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1 Introduction and summary of results

The recent efforts to use holography to probe strongly coupled quantum systems [1–4] have

led to new insights into the possible instabilities of a variety of gravitational solutions. One

of the prime examples is that of charged black holes in Anti de Sitter (AdS) space, which

have been understood to be unstable to the formation of scalar hair — thanks to attempts to

realize the spontaneous breaking of an abelian gauge symmetry in gravity [5], and develop

a holographic description of superconducting1 phases [6, 7]. For reviews of holographic

superconductors we refer the reader to e.g. [8–11]. Other notable examples include the

spontaneous breaking of translational invariance and the onset of spatially modulated in-

stabilities, which have been identified in a number of geometries (see [12–16] for some of the

early papers) and have potential applications to e.g. QCD and condensed matter systems

1Strictly speaking, the dual theory consists of a condensate breaking a global U(1) symmetry, so the

description is of a superfluid rather than a superconductor. However, considering the limit in which the

U(1) symmetry is “weakly gauged”, we can still view the dual theory as a superconductor. In the present

paper we will not distinguish between the two terminologies.
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with striped phases. We have seen growing interest in constructing gravitational solutions

that exhibit a variety of broken symmetries, with significant attention recently given to

realizing holographic lattices through the (explicit) breaking of translational invariance

(see e.g. [17–25]).

In this paper we revisit the question of scalar field instabilities associated with geome-

tries that exhibit hyperscaling violation θ and non-relativistic scaling z, with the ultimate

goal of reaching a more complete understanding of low temperature superconducting phase

transitions in the dual systems. We will work with gravitational solutions which are hyper-

scaling violating and Lifshitz-like at infrared (IR) and intermediate energies, and asymptote

to AdS in the ultraviolet (UV). Such geometries are well known to arise in Einstein-

Maxwell-dilaton theories, and are supported by a neutral scalar subject to a rather simple

potential. We require AdS asymptotics to ensure that the dual field theory is conformal

at the UV fixed point — so that the violation of hyperscaling and relativistic symmetry is

generated at lower energies — and thus can rely on the standard holographic dictionary.

We stress that we are only interested in phase transitions that are triggered in the hyper-

scaling violating regime itself, since in full generality they are much less understood than

their AdS counterpart.

Charged scalar field condensation on non-relativistic backgrounds that don’t respect

hyperscaling has been studied in a number of settings (see e.g. [26–29] but the list is by no

means exhaustive), although typically for specific values of the scaling exponents z and θ

or in somewhat simple models. Here we will extend these analyses by introducing a non-

trivial coupling of the form ∼ B(φ) |Ψ|2 between the neutral scalar φ that determines the

background and the charged scalar Ψ that condenses. We will obtain analytical instability

criteria — attempting to be generic, to the extent that it is possible — and highlight

the role of B(φ) on the onset of the superfluid phase transition. Since B(φ) contributes

to the effective mass of the charged scalar, it is intuitively clear that it will affect the

condensation process — enhancing it or impeding it depending on its sign and its radial

profile. Throughout the paper we will adopt the choice B(φ) ∼ eτ̂φ in the hyperscaling

violating regime, with τ̂ an arbitrary constant.

To probe the onset of the formation of scalar hair, we are going to focus on the

linearized perturbation of the charged scalar Ψ around the unbroken phase. To obtain

the linearized equation of motion for Ψ, it suffices to know the structure of the charged

scalar couplings up to quadratic order — such leading terms are enough to compute the

temperature at which the unbroken phase becomes unstable to scalar hair. One should

keep in mind, however, that the nonlinear details of the couplings could affect the order of

the phase transition and the thermodynamics, as has been stressed in [30].

Our instability analysis will be done in two complementary ways. After setting up the

model and the background in sections 2 and 3, we will inspect the behavior of the effective

mass M2
eff of the charged scalar in section 4, and in particular, the conditions under which

it becomes sufficiently negative. In section 5 we will then recast the linearized perturbation

of the charged scalar in Schrödinger form, and perform a more detailed instability analysis

by examining whether the effective Schrödinger potential VSchr is sufficiently negative to

support bound states (for studies of instabilities in terms of an effective Schrödinger po-
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tential see e.g. [7, 31, 32]). To complement the intuition developed from examining M2
eff

and VSchr, one should also analyze the structure of IR perturbations of the charged scalar,

to ensure that they can indeed support a scalar condensate. As we will see, this can rule

out regions of parameter space for which M2
eff and VSchr may be ambiguous. For simplicity,

our analytical arguments are developed working at zero temperature, and are meant to

serve as guidance for a more detailed finite temperature analysis. Still, we believe that

they capture all the essential physics of their low temperature counterpart, as we confirm

in our numerical section 6, in a few illustrative cases. We leave a more thorough finite

temperature analysis to future work.

We will find many similarities with the standard holographic superconductor setup,

but also some crucial differences. As in [5–7], two distinct mechanisms can lead to the

condensation of a scalar in these background geometries. The gauge field contribution to

the effective mass M2
eff of Ψ is always negative and can become large enough to make it

energetically favorable for the system to undergo a superfluid phase transition. Similarly,

a negative coupling B(φ) can drive M2
eff to become appreciably negative, thus facilitating

the transition. Since the latter process can happen even at zero charge, it allows neutral

scalars to condense — and it is of course the analog of violating BF bounds in AdS.

What is novel in the models we consider here is the rich behavior associated with

the possible profiles of the coupling B(φ), and its effect on the interplay between the

two instability mechanisms. In particular, the condensation process is highly sensitive to

the specific way in which B(φ) scales as compared to the {z, θ} background geometry —

qualitatively new behavior will be seen when the effective mass term B(φ)ψ2 does not

respect the scaling of the charged scalar kinetic term (here ψ denotes the modulus of the

complex scalar Ψ). We should note that the role of a coupling ∼ B(φ)ψ2 in hyperscaling

violating backgrounds was already discussed by [29], although in a slightly different context.

Choosing the coupling so that B(φ)ψ2 scales as ∼ (∂ψ)2, the authors noted the presence

of a minimal charge needed to form a condensate, and raised the question of whether it

could be a universal feature. Here we will address this point working with general classes

of {z, θ} geometries and couplings B(φ) ∼ eτ̂φ, and show that this is not generally the case

— there is a somewhat large parameter space where neutral scalars can condense. We will

also identify the cases in which we expect to see a minimal charge. As we will see, the

existence of the latter will be sensitive to the detailed behavior of B(φ). Again, we find

some crucial differences with the standard holographic superconductor setup,2 that can be

traced to the non-trivial scaling properties of the coupling B and the background itself.

1.1 Summary of results

We work with the Lagrangian given in (2.1), so that the dual field theory has d spatial

dimensions. To respect the scaling of the potential V (φ) ∝ e−βφ and gauge kinetic func-

tion Z(φ) ∝ eαφ of the hyperscaling violating background, we have taken the coupling

between the two scalars to be of the form B(φ) ∼ eτ̂φ or, in terms of the holographic radial

2However, see [30, 33] for additional ways to modify the effective mass of a charged scalar in the IR

AdS2 region.
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coordinate r,

B(r) = B0 r
τ , (1.1)

with τ̂ , τ and B0 constants.

Our analytical estimates for the onset of scalar field instabilities are extracted first in

section 4 by inspecting the effective mass for the charged scalar

M2
eff(r) = L̃2

[
B0 r

τ−2(m−1) −Q2r2dn
]

+

(
m+

1

2
dn

)(
m+

1

2
dn− 1

)
, (1.2)

and then in section 5 by examining when the effective Schrödinger potential

VSchr(r) = r2(2m−1)

[
B0 r

τ−2(m−1) −Q2r2dn +
1

4L̃2
dn
(
dn+ 4m− 2

)]
, (1.3)

develops negative regions which can support the existence of bound states. Here Q is

proportional to the charge of Ψ, L̃ is a length scale defined in the main text and the

parameters {m,n} are

m =
zd− θ
zd− 2θ

, n =
d− θ
zd− 2θ

. (1.4)

With our choice of coordinates the IR is located at r = 0, while r = rtr will denote the

transition scale between the non-relativistic, hyperscaling violating solution and the UV

AdS region.

The possible sources of instability are now apparent. Superfluid phase transitions are

generically triggered by a sufficiently large charge term ∝ Q2, driving Meff imaginary and

VSchr negative. A negative and suitably large contribution from the coupling ∝ B0 will have

the same effect, and is responsible for the formation of a condensate even when Q = 0.

Moreover, the interplay between the two terms can lead to interesting behaviors, depending

on how τ compares to the exponents m and n. While these expressions were obtained at

zero temperature, they are expected to capture the key aspects of the finite temperature

behavior. This is shown for a few illustrative cases in section 6.

The main features that have emerged from this analysis are the following:

• In these hyperscaling violating backgrounds the gauge field term ∼ Q2r2dn always

decreases towards to IR (as r → 0), since n > 0, as discussed in the main text.

• The competition between the contributions coming from the U(1) gauge field and the

real neutral scalar is very sensitive to the way in which B(φ) scales compared to the

background, in particular to whether τ is larger or smaller than 2(m− 1).

• Simplifications occur for the scaling choice τ = 2(m − 1), which corresponds to the

coupling B(φ)ψ2 scaling in the same way as the kinetic term (∂ψ)2. In this case the

only radial dependence of M2
eff comes from the charge term, and in the deep IR one

obtains generalized BF bounds analogous to those in AdS.

• In the scaling case τ = 2(m− 1) neutral scalars will condense when B0 is sufficiently

negative. There will otherwise be a minimal charge Qmin needed to trigger the con-

densation, as in the standard AdS case. However, here bound states are supported
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near the transition region r ∼ rtr to AdS, and instabilities are therefore associated

with the “effective UV” of the {z, θ} geometry, and not with its IR.

• When the scaling τ is arbitrary the behavior is more complex:

(i) For B0 < 0 and τ < 2(m − 1) the coupling makes VSchr and M2
eff more and

more negative as the IR is approached. Thus, neutral scalars will condense

generically, without having to tune the size of B0, unlike in the standard AdS

case. The instability is now associated with the IR of the geometry, and there

is no minimal charge.

(ii) In all other cases a minimal charge seems to be needed to trigger the phase

transition. A particularly interesting case corresponds to B0 < 0 and τ >

2(m − 1). Here Qmin exists independently of how large |B0| is tuned to be,

unlike in the standard AdS story.

• The choice τ − 2(m− 1) = 2dn is also special, since the coupling and charge contri-

butions to M2
eff and VSchr scale in the same way, ∝ r2dn

[
B0 −Q2

]
:

(i) For B0 > Q2 there will never be a phase transition triggered in the IR hyper-

scaling violating region, no matter how large the charge is.

(ii) For B0 < Q2 we expect to have a condensate, as long as the effective mass can

become negative enough near rtr, where r2dn attains its largest value. Thus, one

can trigger a transition by varying B0 across the critical value Q2. However,

there will always be a minimal charge, no matter how negative B0 is.

• The transition scale rtr between the hyperscaling violating geometry and the AdS

region plays a crucial role in controlling the onset of the instability and the value of

the minimal charge. This is because in certain cases the effective mass of the scalar

in the hyperscaling violating portion of the geometry will be most negative near the

transition scale, and will thus control the instability. This is unlike the standard

holographic superconductor. Moreover, one should keep in mind that there will be a

“narrow” transition region around r ∼ rtr in which the exact form of the geometry is

not known analytically. However, we use r ≤ rtr to denote the part of the geometry

which is hyperscaling violating.

2 Setup

We want to examine D = d+ 2 dimensional Einstein-Maxwell-dilaton theories coupled to

a complex scalar field Ψ,

Ld+2 = R− 1

2
(∂φ)2 − 1

4
Z(φ)FµνF

µν − V (φ)− C(φ)
(
|DΨ|2 +B(φ)|Ψ|2

)
, (2.1)

which is charged under the U(1) field Aµ, so that DµΨ = (∂µ + iqAµ)Ψ. For now we allow

for two arbitrary couplings C(φ) and B(φ) between the neutral and the charged scalars.

– 5 –
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The former results in a non-canonical kinetic term for Ψ and will be set to one shortly, the

latter acts as an effective mass for Ψ and will be the focus of our discussion.

Einstein’s equations for (2.1) are given by

Rµν +
1

2
Z(φ)FµρF

ρ
ν −

1

2
∂µφ∂νφ−

1

2
C(φ) [DµΨ(DνΨ)∗ +DνΨ(DµΨ)∗] (2.2)

+
1

2
gµν

[
1

2
(∂φ)2 + V (φ)−R+

Z

4
F 2 + C(φ)

(
|DΨ|2 +B(φ)|Ψ|2

)]
= 0 ,

where, writing the charged scalar as Ψ = ψeiΘ, we have

|DΨ|2 =
[
(∂ψ)2 + ψ2(∂Θ + qA)2

]
. (2.3)

The gauge field equation of motion is

1√
−g

∂µ
(√
−gZFµν

)
= 2C q2Aν |Ψ|2 + i q C [Ψ∂νΨ∗ −Ψ∗∂νΨ]

= 2C q2Aνψ2 + 2C q ψ2∂νΘ , (2.4)

while the neutral scalar obeys

�φ =
∂V

∂φ
+

1

4

∂Z

∂φ
F 2 +

∂C

∂φ
|DΨ|2 +

∂(C B)

∂φ
|Ψ|2 . (2.5)

Finally, the real ψ and imaginary Θ parts of the charged scalar satisfy

1√
−g C

∂µ
(√
−g C∂µψ

)
=
[
(∂Θ + qA)2 +B

]
ψ , (2.6)

∂µ
[√
−g C ψ2 (∂µΘ + qAµ)

]
= 0 . (2.7)

We take the phase of the charged scalar to vanish, Θ = 0. This solves the equation of

motion (2.7) when the gauge field is purely electric, A = At(r)dt and no fields depend

explicitly on time. The charged scalar equation of motion then becomes

1√
−g C(φ)

∂µ
(√
−g C(φ) ∂µψ

)
=
[
q2AµA

µ +B(φ)
]
ψ . (2.8)

While the non-canonicality function C(φ) could contribute to the instabilities in an in-

teresting way3 — it clearly affects the scaling behavior of the charged scalar, and hence

the scaling dimension of the dual operator — here for simplicity we will neglect it and set

C = 1, focusing instead on the role of the B(φ) coupling. We then see that (2.8) becomes

�ψ = m2
eff ψ , (2.9)

with the effective mass given by

m2
eff = q2AµA

µ +B(φ) = −q2A2
t |gtt|+B(φ) . (2.10)

3Superconducting/Superfluid instabilities in a theory with non-canonical couplings has been considered

recently on top of soft wall backgrounds in [34].

– 6 –



J
H
E
P
1
1
(
2
0
1
6
)
1
3
7

As in the case of the standard holographic superconductor [5–7], the condensation of the

charged scalar field will depend on the interplay between the two contributions to its

effective mass, one coming from the coupling B(φ) and the other from the charge. However,

we will see that the additional dependence on the neutral scalar — and in particular, the

fact that the profile of B(φ) will depend on the holographic radial coordinate and can be

chosen to scale in different ways — will lead to some interesting differences.

3 Background geometry

The instability we are interested in is associated with the formation of charged scalar hair

around the normal unbroken black brane background in which ψ is zero. In the vicinity

of the transition point at which scalar hair begins to develop, the value of ψ should be

very small, and backreaction negligible. As a result we can treat the charged scalar as

a perturbation on top of the background solution which interpolates between asymptotic

AdS and a Lifshitz-like, hyperscaling violating region that extends into the IR. More

precisely, the latter geometry extends over the range rIR < r < rtr, with a transition to AdS

starting around r ∼ rtr. For simplicity we will assume that AdS describes the remaining

rtr < r < rUV portion of the spacetime, as this doesn’t change our arguments.4 Thus, rtr

denotes the transition scale between the two regimes, while rIR and rUV correspond to the

IR and UV endpoints of RG flow.

However, when thinking about the way in which the geometry flows between the IR and

the UV, one should keep in mind that there may be irrelevant modes that are subleading in

the deep IR, but become important as the UV is approached. Such modes can significantly

alter the structure of the geometry, causing it to deviate from what we are considering

here, even in the UV. The location at which such terms become important plays the role

of an additional scale in the system, r?, and therefore our analysis only applies to the case

in which rtr < r?, the UV is AdS and the background geometry is as described below. The

question of the role of these irrelevant modes is interesting in its own right, but we leave it

to future work. In what follows we set the charged scalar field to zero, and focus entirely

on the background geometry.

3.1 The hyperscaling violating background solution

We begin by discussing the non-relativistic {z, θ} scaling solutions that range over the

infrared and intermediate part of the geometry. It is well known that such solutions can

be generated in the class of models (2.1) by taking the scalar potential and gauge kinetic

function to be simple exponentials,

Z(φ) = Z0 e
αφ , V (φ) = −V0 e

−βφ , (3.1)

4However, we stress that the geometry around the transition region will be more complicated and will

depend on the detailed structure of the theory.
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where V0 and Z0 are arbitrary positive constants. Black brane solutions are then given

by [35–38]

ds2
h.v. = ρ

2θ
d

(
−f(ρ)

dt2

ρ2z
+
L2

ρ2

dρ2

f(ρ)
+
d~x2

ρ2

)
,

f(ρ) = 1−
(
ρ

ρh

)d+z−θ
, L2 =

(d− 1 + z − θ)(d+ z − θ)
V0

,

α =
2d

κ
− 2(d− 1)θ

dκ
, β =

2θ

dκ
, κ2 =

2(θ − d)(θ − dz + d)

d
,

(3.2)

and are supported by the following scalar and gauge field profiles

φ = κ ln(ρ) , A = a0 ρ
θ−z−df(ρ) dt , a0 =

√
2(z − 1)

Z0(d+ z − θ)
. (3.3)

In the extreme limit the metric reduces to

ds2
h.v. = ρ

2θ
d

(
−dt

2

ρ2z
+ L2dρ

2

ρ2
+
d~x2

ρ2

)
, (3.4)

and is known to suffer generically from curvature and null singularities. Moreover, the

logarithmically running scalar φ ∼ ln ρ tends to drive the bulk gravitational theory to

strong or weak coupling, depending on whether the gauge field is chosen to describe a

magnetic or an electric field. Although a possible resolution comes from turning on a

temperature, the presence of instabilities in these systems generically indicates that there

may be additional ground states. Possible IR completions of these scaling geometries have

been discussed e.g. in [39–48].

There are some disadvantages to using the ρ radial coordinate adopted above. For

example,5 whether the IR is located at ρ = 0 or ρ → ∞ depends on the values of {z, θ}.
Also, in these coordinates in order to recover the standard AdS2×Rd extremal solution to

Einstein-Maxwell theory (with constant φ) one must take the limit z → +∞ with θ finite,

which makes a direct comparison to the standard holographic superconductor (in which

AdS2 plays a crucial role) cumbersome. To avoid some of these difficulties we will choose

to work with a new radial coordinate r, in terms of which the IR in the zero temperature

solution is always located at r = 0. By performing the following transformation,

ρ = r
d

2θ−dz , ρh = r
d

2θ−dz
h , a0 = ã0, κ =

2θ − dz
d

κ̃ ,

z =
2m− 1

m+ n− 1
, θ =

d(m− 1)

m+ n− 1
, L̃2 = L2(m+ n− 1)2 ,

(3.5)

5In order to have an unambiguous IR one must require
(
2θ
d
− 2z

) (
2θ
d
− 2
)
> 0, which simply ensures

that the (t, ~x) components of the metric scale in the same way with ρ.

– 8 –
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the finite temperature background solution takes the form

ds2
h.v. =− r2mf̃(r)dt2+

L̃2dr2

r2mf̃(r)
+r2nd~x 2 ,

f̃(r) =1−
(rh
r

)2m+dn−1
, A = ã0 r

2m+dn−1f̃(r) dt, φ = κ̃ ln(r) ,

L̃2 =
(m+ (d− 1)n)(2m+dn−1)

V0
, ã0 =

√
2(m− n)

Z0(2m+dn−1)
, κ̃2 = 2dn(1− n) ,

α =
2(1−m− dn)

κ̃
, β =

2(1−m)

κ̃
,

(3.6)

where rh denotes the location of the horizon. We have traded the scaling exponents {z, θ}
for the two parameters6 {m,n}. In terms of these, the AdS2 × Rd geometry7 is obtained

by choosing m = 1, n = α = β = 0, while geometries that are conformal to AdS2 × Rd

correspond to m + n = 1 with m 6= 1,m 6= 1/2. Finally, in the extreme limit the metric

and gauge field reduce to

ds2
h.v. = −r2mdt2 +

L̃2dr2

r2m
+ r2nd~x 2, A = ã0 r

2m+dn−1 dt , (3.8)

with the scalar field maintaining its log form. The temperature and entropy density asso-

ciated with these black brane solutions are given by

T =
|2m+ dn− 1|

4πL̃
r2m−1
h , S =

1

4GN
rdnh , (3.9)

so that the thermal entropy can be seen to scale like8

S ∼ T
dn

2m−1 ∼ T
d−θ
z , (3.10)

which can be interpreted as describing a system in which the degrees of freedom occupy

an effective number of dimensions ∼ deff = d− θ.
In addition to the background geometry (3.6), in which the gauge field flux is non-

trivial, the theory we are considering admits another type of hyperscaling violating solution

for which At vanishes identically, given by

ds2
h.v. = − r2nf̃(r)dt2 +

L̃2dr2

r2nf̃(r)
+ r2nd~x 2 ,

f̃(r) = 1−
(rh
r

)(2+d)n−1
, At = 0, φ = κ̃ ln(r) ,

L̃2 =
dn((2 + d)n− 1)

V0
, κ̃2 = 2dn(1− n) , β =

2(1− n)

κ̃
,

(3.11)

6For completeness we include the expression for {m,n} in terms of the original exponents,

m =
zd− θ
zd− 2θ

, n =
d− θ
zd− 2θ

. (3.7)

7However, note that when m = 1 and n = 0 (i.e. the AdS2 case) the transformation (3.5) fails, because

(z, θ, L) are not well defined.
8In the special case m = 1/2, or equivalently z = 0, the temperature is independent of rh.
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which can be considered as the special case of (3.6) with m = n, or equivalently z = 1.

These solutions are characterized entirely by the hyperscaling violating exponent θ. We

will refer to them as IR neutral throughout the text.

3.2 The asymptotic AdS solution

To adopt the standard holographic dictionary and ensure a UV CFT, we would like to

embed these solutions in AdS space. This can be easily done by modifying the scalar

potential V (φ) appropriately, so that the neutral field φ can settle to a constant value φUV

at the boundary. More specifically, the effective scalar potential Veff = V (φ) + 1
4Z(φ)F 2

will have to be chosen so that it admits an extremum at the UV fixed point, V ′eff(φUV) = 0.

It will suffice to add a second exponential to (3.1), so that

V (φ)→ −V0e
−βφ + V1e

γφ ,

as done e.g. in [36, 48]. The transition scale rtr to AdS is then determined by the location

at which the new term in the potential begins to dominate over the original V0 term. The

new exponential will then determine the properties of the AdS UV background solution.

In the numerical studies of section 6 we will work for convenience with a scalar potential

V ∼ coshφ .

However, more general choices can easily be implemented. Furthemore, since we are inter-

ested in identifying the instabilities that arise solely from the hyperscaling violating region

of the geometry, any term in the potential which dominates only in the UV will not affect

the main discussion of this paper.

3.3 Constraints on the parameter space of the scaling exponents

The allowed parameter space of the scaling exponents {m,n} (or equivalently {z, θ}), can

be restricted by imposing a number of physical constraints, which will ensure that the

background can be taken to describe a well-defined ground state. Here we focus on the IR

charged solution and exclude the AdS2 geometry for the sake of greater clarity.

(a) By inspecting the form of the metric note that in order for the solution (3.6) to be

real, we should demand

L̃2 > 0 , κ̃2 > 0 , ã0 > 0 , (3.12)

from which we obtain

n(1− n) > 0 , (m+ (d− 1)n)(2m+ dn− 1) > 0 ,
m− n

2m+ dn− 1
> 0 , (3.13)

or alternatively in terms of z and θ,

(θ−d)(θ−dz+d) > 0 , (d−1+z−θ)(d+z−θ) > 0 , (z−1)(d+z−θ) > 0 . (3.14)

For the IR neutral case (3.11), the last relation must be set to zero, i.e. z = 1

or m = n.
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(b) To have an unambiguous IR we should require the (t, ~x) components of the metric

scale in the same way with r in (3.8), which means

mn > 0 . (3.15)

The location of the IR depends on where the (t, ~x) metric elements vanish. Inspect-

ing (3.13) one finds that m > 0 and n > 0. Therefore the IR is located at r = 0.

(c) To resolve the deep IR singularity of the geometry (3.8), we require the temperature

deformation to be relevant, following the discussion of [35, 49]. This corresponds to

the following constraint,

2m+ dn− 1 > 0 , or equivalently
d(z + d− θ)
zd− 2θ

> 0 , (3.16)

which however is already imposed by (3.13) and (3.15).

(d) We would like the geometry to have positive specific heat. From the scaling of the

entropy with temperature, we should demand

dn

2m− 1
> 0 , or equivalently

d− θ
z

> 0 , (3.17)

which implies that m > 1
2 since n is positive.

The allowed parameter range once we combine all the conditions above is given by9[ 1

2
< m 6 1, 0 < n < m

]
, [m > 1, 0 < n < 1] . (3.19)

For completeness we include the final {z, θ} parameter space in terms of the original ρ

coordinate used in (3.2),

IR located at ρ→ 0 : [z < 0, θ > d] ,

IR located at ρ→∞ : [1 < z 6 2, d+ θ < dz] , [z > 2, θ < d] .
(3.20)

One can easily check that Null Energy Condition is automatically satisfied.

4 Effective mass and superfluid instability windows

Having introduced the properties of the background geometry we will be working with, we

are now ready to examine under what conditions the charged scalar field can condense. For

simplicity we will treat ψ as a perturbation on top of the hyperscaling violating solutions

we have just discussed, and neglect the effects of backreaction. Since we are zooming in

on the transition point at which scalar hair begins to form — the onset of the instability

9For the IR neutral background (3.11), the parameter range reads

1

2
< (m = n) < 1 . (3.18)
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— the ψ scalar is going to be very small, and ignoring backreaction should be a good

approximation.

In this section we are going to approach the question of instabilities by asking what

we can learn from the structure of the effective mass (2.10) of the charged scalar,

m2
eff = −q2A2

t |gtt|+B(φ) , (4.1)

and focus entirely on unstable modes which arise from the hyperscaling violating region of

the geometry, rIR ≤ r ≤ rtr. We will obtain simple analytical instability conditions which

include, in the most tractable cases, generalizations of the well-known BF bound for AdS

space. Although we work for simplicity at zero temperature, we expect these conditions to

capture all the essential features of the finite temperature phase transition (as long as the

temperature is not too large). Indeed, this will be confirmed by the analysis of section 6,

where we will revisit the intuition developed here by performing numerical studies in the

background of finite temperature solutions. Moreover, the same physics will be encoded in

the effective Schrödinger potential analysis of the next section, where we will analyze these

instability windows in greater detail.

As in the case of the standard holographic superconductor, a sufficiently large gauge

field contribution will drive (4.1) negative, eventually causing the charged scalar field to

condense. The detailed properties of the condensate will be determined by the interplay

between B(φ) and q2AµA
µ, with the two contributions to the effective mass competing

against each other when B is positive, and otherwise enhancing each other. It will be the

structure of the coupling B(φ) between the two scalars — and in particular, how it scales

compared to the {z, θ} background — that will be at the root of the key differences with

the standard AdS story.

Indeed, if we want to ensure that the mass term B(φ)ψ2 scales in the same way as

the kinetic term (∂ψ)2, the coupling B must be chosen appropriately,10 as discussed e.g.

in [50]. More precisely, in the hyperscaling violating portion of the geometry the kinetic

term scales as

(∂ψ)2 ∼ f̃(r)
r2m

r2
ψ2 ∼ r2(m−1) ψ2, (4.2)

where in the last expression we have switched off the temperature by taking f̃(r) = 1.

Thus, in order for the B ψ2 mass term to respect this scaling one needs

B(φ) ∼ r2(m−1) ⇒ B(φ) ∼ e
2(m−1)

κ̃
φ. (4.3)

The gauge field contribution to the effective mass of the scalar, i.e. q2A2ψ2, will generically

scale differently, in particular

q2AµA
µ ∼ −q2 r2(m+dn−1) , (4.4)

and will agree with (4.3) only when n = 0, or equivalently θ = d, which is outside the

allowed parameter space (3.19) and (3.20) of interest here.11 In this paper we will take the

10The additional coupling C(φ), which we set to unity, would not affect the relative scaling between the

kinetic and mass terms but it would change the overall scaling of the term C(|DΨ|2 +B|Ψ|2) in the action.
11It may be worth examining this case separately, as it could lead to a qualitatively different behavior.
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coupling to be a generic power law (an exponential function of φ),

B(r) = B0 r
τ , (4.5)

with the case preserving the scaling of the kinetic term corresponding to

τ = 2(m− 1) ⇒ B = B0 r
2(m−1) = B0 r

2θ
dz−2θ . (4.6)

It turns out to be convenient to let ψ(r) = r1−m− 1
2
dng(r), so that the equation of

motion for the charged scalar (2.8) can be written in the suggestive form

∂r
(
r2∂rg

)
=

[
L̃2
(
B0r

τ−2(m−1) −Q2r2dn
)

+

(
m+

1

2
dn

)(
m+

1

2
dn− 1

)]
g , (4.7)

where we have used (4.5) and defined

Q2 ≡ ã2
0 q

2 . (4.8)

Since the term on the left-hand side of (4.7) is essentially the AdS2 d’Alembertian (with

the radius LAdS2 = 1), we can interpret the right-hand side of the equation as defining the

analog of an effective mass in AdS2, i.e.

M2
eff(r) ≡ L̃2[B0r

τ−2(m−1) −Q2r2dn] +

(
m+

1

2
dn

)(
m+

1

2
dn− 1

)
, (4.9)

where the last constant term in terms of the original scaling exponents reads(
m+

1

2
dn
)(
m+

1

2
dn− 1

)
=

(d2 − dθ + 2θ)(d2 − dθ + 2zd− 2d)

4(zd− 2θ)2
. (4.10)

Indeed, if we set Q = 0, m = 1 and n = τ = 0, we recover the pure AdS2 × Rd case, for

which M2
eff = L̃2B0 and the solution to (4.7) is

g(r) ∝ r−
1
2
± 1

2
ν0 , ν0 =

√
1 + 4L̃2B0 , (4.11)

with the AdS2 BF bound coming from requiring the index ν not to become imaginary,

B0 L̃
2 ≥ −1

4
. (4.12)

On the other hand, when z 6= 1, θ 6= 0 and Q 6= 0 the effective mass (4.9) depends

generically on the radial coordinate, and we lack a sharp local instability criterion, unlike in

the simple AdS case. Still, instabilities can be expected to appear if M2
eff becomes negative

enough. Interestingly, even for generic values of the scaling exponents — as long as they

fall within the range (3.19) — the constant term satisfies
(
m+ 1

2dn
) (
m+ 1

2dn− 1
)
> −1

4

and remains above the AdS2 BF bound. Thus, it will be the combination of the charge

term ∝ Q2 and the coupling B which will typically generate a sizable negative contribution

to M2
eff . Indeed, it is apparent from (4.9) that a scalar field condensate can form via two

distinct mechanisms, as is well known. First, a sufficiently large and negative B(φ) can
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trigger the transition, allowing even neutral scalars to condense (as already known from

AdS). The second mechanism is the usual negative contribution to M2
eff coming from

the gauge field term, which can make it energetically favorable for the charged scalar

to condense.

However, there are some key differences with the usual holographic superconductor

setup. First, depending on the scaling behavior of B(φ) interesting competitions between

the two mechanisms can be generated. More importantly, note that the contribution

to (4.9) from the U(1) gauge field becomes less and less important as the IR is approached,12

and vanishes at r = 0. Thus, here we expect instabilities associated with the charge term

to be generically localized close to rtr (or possibly at some intermediate radial distance r at

which the effective mass M2
eff(r) has a deep negative minimum) and not in the IR. As we

will see shortly, this behavior can be modified for certain choices of B, but it is otherwise

robust. Below we are going to make the discussion more quantitative by highlighting a few

cases, and leave a more detailed analysis to section 5.

4.1 Scaling case τ = 2(m− 1)

(i) Neutral scalar: we consider first the case of a neutral scalar. When Q = 0 the

effective mass is just a constant,

M2
eff = L̃2B0 +

(
m+

1

2
dn
)(
m+

1

2
dn− 1

)
, (4.13)

and the ψ perturbation has the power law form

ψ(r) = r1−m− 1
2
dn g(r) = r

1
2
−m− 1

2
dn± 1

2
ν = r−

1
2
d(z+d−θ)
zd−2θ

± 1
2
ν , (4.14)

with the exponent ν given by

ν =
√

1 + 4M2
eff =

√
4L̃2B0 +

d2(z + d− θ)2

(dz − 2θ)2

=
L̃

L

√
4B0L2 + (z + d− θ)2 . (4.15)

Requiring the index ν not to become imaginary immediately leads to the non-relativistic,

hyperscaling violating analog of the standard AdS BF bound,

4B0L
2 ≥ −(z + d− θ)2 . (4.16)

It can be equivalently expressed in terms of the effective mass,

M2
eff ≥ −

1

4
, (4.17)

which interestingly tells us that the onset of the instability is controlled by M2
eff dipping

below the critical mass saturating the AdS2 BF bound, M2
AdS2

= −1/4, even with generic

scaling exponents z 6= 1, θ 6= 0. Thus, in these scaling backgrounds we expect a neutral

scalar to be able to condense provided the value of B0 is negative enough to violate (4.17),

as in the simpler AdS case. Finally, we note that the generalized BF bound (4.16) was

already obtained in [51].

12In the AdS2 case n = 0, therefore the U(1) gauge field has a finite contribution in the IR.
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(ii) Charged scalar: when we restore the charge, the effective mass becomes radially

dependent,

M2
eff = L̃2B0 − L̃2Q2r2dn +

(
m+

1

2
dn

)(
m+

1

2
dn− 1

)
, (4.18)

and the perturbation g(r) is a combination of Bessel functions,

g(r) = c1Jν̃

(
QL̃

dn
rdn

)
+ c2Yν̃

(
QL̃

dn
rdn

)
, (4.19)

with the index ν̃ of the Bessel functions related to that appearing in (4.15) through

ν̃ =
1

2dn
ν . (4.20)

Thus, as in the case of vanishing charge, there will be an instability when the mass term

∼ B0 is so negative that it violates the generalized BF bound (4.17), corresponding to the

index of the Bessel functions becoming imaginary.

Of course, there is an additional source of instability which is driven by the charge

term becoming sufficiently negative. Unlike in the case of the standard holographic su-

perconductor [7], however, here the gauge field term (which approaches zero as r → 0)

dominates not in the deep IR, but rather near the r ∼ rtr transition region to AdS. In-

deed, within the hyperscaling violating portion of the geometry, Q2r2dn attains its largest

value at r = rtr, and that is where we expect the superfluid instability to be localized. As

a result, a necessary condition for the formation of instabilities is

L̃2Q2r2dn
tr > L̃2B0 +

(
m+

1

2
dn

)(
m+

1

2
dn− 1

)
, (4.21)

which can be satisfied by increasing the charge or alternatively pushing the transition

region rtr closer and closer to the UV. Note that in these constructions rtr plays a crucial

role in controlling the onset of the phase transition.13 The discussion above breaks down

in the IR neutral background (3.11), for which Q = 0 while q 6= 0. The effective mass M2
eff

is the same as that of the neutral case (4.13) but with z = 1, and therefore (4.17) is the

appropriate criterion for the superfluid instability triggered in the IR. We will not stress

this special case in what follows.

Finally, to describe AdS2 × Rd with Q 6= 0, we set m = 1, n = τ = 0 to find

M2
eff = L̃2B0 − L̃2Q2 , (4.22)

leading to the well-known AdS2 instability window

M2
eff = L̃2B0 − L̃2Q2 < −1

4
. (4.23)

13We point out that whether there exists rtr satisfying (4.21) depends on the details of the action and

the UV deformation parameters. When (4.21) is not satisfied, the instabilities cannot be triggered in the

IR region. However, the superfluid instabilities could be triggered by regions that deviate from the IR

hyperscaling violating geometry. For these cases whether the instabilities happen or not depends on the

details of the theory.
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4.2 Non-scaling case, τ 6= 2(m− 1)

(i) Parameter choices τ < 2(m − 1) and B0 < 0: the coupling B(φ) contribution

to (4.9) approaches negative infinity as r → 0, while the remaining terms in (4.9) stay

finite. Compared to the scaling case, the effective mass here is much more negative along

radial flow towards the IR, and thus instabilities are expected to be generic and form much

more easily. Moreover, there should be unstable modes at arbitrarily small values of the

charge Q, associated with the deep IR portion of the geometry. As a consequence, we

expect neutral scalars to condense generically, independently of how small or large B0 is

(in contrast to the standard AdS case). We will return to this point in the next section, but

anticipate to be able to find a superfluid phase transition at arbitrarily low temperature

and charge.

(ii) Parameter choices τ < 2(m − 1) and B0 > 0: on the other hand, in this

case the contribution to (4.9) coming from the coupling B will approach positive infinity

as r → 0, preventing the formation of an unstable mode in the deep IR. Nevertheless, a

sufficiently large value of the charge Q may trigger a superfluid instability near the scale

r ∼ rtr, where the gauge field term ∼ Q2r2dn is largest. For this parameter range we expect

that a minimal charge will be needed in order for the charged condensate to form. We will

examine this point in detail in section 5.

(iii) Parameter choices τ > 2(m−1): when τ > 2(m−1), the two terms B0r
τ−2(m−1)

and Q2r2dn in (4.9) both vanish at r → 0, and it is challenging to obtain a clean instability

criterion. Whether an unstable mode will be present depends on whether the Q and B0

terms will compete against each other (when B0 > 0) or enhance each other (when B0 < 0).

Generically we expect to find a minimal charge Qmin below which no instabilities will form.

It is difficult to be more quantitative at this stage, but we will return to these two cases in

more detail in 5.

(iv) Parameter choices τ − 2(m − 1) = 2dn: when τ = 2(m − 1) + 2dn we see

that the coupling and gauge field terms in (4.9) scale in the same way, ∝ r2dn
[
B0 −Q2

]
.

Thus, when B0 > Q2 the effective mass will never be negative in the hyperscaling violating

portion of the geometry, ensuring the absence of instabilities in that regime. Interestingly,

this is true even for very large charge. On the other hand, when B0 < Q2 the radially

dependent part of M2
eff will be negative, but will approach zero towards the IR. Thus, we

expect to have a condensate as long as the effective mass can become sufficiently negative

near rtr. However, even in this case we will always have a minimal charge, since r2dn → 0

towards the deep IR and the constant term in the effective mass is positive. Note that the

superfluid instability can seemingly be triggered by varying the coupling across the critical

value B0 = Q2. We leave a more detailed treatment of this case to future work.

We are now ready to compare the intuition developed here with what one can learn by

recasting the scalar equation in the form of a Schrödinger equation. Indeed, the presence of

bound states in the Schrödinger potential can also be taken as an indicator of instabilities,

as we discuss next.
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5 Effective Schrödinger potential and instabilities

By an appropriate combination of a change of coordinates and a field redefinition, the

charged scalar field equation of motion (2.8) can be rewritten in Schrödinger form — as

done, for example, in holographic studies of the conductivity [52]. Inspecting the sign of

the resulting Schrödinger potential can then offer a window into the presence of instabilities

in the system [7]. In particular, if the Schrödinger equation has a negative energy bound

state, there will be unstable modes. Negative energy in this context corresponds to ω2 < 0,

i.e. imaginary frequencies and therefore solutions which grow exponentially in time. Also, if

for a certain range of parameters the effective potential remains positive everywhere in the

hyperscaling violating portion of the geometry, we are guaranteed the absence of superfluid

instabilities there.

We turn on the charge of ψ and work with the parametrisation given by (3.8), taking

the coupling to the neutral scalar to be B = B0 r
τ . Recall that τ = 2(m − 1) is the

case that preserves some of the scaling symmetry. We work at zero momentum and take

ψ = e−iωt ψ(r). Introducing a new radial variable ξ and rescaling the charged scalar field,

dξ

dr
= L̃r−2m , ψ̃(ξ) = rdn/2 ψ(r) , (5.1)

the equation for the perturbation takes the form of a Schrödinger equation

− d2

dξ2
ψ̃ + VSchr ψ̃ = ω2 ψ̃ , (5.2)

with the effective Schrödinger potential given by

L̃2VSchr(r) = r2(2m−1)

[
L̃2
(
B0r

τ−2(m−1) −Q2r2dn
)

+
dn(dn+ 4m− 2)

4

]
, (5.3)

where we used the original radial coordinate for simplicity and we recall that Q was defined

in (4.8). Notice that the overall factor r2(2m−1) → 0 in the far IR, as r → 0.

The last, constant term in the potential happens to be positive definite, as one can see

from (3.19), and can be repackaged in the following form,

dn(dn+ 4m− 2) =
L̃2

L2

[
(z + d− θ)2 − z2

]
= ν2 − 4B0L̃

2 − z2 L̃
2

L2
> 0 , (5.4)

where ν was introduced in (4.15). This expression can be used to rewrite the potential in

the following suggestive form,

VSchr(r) = r2(2m−1)

[
B0r

τ−2(m−1) −Q2r2dn +
1

4

(
ν2

L̃2
− 4B0 −

z2

L2

)]
. (5.5)

To recap, unstable modes will correspond to negative energy bound states for which

ω2 < 0, with the critical case describing zero modes associated with ω2 = 0. Thus, a

necessary condition for the existence of an instability is that the potential VSchr develops
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at least one negative region in the bulk.14 Inspecting (5.5) we see that the possible sources

of instabilities are again transparent: the relative interplay between the charge, the coupling

B and the value of the index ν. Recall that in this paper we are only after unstable modes

associated with the hyperscaling violating region itself,15 for which 0 ≤ r ≤ rtr when the

IR is at r = 0. As a consequence, we are only looking for negative regions of (5.5), and

not of the potential which determines the UV behavior of the theory and the asymptotic

AdS geometry.

5.1 Neutral scalar

Let’s focus on the neutral scalar case Q = 0 first, and consider different choices for the

coupling:

1. Scaling choice τ = 2(m− 1): when the effective mass term ∼ B(φ)ψ2 respects the

scaling of the kinetic term, the potential reduces to the simple expression

VSchr(r) = r2(2m−1)

[
B0 +

1

4L2

[
(z + d− θ)2 − z2

]]
= r2(2m−1) 1

4

[
ν2

L̃2
− z2

L2

]
, (5.7)

and is always positive everywhere in the hyperscaling violating part of the geometry if

B0 > 0. Thus, to trigger any instabilities one necessarily needs to have B0 < 0.

In terms of the index ν, the condition for VSchr < 0 is ν2 < z2L̃2/L2. Notice however

that the violation of the generalized BF bound (4.16) corresponds to a smaller window,

ν2 < 0 , (5.8)

associated with the index becoming imaginary. Thus, we see an offset16 (by an amount

∝ z2) between the violation of the generalized BF bound and the condition VSchr ≤ 0.

However, one should keep in mind that VSchr ≤ 0 is not a sufficient condition for instabili-

ties, but only a necessary one. In other words, the potential should be “negative enough”

in order for bound states to form, and one should quantify how deep the potential well

needs to be.

One way to test whether in the additional window

0 <
ν2

L̃2
<
z2

L2
, (5.9)

14The statement can be made more precise if we know the profile of the potential (5.3) in the entire bulk

region, from the IR to the UV. By using the WKB approximation, one can obtain a bound state at zero

energy in a potential well for each integer k > 1 via the formula

(2k − 1)π = 2

∫
dξ
√
−VSchr(ξ) , (5.6)

where the integral is carried out in the region of negative Schrödinger potential. We leave the study of this

interesting feature to future work.
15The AdS UV geometry may have additional instabilities which are not captured by the behaviour

of (5.3). However, those are already well understood via standard BF bound arguments, and will be

ignored here.
16An explanation for the origin of the shift ∝ z2/4 was provided by [32]. We thank Jim Liu for bringing

this to our attention.
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the ψ scalar may condense (without a violation of the BF bound) is to examine the behavior

of its IR perturbations. In particular, in order for a condensate to form we must have at

least one irrelevant perturbation mode in the IR, without which a non-trivial scalar profile

would not be supported.17 Indeed, recall that in section 4 we found that in the IR the

scalar had the form (4.14), with modes

ψ ∼ r−
1
2
d(z+d−θ)
zd−2θ

± 1
2
ν , ν2 = 4L̃2B0 +

d2(z + d− θ)2

(dz − 2θ)2
. (5.10)

Since d(z+d−θ)
zd−2θ > 0, as seen from (3.16), and the IR corresponds to r = 0, one can easily

check that the range (5.9) does not allow for irrelevant perturbations18 and hence is ruled

out as a possible “condensation window”.

The precise windows of instability in a given model can of course be tested numerically,

using these analytical arguments as guidance. We will return to this issue in section 6, but

for now let’s summarize by pointing out that we have identified two mechanisms that

will indicate the presence of a condensate. First, the violation of the analog of the AdS

BF bound. Second, the presence of IR irrelevant modes, without which the boundary

conditions which would allow for a condensate would not be satisfied. Thus, the absence

of irrelevant modes for the IR expansion of the neutral or charged scalar can be used as a

criterion against condensation in certain regions of parameter space, especially in cases for

which the Schrödinger potential analysis is not necessarily conclusive.

2. Arbitrary scaling B = B0 r
τ : the Schrödinger potential is now given by

VSchr(r) = r2(2m−1)

[
B0 r

τ−2(m−1) +
1

4L2

[
(z + d− θ)2 − z2

]]
. (5.11)

Again, to trigger any instabilities one needs B0 < 0 and negative enough to overcome the

positive contribution of the constant term. Thus, take B0 < 0 and consider the two cases:

(i) Let’s assume first that τ − 2(m− 1) > 0, so that the coupling B(φ) approaches zero

towards the IR. Then, in the hyperscaling violating portion of the geometry the

term |B0| rτ−2(m−1) is largest when r = rtr. This implies that we are guaranteed no

instabilities when

|B0| rτ−2(m−1)
tr <

1

4L2

[
(z + d− θ)2 − z2

]
, (5.12)

since the potential is, again, everywhere positive in that case.

(ii) On the other hand, when τ−2(m−1) < 0 so that the coupling is becoming increasingly

negative towards the IR, instabilities are expected to arise quite generically, and to

be associated with the IR of the geometry.
17If the perturbations of ψ were relevant, we would expect backreaction of the charged scalar on the

background to become important, and to lead to a new geometry which would not be that of our simple

{z, θ} solutions. While this situation is clearly interesting, it is beyond the scope of our paper, and we will

not consider it here.
18There are no IR irrelevant modes in the larger window 0 < ν2 < L̃2

L2 (z + d − θ)2. Notice that z2 <

(z + d− θ)2 in our parameter space (3.20).
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5.2 Charged scalar

As can be easily seen from (5.3), since n > 0 the charge contribution to the potential

VSchr always decreases towards r = 0, and is therefore largest precisely near the transition

region r ∼ rtr to AdS. As a result, we expect the bound states to be generically19 localized

there and not in the deep IR. This is in sharp contrast with the standard holographic

superconductor setup with an AdS2 IR region, for which the charge contribution ∼ Q2r2dn

is constant, as n = 0. Once again, we are going to examine the structure of the effective

Schrödinger potential at zero temperature for different choices of coupling B(φ), but this

time with Q 6= 0:

Scaling choice τ = 2(m− 1): in the presence of charge we have

VSchr(r) = r2(2m−1)

[
−Q2r2dn +

1

4

(
ν2

L̃2
− z2

L2

)]
. (5.13)

We consider the following cases:

(i) When ν2

L̃2
< z2

L2 the effective Schrödinger potential is negative everywhere indepen-

dently of how large the charge is. Thus, we expect the scalar to be able to condense

even when Q is very small.20 In particular, when the stricter condition

ν2 < 0 , (5.14)

is satisfied, the condensation is triggered at zero charge, as anticipated by the neutral

scalar field analysis above. Note that this particular neutral scalar field instability

— which is nothing but the violation of the generalized BF bound — originates from

the far IR of the geometry. It is visible both from the behavior of the effective mass

as well as from the Schrödinger potential (5.13).

On the other hand, when 0 < ν2 < z2 L̃2

L2 , even though the Schrödinger poten-

tial (5.13) develops a negative region as r → 0, we are not guaranteed the onset of

a superfluid phase transition in the far IR. Indeed, recall that in this range the IR

perturbations of a neutral field are inconsistent with the formation of a condensate

— there are no IR irrelevant perturbations. A similar perturbation analysis needs to

be done for the charged scalar, to ensure that the IR mode expansion is compatible

with the presence of a condensate. Indeed, from (4.19), we can obtain the asymptotic

behavior in the far IR,

ψ = r−
1
2
d(z+d−θ)
zd−2θ

− 1
2
ν(c1 +Q2r2dn +O(Q4r4dn))

+ r−
1
2
d(z+d−θ)
zd−2θ

+ 1
2
ν(c2 +Q2r2dn +O(Q4r4dn)), (5.15)

with ν2 = 4L̃2B0 + d2(z+d−θ)2
(dz−2θ)2

. Notice that the contribution from U(1) gauge field

only appears as subleading corrections. Once again, one can easily see that the range

19This will be the case when the coupling B(φ) is of the scaling form. On the other hand, when B is

chosen to diverge towards the IR, and B0 < 0, this story will change, as we will see.
20This was already anticipated by the neutral scalar analysis discussed above.
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0 < ν2 < z2 L̃2

L2 does not allow for any irrelevant mode and is therefore ruled out as

a viable condensation window. Thus, we have seen explicitly that having a negative

region in the effective potential is not enough to trigger an instability — it is only a

necessary condition, as we have stressed at the beginning.

Finally, since the charge term in the brackets of (5.13) contributes more and more as

we move away from the IR while the coupling B doesn’t scale, bound states of the

potential will typically be supported near rtr, for a large enough value of Q. Thus,

superfluid instabilities of the hyperscaling violating regime will be associated with

the “effective UV” of the {z, θ} geometry itself, and not with its IR region. It is the

dependence of the gauge field term on the hyperscaling violating exponent which is re-

sponsible for this behavior, as visible from the structure of the Schrödinger potential.

(ii) When ν2

L̃2
> z2

L2 , the potential will be positive at least in the far IR, where the gauge

field term becomes negligible independently of how large the charge is. Whether VSchr

can become negative in a different portion of the geometry depends on the interplay

between B0, Q, the scaling exponents and the location of the transition region to AdS.

In particular, if the charge and transition region obey

Q2r2dn
tr <

1

4

[
ν2 − z2 L̃

2

L2

]
, (5.16)

we are guaranteed the absence of unstable modes in the hyperscaling violating regime,

since the Schrödinger potential in this case is positive in the entire bulk region (the

charge term attains its largest value at rtr). While this condition can be easily evaded

by increasing Q, it does translate into the existence of a minimal charge Qmin below

which the superfluid phase transition can not be triggered. In particular,

Q > Qmin , with Q2
min ≡

1

r2dn
tr

1

4

[
ν2 − z2 L̃

2

L2

]
, (5.17)

is a necessary condition for the existence of instabilities. Note that the the minimal

charge can be made smaller by increasing rtr, i.e. the range in which the hyperscaling

violating solution dominates the geometry, or alternatively by increasing n = d−θ
zd−2θ .

The presence of a minimal charge when the mass ∼ B0 of a charged scalar is either

positive or “not negative enough” is by no means new, and is well known to occur

in AdS. In fact, it is already encoded in the physics of the generalized BF bounds

we described in section 4. In this respect this case is analogous to what happens in

the standard holographic superconductor setup. We will see shortly that this story

is modified when we allow for more general scalings B(φ).

It is hard to make more definite statements about the precise onset of instabilities

from the Schrödinger potential alone. One robust feature we already emphasized is that

the condensate should be triggered close to the transition scale to AdS, and not in the

deep IR. As long as the charge is above Qmin, some portion of the hyperscaling violating
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geometry will correspond to a negative potential, and we expect the charged scalar to

condense. However, we can’t predict how negative the potential must be to support an

unstable mode.

Arbitrary scaling B = B0 r
τ : the potential has the form

VSchr(r) = r2(2m−1)

[
B0r

τ−2(m−1) −Q2r2dn +
1

4L2

[
(z + d− θ)2 − z2

]]
. (5.18)

We distinguish between two different cases, depending on the sign of B0:

(i) When B0 > 0 the only negative contribution to the potential is from the charge term,

which always decreases in magnitude towards the IR. While this implies generically

the existence of a minimal charge, what sets its value depends on whether τ is larger

or smaller than the scaling choice 2(m− 1):

(a) Let’s consider first τ < 2(m − 1). If a given charge is not large enough to

make the potential negative at the transition scale, it certainly has no chance of

achieving it closer to the IR, because the coupling term ∝ B0 will only increase

as r → 0, while the charge contribution will become weaker. Thus, the potential

is guaranteed to be positive along the entire region 0 < r < rtr. This tells us

that there will be a minimal charge below which the condensate will not form,

set by r = rtr,

Q2
min = r2dn

tr

[
B0 r

τ−2(m−1)
tr +

1

4L2

[
(z + d− θ)2 − z2

]]
. (5.19)

We can adjust Qmin by varying the size rtr of the hyperscaling violating regime

(the larger the region, the smaller the minimal charge), as well as by increasing

n = d−θ
zd−2θ .

(b) The situation for τ > 2(m−1) is more complicated, and one has to take into ac-

count the relative scaling between the charge and the coupling terms to identify

what sets the value of Qmin. The existence of a minimal charge is still generic

because, as the IR is approached, at some point the positive constant term will

dominate the potential, unless the charge is increased above some critical value.

The special value τ = 2(m−1)+2dn discussed in case (iv) of section 4.2 naively

falls within this category, but needs to be treated separately. Indeed, notice that

when B0 > Q2 the potential is always positive, no matter how large the charge

is. Thus, a condensate will not form.

(ii) When B0 < 0, we can rewrite the potential suggestively as

VSchr(r) = r2(2m−1)

(
1

4L2

[
(z + d− θ)2 − z2

]
−
[
|B0|rτ−2(m−1) +Q2r2dn

])
.

(5.20)

Again the behavior depends on the range of τ :

– 22 –



J
H
E
P
1
1
(
2
0
1
6
)
1
3
7

(a) When τ > 2(m− 1), the potential in the deep IR is also positive, since the last

two terms are approaching zero while the first constant term is positive. Notice

that this is true independently of how big Q and B0 are taken to be, which is

different from the scaling choice, in which one can simply tune B0 to be large

enough to trigger the instability in the deep IR. Thus, to find VSchr < 0 one must

approach the effective UV of the hyperscaling violating regime. Once again, the

largest the term |B0|rτ−2(m−1) +Q2r2dn can be is set by the transition scale to

AdS, r = rtr. Thus, superfluid instabilities will not develop as long as

|B0|rτ−2(m−1)
tr +Q2r2dn

tr < (z + d− θ)2 − z2 . (5.21)

This again sets a minimal charge, as in the previous cases. The new feature

compared to the standard holographic superconductor [7] is that the minimal

charge is present independently of how negative B0 is tuned to be. The special

choice τ = 2(m − 1) + 2dn discussed in case (iv) of section 4.2 falls within

this category.

(b) On the other hand, when τ < 2(m − 1) the contribution from the coupling B

becomes infinitely negative in the deep IR. As a result, we expect to have a

charged scalar condensate (this time localized in the far IR) for any value of the

charge, no matter how small it is, without having to tune B0 to be large. This

is in contrast to the AdS case, for which the instability is associated with the

mass term m2 being very large and negative. This is a new feature, due entirely

to having allowed for an arbitrary scaling for B.

To summarize, the simple analytical arguments we have formulated can be used to

highlight the competition between different sources of instabilities — in particular, the

interplay between the coupling B(φ) and the charge term — and the criteria under which

they are triggered or suppressed. Although the analysis was performed using extremal

solutions, it provides guidance to detailed numerical studies of instability windows, and

analytical intuition for when a minimal charge should exist. Next, we will examine our

estimates numerically.

6 Numerics

So far our discussion has been restricted to zero temperature solutions, but in what follows

we will switch on a finite temperature, and examine these instability windows in the back-

ground of hyperscaling violating black branes that are asymptotic to AdS. For simplicity,

we are going to work with an analytical solution which arises from the supergravity setup

of [53], and is characterized by z, θ → ∞ with the ratio θ/z held fixed. We will examine

the condensation of the charged scalar on top of this analytical background numerically, in

a number of examples which will lend evidence to the simple estimates of the last two sec-

tions. Although the latter apply only to extremal solutions, they provide a guide towards a

classification of superfluid transitions at finite (but low) temperature. Finally, even though
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the z, θ → ∞ limit is rather special, we believe that it captures all the essential features

of our analysis, and postpone a more thorough look at black brane solutions with finite z

and θ to future work.

Working with d = 2 and choosing the scalar potential and gauge kinetic function

in (2.1) to be

Z(φ) = eφ/
√

3 , V (φ) = −6 cosh(φ/
√

3) , (6.1)

we obtain the three-equal-charge black brane solution of [53],

ds2 = − f(r)dt2 +
1

f(r)
dr2 + h(r)(dx2 + dy2) ,

f = r1/2(r +Q)3/2

(
1− (rh +Q)3

(r +Q)3

)
, h = r1/2(r +Q)3/2 ,

At =
√

3Q(rh +Q)

(
1− rh +Q

r +Q

)
, φ =

√
3

2
ln(1 +Q/r) ,

(6.2)

where rh denotes the horizon. The corresponding temperature and chemical potential are

given by

T =
3
√
rh(rh +Q)

4π
, µ =

√
3Q(rh +Q) . (6.3)

The extreme limit T/µ → 0 is obtained by taking rh/Q = 0, and the corresponding IR

geometry has the hyperscaling violating form (3.8) with exponents m = 3/4 and n = 1/4.

Note21 that this solution is conformal to AdS2 × R2. More precisely, if we introduce

ρ =
√

Q
3r , then the extreme IR limit of (6.2) can be written as

ds2 =
Q2

√
3

1

ρ

[
−dt

2

ρ2
+

4

3Q2

dρ2

ρ2
+ dx2 + dy2

]
,

At =
Q√

3

1

ρ2
, φ =

√
3 ln(
√

3ρ) ,

(6.4)

with the IR now located at ρ→∞. This kind of geometry can be obtained from (3.4) by

considering the limit z, θ →∞ with θ/z = −1.

To study the onset of superfluid instabilities in the background (6.2), we turn on a

fluctuation ψ = e−iωtψ(r) of the charged scalar, whose linearized equation of motion reads

ψ′′(r) +

(
f ′

f
+
h′

h

)
ψ′(r)− 1

f

(
B(φ)− q2A2

t

f

)
ψ(r) = −ω

2

f2
ψ(r) . (6.5)

As in the zero temperature case, (6.5) can be written in Schrödinger form,

− d2

dξ2
ψ̃ + VSchr ψ̃ = ω2ψ̃ , (6.6)

after a change of variable and field redefinition given by

dξ

dr
=

1

f
, ψ̃ =

√
hψ . (6.7)

21This case is known as semi-local criticality and can give rise to interesting behavior [54–57].
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The corresponding effective Schrödinger potential is then

VSchr =
f2h′′

2h
− f2h′2

4h2
+
ff ′h′

2h
+B(φ)f − q2At . (6.8)

We emphasize once again that the background geometry will be unstable if the Schrödinger

equation (6.6) has a negative energy bound state ω2 < 0, corresponding to a solution which

grows exponentially in time. Furthermore, if there is an unstable mode Im(ω) > 0, then

at the onset of the instability one should expect to find a zero mode with ω = 0. Clearly,

its profile will depend on the entire geometry, from the IR to the UV.

Indeed, the critical case is the zero energy state which corresponds to solutions of

the equation

ψ′′(r) +

(
f ′

f
+
h′

h

)
ψ′(r)− 1

f

(
B(φ)− q2A2

t

f

)
ψ(r) = 0 , (6.9)

which therefore determines the zero modes. After specifying the coupling B(φ), the critical

temperature as a function of charge q can be determined by solving (6.9) numerically. The

two boundary conditions needed to fully specify the solution will be chosen as follows. First,

we will impose regularity at the horizon.22 The second boundary condition will come from

specifying the UV asymptotics. Indeed, as is well known, there are two modes in the UV

AdS4 region — one is interpreted as the source of the dual scalar operator, while the other

as its expectation value. Here we adopt the standard quantization, i.e. choose the faster

falloff to describe the expectation value, and the leading term to be the source. Moreover,

we will set the latter to zero, so that the U(1) symmetry is broken spontaneously. For a

given temperature T , we expect such normalizable zero modes to appear at a special value

of q. Finally, we will work in the grand canonical ensemble by fixing the chemical potential

— in particular, we will set it to µ = 1.

For concreteness in our numerics we choose the coupling to be

B(φ) = M2 cosh(τ̂φ) , (6.10)

with M and τ̂ two constants. At the asymptotic boundary, where r →∞, it behaves as

B(φ) ∼M2

(
1 +

τ̂2

2
φ2 + · · ·

)
, as φ→ 0 , (6.11)

and the leading terms in the UV expansion of ψ are

ψ(r) =
ψ(−)

r∆−
(1 + · · · ) +

ψ(+)

r∆+
(1 + · · · ) , ∆± =

3±
√

32 + 4M2

2
. (6.12)

Since we are not allowing for a source term, we set ψ(−) = 0 in the expansion above.

On the other hand, in the extreme IR with φ ∼ ln(1/r)→∞, B(φ) takes the form we

have assumed in the previous sections,

B(φ) =
M2

2
eτ̂φ, as φ→∞ . (6.13)

22Note that ψ′(rh) is fully determined by ψ(rh), which can be set to unity due to the linearity of (6.9).
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Note that to obtain this relation we have assumed23 τ̂ > 0. It is helpful to point out that

in the present case τ̂ is related to τ of (4.5) by

τ̂ = − 2√
3
τ . (6.14)

The special value τ̂ = 0 describes the case in which B(φ) = M2 is a constant. Finally, the

case in which the mass term B(φ)ψ2 scales in the same way as the kinetic term (∂ψ)2 is

obtained from (4.6) by choosing m = 3/4,

τ = 2(m− 1) = −1

2
⇒ τ̂ =

1√
3
. (6.15)

One of the questions we are interested in is whether the superfluid instability in these

models can appear at arbitrary small values of the charge q. Guided by our analytical

estimates — in terms of the effective mass in section 4 or the Schrödinger potential in

section 5 — we will consider examples that address the following scenarios:

1. Scaling case τ = 2(m−1): we have a generalized BF bound, (4.16) or (4.17), analogous

to that of the standard AdS2 case. If the bound is violated, the superfluid instability

can be triggered for arbitrarily small charges, while if the bound is unbroken a minimal

charge is required. The latter can be tuned by changing the location of the transition

∼ rtr to the UV AdS geometry.

2. Non-scaling case with τ < 2(m − 1) and B0 < 0: as we discussed in case (i) of

section 4.2, the effective mass (4.9) approaches negative infinity as r → 0, and there-

fore the superfluid instability is expected to appear even at zero charge, i.e. there is

no Qmin. From the Schrödinger potential (5.3) standpoint, we see a large negative

well as r → 0. Therefore, the corresponding superfluid instability is expected to be

associated with the far IR of the hyperscaling violating region.

3. Remaining parameter ranges: a minimal charge is generically required in order to

trigger a superfluid instability. For case (ii) of section 4.2, the effective mass (4.9)

approaches positive infinity as r → 0. Similarly, the Schrödinger potential (5.3) is

positive in the IR. The superfluid instability, if it is triggered, will be associated with

the effective UV geometry of the hyperscaling violating regime, and not with its IR

regime. In case (iii) of section 4.2, the potential (5.3) becomes and stays positive

as one gets sufficiently close to r = 0, no matter how large the values of B0 and

Q are — even when B0 < 0. Unlike the case we have just discussed, however, the

potential remains finite and instabilities can still be triggered, but are associated with

the r ∼ rtr transition region. In these cases a minimal charge is needed to ensure

that VSchr has a sufficiently negative region.

Below we will provide concrete examples realizing each of these scenarios. In particular, we

will investigate (6.9) numerically in order to determine the critical temperature associated

with the zero mode solutions as a function of the charge q.

23Since the coupling (6.10) is an even function of φ, τ̂ < 0 gives nothing new.
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6.1 Scaling case

The scaling case corresponds to τ̂ = 1/
√

3, so that our mass coupling is given by

B(φ) = M2 cosh(φ/
√

3) . (6.16)

The equation of motion for ψ on the background geometry (6.4) then becomes

ψ′′(ρ)− 1

ρ
ψ′(ρ)− 2(3M2ρ2 − 2q2)

9ρ4
ψ(ρ) = 0 , (6.17)

and is solved by24

ψ(ρ) =
ρ

q

[
c1 Γ(1− ν)J−ν

(
2q

3ρ

)
+ c2 Γ(1 + ν)Jν

(
2q

3ρ

)]
, (6.19)

where the index ν =
√

1 + 2M2/3. The instability associated with the index becoming

imaginary, when M2 < −3/2, is equivalent to the violation of the BF bound (4.16), with

the parameter choice m = 3/4 and n = 1/4. Notice that in this case ν does not contain

any charge dependence, unlike the standard AdS2 case (4.23).

We will consider two qualitatively different cases, by choosing first M2 = −2, for which

ν =
√
−1/3 is complex, and then M2 = −5/4, i.e. ν =

√
1/6 real. The critical temperature

of the zero mode solutions as a function of charge q for M2 = −2 is presented in figure 1.

As one can see, Tc decreases as we lower the charge q, but the zero mode survives even when

the charge is zero. In that case the instability is due to the breaking of the local BF bound

in the far IR of the hyperscaling violating geometry, where the charge term is negligible.

Thus, here we see a model which gives rise to a superfluid condensate at arbitrarily small

values of the charge, in accordance with the analogous AdS2 result.

In figure 2 we show the critical temperature as a function of q for M2 = −5/4. In this

case the index ν is real and the corresponding BF bound is unbroken. Just as expected,

there is a minimal charge at which the background will become unstable to developing non-

trivial scalar hair. We note that although the existence of a minimal charge is analogous

to what would occur in AdS, the behavior of the charge term in the hyperscaling violating

geometries is not — it is most important near rtr and negligible in the far IR.

6.2 Non-scaling case with infinitely negative effective mass

Here we are considering the scenario discussed in case (i) of section 4.2. The effective

mass (4.9) approaches negative infinity as r → 0. Thus, the expectation is that the zero

mode should survive at arbitrarily small values of the charge. We consider the follow-

ing coupling

B(φ) = −2 cosh(
√

3φ) , (6.20)

which is obtained from (6.10) by choosing M2 = −2 and τ̂ =
√

3.

24We point out that (6.19) holds when ν is not an integer. However, when M2 = 3(k2 − 1)/2 with k an

integer, the solution is given by

ψ(ρ) =
ρ

q

[
c1Jk

(
2q

3ρ

)
+ c2Yk

(
2q

3ρ

)]
. (6.18)
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Figure 1. Critical temperature as a function of charge q for the scaling case with M2 = −2 and

τ̂ = 1/
√

3. The critical temperature at q = 0 is Tc ≈ 0.00297. There is no minimal charge, thus a

neutral scalar will condense. We work in units in which the chemical potential is µ = 1.
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log@qD
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Figure 2. Critical temperature versus charge q for the scaling case with M2 = −5/4 and τ̂ = 1/
√

3.

We see a minimal charge q ≈ 2.327 below which the zero mode for superfluid instability does not

exist. We work in units in which the chemical potential is µ = 1.
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Figure 3. Critical temperature as a function of charge q for the non-scaling case with M2 = −2

and τ̂ =
√

3. The critical temperature at q = 0 is Tc ≈ 0.0951. We work in units with µ = 1.
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Figure 3 shows the critical temperature as a function of charge q. One can clearly see

that there is a phase transition even in the limit of zero charge. It is helpful to compare

this case to the scaling one with M2 = −2, as they both share the same UV mass. Since

the effective mass in the far IR goes to negative infinity, in the present case (with τ̂ =
√

3)

instabilities should be triggered much more easily than in the scaling one (with τ̂ = 1/
√

3).

As a result, we expect the critical temperature here to be higher than that of the scaling

scenario. This is precisely what we find from the numerics by comparing figure 3 with

figure 1. Notice that this behavior is independent of how large B0 ∼ M2 is, a feature

due entirely to the non-trivial coupling B(φ), which is absent in the standard holographic

superconductor scenario. Thus, by appropriately choosing the functional dependence of

the coupling, we can facilitate the phase transition and increase Tc.

6.3 Remaining cases

In the remaining cases we discussed in section 4.2, we don’t expect the zero mode to exist

at arbitrarily small values of q. Let’s focus on the choice

B(φ) = M2 , (6.21)

which corresponds to τ̂ = 0 (or equivalently τ = 0) and falls under the category (iii)

of section 4.2. Before discussing the numerics, we stress that in these cases it’s hard to

identify sharp analytical instability criteria in the scaling regime. The equation for the ψ

perturbation now reads

ψ′′(ρ)− 1

ρ
ψ′(ρ)− 4(

√
3M2ρ− q2)

9ρ4
ψ(ρ) = 0 , (6.22)

and the solution in general is given by

ψ(ρ) = e
2iq
3ρ

[
ca 1F1

(
3

2
− iM2

√
3q
, 3,

4iq

3ρ

)
+ cb U

(
3

2
− iM2

√
3q
, 3,

4iq

3ρ

)]
, (6.23)

where 1F1(a, b, x) is the Kummer confluent hypergeometric function and U(a, b, x) is a con-

fluent hypergeometric function. The special case with q = 0 needs to be treated separately,

and is

ψ(ρ) = ρ

[
ca I2

(
4

33/4

√
M2

ρ

)
+ cbK2

(
4

33/4

√
M2

ρ

)]
. (6.24)

In contrast to the scaling case (6.19), it is not immediately apparent how to extract informa-

tion about potential instabilities from the structure of the solutions. In particular, there

is no simple analog of the generalized BF bound, illustrating the challenge of obtaining

generic analytical conditions for the onset of the phase transition.

The behavior of the critical temperature as a function of charge q for the choice M2 =

−2 is presented in figure 4. Although we can not solve the system at very low temperatures,

we find strong evidence that a minimal charge is indeed required in order to trigger the

superfluid instability, as indicated by the effective mass and Schrodinger potential analysis.

A bigger value of M2 = −5/4 is then shown in figure 5. The qualitative behavior is very
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Figure 4. Log-Log plot of the critical temperature versus charge q for the non-scaling case with

M2 = −2 and τ̂ = 0. The critical temperature goes to zero at q ≈ 1.88. We work in units

with µ = 1.
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Figure 5. Log-Log plot of the critical temperature as a function of charge q for the non-scaling

case with M2 = −5/4 and τ̂ = 0. The critical temperature goes to zero at q ≈ 2.6. We work in

units with µ = 1.

similar to that of figure 4. However, we note that as we increase the size of M2, a bigger

minimal charge is required in order to trigger the superfluid instability. This point can be

understood qualitatively by comparing the Schrödinger potential (6.8) for different values

of the mass (6.21) but keeping q and T fixed, as is done in figure 6. Recall that we are

working in the grand canonical ensemble and have therefore fixed the chemical potential

to µ = 1.

We choose parameters such that the thick magenta line in figure 6 corresponds to the

zero mode solution of (6.9) for M2 = −5/4, τ̂ = 0 at q ≈ 2.6002 and T ≈ 1.378 × 10−4.

From (5.6), this case gives the smallest negative potential well which supports a zero mode

bound state for the chosen values of q and T (e.g. for k = 1 of (5.6)). One can in principle

change M2 to obtain a much larger negative potential region such that (5.6) can be satisfied

for k > 2. However, it is easy to see from figure 6 that the range in which the Schrödinger

potential is negative as well as its depth becomes smaller and smaller as one increases M2.

Therefore, in order to support a zero mode, a bigger value of q is required to compensate
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Figure 6. Schrödinger potential (6.8) as a function of radial coordinate s = rh+Q
r+Q for the non-

scaling case τ̂ = 0. The different curves have the same values of charge q ≈ 2.6002 and temperature

T ≈ 1.378 × 10−4 but different values of M2. The horizon is located at s = 1 and the UV AdS4

boundary at s = 0. We choose parameters such that the thick magenta line corresponds to the zero

mode solution for this particular choice of q and T . We work in units of µ = 1.

for the increase in the mass parameter M2. In addition, we note that there is a positive

potential region in the deep IR, which is too small to see from figure 6.

Before closing this section, we would like to point out one final feature visible from the

numerics. As one can see from inspecting figures 1 to 5, when q is large the value of Tc
increases linearly with q. This behavior can be understood as follows [58]. Taking q →∞
while keeping qΨ and qAµ finite, we arrive at the probe limit in which the gauge field and

the charged scalar do not backreact on the background geometry. In order to compare our

results with those in the probe limit, we have to perform the scaling transformation Ψ → qΨ

and Aµ → qAµ. After taking these rescalings into account, the physical dimensionless

temperature becomes Tc/qµ. Since we are working with µ = 1 (recall that we are in the

grand canonical ensemble), this tells us that Tc ∝ q, which is precisely what is observed

from the numerics in the large charge limit. The backreacton of the U(1) field and charged

scalar on the geometry becomes smaller and smaller as q is increased, explaining again why

we observe a linear behavior for Tc when the charge is large. We confirm this in figure 7,

which has the same choice of parameters as figure 1, but reaches higher values of q. It is

clear that the large q behavior can be well approximated by the linear function Tc = γq

with γ a constant, as expected from the probe limit argument. For small charges we deviate

from the linear relationship, as clearly visible from figure 1 as well as figure 7.
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