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1 Introduction

The goal of so-called “doubled formalisms” is to pair the string coordinates with their

T-duals in order to achieve duality invariance as a manifest symmetry. This has been pio-

neered in particular by [1–7], leading to doubled worldsheet actions, and has been applied

to supergravity to give double field theory (DFT) [4, 5, 8–11].

Solutions of DFT have been considered in [12–14]. In [12] the DFT configuration

corresponding to the T-dual pair of a fundamental string and a pp-wave was written down:

this solution was shown to take the form of a null wave in the doubled spacetime. One

has to make a choice as to which half of the directions of the doubled spacetime are to be

considered physical. This is called a choice of “section”. If this doubled wave is oriented in

the physical section, then the solution reduces in spacetime to that of the pp-wave, while if

instead it is oriented in a dual direction then the solution appears as a string. This wavelike

interpretation was supported by the calculation of the charges of this solution in [15–17],

from which one sees that the string winding charge/pp-wave momentum correspond simply

to the conserved charge associated to translational invariance in the doubled space.

In this paper, we wish to revisit this solution. In particular, we want to clarify the

nature of its source. One can construct wave-like solutions to double field theory, as to

supergravity, which are specified by a particular harmonic function. However, the funda-

mental string (F1) solution is a solution not to the pure supergravity equations of motion,

but to the action given by coupling the bulk supergravity action to a string worldsheet

action [18, 19].

We shall see that the appropriate source for the doubled wave solution is indeed a

doubled string worldsheet action. Intuitively, the doubled string sources a string when the

worldvolume direction lies in the physical spacetime: it then can also act as a source for

the pp-wave when we orient it in a dual direction. We write down the equations of motion

of the full action including the source in section 2, and then show how this is solved by the

doubled F1 solution in section 3.

The doubled worldsheet action that we will use will be essentially that given in [20],

which is closely related to the well-known Tseytlin action [2, 3], as also considered with

DFT applications in mind in [21]. The action of [20] is inspired by the Hamiltonian form

of the string worldsheet action, and so in particular retains the Virasoro constraints, which

our source configuration must solve. (We will also show in appendix A that the doubled

action due to Hull [6, 7] provides a possible source: presumably, the same will be true

for any doubled worldsheet action which reduces to the conventional string sigma model

e.g. [22]. For a review of doubled worldsheet approaches, see [23].)

This allows us to complete a cycle of ideas connecting the doubled worldsheet with

the doubled string. The equations of motion of double field theory arise as beta-functional

equations for doubled string actions [21, 24, 25]: these equations have a solution which is

sourced by the doubled string, and the fluctuations about this source reproduce again the

self-duality equations of the doubled string [12].

Having investigated the solution which represents a single string or wave, the next

question to wonder about is that of superpositions of such solutions, for example if we

want to describe a string carrying both momentum and winding in a single direction.

– 2 –
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It has long been established that the naive superposition of the F1 and pp-wave solution

does not give a valid string theory background: the reason for this is that this configuration

cannot be sourced by the usual string sigma model action. However, one can construct

a solution corresponding to the background resulting from a macroscopic string carrying

solely left-moving oscillations [26, 27]. This solution winds many times around one direction

and carries momentum along it. It is not localised in the transverse directions, but rather

traces out some non-trivial curve. The intuition is that the string has no longitudinal

oscillation modes, and so if made to carry momentum in a worldvolume direction must

therefore extend in the transverse directions.

In section 3.3, we will embed this configuration into double field theory, using the

doubled string as a source. We shall see in particular that the source configuration can also

be viewed as vibrating simultaneously in the dual transverse directions. In the conventional

spacetime picture, one can think of these directions as being smeared over, however in

double field theory this may not be necessary. We leave further exploration of the properties

of this solution for future study.

In doubling all coordinates, one also doubles time. The doubled string solution there-

fore also contains the configuration which is dual to the F1 solution along both temporal

and spatial worldvolume directions. This has been considered before in [15, 16, 28], where

it has been noticed that this solution may be thought of as the electromagnetic dual to

the exotic 52
2 brane (and so is electrically charged under a bivector field which can be used

alternatively to the B-field) and also seemingly has negative ADM mass.

We shall show in this paper, in section 4, that this solution is in fact a “negative

string.” This allows us to connect to the recent exploration in [29] of “negative branes.” It

has been argued there that negative branes are in fact the standard branes of various exotic

string theories and M-theories, which were originally studied by Hull [30, 31], using timelike

dualities. These exotic theories both have unusual spacetime signatures, and contain branes

whose worldvolume theories have non-standard signatures. In some cases, they are related

by dualities which appear to change the signature of spacetime.

It is likely that in order to fully understand DFT, we will need to confront the ap-

pearance of an extra time coordinate. This is one motivation for using it to explore these

phenomena. Another motivation is to see if an application of DFT is to provide a frame-

work in which to understand the theories presented in [29–31] (as has already been seen

for certain modified type II theories in [32]).

Here, as we mentioned, we will see firstly that the DFT string solution naturally

includes the negative F1 solution, and discuss some of its properties as seen in the doubled

formalism. We will then construct, in section 5, a novel variant of DFT, which applies to

theories where the fundamental string has a Euclidean worldsheet. This new version of

DFT, which we call DFT−, differs in a particular modification of the generalised metric.

We will also discuss, in section 5.2 and appendix B.2, the nature of signature chang-

ing duality transformations in DFT−. The results of [33] imply that, for the groups

SL(3) × SL(2) and SL(5), timelike U-dualities cannot change the signature: rather, they

will generically imply the necessary inclusion of antisymmetric vector fields. We shall see

that the situation in DFT− is perhaps a little different, but not without its own subtleties.

– 3 –
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Finally, we provide some discussion in section 6. The two appendices give additional

results related to the doubled worldsheet (in appendix A) and to DFT (in appendix B).

2 Action for DFT and doubled worldsheet

We will consider the action S = SDFT +SDWS, which describes the dynamics of the (NSNS

sector) double field theory fields, the generalised metric, HMN , and generalised dilaton, d,

sourced by a doubled sigma model. The double field theory action is [11]

SDFT =
1

16πGDFT

∫
d2Dxe−2dR , (2.1)

where the generalised Ricci scalar is given by

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md ∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL .

(2.2)

We denote the doubled coordinates by xM = (xi, x̃i).

The generalised dilaton, d, is a T-duality invariant, while the generalised metric, HMN ,

is a rank 2 tensor under O(D,D) transformations. It is symmetric and constrained to satisfy

HMP η
PQHQN = ηMN , where

ηMN =

(
0 δi

j

δij 0

)
, (2.3)

is the defining O(D,D) structure. We use this to raise and lower indices, so that the

inverse of HMN is HMN = ηMP ηNQHPQ. These conditions mean that HMN parametrises

the coset O(D,D)/O(1, D − 1) × O(1, D − 1) (very frequently one ignores time, in which

case the coset is O(D,D)/O(D)×O(D)). This denominator group O(1, D−1)×O(1, D−1)

is the generalised Lorentz group.

The other local transformations of DFT are generalised diffeomorphisms, under which

HMN is a rank 2 tensor and e−2d has weight one,

δΛHMN =ΛP∂PHMN+2∂(MΛPHN)P−2∂PΛ(MHN)P , δΛ(e−2d)=∂P (ΛP e−2d) . (2.4)

The algebra of generalised diffeomorphisms is closed, and the action invariant, if we impose

the section condition ηMN∂M ⊗ ∂N = 0. Before applying this requirement, the fields may

depend in principle on any of the doubled coordinates.

Finally, the constant prefactor GDFT is defined formally by GDFT = GN
∫
ddx̃, where

GN is the spacetime Newton’s constant and we have a (perhaps formal) integration only

over the dual coordinates. When one solves the section condition by requiring ∂̃i = 0, the

following parametrisation of the generalised metric

HMN =

(
gij −BikgklBlj Bikgkj

−gikBkj gij

)
, (2.5)
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together with that of the generalised dilaton, e−2d =
√
|g|e−2(φ−φ0) (see [34] for a discussion

of this slightly unconventional choice), reduces the action (2.1) to the conventional NSNS

sector action1

SNSNS =
e2φ0

16πGN

∫
dDx

√
|g|e−2φ

(
R− 1

12
H2 − 4(∇φ)2 + 4∇2φ

)
. (2.6)

The second term in the full action S = SDFT + SDWS is the doubled worldsheet action,

which we take following [20]:

SDWS = T

∫
d2σ

(
1

2
ηMNẊ

MX ′N − λ

4
(H− η)MNX

′MX ′N − λ̃

4
(H+ η)MNX

′MX ′N

)
.

(2.7)

The worldsheet coordinates are denoted (τ, σ), and Ẋ ≡ ∂τX, X ′ ≡ ∂σX. Here λ and

λ̃ are Lagrange multipliers for the Hamiltonian constraints. The algebra of constraints

is closed if ηMN∂MHPQ∂NHRS = 0 at any two points on the worldsheet [20]. Picking

λ = λ̃ = 1 corresponds to conformal gauge, in which case SDWS is exactly the Tseytlin

action [2, 3]. In what follows, we will make this choice immediately after deriving the

equations of motion. The string tension T takes its usual value, T = 1/2πα′ (we could

alternatively have absorbed this into the definition of the coordinates or the generalised

metric, but have chosen not to do so). The action reduces to the conventional string action

on imposing the section condition and integrating out X̃ ′i, which is here related to the

canonical momenta Pi of Xi by X̃i = T−1Pi, so that in conformal gauge

SDWS → SWS =
T

2

∫
d2σ

(
gij

[
ẊiẊj −X ′iX ′j

]
+ 2BijẊ

iX ′j
)
. (2.8)

In doing so one may need to worry about boundary terms and zero modes, as discussed

in [20, 23]. (This does not affect the equation of motion of HMN , nor that of the worldsheet

fields if we make the assumption that ẊM is periodic.) Finally, let us note that one could

also include a Fradkin-Tseytlin coupling to the generalised dilaton d, however this will not

play a role in what follows.

The equations of motion that follow from the variation of XM and the Lagrange

multipliers in SDWS are then respectively:

∂σ(ηMNẊ
N −HMNX

′N ) +
1

2
∂MHPQX ′PX ′Q = 0 , (2.9)

ηMNX
′MX ′N = 0 , HMNX

′MX ′N = 0 . (2.10)

The variation of the full action S with respect to the (inverse) generalised metric gives the

equation of motion

e−2d

16πGDFT
RMN +

T

4

∫
d2σ(HMPHNQ − ηMP ηNQ)X ′PX ′Qδ(2D)(x−X) = 0 , (2.11)

1Our spacetime metric is Lorentzian with mostly plus signature (−,+, . . . ,+). Our Ricci scalar is

R = gijRk
ikj with Riemann tensor Ri

jkl = 2∂[kΓl]j
i+2Γ[k|m

iΓl]j
m, so that the Einstein-Hilbert Lagrangian

is +R, whereas for a metric of mostly minus signature it would be −R.
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where we have used the fact that the variation of HMN must respect the coset condition

HMP η
PQHQN = ηMN . The result of the bulk variation, RMN , constitutes the generalised

Ricci tensor of DFT, and is written down in appendix B.1. Finally, the equation of motion

of the generalised dilaton is R = 0.

We now study (2.11) in more detail. Reinstating the variation δHMN , it is straight-

forward to calculate

δHMN 1

2
(HMPHNQ−ηMP ηNQ)X ′PX ′Q= δgij

(
gikgjlX

′kX ′l−(X̃ ′i−BikX ′k)(X̃ ′j−BjlX ′l)
)

+ δBijg
ik(X̃ ′k −BklX ′l)X ′j . (2.12)

For the coordinates Xi, one can integrate (2.9) to obtain Ẋi = HiNX ′N = gij(X̃ ′j−BjkX ′k).
Using this, one has

δHMN 1

2
(HMPHNQ − ηMP ηNQ)X ′PX ′Q = δgijgikgjl(−ẊkẊ l +X ′kX ′l)

+ δBijẊ
iX ′j .

(2.13)

It is then easy to see that the equations of motion from varying the ordinary string ac-

tion (2.8) with respect to gij and Bij exactly agree with (2.13), as is entirely expected.

3 F1/pp-wave solutions

3.1 The F1/pp-wave solution and double static gauge

The conventional F1 solution in supergravity [26, 27] can be found by varying the combined

action SNSNS +SWS and imposing static gauge: X0 = τ , X1 = σ. Then one finds a solution

representing a string lying in the X1 direction:

ds2 = H−1(−dt2 + dz2) + d~x2
8 ,

Btz = (H−1 − 1)dt ∧ dz ,

e−2(φ−φ0) = H ,

(3.1)

where H = 1 + h
|~x8|6 , and we have identified t ≡ x0 ≡ X0, z ≡ x1 ≡ X1. The constant h

will be determined by the source.

For the Tseytlin string, the static gauge must be supplemented by specifying also some

of the dual coordinates. Given that we already know the answer is (3.1), we first write

down the generalised metric:

HMN =



H − 2 0 0 1−H 0 0

0 2−H 1−H 0 0 0

0 1−H −H 0 0 0

1−H 0 0 H 0 0

0 0 0 0 δij 0

0 0 0 0 0 δij


, (3.2)

where we have chosen to order the coordinates xM = (t, z, t̃, z̃, xi, x̃i). (The generalised

dilaton is constant, we can take it to be zero by choosing the asymptotic value of the

– 6 –
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spacetime dilaton in this frame to be φ0 = 0.) Then one finds that the doubled static

gauge choice

X0 = τ , X1 = σ , X̃0 = −σ , X̃1 = τ , (3.3)

solves the equations of motion (2.9) and (2.10). In fact, this worldsheet configuration obeys

the duality relation, ẊM = HMNX
′N , with the extra term involving a derivative of the

generalised metric in the equation of motion (2.9) cancelling identically. (Note that, as can

be seen in the doubled worldsheet action (2.7), we have two Hamiltonian constraints which

generate worldsheet diffeomorphisms [20], and which we can use to make the static gauge

choice for X0 and X1: the configuration for the remaining coordinates is then determined

by the equations of motion.)

Now, the T-dual of the F1 solution is a pp-wave solution.

ds2 = −H−1dt2 +H(dz̃ + (H−1 − 1)dt)2 + d~x2
8 ,

B = 0 ,

e−2(φ−φ0) = 1 .

(3.4)

We see that the doubled worldsheet solution also acts as a source for this solution; the

choice of static gauge would be

X0 = τ , X1 = τ , X̃0 = −σ , X̃1 = σ , (3.5)

with in this duality frame z̃ ≡ x1 ≡ X1 and z ≡ x̃1 ≡ X̃1. Intuitively, this is a choice of

static gauge for which the string is oriented in a dual direction. This allows the doubled

worldsheet action to source a particle-like wave solution.

3.2 Smearing in the dual directions

One way to view the doubled solution which reduces to the F1/pp-wave is a wave smeared in

the dual directions [12]. Let us see explicitly here how this smearing works, by first solving

the equations of motion and then applying the section condition, rather than the other way

around. We make use of the generalised metric (3.2), but allow the more general ansatz that

the function H can depend on the transverse coordinates and their duals, H = H(x, x̃).

The worldsheet equations of motion are still solved by the configuration (3.3).

Now we consider the equation of motion of the generalised metric given by (2.11).

Using the generalised metric (3.2) and the expression for RMN in appendix (B.1), one

finds that

RMN = −1

8

(
δM

P δN
Q −HMPHNQ

)
�HPQ , (3.6)

where � ≡ δij∂i∂j + δij ∂̃
i∂̃j . Then we find that the function H obeys

�H + 16πGDFTTδ(~x8)δ(~̃x8)δ(t̃+ z)δ(t− z̃) = 0 , (3.7)

which is solved by

H = 1 +
16 · 180GDFTT

π7r14
δ(t̃+ z)δ(t− z̃) r ≡

√
~x2

8 + ~̃x2
8 (3.8)

– 7 –
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This is localised both in the physical transverse coordinates and their duals. (Here we

are using the vector notation both where appropriate and inappropriate, so that ~̃x is

really the covector with indices x̃i and ~̃x2 ≡ δij x̃ix̃j .) Hence we next smear this over the

dual directions, by arraying centres along x̃i at intervals of 2πR̃i. The harmonic function

becomes

H = 1 +
8T

π3

GDFT

(2π)8R̃1 . . . R̃8

1

r6
δ(t̃+ z)δ(t− z̃) , r ≡

√
~x2

8 . (3.9)

With our definition of GDFT = GNΠi(2πR̃i) we recover exactly the usual string solution.

We could also view the endpoint of this process as taking the limit R̃i → 0, keeping GN
fixed, so that we shrink away the dual directions completely.

The additional delta functions δ(t̃ + z)δ(t − z̃) appearing in (3.9) are unusual from

the point of view of the fundamental string solution, however for the pp-wave solution

the δ(t − z̃) is a consequence of the fact that the wave travels in the z̃ direction at the

speed of light (such a delta function appears explicitly in the Aichelburg-Sexl solution

which is sourced by a massless particle action [35, 36]). The other suggests that there is a

similar interpretation in the frame with physical coordinates (t̃, z). Regarding the section

condition as applied to delta functions, the latter are of course more properly distributions.

Inside an integral, for f some ordinary function, we have ∂Mδ(x)f(x) = −δ(x)∂Mf(x),

suggesting that we should always transfer derivatives off the delta function and onto any

nearby functions, which will be required to obey the section condition. Then for instance

ηMN∂Mδ∂Nf = −ηMNδ∂M∂Nf = 0.

3.3 The vibrating string solution

Having seen that the fundamental string and pp-wave solution correspond to doubled

string sources of the DFT eom, let us now extend the discussion to consider possible

superpositions. Can we have a solution carrying both momentum and winding in the same

direction? As shown in [26], the naive superposition of the string and wave solutions is not

a true solution of string theory: it cannot be sourced by a fundamental string. However,

there is such a background (also constructed in [27]) which is sourced by a macroscopic

fundamental string carrying solely left-moving excitations. The solution in asymptotically

flat coordinates is given by

ds2 = −H−1
(
dudv − (1−H)Ḟ 2dv2 + 2(1−H)δijḞ

idxjdv
)

+ δijdx
idxj ,

B =
1

2
(H−1 − 1)du ∧ dv + Ḟi(H

−1 − 1)dv ∧ dxi ,

e−2(φ−φ0) = H ,

H(~x, v) = 1 +
Q

|~x− ~F (v)|6
,

(3.10)

where the vector ~F = ~F (v) gives the profile of the vibrating string in the transverse

directions: it is a function solely of the lightcone coordinate v = t+z, with the other being

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
2

u= t−z. The generalised metric can be written down in coordinates XM =(u, v, ũ, ṽ, xi, x̃i):

HMN =



0 1
2(H−2) H−1 0 0 0

1
2(H−2) (H−1)Ḟ 2 0 (1−H) Ḟj(1−H) Ḟ j(1−H)

H−1 0 −4(H−1)Ḟ 2 −2H 2Ḟj(1−H) 2Ḟ j(1−H)

0 1−H −2H 0 0 0

0 Ai 2Ai 0 δij 0

0 Ai 2Ai 0 0 δij


(3.11)

The generalised dilaton is constant. We will use the flat metric δij to raise and lower the

transverse indices.

Having embedded this solution into DFT, we can proceed similarly to before. Let

us examine solutions of the equations of motion with (3.11) as our ansatz, assuming that

H = H(x, x̃, v). We follow [26] and find the following worldsheet coordinate choice:

U = (Rn+ a)σ− +

∫ Rnσ+

dvḞ 2(v)

V = Rnσ+

Xi = F i(Rnσ+)

Ũ = −1

2
Rnσ+

Ṽ =
1

2
(Rn+ a)σ− − 1

2

∫ Rnσ+

dvḞ 2(v)

X̃i = Fi(Rnσ
+) ,

(3.12)

where a ≡
∫ 2πRn

Ḟ 2 is the zero mode of Ḟ 2, and σ± = τ ± σ. The string winds n

times around the direction z which is of radius R, and carries momentum pz ∼ a in this

direction. (Note that for the usual F1 solution, we implicitly had n = 1 and R = 1.) These

solve the equations of motion and Virasoro constraints of the doubled string, both for this

background and for flat space, so that one has just ẊM = HMNX
′N . One sees that both

the physical coordinates and the duals have the same vibration profile.

By picking for instance the uu component of the equations of motion, one finds that2

�H + 16πGDFTnT δ(~x− ~F (v))δ(~̃x− ~F (v))δ

(
u− 1

2
ṽ

)
δ

(
v +

1

2
ũ

)
= 0 , (3.13)

which is solved by

H = 1+
16 · 180GDFTnT

π7r14
δ

(
u− 1

2
ṽ

)
δ

(
v+

1

2
ũ

)
r ≡

√
(~x− ~F )2 + (~̃x− ~F )2 (3.14)

Smearing over the dual directions then reproduces the standard solution (3.10), and deter-

mines the constant Q.

2Note that the form of the generalised metric is quite special in that the components HiM and Hi
M are

the same up to the raising and lowering with the flat transverse metric. When we extend the supergravity

solution to include dependence on the dual coordinates, we have ∂vH = −Ḟ i∂iH− Ḟi∂̃
iH. As the structure

in the transverse and dual transverse directions is, however, the same, this amounts to merely changing the

number of transverse coordinates in the same manner as if one had changed the dimension of spacetime.

As the supergravity solution solves the NSNS sector equations of motion for general D [26], this guarantees

that we can rely on the cancellations that occur in that calculation to reduce the equations of motion to

the �H term.
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The section condition mandates us to smear over half of the coordinates. The half of

the coordinates which one can depend on need not be the ones appearing in the choice of

spacetime frame: that is to say, configurations gij = gij(x̃) are valid in DFT: they obey

the section condition but are not even locally geometric in spacetime. For the case of the

vibrating string, one might imagine therefore constructing a solution which vibrates solely

in the dual directions (or in some combination of dual and physical directions).3 From the

DFT point of view, this is related to (3.10) by the formal analogue of Buscher duality in

the ~x directions. It would be interesting to pursue further this speculative idea.

Let us note here that we could similarly consider the F1/pp-wave solution of section 3.1

with dependence on dual transverse coordinates. This would then represent a fundamental

string (or pp-wave) which is localised in the dual space and smeared in the physical ones.

The physical interpretation of this is less clear. Solutions localised in dual directions have

been discussed before in DFT in the context of the NS5 brane and KK monopole, where

they can be very interestingly connected to worldsheet instanton effects [13, 37].

The vibrating string solution here can be used as the starting point to construct the

multiwound string configuration of Lunin and Mathur [38], which is related by dualities to

the D1-D5 system, and also to a supertube configuration involving the exotic 52
2 brane [39].

We make some further comments about this in appendix B.3.

A couple of comments to conclude this section. In [26], care is taken to assume that

the radius R of the circle the string wraps is large (compared to the string scale) to avoid

ambiguities resulting from quantum effects on the worldsheet. In the doubled theory, a large

circle will always be accompanied by the T-dual small circle, and it seems we could equally

well work in the duality frame of the latter. This seems a little funny. Notions of scale in

the doubled theory are not quite as clear-cut as one might like: for instance, there is no

notion of scalar curvature in DFT, the generalised Ricci scalar R vanishing by the dilaton

equation of motion, and there do not appear to be other satisfactory possibilities [40].

We were interested in this solution because it represented the correct form of a solution

carrying momentum and winding in the same direction, the naive superposition not being

an authentic string theory background. Our approach remained more or less to begin with

the supergravity solution and work out what the generalised metric for it must be. It would

be interesting to develop a better understanding of how superpositions of basic 1/2-BPS

solutions work in DFT: addressing for instance the issue that the generalised metric is

non-linear in the spacetime fields, possibly precluding an easy generalisation of the usual

harmonic superposition rules. This and a more systematic analysis of DFT backgrounds

beyond the 1/2-BPS sector of [12–14, 41] is left for future work.

4 Timelike T-duality and the negative F1

4.1 The negative F1

We now return to the original F1 solution specified by the generalised metric (3.2) and static

gauge configuration (3.3). In the doubled formalism, we can apply a further Buscher duality

3However, it would seem that the “physical” directions may be required to have zero radius.
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in the timelike direction. This corresponds to making the following choice of static gauge:

X0 = −σ , X1 = τ , X̃0 = τ , X̃1 = σ . (4.1)

We take t̃ ≡ x0 ≡ X0, t ≡ x̃0 ≡ X̃0. The string would then seem to be oriented entirely in

the dual space. The resulting spacetime is singular:

ds2 =
1

2−H
(−dt̃2 + dz̃2) + d~x2

8

B =
1−H
H − 2

dt̃ ∧ dz̃

e−2(φ−φ0) = |H − 2| ,

(4.2)

Let us define H̃ = 2−H = 1− h
|~x8|6 . Then the above configuration can be written as

ds2 = H̃−1(−dt̃2 + dz̃2) + d~x2
8

B = (H̃−1 − 1)dt̃ ∧ dz̃

e−2(φ−φ0) = |H̃| .

(4.3)

This reveals that the background has the same form as the usual F1 solution (3.1), but

with the sign of h
|~x8|6 term in the harmonic function flipped. This is the solution one would

obtain for a “negative F1”, i.e. one with negative tension. Negative branes have been

recently studied extensively in [29]. Such branes have harmonic functions H̃ = 1− h
rn , with

a naked singularity at H̃ = 0. This singularity sets the location of a “bubble” surrounding

the negative brane. One can probe the interior of the bubble beyond the singularity using

other (mutually BPS) branes. Within this bubble, physics is supposed to be described by

an exotic string theory, with the spacetime signature in the worldvolume directions flipped.

In the case of the negative F1, this theory has the usual spacetime signature (as we flip

one time and one space direction), but has D-branes with Euclidean worldvolume theories

only. One can then regard the negative F1 as the standard F1 of the exotic theory.

Looking at the solution (4.3), we see that for H̃ < 0 (which is inside the bubble), the

signature of the worldvolume indeed flips, so that t̃ becomes spacelike and z̃ timelike. This

seems to also follow naturally from the static gauge configuration (4.1), where the timelike

worldsheet coordinate, τ , is identified with X1 ≡ z̃. In other words, the doubled worldsheet

configuration knows about the negative string inside the bubble.

Our point of view here would seem to be that the correct description remains the DFT

action plus the doubled worldsheet model. Ordinarily in double field theory, one way of

evading the singularities that appear in (4.2) is to use a different parametrisation of the

generalised metric, in terms of a metric and an antisymmetric bivector field, βij , similar to

the discussion in generalised geometry in [42]. One can usually use the generalised Lorentz

symmetry to gauge away the bivector in favour of the B-field, however in non-geometric

settings there may be obstructions to doing so.

The form of the bivector for the above solution is βtz = H−1−1, which can be compared

to the original B-field, Btz = H−1−1. The negative F1 can be said to couple electrically to

βij . This is interesting, because it leads to a connection with another type of exotic brane:
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the solution which couples magnetically to the bivector is the non-geometric 52
2 (see [39]

for an extensive treatment of this object and exotic branes in general).

Let us briefly explain what we mean. Two T-dualities transverse to the NS5 brane,

which couples magnetically to the B-field, lead to the 52
2 brane. This brane is non-geometric

in that it is only globally defined up to a T-duality transformation. The solution can be

expressed in terms of the bivector field βij , and carries a “Q-flux”, Qi
jk ∼ ∂iβ

jk which

is dual to the standard H-flux sourced by the NS5 brane. We regard the 52
2 as coupling

magnetically to this bivector. (We can think of βij as a zero-form in spacetime, carrying

two vector indices corresponding to the special isometry directions of the 52
2.)

Then, given that the electric dual to the NS5 is the fundamental string, it is natural

to wonder what is the corresponding dual of the 52
2: the correct answer is seen to be the

configuration given by dualising the F1 on both worldvolume directions [28, 43]. We now

recognise this, following [29], as a negative F1.

We therefore potentially have two different outlooks on this sort of exotica. From the

point of view of [29], negative branes should be described in conjunction with exotic versions

of string and M-theory. Within such a theory, the negative brane is rendered unexotic: it is

a standard object. Alternatively, these branes can be thought of as the objects which couple

to unusual (mixed-symmetry) tensor fields (as in the analysis of [43], such as the bivector,

which can be incorporated into (the perhaps also somewhat “exotic”) duality invariant

approaches as reparametrisations of the generalised metric (in some cases, this has only

been carried out at the linear level [44]). The resulting spacetime reductions of the more

general DFT description will give essentially what is known as “β-supergravity” [45–47].

The negative F1 solution has appeared in [15, 16, 28], where it was interpreted as the

electric dual to the exotic 52
2 brane in the above manner, and also observed to have negative

ADM mass. We now learn from [29] that this is expected for a negative brane viewed as

an exotic object in a normal string theory. Inside the bubble though, one should view the

brane as a conventional, positive mass object in an exotic theory.

We will now turn our attention to these exotic string theories. In the next subsection,

we will review some pertinent results of [29–31], before showing how to construct a variant

of DFT to describe a subsector of such theories in section 5.

4.2 Exotic string theories and timelike dualities

The exotic string theories which provide the correct physical description inside the bubble

can be found by taking timelike T-dualities of the usual type II theories [30, 31]. An

important point here is that not only do these theories have different spacetime signatures,

but the branes they contain can have worldvolume theories of various signatures. This last

fact is vital for realising that to understand them in the duality manifest setting, we will

need additionally to study the doubled worldsheet reformulation of a Euclidean string.

Let us summarise the essential features of these exotic dualities, in order to set the

context. In the notation of [29], we denote each theory as IIA/Bαβ with α = ± depending on

whether the fundamental string is Lorentzian (+) or Euclidean (−), and β = ± depending

on whether D2/D1 branes are Lorentzian (+) or Euclidean (−). (Note that the terminology

Lorentzian/Euclidean is also used in [29] to mean having an odd/even number of timelike
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directions.) The conventional type II theories are IIA++ and IIB++. These are related

to each other by spatial T-duality. Timelike T-duality maps IIA++ to a novel IIB+−

theory containing Euclidean D-branes: this is related by spatial T-duality to IIA+− which

is in turn timelike T-dual to the ordinary IIB++. (In the terminology of Hull’s original

paper [31], IIA+− ≡ IIA∗, IIB+− ≡ IIB∗.)

No change of signature occurs here. However, one can take the strong coupling limit

of IIB+− to obtain a different IIB theory, denoted IIB−+ (IIB′ in [31]). This contains

Euclidean fundamental strings. A timelike T-duality of this theory gives IIA−+ on a

spatial circle, with the IIA−+ having wholly Euclidean spacetime signature (this is Hull’s

IIAE). In addition, IIB−+ on a spatial circle is dual to a IIA−+ on a timelike circle: this

IIA−+ has however two timelike directions in spacetime. Further dualities can then be

taken, leading also to IIA−− and IIB−− theories. Additionally, one can consider uplifts

to variants of M-theory, for instance, the Euclidean IIA−+ is given by reducing the usual

M-theory on a timelike circle, while the IIA+− theory is the reduction on a timelike circle

of an M− theory with Euclidean M2 branes and two timelike directions.

We have seen above that the doubled formalism, which automatically contains timelike

dualities as a possibility, leads directly to the negative brane solution (4.3). The theory

inside the bubble in this case is IIA/B+− [29]. Indeed, the DFT action describing both

the NSNS and RR sectors was shown in [32] to contain the IIA+− and IIB+− theories, by

choosing different duality frames related by timelike duality.

We will provide in the next section the description of the NSNS sector of the IIA/B−±

theories. In this case, T-duality is believed to change the signature of spacetime.

However, it has been argued in [33], at least in the context of SL(3)×SL(2) and SL(5)

U-dualities, that if one works with the generalised metric as the fundamental field (rather

than the spacetime fields that it encodes), then timelike duality transformations should not

change the signature of spacetime. Instead, after applying the duality transformation one

has to use alternative parametrisations of the generalised metric involving antisymmetric

vector fields. It seems likely that similar results should hold for the conventional DFT,

where the bivector would then be present. Then one can still accommodate different

signature theories as distinct subsectors of double or exceptional field theory, once one has

fixed the signature of the generalised metric, as for instance in [48].

Below, we will evade these issues by noticing that, at least in the context of T-duality,

signature change only occurs in the presence of Euclidean strings. We will find that the

generalised metric is slightly modified in this case.

5 Doubled formalism for Euclidean strings

5.1 Doubled actions for Euclidean strings

In this section, we will provide the basic DFT description which applies when strings have

Euclidean worldsheets. The Euclidean worldsheet action, following [29] but with opposite

sign for the B-field, is

S =
T

2

∫
d2σ

(
|γ|1/2γαβ∂αXi∂βX

jgij + εαβBij∂αX
i∂βX

j
)
. (5.1)
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We will continue to refer to the worldsheet coordinates as σ1 ≡ τ and σ2 ≡ σ. We take

ε12 = 1. We stress that the worldsheet is Euclidean but the spacetime metric gij here still

has the standard Lorentzian (mostly plus) signature.

To construct a doubled worldsheet action, we follow the steps of [20]. First, one writes

the Lagrangian in the Hamiltonian form L = Ẋ ·P −Ham(X,P ), where Ham(X,P ) is the

Hamiltonian. Of course, there is an ambiguity in choosing which direction is worldsheet

“time” now. In doing this, a convenient parametrisation of the Euclidean worldsheet

metric is

γαβ = Ω

(
u2 + ũ2 ũ

ũ 1

)
. (5.2)

The functions u and ũ then enter the action as Lagrange multipliers for the Hamiltonian

constraints, and conformal gauge corresponds to u = 1, ũ = 0. The O(D,D) structure ηMN

and the generalised metric appear naturally in the Hamiltonian: the former is unchanged

here, but the generalised metric is found to be

HMN =

(
−gij −BikgklBlj Bikgkj

−gikBkj gij

)
, (5.3)

with the spacetime metric in the upper left component appearing now with a minus sign.

We will comment further on this below.

Finally, one identifies the dual coordinates as X̃ ′µ = T−1Pµ, leading to the following

Euclidean doubled worldsheet action:

SEDWS = T

∫
d2σ

(
1

2
ẊMηMNX

′N − u

2
HMNX

′MX ′N − ũ

2
ηMNX

′MX ′N
)
. (5.4)

The extra minus sign in the generalised metric (5.3) has interesting consequences. If we

raise the indices on the generalised metric with ηMN , the result is no longer the inverse

of the generalised metric, but minus it. That is, if we define HMN ≡ ηMP ηNQHPQ then

HMNHNP = −δMP .

This seems somewhat unusual. The generalised metric is now not an element of

O(D,D). However, ±iH is an element of the complexified duality group O(D,D;C). We

see also that as Hη−1 squares to minus one, rather than plus one, it provides a complex

structure rather than a product structure.

Buscher dualities now have the effect of seemingly changing the spacetime signature.

This is easy to see if there is no B-field. Then under a Buscher duality

HMN =

(
−g 0

0 g−1

)
→

(
g−1 0

0 −g

)
≡

(
−g̃ 0

0 g̃−1

)
, (5.5)

and the dual metric is g̃ = −g−1, with the appearance of the new minus sign interpreted

as having the effect of flipping the metric signature. (One can check that the Buscher rules

implied by the transformation of (5.3) agree with [29, 31].) Note that the signature of the

generalised metric is (D,D), rather than (2, 2(D−1)). We shall discuss this in more detail

in the subsequent subsection.
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The next step to take is to produce the corresponding double field theory action. Such

an action will have equations of motion which correspond to the beta functional equations

of the worldsheet action (5.4). One way to obtain the action, without actually calculating

the latter, would be to use an analytical continuation of the Wick-rotated Lorentzian action

to obtain the Euclidean action, as used to find the spacetime supergravity actions in [29].

This would seem to involve g → −ig, B → B, and HMN → −iHMN .

However, it is also very simple to use DFT methods directly. The conventional DFT

action is entirely fixed by requiring invariance under the local symmetry of the theory.

This means searching for an object quadratic in derivatives of the generalised metric and

generalised dilaton, which transforms as a scalar under generalised diffeomorphisms, which

are given still by (2.4) (modulo the section condition, also unchanged). The only change

here relative to the calculation presented in [11] is the fact that HMN is now minus the

inverse of the generalised metric (5.3). This additional minus sign has the effect of changing

the sign of two of the coefficients in (2.2).

The resulting doubled theory that we obtain could be called DFT−, using the lan-

guage of [29]. The minus indicates that (doubled) fundamental strings have Euclidean

worldsheets. The conventional DFT would then be DFT+.

The generalised Ricci scalar giving the Lagrangian of DFT− is found to be

R− = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md ∂Nd+ 4∂MHMN ∂Nd

− 1

8
HMN∂MHKL ∂NHKL +

1

2
HMN∂MHKL∂KHNL .

(5.6)

On solving the section condition as ∂̃i = 0 and inserting the parametrisation (5.3), this

reduces to the spacetime Lagrangian

R− ∂̃i=0−→ R+
1

12
H2 − 4(∇φ)2 + 4∇2φ . (5.7)

Here R is the spacetime Ricci scalar and H is the field strength of the B-field.4 The sign

of the H2 term is minus what it is in the usual NSNS action. This is expected for the

exotic supergravities of [29, 31], with the sign of the B-field kinetic term non-standard in

the IIA/B−± theories. Here we have shown that this can be naturally accommodated

in double field theory when one takes into account that the generalised metric obeys

HMNHNP = −δMP leading to the alternative parametrisation (5.3). The construction of

the worldsheet action (5.4) was a convenient way to discover this fact.

5.2 Concerning the change of signature

5.2.1 Generalised vielbeins

Let us focus on the subtleties regarding achieving signature change via Buscher dualities

in double field theory. First, let us introduce the decomposition of the generalised metric

4If the metric g instead has mostly minus signature, as can happen by acting with dualities, then the

appropriate Einstein-Hilbert term is −R andR− in fact reduces to minus the expected (exotic) supergravity

Lagrangian, consistent with the relationship between the actions for “spacetime mirror” theories obtained

by flipping the signature in [29].

– 15 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
2

in terms of a generalised vielbein:

HMN = EM
αĤαβEβN , (5.8)

where α is a doubled flat index, and the flat generalised metric is

Ĥαβ =

(
−ht,s 0

0 h−1
t,s

)
, ht,s = diag (−1, . . . ,−1︸ ︷︷ ︸

t

,+1, . . . ,+1︸ ︷︷ ︸
s

) . (5.9)

We see that this means the signature of HMN is indeed (D,D). The parametrisation (5.3)

is obtained by taking the generalised vielbein to be

EαM =

(
e 0

−e−TB e−T

)
, (5.10)

where we are using matrix notation for eai a vielbein for the spacetime metric of signature

(t, s), gij = ei
a(ht,s)abe

b
j , i.e. g = eThe.

The generalised vielbein transforms under local generalised Lorentz transformations,

EαM → ΛαβE
β
M , which by definition preserve Ĥαβ in addition to the O(D,D) structure

with flat indices,

η̂αβ =

(
0 I

I 0

)
. (5.11)

We denote the group of such transformations simply by H. We show in appendix B.2 that

H is a somewhat unusual real form of O(D,C)×O(D,C).

When we act with a transformation P ∈ O(D,D) on the generalised vielbein, we will

generically need to simultaneously apply a compensating H-transformation in order to read

off the transformations of the spacetime fields:

ẼαM = ΛαβE
β
NP

N
M . (5.12)

5.2.2 A simple example

To illustrate the apparent change of signature, let us focus on the simple case of D = 1

and dualise on a spacelike circle in DFT−. The generalised metric involves just a single

metric component,

HMN =

(
−g 0

0 g−1

)
. (5.13)

We decompose the metric g = e2 = e(+1)e in terms of an einbein. This metric has positive

signature. The signature of the generalised metric is (1, 1), so that the decomposition (5.8)

is in terms of

Ĥαβ =

(
−1 0

0 1

)
, EαM =

(
e 0

0 e−1

)
. (5.14)

If we act with a Buscher duality, PNM =

(
0 1

1 0

)
, we obtain the new generalised metric

H̃MN =

(
−g̃ 0

0 g̃−1

)
=

(
g−1 0

0 −g

)
⇒ g̃ = −g−1 . (5.15)
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In order to obtain the new generalised vielbein in the form

ẼαM =

(
ẽ 0

0 ẽ−1

)
, (5.16)

we have to apply a compensating transformation as in (5.12), which is given by

Λαβ =

(
0 ẽe

ẽ−1e−1 0

)
, (5.17)

which automatically preserves ηαβ . For it to also preserve Ĥαβ , we need ẽ2 = −e−2.

Although this is consistent with g̃ = −g−1, it also means that ẽ = (±i)e−1, so both the

new vielbein ẽ and the transformation Λα
β are imaginary.

As we required Λ to preserve the form of Ĥαβ , the transformed generalised metric has

the same signature, and in particular so naively does g̃ in the sense that g̃ = ẽ2 = ẽ(+1)ẽ.

If we work with a real spacetime vielbein ẽ → ±iẽ, then we have g̃ = −ẽ2 = ẽ(−1)ẽ and

this has the opposite signature.

Alternatively, one could view this appearance of imaginary transformations and viel-

beins as a genuine obstruction to the duality being performed. Although the generalised

metric remains real, we cannot guarantee that there will not be further issues for instance

when fermions are included, which couple to the vielbein.

In this case, one possible reinterpretation would be the following. We instead argue

that the duality transformation must be accompanied by changing the signs of the entries

of the generalised metric Ĥαβ : this is equivalent to taking the compensating transformation

Λ to be real and given by

Λαβ =

(
0 1

1 0

)
. (5.18)

This no longer preserves Ĥαβ and instead amounts to a change of basis of the generalised

tangent space. Then the generalised metric

HMN =

(
−g 0

0 g−1

)
=

(
e 0

0 e−1

)(
−1 0

0 1

)(
e 0

0 e−1

)
(5.19)

with g = e(+1)e, is Buscher dual to the generalised metric

H̃MN =

(
−g̃ 0

0 g̃−1

)
=

(
ẽ 0

0 ẽ−1

)(
1 0

0 −1

)(
ẽ 0

0 ẽ−1

)
(5.20)

with opposite signature in spacetime, so g̃ = ẽ(−1)ẽ. However, we now have the relationship

ẽ = e−1 implying again g̃ = −g−1. Technically now this duality is a map between two

different theories defined by the positioning of the +1 and −1 in Ĥαβ .

Note that the problems exhibited in the above example cannot be circumvented by

introducing a B-field or a bivector, as we do not have enough dimensions.

In the case of simultaneous Buscher dualities on multiple directions, similar issues

arise if one attempts to take the transformed vielbein to be proportional to the original
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one, ẽaµ = λabe
b
µ. One finds that for the compensating transformation to preserve δαβ

that λThλ = −h, where h is the flat Minkowski metric with arbitrary (t, s) signature:

this inevitably means that the norm squareds of the rows of λ have to be negative, and

so the relationship between the vielbeins will not be real, unless one forcibly changes the

signature. Here one might be able to introduce both a B-field and bivector to avoid this.

However, one will be left with the issue for the situation where one carries out a single

Buscher duality.

We point out the generalised metric of DFT− always has signature (D,D). It is

only the spacetime signature that changes when one simultaneously performs a duality

transformation and a change of generalised tangent space basis.

5.2.3 Using the complex coset

We can also study the effects of the duality transformation using the complexified coset.

An element of O(D,D;C)/O(D;C)×O(D;C) can be parametrised as in (2.5) in terms of

a metric g and B-field B, both viewed as D ×D matrices but with complex entries. If we

restrict to purely imaginary elements, then we need to take g → −ig with g now real, and

B real: such elements are then of the form

i

(
−g −Bg−1B Bg−1

−g−1B g−1

)
. (5.21)

This shows that we can take iHMN to be a purely imaginary element of the complexified

coset.

Let us look again at our simple D = 1 example, with

iHMN =

(
−ig 0

0 ig−1

)
= EM

αδαβE
β
N (5.22)

where the flattened generalised metric is now the identity, Ĥαβ = δαβ , and the generalised

vielbein is

EαM =

(
(−i)1/2e 0

0 i1/2e−1

)
. (5.23)

We act again with a Buscher transformation to find that the transformed generalised viel-

bein and associated compensator transform Λ ∈ O(1;C)×O(1;C) is

ẼαM =

(
±i1/2e−1 0

0 ±(−i)1/2e

)
, Λαβ =

(
0 ±1

±1 0

)
. (5.24)

The advantage now is that there are no issues regarding viewing Λ as an actual ele-

ment of H.

The main result is the same though: we find that ẽ = ±ie−1 so that the transformed

vielbein is imaginary and we have again g̃ = ẽ2 = −g−1. When we restrict to the appropri-

ate real form, we take the vielbein to be real by absorbing the ±i into a change of signature

in spacetime.
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The conclusion from this point of view is that the complexified generalised metric,

iHMN always has positive definite signature. However, after carrying out the Buscher

transformation, one is led to restrict to a real form in spacetime which has a different

spacetime signature.

5.3 Euclidean strings are timelike waves

We conclude our discussion of DFT− by writing down its fundamental string solution and

its T-duals. The supergravity configuration corresponding to a Euclidean F1 can be found

by taking the M2 solution of 11-dimensional supergravity and reducing on a timelike circle.

The result is

ds2 = H−1
(
(dz1)2 + (dz2)2

)
+ d~x2

8 ,

B = (H−1 − 1)dz1 ∧ dz2 ,

e−2(φ−φ0) = H .

(5.25)

Here z1 and z2 are the Euclidean worldvolume directions. The harmonic function is

H = 1 + h
r6

. The generalised metric (leaving out the transverse directions) is

HMN =


H − 2 0 0 1−H

0 H − 2 H − 1 0

0 H − 1 H 0

1−H 0 0 H

 . (5.26)

The generalised dilaton is again constant. We can take a Buscher dual on z2, say. Then

we get

ds2 = −[−H−1(dz1)2 +H
(
dz̃2 + (H−1 − 1)dz1

)2
] + d~x2

8 ,

B = 0

e−2(φ−φ0) = 1 .

(5.27)

The part of the metric in the brackets corresponds to a pp-wave travelling in the z̃ direc-

tion. The overall minus sign implies that this should be considered the timelike direction,

which is in accord with the general expectations of [29]. In the sector with Euclidean fun-

damental strings, a IIA theory on a spacelike circle is dual to IIB on a timelike circle, and

vice versa. Thus the T-dual of the Euclidean fundamental string solution is a wave in a

timelike direction.

The solution that is obtained by further dualising on z1 is

ds2 = −H̃−1((dz̃1)2 + (dz̃2)2) + d~x2
8 ,

B = (H̃−1 − 1)dz̃1 ∧ dz̃2

e−2(φ−φ0) = H̃ .

(5.28)

Here H̃ = 2 −H = 1 − h
r6

. This is a negative Euclidean F1. There are now two timelike

directions, z̃1, z̃2. However, inside the bubble these will both become spacelike.
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The configuration (5.25) can be seen to be a solution of the equations of motion of

S = SDFT− − SEDWS. Note the relative minus sign. This can be absorbed in redefining

SEDWS → −SEDWS, suggesting that this is then the correct Euclidean doubled world-

sheet action for a positive tension Euclidean doubled string. The equations of motion in

conformal gauge give

e−2d

16πGDFT
R−MN −

T

4

∫
d2σ(−HMPHNQ − ηMP ηNQ)X ′PX ′Qδ(2D)(x−X) = 0 , (5.29)

where the generalised Ricci tensor R−MN is defined in appendix B.1. We also have to solve

the constraints ηMNX
′MX ′N = 0 = HMNX

′MX ′N , and the equations of motion of the

worldsheet coordinates. One can check that with the generalised metric given by (5.26),

the configuration

X1 = τ , X2 = −σ , X̃1 = σ , X̃2 = τ , (5.30)

is a solution, with ẊM = HMNX
′N .

If we had used instead the original SEDWS, with the opposite sign, we would have

obtained directly the solution with H = 1− h
r6

, i.e. that of the negative Euclidean string.

This would arise by reducing a negative M2 brane on a timelike direction. We note as well

that the Euclidean (undoubled) worldsheet action (5.1) is equivalent to the Nambu-Goto

action SNG = +T
∫
d2σ
√

detγ̂, where γ̂ is the induced Euclidean metric on the worldsheet.

The conventional Nambu-Goto action has a minus sign. This further suggests interpreting

the action (5.1) as actually corresponding to a negative tension Euclidean string.

6 Conclusions

In this paper, we have used the single framework of the doubled formalism to study all at

once familiar fundamental strings, pp-waves and less familiar negative strings. Our original

goal was to better understand the origin of the doubled wave solution of [12], by showing

that the equations of motion of double field theory could — and should, in this case — be

sourced by a doubled worldsheet action. This worked perfectly, using the Tseytlin action

as an example — we show in the appendix that Hull’s doubled everything action could

also be used. We saw the nice result that the doubled sigma model can source both the F1

and a wave, in different duality frames, depending on the orientation of the string in static

gauge, with the pp-wave resulting from the string pointing in a dual direction.

We took seriously the possibility of carrying out a timelike duality within the doubled

formalism. We saw that the configuration dual to the F1 on both worldvolume directions

could be regarded as a “negative string.” We suggested that doubled actions are a natural

setting to study these negative branes. Such branes are surrounded by a bubble containing

exotic string theories, as described in [29–31]. We then focused on the subsector of such

theories which contain fundamental strings with Euclidean worldvolumes, and showed how

the NSNS sector of these theories can be described in a novel variant of DFT (which we

called DFT−) using a modified generalised metric.
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This DFT− could certainly be developed further along the lines of the conventional

DFT, for instance by including the RR sector and supersymmetry [32, 49]. One might

also wonder about Scherk-Schwarz compactifications of DFT− and heterotic strings, which

can be naturally accommodated in DFT [4, 50, 51]. The geometry and relationship to

fluxes presumably follows with simple modifications to the usual case [4, 40, 52–54]. The

mathematical structures that appear in the associated generalised geometry [55] may also

be interesting. From a worldsheet point of view, the connection with the “metastring”

approach [56] could be of interest.

One interesting aspect of this analysis that we want to reiterate is that the negative

F1 solution can also be regarded as the electric dual to a different sort of exotic brane,

the 52
2. The latter couples magnetically to a bivector field, carrying a magnetic “Q-flux”,

while the negative F1 couples electrically to this field. The appearance of bivector fields

in the parametrisation of the generalised metric may be closely linked to the appearance

of exotic string theories. This suggests the links between DFT, β-supergravity [45–47] and

such exotic string theories could be investigated further.

Another reason to further study this interplay is provided by the results of [33] on

timelike U-dualities in the exceptional field theory (EFT) setting, which appear to rule out

signature changes in favour of introducing (generalisations of) the bivector. In this paper,

we suggested that this can be partially circumvented in DFT by using an alternative

generalised metric derived from the Euclidean string worldsheet action: this seemed more

naturally to live in a complexification of the coset O(D,D)/O(D)×O(D). A more thorough

analysis of the associated subtleties, and how they relate to the introduction of the bivector,

may cast further light on these issues.

Understanding this will be necessary in order to establish the status of these exotic

theories in the U-duality framework. One starting point could be to return, as in [57], to

the M2 worldvolume approach first attempted in [58], in order to find the generalised metric

appropriate to the theory with Euclidean M2 branes. Then rather than the usual U-duality

invariant exceptional field theory [57, 59], this may lead to (perhaps multiple notions of)

an EFT−, which cannot be related to the conventional (EFT+) theory by duality.

Another starting point would be to note that the IIB+− theory is S-dual to IIB−+,

and so one should in principle be able to describe this by taking the SL(2) ×R+ EFT [60]

and changing the coset to SL(2)/SO(1, 1). This EFT will also describe an M-theory/IIA

section. As one only has access to S-duality in this EFT, this might provide some interesting

pointers as how different signature string and M-theories can be accommodated in an EFT,

without having introduced more complicated dualities.

A final suggestion would be to consider timelike reductions from EFT to DFT, along

the lines of [61], given that the Euclidean string results from reducing the M2 brane on a

timelike direction.

Perhaps the central trick of this paper was that we drew conclusions about (doubled)

spacetime theories by referring back to the (doubled) worldsheet theories. We therefore

note that a complication in establishing the possibility of an EFT− starting from M2

worldvolume theory is that there are a number of different signature versions of M-theory

available, some of which can accommodate two notions of M2 branes with different signa-

tures, meaning that there may be several distinct notions of EFT±.
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Indeed, we may notice the observation in [29] that there may be several exotic theories

of each type. This could be reflected by there potentially being a number of versions of

EFT, determined by the (fixed) signature of the generalised metric. Then, following [33],

dualities which appear to change the spacetime signature in fact lead to theories with

bivector/trivector fields, which effectively take the place of a conjectured exotic theory

with a different signature. This exotic theory that has been replaced here may still exist

in its own right in a distinct subsector of the space of all theories. This viewpoint might

also make sense from the generalised geometry point of view, where the spacetime manifold

should be fixed, and the generalised metric appears on an extended tangent bundle, leading

to the reformulations of supergravity developed in [62]. One mostly aesthetic objection to

this line of thinking is that what was supposed to be a framework for unifying different

theories now in fact apparently turns into an alarming proliferation of them. We intend to

study this situation in future work.

Let us now give some final thoughts about other directions that could be pursued.

The paper [34] reformulated black hole thermodynamics in DFT. The example of the black

fundamental string solution was studied in some detail, and the configuration obtained

from it by duality along both time and space was written down. This solution is a black

negative string, with the usual horizon now hidden beyond the naked singularity at H̃ = 0.

The general properties of non-extremal negative solutions are likely quite exotic as well,

and could perhaps be studied from this approach.

The other aspect of the doubled string solution which we addressed in this pa-

per involved the embedding into DFT of the solution corresponding to an oscillating

string [26, 27]. This was of interest as it clarifies how one can construct configurations

corresponding to a string carrying both momentum and winding in the same direction. It

may be of interest to further explore such solutions, including whether there is a genuine

notion of a string vibrating in the dual space (giving some sort of doubled supertube, puffed

up in the dual space), and the links to exotic branes [39].

Lastly, an obvious extension of our work would be to attempt to source the equations

of motion of DFT or EFT with other duality invariant brane actions, with a view towards

for instance the solutions analysed in [12–14, 41]. The hard part here is constructing such

actions, given that U-duality maps branes of different worldvolume dimension into each

other, however this is an interesting problem for the duality manifest approach. Some

recent papers addressing this are [63, 64].
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A Supplementary results: worldsheet

A.1 Hull’s doubled string as the source

One could also take the doubled worldsheet action due to Hull [6], which we write here in

the “doubled everything” form [7] as

SHull = −T
4

∫
d2σ
√
|γ|γαβHMN∂αX

M∂βX
N , (A.1)

where γαβ is the worldsheet metric, supplemented by the constraint

∂αX
M = HMN εα

β∂βX
N . (A.2)

Note that the normalisation of the action is T/4 rather than the usual T/2. In conformal

gauge, the action becomes

SHull =
T

4

∫
d2σHMN

(
ẊMẊN −X ′MX ′N

)
, (A.3)

with the constraint

ẊM = HMNX
′N , (A.4)

and the additional equations of motion of the worldsheet metric:

HMN∂αX
M∂βX

N − 1

2
γαβHMNγ

γδ∂γX
M∂δX

N = 0 . (A.5)

This formulation is equivalent to the Tseytlin string [24].

The equation of motion of the generalised metric following then from the joint action

S = SDFT + SHull in conformal gauge is then

e−2dRMN

16πGDFT
+
T

8

∫
d2σ (HMPHNQ − ηMP ηNQ)

(
ẊP ẊQ −X ′PX ′Q

)
δ(2D)(x−X) = 0 .

(A.6)

Using (2.12) and the constraint (A.4) to write everything in terms of Ẋ and X ′, one finds

that the worldsheet contribution matches exactly that which arises from the conventional

sigma model, (2.8).

One can also check for instance that the doubled F1/pp-wave configuration solves the

above equations and constraints, showing that it can be considered to be sourced by the

Hull action.

A.2 Tseytlin in split form

The following result was obtained in the course of writing this paper, and although we do

not actually use it in the main text we record it here as it may be of interest. We note that

it also follows from the older results of [65], which considered a Tseytlin-like action for the

heterotic string, and the more recent work of [66]. Here we make explicit the relationship

to the standard DFT parametrisations.

For coupling to the full DFT action, it is convenient to work with doubled worldsheet

models where all coordinates are doubled. One can also double only some subset, in

– 23 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
2

which case, the appropriate form of the DFT action will be the Kaluza-Klein-inspired one

presented in [67]. One might be interested in this as it is similar to but simpler than the

full EFT framework [59], or alternately one might wish to restrict to the situation where

we genuinely only double compact directions. In this subsection, we give the appropriate

split form of the Tseytlin action that would couple to this version of DFT.

Take the usual O(D,D) invariant DFT, with generalised metric ĤM̂N̂ (where we have

written the field and indices with hats to make the decomposition clearer). Split the

O(D,D) coordinates XM̂ = (Xµ, X̃µ, X
M ) where M is an O(d, d) index. We assume

everything is independent of X̃µ. Then parametrise the generalised metric as [67]

Ĥµν = gµν + gρσCµρCνσ +HMNAµ
MAν

N , Ĥµν = −gνρCµρ , (A.7)

Ĥµν = gµν , ĤµM = −gµρAρM , (A.8)

ĤµM = HMPAµ
P + Cµρg

ρσAσM , ĤMN = HMN + gρσAρMAσN , (A.9)

with the doubled internal index on Aµ
M now lowered with the O(d, d) structure ηMN ,

and Cµν ≡ −Bµν + 1
2Aµ

MAνM . This interpolates between the fully doubled theory, for

d = D, and the usual spacetime theory for d = 0. Inserting this into the doubled world-

sheet Tseytlin action, splitting the worldsheet coordinates in the same manner and then

integrating out X̃ ′µ, one finds in conformal gauge

SDWS = T

∫
d2σ

(
1

2
ηMNDτX

MDσX
N − 1

2
HMNDσX

MDσX
N

+
1

2
ηMN

(
X ′MAν

NẊµ − ẊMAν
NX ′µ

)
+

1

2
gµν

(
ẊµẊν −X ′µX ′ν

)
+ bµνẊ

µX ′ν
)
,

(A.10)

where

DτX
M ≡ ẊM +Aµ

MẊµ , DσX
M ≡ X ′M +Aµ

MX ′µ . (A.11)

This action is supplemented with the Virasoro constraints:

gµν(ẊµẊν +X ′µX ′ν) +HMNDσX
MDσX

N = 0 , (A.12)

2gµνX
′µẊν + ηMNDσX

MDσX
N = 0 . (A.13)

To identify this with spacetime variables, suppose ĝ and B̂ denote the D-dimensional metric

and B-field, then one has a decomposition

ĝµν = gµν +Aµ
pAν

qgpq ,

ĝµm = Aµ
pgpm ,

ĝmn = gmn ,

B̂µν = Bµν −A[µ
pAν]p +Aµ

pAν
qbpq ,

B̂µm = Aµm +Aµ
pbpm ,

B̂mn = bmn ,

(A.14)

with m,n d-dimensional spacetime indices, so that we can identify the components of Aµ
M

as the Aµ
m and Aµm appearing here, while gmn and bmn are packaged into the generalised

metric HMN in the usual fashion. Note that gµν and Bµν are invariant under T-duality.
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B Supplementary results: spacetime

B.1 The equations of motion of DFT±

Here we will vary the DFT action (omitting the prefactor)

SDFT± =

∫
d2DXe−2dR± , (B.1)

where the generalised Ricci scalar is

R± = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md ∂Nd+ 4∂MHMN ∂Nd

± 1

8
HMN∂MHKL ∂NHKL ∓

1

2
HMN∂MHKL∂KHNL .

(B.2)

By definition,

HMN ≡ ηMP ηNQHPQ , (B.3)

and we have

ηMNHNP ηPQHQR = ±δMR . (B.4)

If we vary the above condition, we find that the variation δHMN must obey(
δPMδ

Q
N ±H

P
MHQN

)
δHMN = 0 . (B.5)

When varying the action, we must be careful to only ever raise or lower indices using ηMN ,

remembering that HMN is not necessarily the inverse of HMN . The result is, discarding

the total derivatives,

δSDFT± =

∫
d2DXe−2d

(
−2δdR± + δHMNK±MN

)
, (B.6)

where

K±MN = ±1

8
∂MHKL∂NHKL ∓

1

2
∂(M |HKL∂KH|N)L + 2∂M∂Nd

± (∂P−2∂Pd)

(
−1

4
HPQ∂QHMN +

1

2
HPQ∂(MHN)Q +

1

2
HKQηQ(M∂KHPLηN)L

)
.

(B.7)

The true equation of motion taking into account the constraint on the variation is however

given by the following generalised Ricci tensor:

R±MN =
1

2

(
δM

P δN
Q ∓HMPHNQ

)
K±PQ (B.8)

In DFT+ we define the projectors PM
N = 1

2(δM
N−HMN ), P̄M

N = 1
2(δM

N +HMN ), which

in DFT− should instead be given by PM
N = 1

2(δM
N + iHMN ), P̄M

N = 1
2(δM

N − iHMN ).

Then one sees that in both theories

R±MN =
(
PM

P P̄N
Q + P̄M

PPN
Q
)
K±PQ . (B.9)
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B.2 The generalised Lorentz group of DFT−

B.2.1 The general structure

In this subsection, we discuss the form of the local generalised Lorentz transformations of

DFT−. These are required to preserve the flattened O(D,D) structure, which we call η̂,

and the flattened generalised metric, Ĥ,

η̂ =

(
0 I

I 0

)
, Ĥ =

(
−ht,s 0

0 ht,s

)
(B.10)

where

ht,s = diag (−1, . . . ,−1︸ ︷︷ ︸
t

,+1, . . . ,+1︸ ︷︷ ︸
s

) (B.11)

For convenience, abbreviate ht,s ≡ h.

We denote the group of such transformations by H. If we take an element g ∈ H, and

write it as

g =

(
A B

C D

)
(B.12)

then the conditions gT η̂g = η̂ and gT Ĥg = Ĥ imply respectively that

ATC + CTA = 0 , BTD +DTB = 0 , ATD + CTB = 1 , (B.13)

−AThA+ CThC = −h , −BThB +DThD = h , −AThB + CThD = 0 . (B.14)

It is more convenient to write g = I +X and find the conditions on X to be an element of

the Lie algebra of H, which we call L(H). The matrix X must satisfy

X = −η̂−1XT η̂ , X = −Ĥ−1XT Ĥ , (B.15)

and the general form of X obeying these conditions is parametrised in terms of two d× d
matrices a and b as

X =

(
a b

−hbh hah

)
(B.16)

with the constraints

bT = −b , aT = −hah . (B.17)

The latter is just the condition that a ∈ so(t, s). As a result, the dimension of L(H)

is d(d+ 1).

Let us write the Lie algebra elements involving solely a as

Xa =

(
a 0

0 hah

)
, aT = −hah . (B.18)

These exponentiate to an SO(t, s) subgroup of H, of the form

gA =

(
A 0

0 A−T

)
, A = ea ∈ SO(t, s) . (B.19)
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Meanwhile, we also write

X̃b =

(
0 b

−hbh 0

)
, bT = −b . (B.20)

We can compute the commutation relations in terms of these elements:

[Xa, Xa′ ] = X[a,a′] , [Xa, X̃b] = X̃ab+baT , [X̃b, X̃b′ ] = X−bhb′h+b′hbh . (B.21)

Now, looking at the definitions (B.10) we note that the transformations which permute the

diagonal entries of Ĥ are numerically equal to the matrix form of Buscher transformations.

Hence, they leave η̂ unchanged. The form of H will not be changed by such permutations,

as they are just a reordering of the coordinates. We can therefore specialise to the simplest

case of t = 0 and s = D, so that h ≡ h0,D = I.

In this case, the matrices a and b appearing in the Lie algebra element (B.16) are

both antisymmetric. Each of these give 1
2D(D− 1) generators of O(D). Let us denote the

generators of O(D) by eA, such that [eA, eB] = fAB
CeC (the index A is an algebra index

here, running from 1 to 1
2d(d− 1)). Then we can take the following generators for L(H):

EA =

(
eA 0

0 eA

)
, ẼA =

(
0 eA
−eA 0

)
, (B.22)

which obey the commutation relations

[EA, EB] = fAB
CEC , [EA, ẼB] = fAB

CẼC , [ẼA, ẼB] = −fABCEC . (B.23)

The EA give the spacetime Lorentz group, which here is O(D). The above algebra also

contains all possible O(t, s) subalgebras, by choosing different sets of the EA and ẼA.

For instance, in D = 3, one sees that E1, E2, E3 generate the O(3) group corresponding

to the Euclidean space with t = 0 and s = 3. If we exchange the 1 direction for a

timelike direction, then one finds that E1, Ẽ2 and −Ẽ3 generate the corresponding O(1, 2)

Lorentz group.

B.2.2 Relationship to O(D) × O(D)

We can compare the above commutation relations with the ones that arise for the conven-

tional generalised metric (with Euclidean signature). Taking Ĥ to be the identity, we find

that the generators EA are unchanged but that there is no minus sign in the bottom left

block of ẼA. As a result, we have commutation relations

[EA, EB] = fAB
CEC [EA, ẼB] = fAB

CẼC [ẼA, ẼB] = fAB
CEC (B.24)

We have not made any assumptions about reality of coefficients, so that this can be taken

to correspond to the Lie algebra of O(D;C)×O(D;C), generated by t±A = 1
2(EA ± ẼA).

Restricting to solely real coefficients gives the compact real form, O(D;R)× O(D;R)

which we normally refer to just as O(D)×O(D). One can choose the coefficients of some

of the generators to be purely imaginary to obtain alternative real forms. Doing this for
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p(D − p) of the t+A and the same p(D − p) of the h−A (so p of the EA and the same p ẼA)

leads to the split real forms O(p,D − p)×O(p,D − p).
However, to obtain the algebra (B.23) we need the replacement ẼA → ±iẼA. As

a result, (B.23) is simply a different real form of (B.24). However, generically there is

no guarantee that (B.23) is of the form O(p,D − p) × O(q,D − q). Indeed, by counting

the number of compact and non-compact generators, one finds for instance that this is

impossible in D = 3, 6, 7.5

Let us write a generic element of the complex algebra as X = αAEA + α̃AẼA =

(αA + α̃A)t+A + (αA− α̃A)t−A, with αA, α̃A ∈ C. We restrict to real αA → aA and imaginary

α̃A → b̃A, for aA, b̃A ∈ R. Then we see that if we continue to express X ∈ H in terms of

the O(D)×O(D) generators t±A, we have X = (aA + ib̃A)t+i + (aA − ib̃A)t−A, showing that

this restriction corresponds to taking an O(D) subgroup along with its complex conjugate.

B.2.3 Two examples with D = 2

As an illustration of how different spacetime Lorentz groups are contained within H, let

us look at the very simple example of D = 2. We start with the t = 0, s = 2 case. Defining

ε =

(
0 1

−1 0

)
, (B.25)

then the two generators of L(H) can be taken to be

E =

(
ε 0

0 ε

)
, Ẽ =

(
0 ε

ε 0

)
. (B.26)

These commute, and exponentiate to give an SO(2) and SO(1, 1) subgroup, respectively,

consisting of matrices of the form

gα =

(
A 0

0 A

)
, A =

(
cosα sinα

− sinα cosα

)
, (B.27)

and

gβ =

(
coshβI sinhβε

− sinhβε coshβI

)
. (B.28)

Note that gβgβ′ = gβ+β′ , gαgβ = gβgα. We conclude that H = O(1, 1)×O(2).

Now instead let t = 1 and s = 1, so now h = diag(−1, 1). Returning to (B.16), we find

that the generators in this case can be taken to be

E′ =

(
−η 0

0 η

)
, Ẽ′ =

(
0 ε

ε 0

)
, η ≡

(
0 1

1 0

)
. (B.29)

5In e.g. D = 10 the only possibility is O(4, 6)×O(3, 7) (up to swapping the time and space directions in

each factor), in D = 26 it is O(16, 10)×O(15, 11). However, we have not verified if these actually correspond

to the algebra obtained. In D = 3, in fact, the algebra (B.23) is isomorphic to that of sl(2;C).
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The flat generalised metric H′ and generators are related to those of the t = 0, s = 2 case by

H′ = P THP , E′ = P T ẼP , Ẽ′ = P TEP (B.30)

for the permutation matrix

P =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 . (B.31)

Exponentiating the E′ generator yields

g′β =

(
A 0

0 A−1

)
, A =

(
cosh β̃ − sinh β̃

− sinh β̃ cosh β̃

)
, (B.32)

giving the SO(1, 1) subgroup, while exponentiating the Ẽ′ generator gives

g′α =

(
cos α̃I sin α̃ε

sin α̃ε cos α̃I

)
, (B.33)

giving the SO(2) subgroup. We see that again H = O(1, 1) × O(2) is fixed, and the

interpretation of which subgroup is the spacetime Lorentz group differs.

B.3 Generalised metrics for strings with momentum and winding

In this section we record the possibly useful expression for the generalised metric of some

interesting configurations involving vibrating strings carrying winding and momentum. We

solely consider the usual DFT+ theory. Given a metric and B-field of the form

ds2 = H−1
(
(f − 2)dt2 + 2(f − 1)dtdz + fdz2 + 2Aidx

i(dt+ dz)
)

+ δijdx
idxj ,

B = (H−1 − 1)dt ∧ dz +H−1Ai(dt+ dz) ∧ dxi ,
(B.34)

then the generalised metric for XM = (t, z, t̃, z̃, i, ĩ) is

HMN =



(f−2)(2−H)+A2 (f−1)(2−H)+A2 (1−H)(f−1)+A2 (1−H)(2−f)−A2 Aj Aj

(f−1)(2−H)+A2 f(2−H)+A2 −f(H−1)+A2 (H−1)(f−1)−A2 Aj Aj

(1−H)(f−1)+A2 −f(H−1)+A2 −fH+A2 H(f−1)−A2 Aj Aj

(1−H)(2−f)−A2 (H−1)(f−1)−A2 H(f−1)−A2 H(2−f)+A2 −Aj −Aj

Ai Ai Ai −Ai δij 0

Ai Ai Ai −Ai 0 δij


.

(B.35)

A Buscher duality on the z direction has the effect of interchanging f and H.

The vibrating string solution (3.10) corresponds to taking

H = 1 +
Q

|~x− ~F (v)|6
, f = 1 +

QḞ 2

|~x− ~F (v)|6
, Ai =

−QḞi
|~x− ~F (v)|6

. (B.36)

Superimposing many “strands” of an oscillating string, taking the limit of large quanta of

momenta and winding and also smearing over some number of the transverse coordinates
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leads to supertube configurations which can be dualised (using both T- and S-dualities) to

other interesting systems (a useful account, in the context of a review relating to fuzzballs

and the D1-D5 systems, is [68]). If we smear over five transverse coordinates, then the

solution specified by the following configuration

H = 1 +
Q

L

∫ L

0

dv

|~x− ~F (v)|
, f = 1 +

Q

L

∫ L

0

dvḞ 2

|~x− ~F (v)|
, Ai = −Q

L

∫ L

0

dvḞi

|~x− ~F (v)|
.

(B.37)

(here we only depend on three transverse coordinates ~x, so that i = 1, 2, 3) can be related by

duality to a supertube configuration D4+D4 → 52
2+p where two D4 branes puff-up to pro-

duce an exotic 52
2 brane dipole [39]. The generalised metric (B.35) and configuration (B.37)

represent the F1+P → f1 + p supertube in DFT.

Note that it does not seem obvious how one could directly carry out this superposition

starting from the generalised metric: observe for instance that the component Htz =

(1−H)(f − 1) +A2 vanishes for the configuration (B.36), but is non-zero for the solution

specified by (B.37).
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