 0, . . . , 5}, with the Abelian sector contained in the first values {i, j, . . . = 0, 1, 2}
and the non-Abelian sector in the last three {α, β, . . . = 3, 4, 5}. We make a continuous

use of this division in two sectors through the text. The scalars are conveniently codified

3A method for the systematic construction of null solutions and some explicit examples describing black

strings and regular string-monopoles are also given in that reference.
4See Apendix A for a brief description of the theory.
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in terms of a set of functions hI labeled with the same indices than the vectors, such that

φx ≡ hx/h0. We also define the functions of the scalars with upper indices as

hI ≡ 27CIJKhIhJ , hIhI = 1 , (2.1)

where CIJK = CIJK is a constant symmetric tensor that characterizes the supergravity

theory. We work on the SU(2)-gauged ST[2, 6] model, that contains nv = 5 vector mul-

tiplets and, as we mentioned in the introduction, can be understood as a non-Abelian

extension of the STU model. This model is characterized by a constant symmetric tensor

with the following non-vanishing components

C0xy =
1

6
ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 5 . (2.2)

In [32] it was shown that timelike supersymmetric solutions of this theory are of the

form

ds2 = f 2(dt+ ω)2 − f −1dŝ2 , (2.3)

AI = −
√

3hIf(dt+ ω) + ÂI , (2.4)

where dŝ2 is a four-dimensional hyperKähler metric and the rest of elements that appear

in this decomposition are defined on this four-dimensional space. These elements satisfy

the system of BPS equations :

F̂ I = ?4F̂
I , (2.5)

D̂2 (hI/f) =
1

6
CIJK F̂

J · F̂K , (2.6)

dω + ?4dω =

√
3

2
(hI/f)F̂ I . (2.7)

Here ?4 is the Hodge dual in the four-dimensional metric dŝ2 and F̂ I is the field strength

of the vector ÂI

F̂ Iµν = 2∂[µÂ
I
ν] + ĝfJK

IÂJµÂ
K
ν , (2.8)

where fIJ
K are only non-vanishing when the indices take values in the non-Abelian sector,

in which case they are the structure constants of SU(2), fαβ
γ = εαβγ .

Some words about notation are necessary. Notice that we use hats to distinguish

objects that are defined in four spatial dimensions. For example, AI is used to represent

the five-dimensional physical vectors and ÂI is a vector in the four-dimensional hyperKähler

space. In a few lines we will introduce another collection of objects that are labeled with

inverse hats and that are defined in three-dimensional Euclidean space. In particular we

define the vectors ĂI . We use all these vectors to define covariant derivatives in five, four

and three dimensions for objects with upper and lower vector indices. For example the

four-dimensional covariant derivatives are defined by

D̂hI = dhI + ĝfJK
IÂJhK , D̂hI = dhI + ĝfIJ

KÂJhK . (2.9)
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The system of BPS equations can be drastically simplified under the assumption that

the solutions admit a global spacelike isometry along a compact direction [26]. Then the

mathematical objects that build up the physical fields can be further decomposed in terms

of elements defined in three dimensional flat space in the following manner

dŝ2 = H−1(dϕ+ χ)2 +Hdxrdxr , r = 1, 2, 3 , (2.10)

ÂI = −2
√

6
[
−H−1ΦI(dϕ+ χ) + ĂI

]
, (2.11)

hI/f = LI + 8CIJKΦJΦKH−1 , (2.12)

ω = ω5(dϕ+ χ) + ω̆ , (2.13)

where ϕ is a coordinate adapted to the direction of the isometry. Substituting back these ex-

pressions in the BPS system of equations, we obtain the conditions that H,χ,ΦI , ĂI , LI , ω5

and ω̆ need to satisfy

?3dH = dχ , (2.14)

?3D̆ΦI = F̆ I , (2.15)

D̆2LI = ğ2fIJ
LfKL

MΦJΦKLM , (2.16)

?3dω̆ = HdM −MdH + 3
√

2(ΦID̆LI − LID̆ΦI) , (2.17)

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , (2.18)

where M is just a harmonic function in E3, i.e. ∇2M = 0.

Equations (2.14), (2.15) and (2.16) in the Abelian sector imply that H, Φi and Li are

just harmonic functions on E3. Once these are specified it is straightforward to find the

1-forms χ and Ăi.

In the non-Abelian sector (2.15) is the Bogomol’nyi equation [33], which is non-linear

and hard to solve in general. Fortunately this system, that describes a non-Abelian

monopole in Yang-Mills-Higgs theory, has been studied by many authors and the space

of solutions available in the bibliography is rich enough for the purposes of our work.

Equation (2.16) in the non-Abelian sector is easily solved if we choose Lα ∝ Φα or

just Lα = 0. However none of these choices is completely satisfying if one pursues the

construction of general smooth horizonless geometries. If one takes Lα ∝ Φα then there are

some potential restrictions on the space of possible Φi that can result in smooth geometries.

We will need to find a more general solution.

Finally, (2.17) can always be solved if its integrability condition is satisfied. This

condition gives a set of algebraic equations, which in this context are known as bubbling

equations, that impose restrictions on the distance between the different centers of the

solution (the points were the seed functions are singular). Then, of course, one has to

integrate explicitly equation (2.17) to obtain ω̆.

In summary, we have described a procedure to construct supersymmetric timelike so-

lutions in terms of a set of seed functions defined on three-dimensional flat space: H,ΦI , LI
and M .
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3 Smooth bubbling geometries in SEYM supergravity

Smooth microstate geometries are defined as horizonless, regular field configurations with-

out any brane sources but with the asymptotic charges of a black hole. At a technical level

this statement implies several conditions that we shall address in the following subsections,

being perhaps the most important of those the requirement of working with manifolds with

non-trivial topology.5 This fact can be roughly understood from the fact that the existence

of non-trivial cycles allows for the presence of measurable asymptotic charges without the

introduction of localized brane sources. See for instance [11] for a detailed discussion about

this topic.

The systematic procedure for finding solutions described in the previous section can

naturally accommodate ambipolar Gibbons-Hawking spaces, which have just the right

properties for these purposes. Let us start with a brief description of these manifolds.

3.1 Ambipolar Gibbons-Hawking spaces

Much of the very interesting physics exhibited by these solutions is related to the use

of ambipolar Gibbons-Hawking spaces, which are a particular example of ambipolar hy-

perKähler manifolds [34]. These have the form of a U(1) fibration over a R3 base, with the

fiber collapsing to a point at a finite collection X = {~xa|a = 1, . . . , n} of points in R3 which

we will call centers. Any path in the base manifold connecting two centers, γab, defines a

non-contractible 2-cycle through the inclusion of the U(1) fiber, ∆γab . A different path γ′ab
between the same centers describes an homologically equivalent 2-cycle ∆γ′ab

' ∆γab . We

will denote any of the equivalent 2-cycles simply as ∆ab.

These spaces have the metric

dŝ2 = H−1(dϕ+ χ)2 +H
[
dr2 + r2

(
dθ2 + sin2θdψ2

)]
, ?3dH = dχ , (3.1)

with the angular coordinates taking values in θ ∈ [0, π), ψ ∈ [0, 2π), ϕ ∈ [0, 4π). H is a

harmonic function on E3 of the form

H =
∑
a

qa
ra
, with ra ≡ |~x− ~xa| , ~xa ∈ X , (3.2)

while the 1-form χ plays the role of local connection of the fiber bundle and can be written as

χ =
∑
a

qacosθadψa , (3.3)

where θa and ψa are coordinates on a spherical frame centered in ~xa.

Although H is singular when evaluated at the centers it is straightforward to check

that if all qa, aka Gibbons-Hawking charges, are integers then the metric remains regular

at these points.6 Indeed under the redefinition of the radial coordinate ρa = 2
√
ra we find

that locally

dŝ2|ρa→0 ∼ dρ2
a + ρ2

adΩ2
(3)/qa

, (3.4)

5By this we mean that they describe non-contractible spaces.
6When |qa| 6= 1 there is an orbifold singularity at ~x = ~xa, but we will not worry about it since these

singularities are innocuous in the context of string theory.
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being dΩ2
(3)/qa

the standard metric on S3/Z|qa|. Asymptotically the manifold is also of this

form, dŝ2|ρ→∞ ∼ dρ2 + ρ2dΩ2
(3)/Q, with the orbifold given in this case by S3/Z|Q|, being

Q ≡
∑

a qa.

Physically, smooth bubbling geometries are claimed to represent microstate configura-

tions of some particular black hole, being both solutions indistinguishable asymptotically.

Therefore we are interested in having the ambipolar Gibbons-Hawking space asymptotic

to R4, which we can achieve imposing Q = 1. This condition requires that some of the

Gibbons-Hawking charges be negative, and therefore the function H interpolates between

−∞ and +∞. Each negatively charged center is surrounded by a connected open region

with H < 0, whose boundary is a surface where H vanishes.

Then the signature of the metric interpolates between (+ + ++) and (−−−−), being

clearly ill-defined at the surfaces where H = 0. It is this characteristic what renders

this space be ambipolar. These harmful properties, however, can be made compatible

with having a smooth five-dimensional supergravity solution due to the presence of both,

the conformal factor f−1 multiplying dŝ2 and the additional terms in the full metric, see

equation (2.3). We will elaborate on this in subsequent sections.

3.2 Seed functions for horizonless spacetimes

In the language of the solution generating technique outlined in section 2, we have given the

first small step in the way to obtain a supersymmetric solution, that can be synthesized as

H =
∑
a

qa
ra
, with qa ∈ Z ,

∑
a

qa = 1 . (3.5)

The remaining seed functions in the Abelian sector Φi, Li and M are also harmonic,

Φi = ki0 +
∑
a

kia
ra
, Li = li0 +

∑
a

lia
ra
, M = m0 +

∑
a

ma

ra
, (3.6)

and from equation (2.15) we readily obtain

Ăi =
∑
a

kiacosθadψa . (3.7)

Notice that we imposed that the location of the singularities coincides with a Gibbons-

Hawking center. With this requirement we will be able to avoid that the building blocks

hI/f as defined in (2.12) become singular whenever any of the seed functions individually

diverge. This is the mathematical version of what at the beginning of the section we called

absence of brane sources, and it is the mechanism responsible of obtaining horizonless

geometries.7 Also, the fact that the harmonic seed functions are singular at the Gibbons-

Hawking centers is directly responsible for much of the very interesting physics captured

by these solutions. Consequently, we would like the non-Abelian seed functions to display

a similar qualitative behavior, i.e. (Φα, Lα)|ra→0 ∼ r−1
a +O(r0

a).

7Clearly this naming is pointing at the physical origin of these potential singularities once the solutions

are interpreted in the context of string theory.
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Protogenov’s SU(2) colored monopole [35] is a solution to the Bogomol’nyi equation

with this property, with only one single center. Colored monopoles are rather intriguing

objects. They describe a point with unit local magnetic charge surrounded by a magnetic

cloud that completely screens the charge as seen from infinity.8 Despite its singular nature

when interpreted in the context of Yang-Mills-Higgs theory, single center colored monopole

solutions have been fruitfully used in the literature to obtain regular non-Abelian black

holes in four- [36–39] and five-dimensional [26, 27] theories of gauged supergravity. Their

presence has an interesting impact on black hole thermodynamics, modifying the entropy

without altering the mass.

Therefore, a family of well-suited non-Abelian seed functions Φα is given by a multi-

center generalization of colored monopoles, which we construct now. From now on we will

assume the gauged group is SU(2) for the sake of simplicity, so the index α can take three

possible values. Nevertheless, following the ideas of Meessen and Ort́ın [36], it should be

possible to embed these monopoles in a more general group SU(N) and use them in the

construction of smooth bubbling geometries in SU(N)-gauged supergravity.

Plugging in the Bogomoln’yi equation (2.15) the ansatz of the hedgehog form

Φα = − 1

ğP

∂P

∂xs
δαs , Ăαµ = − 1

ğP

∂P

∂xs
εα µs , (3.8)

we find that this configuration describes a monopole solution if P is a harmonic function,

P = λ0 +
∑
a

λa
ra
, λ0 6= 0 . (3.9)

Substituting back in (3.8), we can write the solution as

Φα =
∑
a

λa
ğr2
aP

δαs
(xs − xsa)

ra
, Ăαµ =

∑
a

λa
ğr2
aP

εα µs
(xs − xsa)

ra
. (3.10)

The Higgs field of the monopole is singular at the centers and vanishes at infinity

lim
ra→0

Φα =
kαa
ra

+O(r0
a) , lim

r→∞
Φα ∼ O(r−2) , kαa ≡ δαs

(xs − xsa)
ğra

. (3.11)

This solution corresponds to a multicenter colored monopole configuration.

The last seed functions we need to find are Lα, which are solutions of equation (2.16),

that we repeat here for convenience

D̆2Lα − ğ2fαβ
λfγλ

ρΦβΦγLρ = 0 . (3.12)

We can solve this differential system by making use of the ansatz

Lα = − 1

ğP

∂Q

∂xs
δαs , (3.13)

8The magnetic charge is defined as p = ğ
4π

∫
S2

ΦαF̆α
√

ΦαΦα .
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the equation reduces to the condition of Q being harmonic. We choose Q to be of the form

Q =
∑
a

σaλa
ra

. (3.14)

The functions Lα behave similarly to Φα near the centers and at infinity

lim
ra→0

Lα =
lαa
ra

+O(r0
a) , lim

r→∞
Lα ∼ O(r−2) , lαa ≡ σaδαs

(xs − xsa)
ğra

, (3.15)

only differentiated by the presence of the parameters σa in the near-center limit. The

appearance of these factors will be fundamental for obtaining horizonless geometries.

After having fixed the general form of all the seed functions, we can start analyzing

the regularity of the metric. In order to construct horizonless solutions we need to avoid

having brane sources at the centers. In other words, we want the building blocks hI/f that

constitute the metric function, given by (2.12), to remain finite at these points. Keeping

the charges qa and kia arbitrary, it is possible to remove the brane sources by taking

lIa = −8CIJK
kJa k

K
a

qa
. (3.16)

Notice that this expression is valid in both the Abelian and the non-Abelian sector. In the

former it fixes the value of the parameters lia, while in the latter it fixes the parameters σa.

Regularity of the metric at the centers also requires ω5 to be finite there, something that

we achieve by choosing

ma = 8
√

2CIJK
kIak

J
a k

K
a

q2
a

. (3.17)

The constant terms in the harmonic seed functions (3.6) define the solution at infinity. In

order to have an asymptotically flat metric (f∞ ∼ 1, ω5,∞ ∼ 0) we need to satisfy the

constrains

ki0 = 0 , 27Cijkli0l
j
0l
k
0 = 1 , m0 = −3

√
2
∑
i,a

li0k
i
a . (3.18)

3.3 Closed timelike curves and bubbling equations

By using an ambipolar Gibbons-Hawking metric we are taking a clear risk: the spacetime

metric might contain closed timelike curves (CTC’s) or even be ill-defined at the critical

surfaces where H = 0. We now study the conditions under which CTC’s are absent, so the

microstate geometries are physically sensible.

Let us expand the expression of the spacetime metric (2.3) and write it in the following

manner

ds2 = f2dt2 + 2f2dtω − I
f−2H2

(
dϕ+ χ− ω5H

2

I
ω̆

)2

− f−1H

(
d~x · d~x− ω̆2

I

)
, (3.19)

where I is defined as

I ≡ f−3H − ω2
5H

2 . (3.20)
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There is one general restriction that needs to be satisfied in order to avoid the presence

of CTC’s

I ≥ 0 . (3.21)

Apparently there is one additional condition, f−1H ≥ 0, but this is implied by the inequal-

ity in (3.21). Let us express this condition in more detail by evaluating I in terms of the

seed functions

I = −M2H2 − 18
(
ΦILI

)2 − 32
√

2MCIJKΦIΦJΦK − 6
√

2MHLIΦ
I

+ 27HCIJKLILJLK + 3423CIJKCKLMLILJΦLΦM ≥ 0 .
(3.22)

The first point to notice is that the form of this expression coincides with that of

ungauged supergravity originally derived in [1], where it was identified as the quartic in-

variant of E7(7). The analysis of the positivity of this quantity is hard to do in general,

although we can assert that this bound can be satisfied for large families of configurations.

The reason behind this statement is that this has been shown to be the case for ungauged

supergravities, and many techniques to construct solutions satisfying this bound have been

developed. In any case, it is fair to say that this restriction definitely makes the process of

constructing explicit solutions more complicated.

There is one additional factor that can result in the appearance of CTC’s, and this

is the formation of Dirac-Misner strings. Those arise when the integrability condition of

the last differential equation that still remains to be solved, (2.17), is not satisfied. This

condition is obtained acting with the operator d?3 in that expression, which gives{
H∇2M −M∇2H + 3

√
2(Φi∇2Li − Li∇2Φi + ΦαD̆2Lα − LαD̆2Φα)

}
= 0 . (3.23)

This condition is identically satisfied as a consequence of equations (2.14)–(2.16) everywhere

except at the centers, where technically those equations cease to apply. The bubbling

equations are algebraic constrains that guarantee that the integrability condition is satisfied

everywhere, setting the requirements that avoid the presence of Dirac-Misner strings.

To make further progress it is convenient to define the symplectic vector of seed func-

tions

SM =
(
H, 3
√

2ΦI ,M,LI

)
, SM =

(
M,LI ,−H,−3

√
2ΦI

)
, (3.24)

and a symplectic vector of charges at each center

QMa =
(
qa, 3
√

2kIa,ma, l
I
a

)
, QM,a =

(
ma, l

I
a,−qa,−3

√
2kIa

)
. (3.25)

Now we can write the integrability condition as

SMD̆2SM = 0 . (3.26)

Interestingly the non-Abelian sector vanishes in the last expression due to the symplec-

tic product and the expression is reduced to SmQm,aδ(~x− ~xa) = 0 with the understanding

that Sm and Qma are the components of the symplectic vectors in the Abelian sector. Then,
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one could naively expect that the bubbling equations coincide with those in the case of

ungauged supergravity theories. However, this does not happen because the charges lia are

affected by the presence of the non-Abelian fields according to (3.16). After a few lines of

algebraic computation, the resulting bubbling equations are conveniently written as

∑
b 6=a

qaqb
rab

[
CijkΠ

i
abΠ

j
abΠ

k
ab −

1

2ğ2
Π0
abTab

]
=

3

8
li0

(∑
b

qak
i
b − kia

)
, (3.27)

where Πi
ab is the ith- flux threading the 2-cycle ∆ab and Tab contains information about

the topological charge associated to the centers a and b, see (3.45)

Πi
ab ≡

(
kib
qb
− kia
qa

)
, Tab ≡ ğ2

(
kαa k

α
a

q2
a

+
kαb k

α
b

q2
b

)
. (3.28)

We are now ready to integrate (2.17). It is convenient to decompose the 1-form ω̆ into

two parts, ω̆A and ω̆B, satisfying

?3dω̆
A = HdM −MdH + 3

√
2(ΦidLi − LidΦi) , (3.29)

?3dω̆
B = 3

√
2(ΦαD̆Lα − LαD̆Φα) , (3.30)

The first equation can be solved independently for each pair of centers (a, b), with ω̆A =∑
a

∑
b>a ω̆

A
ab. For each pair we use adapted coordinates such that ~xa = (0, 0, 0) and

~xb = (0, 0,−rab), with spherical angles given by

x1
ab = rasinθabsinψab x2

ab = rasinθabcosψab x3
ab = −racosθab . (3.31)

Upon substitution of the seed functions H,M,Li,Φ
i, (3.29) can be written as

?3dω̆
A
ab =

Qm,aQ
m
b

rab

{
− 1

r2
a

[
1− rab + ra

rb
+
rarab (ra + rab)

r3
b

(1− cos θab)

]
dra

+

[
rab sin θab

r3
b

(ra − rab)
]
dθab

}
,

(3.32)

being rb the radial distance as measured from ~xb. A solution can be readily found provided

ω̆Aab has only one non-vanishing component, ω̆Aab,ψab

ω̆Aab =
8
√

2qaqb
rab

[
CijkΠ

i
abΠ

j
abΠ

k
ab −

1

2ğ2
Π0
abTab

]
(cos θab − 1)

(
1− ra + rab

rb

)
dψab . (3.33)

Now we turn our attention to (3.30). Notice that this expression contains three-point

interactions due to the presence of the connection Ăα in the covariant derivative, so at first

sight its structure is more involved than that of its Abelian counterpart. However, despite

this complexity, the general solution for an arbitrary number of centers can be found. It is

most remarkable that the interactions among all of them can be written in a very compact

form! We obtain

ω̆B =
3
√

2εrst
ğ2P 2

∂Q

∂xs
∂P

∂xt
dxr . (3.34)
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While deriving (3.33) and (3.34) we have assumed that the integrability condition is

satisfied by making use of the bubbling equations (3.27). As a consistency check we can

perform an inspection to confirm the absence Dirac-Misner strings in ω̆A and ω̆B. For the

former, it is straightforward to verify that the only component of the one form, ω̆Aab,ψab , van-

ishes when the coordinate ψab is not well defined. In particular this happens along the x3
ab

axis both in the positive direction, where
(

1− ra+rab
rb

)
|
x3,+
ab

= 0, and in the negative direc-

tion, with (cos θab − 1) |
x3,−
ab

= 0. In the case of the latter it suffices to check that ω̆B is regu-

lar at the centers as a consequence of the antisymmetric character of the 1-form components.

3.4 Fluxes and topological charge

We now turn our attention to the vector fields. We shall recall their expressions

AI = −
√

3hIf(dt+ ω) + ÂI , (3.35)

ÂI = −2
√

6
[
−ΦIH−1 (dϕ+ χ) + ĂI

]
, (3.36)

where ĂI is determined in terms of ΦI by the Bogomol’nyi equation (2.15) and whose ex-

plicit form is (3.7) in the Abelian sector and (3.8) in the non-Abelian. From these expres-

sions we see that these fields can be understood in terms of three layers: the physical vectors

AI , a four-dimensional instanton ÂI with selfdual field strength and a three-dimensional

static magnetic monopole ĂI . Each of them is used to build up those preceding it, in a

configuration that resembles the structure of the Russian matryoshka dolls.

In the Abelian sector Ăi describes a configuration with several Dirac monopoles, which

is singular due to the presence of Dirac strings attached to each center. These strings are

eliminated in Âi by the new term in (3.36), although this term introduces new strings in

the compact direction ϕ,

lim
ra→0

Âi ∼ −2
√

6

[
−k

i
a

qa
(dϕ+ qacosθadψa) + kiacosθadψa

]
∼ 2
√

6
kia
qa
dϕ . (3.37)

The component in the local coordinate ψa is compensated by the new term, but now Âiϕ is

finite at the centers, where the coordinate ϕ is not well defined. Besides Âi is not regular

either at the critical surfaces characterized by H = 0. Yet again, this singularity is cured at

the next stage and the physical vectors Ai are globally regular up to gauge transformations.

In this case the first term in (3.35) compensates the divergence at the critical surface,

lim
H→0

(
−
√

3hifω5(dϕ+ χ)
)

= −2
√

6H−1Φi(dϕ+ χ) +O(H0) , (3.38)

without introducing any anomaly elsewhere, which is guaranteed because ω has been de-

signed to be free of Dirac-Misner strings.

To every non-trivial 2-cycle at the ambipolar space it is naturally associated a magnetic

flux for each vector, defined as the integral of the field strength F i along the 2-cycle. To

compute this quantity we make use of our standard decomposition for Ai, which is valid

everywhere except at the centers. Nevertheless since the field strength is globally regular

the flux can be equally computed by taking the integral along the 2-cycle with the poles
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excised. In this region the integrand is an exact form and we can make use of Stokes’

theorem. We get

Πi
ab ≡

1

(2
√

6)4π

∫
∆ab

F i =

(
kib
qb
− kia
qa

)
. (3.39)

We now consider the non-Abelian sector. Our recipe for constructing solutions of

N = 1, d = 5 SEYM theory naturally incorporates Kronheimer’s scheme [40], that relates

any static monopole Ăα to an instanton over a Gibbons-Hawking base, Âα, through equa-

tion (3.36). For example, in [41] this mechanism has been utilized to oxidize the single cen-

ter colored monopole, that has turned out to be the counterpart of the BPST instanton [42].

On the other hand, Etesi and Hausel showed in [43] that families of regular Yang-Mills in-

stantons over an Asymptotically Locally Euclidean space (ALE) are related to multicenter

colored monopoles in Kronheimer’s scheme.9 However, although our instanton is related

to the same monopole, it is necessarily different than the Etesi-Hausel solution because

they are defined on different bases: our Gibbons-Hawking space is ambipolar, not ALE. In

particular this means that our instanton is singular at the critical surfaces. This is cured for

the five-dimensional physical vector in the same manner than it is for the Abelian vectors.

Even though the instanton Âα is ill-defined at the critical surfaces, we would like to

study if we can associate to it a topological charge, also known as instanton number.10 Here

we need to remark that this topological charge is associated to the vector Âα defined on the

ambipolar Gibbons-Hawking space. Therefore this quantity may not be a true invariant of

the physical spacetime. Nevertheless its computation is interesting by itself and, as we are

about to see, this quantity is finite even though the connection blows up. We define the

topological charge as

T =
g2

32π2

∫
M4\S

d4ΣF̂ 2 , (3.40)

where d4Σ is the volume form of the manifold, F̂ 2 is the scalar obtained by taking the trace

of the field strength contracted with itself, F̂ 2 ≡ F̂αµνF̂
αµν , and M4\S is the ambipolar

space without the critical surfaces. These have to be necessarily removed because the

canonical volume form associated to the metric vanishes there and the above integral

cannot be defined over them. To perform the calculation it is convenient to work in the

following flat frame of the cotangent bundle

e0 = s|H|−1/2(dϕ+ χ) , ea = |H|1/2dxsδas , ε0123 = ε0123 = 1 . (3.41)

where s is +1 when H is positive and −1 when H is negative. The volume form is expressed

in terms of the vielbeins as e0 ∧ e1 ∧ e2 ∧ e3 = Hdϕ ∧ d3x, where d3x is a shorthand for

dx1 ∧ dx2 ∧ dx3. The gauge field strength is obtained from (3.36) and its components in

this coframe are

F̂α0a = −2
√

6sD̆a

(
ΦαH−1

)
, F̂αab = −2

√
6s
[
H−1F̆αab −H−2Φα(dχ)ab

]
. (3.42)

9In fact, to the best of our knowledge, multicenter colored monopoles have only appeared in the literature

so far in [43], where they are used as valuable intermediates for computing the topological charge of their

instanton counterparts.
10It would be very interesting to study rigorously the construction of SU(2) fiber bundles over ambipolar

Gibbons-Hawking bases, but this goes beyond the scope of the present work.
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Substituting back into (3.40), using (2.14), (2.15) and integrating by parts we get

T =
ğ2

32π2

∫
M4\(S∪X)

dϕ ∧ d3x

[
2∇2

(
ΦαΦα

H

)
− 4H−1ΦαD̆2Φα + 2H−2ΦαΦα∇2H

]
.

(3.43)

Notice that in this step the centers have also been removed from the integration space

because the decomposition (3.36) is not well-defined there. This does not change the value

of the integral because F̂ 2 is regular at these points. The second and third terms in the

above expression vanish identically in the region. We can integrate on ϕ and apply Stokes

theorem to get

T =
ğ2

4π

∫
V 3

d3x∇2

(
ΦαΦα

H

)
=
ğ2

4π

∫
∂V 3

d2Σna∂a

(
ΦαΦα

H

)
. (3.44)

Here V 3 is R3 with the centers and the critical surfaces excised, d2Σ is the volume form

induced on ∂V 3 and na are the components of a unit vector normal to ∂V 3. Thus the

problem is reduced to a computation at the boundary of V 3, which is composed of the

critical surfaces, the centers and infinity. Formally at the critical surfaces we receive an

infinite contribution to the topological charge, but notice that each connected critical sur-

face is the boundary of two disconnected regions of V3 and therefore it appears twice in

the computation. Since the normal unitary vector ~n has opposite direction in each case,

both infinite contributions cancel out because lim~x→∂V 3 ∂a
(

ΦαΦα

H

)
|na| takes the same value

when ~x is evaluated at both sides of the critical surface.

After having got rid of the critical surfaces, the computation of (3.44) is straightfor-

ward. The contributions at each center and at infinity are

Ta = ğ2k
α
a k

α
a

qa
, T∞ = 0 , (3.45)

Assuming that we placed non-Abelian seed functions at every center, the total topological

charge is

T =
∑
a

1

qa
. (3.46)

3.5 Critical surfaces

As we have already discussed at previous stages, the critical surfaces defined by having

H = 0 are worth special attention. Not only is the ambipolar Gibbons-Hawking metric

ill-defined there, but also many of the other auxiliary building blocks that make up the

solution contain inverse powers of H. Nevertheless, the spacetime metric and all physical

fields remain completely regular at the critical surfaces. It is interesting to illustrate in

some detail how this happens.

Let us consider the metric as written in (3.19). In the purely spatial part there are no

singularities in these surfaces because the product f−1H defines a finite positive quantity,

lim
H→0

f−1H = 8
(
CIJKΦIΦJΦK

)2/3
+O(H) , (3.47)
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and I is also regular, as easily seen from its expression in terms of the seed functions (3.22).

Of course, this is only possible because limH→0 f ∼ 0 and this, in particular, means that

the critical surfaces are determined by the vanishing of the norm of the Killing vector that

generates time translations, V = ∂t, V
µVµ = f2.

One might get worried by this statement, since timelike supersymmetric solutions in

supergravity quite frequently have event horizons at the regions where the timelike Killing

vector becomes null. Happily this does not happen here. First, because as we just saw the

spatial part remains regular, and second, because of the presence of the additional finite

term in the metric that keeps the determinant non-vanishing at these regions,

lim
H→0

f2ω5dt(dϕ+ χ) =
1

2
√

2

(
CIJKΦIΦJΦK

)−1/3
dt(dϕ+ χ) +O(H) . (3.48)

Then any massive particle sitting at the surface is unavoidably dragged along some spatial

direction. Critical surfaces have the same properties as the boundary of an ergosphere,

except from the fact that they do not actually surround an ergosphere since the Killing

vector V remains timelike at both of their sides. As a consequence of this they have been

named evanescent ergosurfaces [44].

In the previous subsection we already showed that the physical vectors are well-behaved

at the evanescent ergospheres. The physical scalars, constructed by φx ≡ hI/h0, are also

regular here

lim
H→0

φx =
CxIJΦIΦJ

C0LMΦLΦM
+O(H) . (3.49)

4 Final comments

The set of continuous parameters λa that appear in the definition of the colored

monopole, (3.8), have no impact on the physics of the solution neither at the centers

nor at infinity, but they do affect the physical fields at intermediate regions. This means

that the geometry of a particular solution can be continuously distorted in some manner

as long as the modification does not introduce CTC’s. Therefore we can build a classically

infinite number of microstate geometries with the same topology for the same black hole

or black ring.

It is useful to explain in some detail why these parameters are special in this sense.

First, one has to notice that asymptotically the non-Abelian seed functions Φα are sublead-

ing with respect to the Abelian seed functions Φi (3.6). Second, the functions Φα have the

same limit at leading order at all the centers, whose value is independent of these param-

eters. These characteristics imply that the mass, angular momenta and electric charges of

the solution are invisible to the parameters λa. The size of the bubbles are also unaffected

by them, see (3.27).

The colored non-Abelian black hole solutions discovered so far are constructed from a

single-center colored monopole. They incorporate one parameter, say λ1, interpreted as the

size of the instanton field of the solution, that modifies the geometry outside the horizon but

does not alter any of the observables of the solution, like the mass, entropy, electric charges

or instanton number. In this context this parameter is interpreted as non-Abelian hair.
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Figure 1. Representation of the multicenter instanton on the Gibbons-Hawking space.

On the other hand microstate geometries have one parameter for each center. Although

we do not have a complete interpretation of the multicenter instanton field contained in

these solutions, preliminary analysis based on the expansion of the instanton field Âα near

the centers suggest that each parameter codifies the information of the size of an instanton

placed at the corresponding center whose individual topological charge is 1/qa.

On the other hand, the gauge coupling constant ğ controls the relative weight of the

non-Abelian versus the Abelian fields. The closer this parameter is to zero the more

influent the non-Abelian ingredients are. This is in particular reflected in the bubbling

equations (3.27), from what we see that the size of the bubble can be dominated by one or

the other contributions for different values of the coupling constant.

Clearly these solutions require further study. The explicit construction of concrete

solutions with specific charges would be of course very interesting. Work in this direction

is in progress [45].
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A The theory

In this appendix we give a very brief, workable description of SEYM theories and their

known analytic solutions adapted to the purpose of this letter. N = 1, d = 5 gauged super-

gravities can be interpreted as the minimal supersymmetric realization of Einstein-Yang-
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Mills-Higgs theories.11 They describe the coupling between a supergravity multiplet and

nv vector multiplets, a subset of which transform under the local action of a non-Abelian

group. The supergravity multiplet is constituted by the graviton eaµ, the gravitino ψiµ and

the graviphoton A0
µ, while each vector multiplet, labeled by x = 1, . . . ., nv, contains a real

vector field Axµ, a real scalar φx and a gaugino λi x. The vector fields can be collectively

denoted as AIµ, with {I, J, . . . = 0, 1, · · · , nv}. The set over which these indices take val-

ues is conveniently split in two sectors denoted as {i, j, · · · = 0, · · · , imax} and {α, β, · · · =
imax + 1, · · · , nv}, referred as the Abelian and the non-Abelian sectors respectively.

The nv scalars φx parametrize a σ-model equipped with a Riemannian metric gxy and

can be understood as coordinates on a scalar manifold. On general grounds the σ-model

metric is invariant under coordinate transformations in the scalar manifold of the form

δΛφ
x = −ĝcIkIx , (A.1)

where ĝ is interpreted as the gauge coupling constant (see below) and kI
x(φ) is a set of

Killing vectors of the scalar metric.12 The requirement that the σ-model is compatible

with the supersymmetric structure that controls the coupling between scalars and vectors

gives rise to the mathematical construct known as Real Special Geometry, see [48, 49],

that completely characterizes the supergravity theory. Then, a Killing vector of the scalar

metric generates an isometry of the full supergravity theory if it respects the real special

structure of the theory, see appendix H in [49].

The parameters that generate these isometries in the non-Abelian sector are spacetime

functions, i.e. cα = cα(x), while the corresponding Killing vectors satisfy the algebra

[kα, kβ ] = −fαβ γkγ , (A.2)

where fαβ
γ are the structure constants of some non-Abelian group (we will often use the

notation fIJ
K , understanding that the structure constants just vanish whenever any index

take values in the Abelian sector).

The vectors in the non-Abelian sector, i.e. Aα µ, play the role of gauge fields under

the action of (A.1). That is, they transform in an appropriate way such that the covariant

derivative of the scalars defined as

Dµφ
x = ∂µφ

x + ĝAαµkα
x , (A.3)

transforms, indeed, covariantly. The field strengths are defined in the standard manner in

both the Abelian and non-Abelian sectors,

F Iµν = 2∂[µA
I
ν] + ĝfJK

IAJµA
K
ν . (A.4)

11Those were first considered in [46], see [26, 32, 47, 48] for more detailed expositions in our same

conventions.
12Here the index I is for labeling each one of these vectors. We use it in order to keep notation simple,

and it should be understood that the Killing vectors will be non-zero only for a subset of the possible values

of the index.
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We will set all the fermionic fields to zero, which is always a consistent truncation in

these theories. The bosonic action of N = 1, d = 5 SEYM is given by

S=

∫
d5x
√
g

{
R+

1

2
gxyDµφ

xDµφy− 1

4
aIJF

I µνF Jµν+
1

12
√

3
CIJK

εµνρσλ
√
g

[
F IµνF

J
ρσA

K
λ

− 1

2
ĝfLM

IF JµνA
K
ρA

L
σA

M
λ +

1

10
ĝ2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
λ

]}
. (A.5)

The Real Special Geometry, and therefore the full supergravity theory, is completely

determined by the constant symmetric tensor CIJK . In particular the σ-model metric

gxy(φ) and the kinetic matrix aIJ(φ) are directly derived from this tensor, see for exam-

ple [26] for the explicit expressions.

We make use of the SU(2)-gauged ST[2, 6] model, that contains nv = 5 vector mul-

tiplets and the constant symmetric tensor CIJK that characterizes it has the following

non-vanishing components

C0xy =
1

6
ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 5 . (A.6)

B Procedure for constructing solutions

1. Timelike supersymmetric solutions of N = 1, d = 5 SEYM with a spacelike isometry

are constructed from a set of (2nv + 4) seed functions defined on E3. These are

denoted13 as M,H,ΦI , LI and satisfy the following equations

d ?3 dM = 0 , (B.1)

?3dH − dχ = 0 , (B.2)

?3D̆ΦI − F̆ I = 0 , (B.3)

D̆2LI − ğ2fIJ
LfKL

MΦJΦKLM = 0 , (B.4)

?3dω̆ −
{
HdM −MdH + 3

√
2(ΦID̆LI − LID̆ΦI)

}
= 0 , (B.5)

for some 1-forms χ, ω̆ and ĂI (with field strength F̆ I) defined also in E3. Here the

covariant derivative D̆ is defined in three-dimensional Euclidean space with respect

to the gauge field ĂI for objects transforming in the (dual) adjoint representation.

More explicitly,

D̆ΦI = dΦI + ğfJK
IĂJΦK , D̆LI = dLI + ğfIJ

KĂJLK . (B.6)

Two subtleties about these expressions are worth mentioning. First, notice that the

structure constants are only non-trivial in the non-Abelian sector so the covariant

derivative reduce to the standard exterior derivative in the Abelian sector. Second,

the gauge coupling constant in this expression is rescaled with respect to the physical

gauge constant appearing in the action of the theory,14 ĝ = −ğ/2
√

6.

13Notice that the seed functions ΦI should not be confused with the physical scalars φx appearing in the

action (A.5).
14This fact is an indirect consequence of the rescaling factor appearing in equation (B.16).
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2. Using the seed functions, the five-dimensional fields of the solution are obtained as

follows:

(a) We define the intermediate building blocks

hI/f = LI + 8CIJKΦJΦK/H , (B.7)

that can be used to compute the physical scalars

φx ≡ hx/h0 , (B.8)

and the metric function

f−3 = 33CIJKLILJLK + 34 · 23CIJKCKLMLILJΦLΦM/H

+ 3 · 26LIΦ
ICJKLΦJΦKΦL/H2 + 29

(
CIJKΦIΦJΦK

)2
/H3 .

(B.9)

This is derived from the Real Special Geometry constrain 27CIJKhIhJhK = 1,

which is valid for symmetric scalar manifolds.15 In these spaces we can also

define

hI = 27CIJKhJhK . (B.10)

(b) The spacetime metric is of the conformastationary form

ds2 = f 2(dt+ ω)2 − f −1dŝ2 , (B.11)

where the 1-form ω is obtained as

ω = ω5(dϕ+ χ) + ω̆ , (B.12)

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , (B.13)

being the inverse-hatted ω̆ the one in (B.5), and dŝ2 is a four-dimensional

Gibbons-Hawking metric [50, 51]

dŝ2 = H−1(dϕ+ χ)2 +Hdxrdxr , r = 1, 2, 3 . (B.14)

(c) The physical vector fields and their field strengths are

AI = −
√

3hIf(dt+ ω) + ÂI ,

F I = −
√

3D̂[hIf(dt+ ω)] + F̂ I ,
(B.15)

where the auxiliary vectors ÂI are four-dimensional gauge fields defined on the

Gibbons-Hawking space as

ÂI = −2
√

6
[
−H−1ΦI(dϕ+ χ) + ĂI

]
,

F̂ I = −2
√

6
[
−D̆

[
ΦIH−1(dϕ+ χ)

]
+ ?3D̆ΦI

]
,

(B.16)

15This is always the case in the supergravity models that we consider here. In this expression,

CIJK ≡ CIJK .
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By this construction, which is due to Kronheimer [40], the field strength F̂ I is

self-dual in the Gibbons-Hawking space, describing an instanton configuration

intimately related to a lower dimensional static monopole.

Notice that D̂ is the covariant derivative with associated connection ÂI in the

Gibbons-Hawking space, while D̆ is the covariant derivative with associated

connection ĂI in E3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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