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1 Introduction

String theory contains many hints that spacetime might be a more complicated object

— possibly even an emergent one — than a manifold. Most of our understanding about

non-perturbative string theory comes from the study of D-branes, extended objects that

strings are allowed to end on. When N identical D-branes are considered, their coordinate

positions are described by N × N hermitian matrices. If these matrix coordinates are

simultaneously diagonalizable, their eigenvalues are easily interpreted as the positions of

the D-branes. When they are not, as is the situation generically, the D-brane positions

are not well defined, even in the classical ~ → 0 limit. Thus, D-branes do not ‘view’

spacetime in the same way that ordinary point particles do. The standard string theoretic

interpretation of such ‘fuzzy’ configurations through the so-called dielectric effect [2], where

lower dimensional D-branes ‘blow up’ to form higher dimensional D-brane. Lack of locality

is related to the lower dimensional D-branes being ‘smeared’ over the worldvolume of a

higher dimensional emergent object.

In most previous work, explicit geometric interpretation of the matrix coordinates as

a higher dimensional object has been limited to simple and highly symmetric geometries,
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such as planes, tori and spheres.1 In their paper, [1], take this one step further: using

the BFSS model they found a geometric interpretation of three matrix coordinates as a

co-dimension one surface embedded in three dimension. The argument was to consider

a stack of D0-branes at an orbifold point, and then introduce an extra probe brane into

the system. By considering a fermionic string stretching between the stack and the probe

brane, the emergent surface was defined as the locus of possible positions for the probe

brane where the stretched string has a massless mode (indicating that the string has zero

length). This lead to the following effective Hamiltonian:

Heff(xi) =
∑

i=1,2,3

σi ⊗ (Xi − xi) , (1.1)

where Xi for i = 1, 2, 3 are Hermitian, N ×N , matrices corresponding to the positions of

the stack of D0-branes in a three dimensional flat transverse space, and xi are the positions

of the probe brane. The fermionic mode is massless when Heff has a zero eigenvalue. Thus,

the surface corresponding to the three matrices Xi is given by the polynomial equation

det(Heff(xi)) = 0. This defines a co-dimension one surface in flat R3 space parametrized

by (x1, x2, x3).

We use equation (1.1) as the starting point for a concrete and explicit study of geometry

of the emergent surface, identifying zero eigenvectors of Heff with coherent states underlying

noncommutative geometry of the emergent surface. In this way, we proceed in reverse of

the usual quantization procedure (as described by Berezin in [4]), constructing first the

coherent states and from them an emergent manifold. Our approach provides a set of

coherent states corresponding to a suitably nondegenerate set of three Hermitian matrices,

and leading to an emergent geometry at large N . Conversely, we give a procedure to find

the matrices (and therefore the coherent states) corresponding approximately to smooth

genus-zero surfaces embedded in three dimensions and equiped with a Poisson structure.

It would be interesting to compare the resulting coherent states with those constructed by

other methods, such as coherent states for general Lie groups [5, 6] or those arising from

geometric quantization [7]. See [8] for a review of coherent states in dynamical systems

and [9] for a review of coherent states in noncommutative geometry.

Our approach to noncommutative geometry most similar to that espoused in [10] (see

also [11] and references therein), but with an explicit construction for the coherent states

associated with points on the surface. The results can also be thought of as a concrete

realization of the abstract idea in the classic work by Kontsevich, [12]. Related recent work

includes [13, 14], though our construction appears more general as it allows us to vary the

local noncommutativity independent of the shape of the surface.

We focus on configurations where a smooth and well-defined surface arises from matri-

ces with a large size N . Rather than assume it a priori, we prove a correspondence principle

between matrix commutators and a unique Poisson bracket on the emergent surface aris-

ing from the matrix configuration (X1, X2, X3). This explicit correspondence makes the

1One example of an attempt in a more general setup is [3], where a matrix configuration corresponding to

a given surface was constructed using string boundary states if zero energy states of a certain Hamiltonian

arising from the boundary action can be found.
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usual procedure of going from matrix models to surfaces much less ad hoc, which might

be of use when quantizing membrane actions by replacing them with a matrix model. We

demostrate how easy it is to construct and study surfaces with desired properties using our

approach on several nontrivial examples, including the torus.

For most of the paper, we focus on the following question: under what conditions

would a sequence of noncommutative geometries, each arising from a matrix configuration

(X1, X2, X3) and labeled by an increasing matrix size N , converge to a smooth limit?

Which quantities characterize the surface in this limit?

Since the polynomial equation det(Heff(xi)) = 0 has degree 2N , generically, the locus

of its solutions does not need to be smooth in the large N limit. When some generic

matrices Xi are scaled so that the range of their eigenvalue distributions remains finite at

large N , the resulting surface is generically quite complicated and does not have a large N

limit. As a simple (but not generic) example, let Xi = diag(σi + a1
i , . . . , σi + aNi ), where

σi are the Pauli matrices and aki are real numbers. The resulting surface is a union of N

spheres of radius 1 each centered at (ak1, a
k
2, a

k
3) for k from 1 to N . There is no sense in

which the surface achieves a well-defined large N limit. In the degenerate case where all

aki are zero, the surface is a single sphere of radius one centered at the origin. However,

it still does not correspond to a smooth geometry, rather, it is a very fuzzy sphere with

SU(N) symmetry. To obtain a smooth geometry, we can instead consider Xi = Li/J ,

with Li forming the irreducible representation of SU(2) with spin J (this is the standard

construction of the noncommutative sphere, see section 3.2 for details). This sphere has

radius 1 independent of J . As N = 2J + 1 → ∞, the noncommutative sphere reproduces

the ordinary one.

When the large N limit exists and is smooth, the emergent surface will be characterized

by its geometry (the embedding into flat R3 space) and by a Poisson structure defining

(together with N) a noncommutative geometry in the large N limit. In section 2, we

will make some definitions and introduce our approach. In section 3, we will analyze,

analytically and numerically, a series of examples from which a general picture will emerge.

In section 4 we will prove the correspondence principle and discuss smoothness conditions

which determine how large N has to be for a given noncommutative surface to be well

described by the corresponding matrices. In section 5, we will discuss the issue of area and

derive the matrix equation for minimal area surfaces. In section 6, we construct a smooth

torus embedded in R3. Finally, in section 7 we discuss topics for future work.

2 Basic setup

Since our emergent surface is given by the locus of points where the effective Hamiltonian

Heff in equation (1.1) has a zero eigenvalue, for each point p on the surface Heff has (a

properly normalized) zero eigenvector |Λp〉:

Heff |Λp〉 = 0 . (2.1)

The above equation defines (in non-degenerate cases) a two dimensional surface embedded

in three dimensional space. We will take the three dimensional space to be flat; the metric
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on the emergent two dimensional surface will then just be the pullback from the flat three

dimensional metric.

It is instructive to rewrite the above equation in a slightly different way:∑
i=1,2,3

(
σi ⊗Xi

)
|Λp〉 =

∑
i=1,2,3

(
σi ⊗ xi

)
|Λp〉 . (2.2)

This equation can be thought of as an analogue of an eigenvalue equation: while the

three matrices Xi cannot be simultaneously diagonalized, the above equation says that if

we double the dimensionality of the space under consideration, there are special vectors

|Λp〉 on which the action of Xi is described by only three parameters. In analogy with

the Berezin approach to noncommutative geometry [4], we would like to think of these

states as coherent states corresponding to points on the noncommutative surface.2 In the

Berezin approach, every point p is associated with a coherent state |αp〉. One then defines

a map from any Â to a function on the noncommutative surface via s(Â) = 〈αp|Â|αp〉.
This function is usually called the symbol map. From it one can find the corresponding

star-product and the rest of the usual machinery of noncommutative geometry.

The first difficulty we see with 〈Λp〉 being the coherent state is that our operators Xi

(and their functions) cannot be seen as acting on |Λp〉 due to dimension mismatch. We can

simply ‘double’ these operators by using 12⊗Xi instead (1k will denote the k× k identity

matrix). However, while it is true that

〈Λp| 12 ⊗Xi |Λp〉 = xi(σ) , (2.3)

this approach is somewhat artificial. We will see that there is a more natural solution:

for large N , when the emergent noncommutative surface is smooth in the sense discussed

in the Introduction, the eigenvector |Λp〉 is approximately a product, |Λp〉 = |a〉 ⊗ |αp〉,
where |αp〉 is N -dimensional and |a〉 is 2-dimensional. In the next section, we will examine

examples in which the zero eigenvectors of Heff do factorize in this manner when N is

large. A way to measure the extent of the factorization is to write any (2N)-dimensional

vector as

|Λp〉 =

[
|α1〉
|α2〉

]
, (2.4)

with ||α1||2 + ||α2||2 = 1, and to define

Ap =
√
||α1||2||α2||2 − |〈α1|α2〉|2 , (2.5)

which can be thought of as the area of the parallelogram defined by the two vectors |α1〉
and |α2〉. We will be arguing that, in the large N limit, Ap is of order N−1/2, implying

that |α1〉 and |α2〉 are indeed approximately parallel and we can write

|Λp〉 =

[
a|αp〉
b|αp〉

]
+O(1/

√
N) . (2.6)

2A somewhat similar approach but with a different effective Hamiltonian, and applicable only in the

infinite N limit, was recently made in [15].
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(By O(1/
√
N) we mean that the norm of the correction vector decreases with increasing

N like 1/N−1/2.) It will then be the N -dimensional vector |αp〉 that will play the role of a

coherent state corresponding to point p.

The complex coefficients (a, b) of the 2-vector |a〉 determine the direction of the normal

vector n at point p given by (x1, x2, x3). To see this, consider moving p slightly to (x1 +

dx1, x2 + dx2, x2 + dx3), where (dx1, dx2, dx3) is an infinitesimal tangent to the surface.

First order perturbation theory implies that to maintain the condition that Heff has a zero

eigenvalue, we must have 〈Λp|dHeff |Λp〉 = 〈Λp|σi ⊗ (−dxi)|Λp〉 = 0. Thus dxi 〈Λp|σi ⊗
1N |Λp〉 = 0, implying that

ni := 〈Λp| σi ⊗ 1N |Λp〉 (2.7)

is a vector normal to the surface at a point p. This is an exact statement and does not rely

on our factorization assumption. Incidentally, we have the formula |n|2 = 1− 4A2
p, so the

normal vector is close to being a unit normal when the factorization condition holds. When

we use equation (2.6), we obtain that the normal vector is (āb + ab̄, i(ab̄ − āb), āa − b̄b).
Thus, the coefficients (a, b) fix the direction of the normal vector. Conversely, the normal

vector fixes the coefficients (a, b) up to an overall irrelevant phase.

Next, we will try to define local noncommutativity on the surface. The local noncom-

mutativity can be thought of in two different ways: the size of ‘fuzziness’ (or uncertainty)

of the operators Xi in the state |Λp〉, or the size of the commutators of the Xis when acting

on |Λp〉. In a coherent state, these two notions should be equal, and they turn out to be

equal here, strengthening our case that |Λp〉 can be thought of as a coherent state. Using

σiσj = iεijkσk = −σjσi for i 6= j and σ2
i = 1, we have a nice little identity

(Heff)2 = 12 ⊗
∑
i

(Xi − xi)2 +
1

2
iεijkσi ⊗ [Xj , Xk] . (2.8)

Then, since 〈Λp|(Heff)2|Λp〉 = 0, we have

〈Λp|12 ⊗
∑
i

(Xi − xi)2|Λp〉 = −1

2
iεijk 〈Λp|σi ⊗ [Xj , Xk]|Λp〉 . (2.9)

When the vector |Λ〉 is indeed a product, we can use equation (2.6) to make the following

definition: the local noncommutativity on the noncommutative surface is

θ = 〈αp|
∑
i

(Xi − xi)2|αp〉 =
1

2
εijk θij n

k , (2.10)

where

θij := 〈αp| − i[Xi, Xj ]|αp〉 . (2.11)

The l.h.s. of expression (2.10) is a sum of squares of uncertainties in the operators Xi,

while the r.h.s. depends on the commutators. The particular combination of commutators

is of interest: with our factorization assumption, the commutator term picks up only the

contributions that are transverse to the normal, for example, if the normal vector n is
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pointing in the x3 direction, only [X1, X2] contribute to θ. In fact, it will turn out that, in

the large N limit, εijkθij is nearly parallel to nk. Thus, we can also write θ as

θ = 〈αp|
√∑

i 6=j
−[Xi, Xj ]2 |αp〉 . (2.12)

As for the first expression in equation (2.10), it will turn out that if we take the normal

vector to point along the x3 direction, we have 〈α|(X1 − x1)2|α〉 ≈ 〈α|(X2 − x2)2|α〉 �
〈α|(X3 − x3)2|α〉, so the coherent state is ‘flattened’ to lie predominantly in the 1-2-plane

and balanced (‘round’).

To flesh out these ideas, we will examine a series of increasingly complex examples. In

the process, we will construct the approximate eigenvector |αp〉 and study corrections to

the large N limit described above.

3 Coherent state and its properties

We will make the following choice for the Pauli matrices σi

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (3.1)

In this convention, we can write Heff in a natural way in terms of N ×N blocks

Heff =

[
X3 − x3 (X1 − iX2)− (x1 − ix2)

(X1 + iX2)− (x1 + ix2) −(X3 − x3)

]
, (3.2)

We will now examine a series of examples of increasing complexity, always focusing on

a point where the normal vector to the surface is pointing straight up (in the x3 direction).

Our final conclusion will be that at such a point, the zero-eigenvector of Heff has the

form given in equation (2.6):

|Λ〉 =

[
|α〉
0

]
+ O

(
N−1/2

)
. (3.3)

|α〉 with 〈α|α〉 = 1 will be the coherent state associated with this particular point on the

surface, −i〈α|[X1, X2]|α〉 will correspond to the local value of noncommutativity at this

point. This result is easily generalizable to any orientation of the surface using an SU(2)

rotation of the Pauli matrices.

3.1 Example: noncommutative plane

Consider the example of a noncommutative plane: let X3 = 0, and let [X1, X2] = iθ. Out

of necessity, X1 and X2 are infinite dimensional operators. This will not be the case when

we are considering compact noncommutative surfaces. We have

Heff =

[
−x3 A† − ᾱ
A− α x3

]
, (3.4)
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where A = X1 + iX2, A and A† are the lowering and raising operators of a harmonic

oscillator with [A,A†] = 2θ, and α = x1 + ix2. The lowering operator A has eigenstates

|α〉, called the coherent states, corresponding to every complex number α: A|α〉 = α|α〉.
We thus have a zero eigenvector for Heff with x3 = 0:

|Λ(α)〉 =

[
|α〉
0

]
. (3.5)

The noncommutative plane is flat and has constant noncommutativity. The normal

vector is 〈Λ|σi ⊗ 1|Λ〉 = (0, 0, 1) and we have −i〈α[X1, X2]α〉 = θ.

The importance of this example is that, locally and in the large N limit, any noncom-

mutative surface should look like the noncommutative plane. This is the observation that

will allow us to write our definition of a large N (smooth) limit.

3.2 Example: noncommutative sphere

Here we have Xi = Li/J where Li form the N -dimensional irrep of SU(2): [Li, Lj ] = iεijkLk
and where J = (N − 1)/2 is the spin. It is useful to consider the usual raising and

lowering operators, L± = L1 ± iL2. Without loss of generality, consider that point on the

noncommutative surface which lies on the x3 axis. With x1 = x2 = 0, Heff is

Heff =

[
L3/J − x3 L−/J

L+/J −(L3/J − x3)

]
. (3.6)

We will use as a basis the eigenvectors of the L3 angular momentum, |m〉:

L3|m〉 = m|m〉 , m = −J . . . J , 〈m|m〉 = 1 , J =
N − 1

2
. (3.7)

It is easy to see that

|Λ〉 =

[
|J〉
0

]
(3.8)

is a zero eigenvector of Heff if x3 = 1. Thus, the noncommutative sphere has radius 1.3

3.3 Looking ahead: polynomial maps from the sphere

A large class of surfaces that can be studied using our tools are surfaces that are generated

from polynomials of the normalized SU(2) generators considered above:

Xi = polynomial(L1/J, L2/J, L3/J) , (3.9)

where the polynomials in three variables have degrees and coefficients that are independent

of N . In this case, we expect that at large N the noncommutative surface will approach

an algebraic variety given by the image of the unit sphere under the polynomial maps used

to construct Xi.

3 This is a different definition of the radius of the noncommutative sphere than the usual one, which is

based on the quadratic Casimir of the SU(2) irrep, and which gives the radius to be
√
N2 − 1/J =

√
N+1
N−1

.
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Concretely, consider a surface S in R3 constructed as follows: let p1, p2 and p3 be three

polynomials discussed, in three variables w1, w2 and w3. Then, consider the image in R3

under these three polynomial maps of the surface
∑

i(wi)
2 = 1, ie

S =

{
(x1, x2, x3) | xi = pi(w1, w2, w3) and

∑
i

(wi)
2 = 1

}
. (3.10)

We will restrict our considerations to surfaces which are non-self-intersecting, meaning that

the polynomial map is one-to-one. The corresponding noncommutative surface is specified

by three N ×N matrices Xi which can be written as corresponding polynomial expressions

in Li:

Xi = sym (pi(L1/J, L2/J, L3/J)) , (3.11)

where, to avoid ambiguity, the ‘sym’ map completely symmetrizes any products of the

three non-commuting matrices Li. This symmetrization will turn out to play little role in

what follows: re-ordering the terms of order k leads to small — suppressed by a power of

J — corrections in the coefficients of the polynomials of order less than k.

Now, consider an arbitrary point p = (y1, y2, y3) on the surface S. Acting with SO(3)

on the space (x1, x2, x3), arrange for the normal vector to S at the point p to point along

the positive x3-direction, and acting with SO(3) on the space (w1, w2, w3), arrange for the

pre-image of the point p to be the north pole. It is then necessary that the polynomial

maps take a form

x1 = y1 + c1w1 + c2w2 + a(w3 − 1) + p
(2)
1 (w1, w2, w3 − 1) ,

x2 = y2 + c3w1 + c4w2 + b(w3 − 1) + p
(2)
2 (w1, w2, w3 − 1) , (3.12)

x3 = y3 + c(w3 − 1) + p
(2)
3 (w1, w2, w3 − 1) ,

where ci, a, b and c are real numbers and where p
(2)
i (·) are polynomials of degree at least 2.

To avoid a coordinate singularity, we should have c1c4 − c2c3 6= 0. Then, using a rotation

of w1 and w2 (in other words, rotating the unit sphere around the north pole), we can set

c3 zero and c4 > 0. Finally we can take c1 > 0 by adjusting the sign of w1 if necessary.

The four coefficients c1, . . . , c4 determine the metric on the surface in terms of the

metric on the sphere. If the metric on the sphere is gS2 , then the induced metric on the

surface is

gab :=
(
CT gS2C

)
ab
, where C =

[
c1 c2

c3 c4

]
. (3.13)

This implies that
√

det g/
√

det gS2 = detC, which is a useful fact to keep in mind.

Without loss of generality, we are interested in the eigenvector of Heff at a point such

that the normal to the surface is pointing along the 3-direction. We now want to show that

the corresponding zero-eigenvector of Heff has the form shown in equation (3.3).

Before we plunge into analyzing this rather general setup, we will narrow the example

down to a simpler one which nonetheless contains most of the salient features of our general

approach.
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3.4 Example: noncommutative ellipsoid

Here, we will consider a stretched noncommutative sphere. The most generic closed

quadratic surface in three dimensions is an ellipsoid, with three orthogonal major axes

positioned at some arbitrary position in the three dimensional space under consideration.

In other words, we will allow Xi to be arbitrary linear combinations of L1/J , L2/J and

L3/J . Under the general framework described above, this amounts to setting the higher

degree polynomials p
(2)
i to zero:

Xi = AijLj/J, where A =

 c1 c2 a

0 c4 b

0 0 c

 . (3.14)

The classical, or infinite N , surface is given by xi = Aijwj with
∑

i(wi)
2 = 1. It is

easy to check that at a point x = (a, b, c), this surface has a normal vector which is pointing

along the positive x3-direction. We will therefore consider finding the exact location of the

surface at a point with x = (a, b, x3) where we expect x3 to be close to c. We have

Heff(x3) =

[
cL3
J − x3 A† + (a− ib)(L3/J − 1)

A + (a+ ib)(L3/J − 1) −
(
cL3
J − x3

) ]
, (3.15)

where

A =
(c1 + c4)− ic2

2J
L+ +

(c1 − c4) + ic2

2J
L− . (3.16)

What we need to do is find a good approximation to the zero eigenvector of Heff(x3),

together with an estimate for the (hopefully small) difference x3 − c. We conjecture that

such a vector is in some way similar to that in equation (3.8): the ‘top part’ is large com-

pared with the ‘bottom part’ and is dominated by components with the largest eigenvalues

of J3. To achieve this, write Heff as a sum of two parts:

Heff(x3) =

[
0 A†

A 0

]
+

[
cL3
J − x3 (a− ib)

(
L3
J − 1

)
(a+ ib)

(
L3
J − 1

)
−
(
cL3
J − x3

) ]
. (3.17)

If we focus on vectors whose N -dimensional sub-vectors are dominated by components

with large L3 eigenvalues, then the first part can be thought of as being of order N−1/2

while the second part is of order N−1. Our attempt to find an approximate eigenvector of

Heff(x3) will treat the second part as a small perturbation on the first part, suppressed by

N−1/2.

Consider now a vector — which we will show to be either a zero eigenvector of A or

very close to such, and which will thus be an approximate zero-eigenvector of Heff(x3) —

given by [
|α〉
0

]
, (3.18)
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where4

|α〉 =
1√
K

bJc∑
m=0

ξm
√√√√ m∏

k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

 |J − 2m〉 , (3.19)

with ξ is given by

ξ = −c1 − c4 + ic2

c1 + c4 − ic2
. (3.20)

The normalization constant, for which 〈α|α〉 = 1, can be computed in the large J limit as

K =

bJc∑
m=0

(
|ξ|2m

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

)
(3.21)

≈ 1 +
∞∑
m=1

(
|ξ|2m (2m− 1)!!

(2m)!!

)
= 1 + 2

∞∑
m=1

|ξ/2|2m (2m− 1)!

m!(m− 1)!
(3.22)

= 1 +
|ξ|2

1− |ξ|2 +
√

1− |ξ|2
=

1√
1− |ξ|2

, (3.23)

where it is important that |ξ| < 1, which can be seen from the explicit form in equa-

tion (3.20). For completeness, let us state that

1− |ξ|2 =
4 detC

‖C‖2 + 2 detC
, (3.24)

or
1− |ξ|2

1 + |ξ|2
=

2 detC

‖C‖2
. (3.25)

Writing |ξ| in terms of rotational invariants of the matrix C gives a clear geometric inter-

pretation this is quantity: it is a measure of how much the map in equation (3.14) distorts

the aspect ratio at the point we are interested in.

With a short calculation5 we see that A|α〉 = 0 for integer spin J , and that for half-

integer spin J , we have

A|α〉 = −c1 − c4 + ic2

2J
√
K

ξJ+1/2

√√√√J−1/2∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

√2J | − J〉 (3.27)

= K−1/2(c1 − c4 + ic2) ξJ+1/2 (2J − 2)!!

(2J − 1)!!
| − J〉 . (3.28)

This is very small: the norm-squared of A|α〉 is bounded above by

b(J) :=
(
(c1 − c4)2 + (c2)2

)
|ξ|2J+1 . (3.29)

4Some standard notation we will use: the ‘floor’ function, bxc = the largest integer not exceeding x; the

double factorial, (2n)!! = (2n)(2n− 2) . . . (4)(2) and (2n− 1)!! = (2n− 1)(2n− 3) . . . (3)(1) for n a natural

number.
5 Recall that

L−|k〉 =
√

(J − k + 1)(J + k) |k − 1〉 , L+|k〉 =
√

(J − k)(J + k + 1) |k + 1〉 . (3.26)
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Since |ξ| < 1, the above quantity goes to zero like exp(−(2 ln |ξ|)J) for large J . Further,

(
L3

J
− 1

)
|α〉 = − 1√

K

bJc∑
m=0

2m

J

ξm
√√√√ m∏

k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

 |J − 2m〉 (3.30)

and the norm-squared of this vector is equal to

1

K

bJc∑
m=0

(
2m

J

)2
(
|ξ|2m

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

)
, (3.31)

which is bounded above by6

bJc∑
m=0

(
2m

J

)2 (
|ξ|2m

)
< J−2

∞∑
m=0

(2m)2
(
|ξ|2m

)
:= u(J) . (3.35)

Thus, the bound has the form u(J) = (function of ξ) · J−2.

When Heff(x3 = c) acts on the normalized vector

[
|α〉
0

]
, the resulting vector’s norm

is, in the large J limit, bounded by
√

(a2 + b2 + c2)u(J) + b(J), which is itself bounded by

a constant times J−1. To summarize,∥∥∥∥∥Heff(c)

[
|α〉
0

]∥∥∥∥∥ <
C(ci)

J
, (3.36)

where C(ci) does not depend on J and therefore on N .

It follows that

[
|α〉
0

]
is an approximate eigenvector of Heff(c) and we can place a

bound on the corresponding eigenvalue: there exists a vector Λ̃ such that

Heff(c) Λ̃ = εΛ̃ , with |ε| < C(ci)

J
. (3.37)

6 We need to provide a bound on

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)
(3.32)

Consider, for m a positive integer less or equal than bJc,

F (m) :=

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)
=

(2m− 1)!!(2J − 2m− 1)!!(2J)!!

(2m)!!(2J − 2m)!!(2J − 1)!!
. (3.33)

F (1) = J
2J−1

< 1 and F (bJc) can also be easily shown to be less than 1 (we need to consider two cases,

with J integer or half-integer). Finally, we notice that F (m + 1) < F (m) for m smaller than roughly J/2

and F (m+ 1) > F (m) for m larger than than. This implies that F (m) has a minimum near J/2 and that

for 1 < m < bJc it is less than the larger of F (1) and F (bJc) which are both less than 1. Therefore,

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)
< 1 . (3.34)
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One can ask the following question: is Λ̃ close to

[
|α〉
0

]
? To answer this question, we

examine the argument that guarantees the existence of Λ̃ as above: consider the length

squared of Heff

[
|α〉
0

]
as expanded in eigenvectors of Heff :

HeffΛi = λiΛi , Heff(c)

[
|α〉
0

]
=

2N∑
i=1

ciΛi ,

∥∥∥∥∥Heff(c)

[
|α〉
0

]∥∥∥∥∥
2

=

2N∑
i=1

|ci|2|λi|2 . (3.38)

With the bound in equation (3.36), it is clear that at least one of the eigenvalues λi must

be less than C(ci)/J . Further, if none of the other eigenvalues are small enough, then

the eigenvector corresponding to the unique small eigenvalue (which we denoted with Λ̃)

is very close to

[
|α〉
0

]
itself. For example, if the next smallest eigenvalue λj of Heff is of

order N−1/2 (as numerical studies suggest), then the corresponding coefficient cj must be

of order N−1/2 as well. Therefore, the difference between Λ̃ and

[
|α〉
0

]
has length of order

N−1/2.

Further, we would like to conclude that there exists a third vector Λ, such that

Heff(c− ζ) Λ = 0 , with |ζ| of order 1/J , (3.39)

with Λ close to Λ̃ and therefore

[
|α〉
0

]
. It is possible to argue for this in first order

perturbation theory: as we deform x3 from c to c − ζ, the eigenvalue of interest changes

from ε (in equation (3.37)) to 0, while the eigenvector changes from Λ̃ to Λ. Since ε is

of order N−1, ζ should also be of order N−1. Making this analysis rigorous is difficult

because, effectively, we are trying to do perturbation theory in 1/N while taking a large

N limit. Since any sums we take would be over N components, these sums can easily

overwhelm any 1/N suppression factors. For example, to show that Λ is close to Λ̃, it is

again necessary to bound the remaining spectrum of Heff(c) away from zero. This is the

same bound as was necessary above: the remaining eigenvalues must be bounded away

from zero by at least const/
√
N , which seems to be the case when examined numerically.

Instead of attempting a rigorous proof, we will obtain some analytic estimates based

on the assumption that the 1/N expansion is valid and then confirm these estimates with

numerical analysis.

Our idea will be to obtain an analytic result for the leading order contribution to x3−c
(which will turn out to be of order 1/N as predicted above) and confirm its correctness

by comparing with with numerical results. We will also confirm that our approximate

eigenvector

[
|α〉
0

]
is a good approximation to the exact zero eigenvector of Heff(x3). Cru-

cial to this approach are two facts: that the eigenvector |α〉 has components which fall

off exponentially with m, so that only those components with spin close to the maximum
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spin J are appreciable, and that the second term in equation (3.17) is small (of order 1/N)

when acting on these components. Further analysis will then reveal that when the first

order correction to the approximate eigenstate is included:

[
|α〉
|β〉

]
, the vector |β〉 also has

components which fall off exponentially with m. We will interpret this as a ‘quasi-locality’

feature of the noncommutative surface.

Now, return to our way of writing Heff as a sum of two parts in equation (3.17). Our

special vector

[
|α〉
0

]
is an approximate zero eigenvector of the first of these two operators

(and an exact zero eigenvector for odd N). Thinking of the second term in equation (3.17)

as a small perturbation in first order perturbation theory, we obtain, to first order, that

the change in the eigenvalue is equal to[
〈α| 0

] [ cL3
J − x3 (a− ib)

(
L3
J − 1

)
(a+ ib)

(
L3
J − 1

)
−
(
cL3
J − x3

) ] [
|α〉
0

]
(3.40)

= 〈α|L3

J
c− x3|α〉

= 〈α|L3

J
− 1|α〉c + 〈α|α〉(c− x3)

= − c

K

bJc∑
m=0

2m

J

(
|ξ|2m

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

)
+ (c− x3)

= −F (ξ, J)

KJ
+ (c− x3) .

On the last line, we can make an approximation by adding an exponentially small ‘tail’

to the sum, so that the function F (ξ, J) will no longer depend on J , making c − x3 be of

order J−1. Explicitly, we have

F (ξ, J) := c

bJc∑
m=0

2m

(
|ξ|2m

m∏
k=1

(2k − 1)(2J − 2k + 2)

(2k)(2J − 2k + 1)

)
(3.41)

≈ c
∞∑
m=1

2m

(
|ξ|2m (2m− 1)!!

(2m)!!

)
= c|ξ| dK

d|ξ|
. (3.42)

Taking the change in the eigenvalue to be zero, we get that

c− x3 = cJ−1ξ
d(lnK)

dξ
= cJ−1 |ξ|2

1− |ξ|2
= J−1c

(c1 − c4)2 + c2
2

4c1c4
. (3.43)

We have tested the correctness of this formula numerically,7 as can be seen in figure 1.

7To facilitate numerical study, it is best to rewrite equation (2.1) in as a genuine eigenvalue equation.

Consider the operator σ3Heff . We can rewrite equation (2.1) as (−iσ2 ⊗ (X1 − x1) + iσ1 ⊗ (X2 − x2) +

12 ⊗ X3)|Λ〉 = x3|Λ〉. Therefore, to find x3 on the emergent surface at a given x1 and x2, all we have

to do is to solve an eigenvalue problem. It is important that the operator being diagonalized is no longer

hermitian: most (or possibly all) of its eigenvalues are complex. Real eigenvalues (if any) correspond to

points on the emergent surface. Since the dimension of the operator is even, there must be an even number

of real eigenvalues in non-degenerate cases. This naturally corresponds to such points on the emergent

surface coming in pairs for a closed surface.
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Figure 1. Difference between x3 at finite N (obtained numerically) and c (its large N asymptotics),

as a function of N . The line represents equation (3.43), which has no free parameters and appears

to be an excellent match to the numerical data. In this figure, (a, b, c) = (1.5, 0.5, 3), c1 = 2, c2 = 5

and c4 = 4. For these values, equation (3.43) implies that c− x3 = 2.71875/J .

Further, we have checked that

[
|α〉
0

]
is a good approximation to the exact eigenvector.

As can be seen in figure 2, the magnitude of the difference decreases as N−1/2.

Once we understand |α〉, we can ask about the leading correction to the exact eigen-

vector of Heff . To next order, the eigenvector has a form

[
|α〉+ |∆α〉
|β〉

]
, with corrections

|β〉 and |∆α〉 that have magnitudes of order no larger than N−1/2. Because we are working

at a point where the normal vector points ‘up’, we have 〈α|β〉 = 0. However, generically

〈∆α|β〉 6= 0, so the actual normal vector will show a small deviation from this assumed

direction. Finally, Ap ≈
√
||β||2 − |〈∆α|β〉|2.

It is difficult to obtain a closed-form formula for |β〉, and even harder to obtain one

for |∆α〉. We should proceed by finding a complete eigenbasis for the first part of Heff as

written in equation (3.17), and then use standard perturbation theory to obtain the desired

result. This is beyond the scope of this paper, so we will resort to less complete methods

to obtain some insight into the structure.

The formal expression for |β〉 is

|β〉 = (A†)−1

(
c
L3

J
− x3 + p

(2)
3

)
|α〉 . (3.44)

This expression is formal because A† might not have an inverse when acting on the above
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Figure 2. Magnitude, ∆, of the difference between the approximate eigenvector and the exact

eigenvector as obtained numerically, for the ellipsoid in figure 1. The straight line, shown to guide

the eye, is a best fit to the last few points and corresponds to ∆ = 1.12√
J

.

operator. However, we notice that since we already know x3, we are able to find, to leading

order in N , the first nonzero coefficient of |β〉 (which is the coefficient of |J − 1〉). To do

so, we take our already computed value of x3 and solve this equation:

A†|β〉 = −
(
c
L3

J
− x3

)
|α〉 . (3.45)

Once we have the first coefficient, we can substitute it back into the above equation and

solve for the next coefficient. Repeating this will in principle yield nearly all components

of |β〉 (with exception of the component with the most negative L3 eigenvalue).

Explicitly, we obtain that the coefficient of |J − 1〉 in |β〉 is

c− x3√
K

√
2J

c1 − c4 − ic2
. (3.46)

The magnitude squared of this expression is

c2

2J

1

detC

|ξ|2

(1− |ξ|2)1/2
. (3.47)

We need this expression to be small (compared to 1), since we would like ‖β‖ � ‖α‖.
Thus, for nonzero |ξ|, how large J needs to be for our analysis to be applicable depends,

for example, on c. Numerical study confirms equation (3.47); further, it shows that the

ratio of the expression in equation (3.47) and the total magnitude squared of |β〉 goes to
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a constant value at large N . Thus, ‖β‖2 is proportional to c2 and decreases with large J

like J−1.

We will see in section 4 that corrections shown in equations (3.43) and (3.47) are large

when N is too small to describe the portion of a given surface with a high curvature.

At the same order, we also get a correction to |α〉, |∆α〉. A formal expression, similar

to the one for |β〉 above,

|∆α〉 = A−1

(
(a+ ib)

(
L3

J
− 1

))
|α〉 , (3.48)

does not have a well defined meaning as
(
(a+ ib)

(
L3
J − 1

))
|α〉 generically has a significant

component parallel to |α〉. It is not possible to solve for coefficients of |∆α〉 in the same

way that we solved for those of |β〉; we need a complete perturbation theory treatment.

However, using the above expression as a guide to structure at least, we see that the

correction |∆α〉 is of order O(N−1/2), and that it would grow with a and b. While the

coefficient c determines the local curvature of the surface, the coefficients a and b control

how fast the noncommutativity is changing, as we will see in section 3.6.

As we already mentioned, |∆α〉 is not necessarily orthogonal to |β〉, so we will now

have a correction to the angle of the normal vector,

ni ≈ (2<〈∆α|β〉, 2=〈∆α|β〉, 1) . (3.49)

Numerical work confirms that the angle between the expected normal vector to the surface

(which here points in the x3-direction) and the actual normal vector to the surface scales

like N−1 and grows linearly with the coefficients a and b. We will return to this point in

section 4.

3.5 Polynomial maps from the sphere

Our analysis of a generic polynomial surface will build on the analysis of an ellipsoid.

Consider a point of interest such that the normal at this point is pointing in the positive x3

direction. Let this point lie at x1 = x2 = 0, setting y1 = y2 = 0. Without loss of generality,

set y3 equal to zero as well. This allows us to write Heff as a sum of two pieces as before:

Heff(x3) =

[
0 A†

A 0

]
(3.50)

+

[
cL3
J − x3 + p

(2)
3 (a− ib)

(
L3
J − 1

)
+ p

(2)
1 − ip

(2)
2

(a+ ib)
(
L3
J − 1

)
+ p

(2)
1 + ip

(2)
2 −

(
cL3
J − x3

)
− p

(2)
3

]
.

p(2) are the polynomials introduced in section 3.3: to leading order, they can be written as

p
(2)
k = dk,1

(
L+

J

)2

+ dk,2

(
L−
J

)2

+ dk,3
L+L− + L−L+

2J2
(3.51)

= ek,1

(
L1

J

)2

+ ek,2

(
L2

J

)2

+ ek,3
L1L2 + L2L1

2J2
(3.52)
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Figure 3. The difference between the actual eigenvalue x3 and the classical (large N) position c

for a generic surface given by x1 = 1 +w1 + 0.5w3, x2 = 2w2, x3 = w3 + 0.2w1w2, at a point given

by (w1, w2, w3) = (1/2, 1/4,
√

11/4). The line shows equation (3.57).

where ek,1 = dk,1 + dk,2 + dk,3, ek,2 = −dk,1 − dk,2 + dk,3 and ek,3 = 2i(dk,1 − dk,2). Second

or higher order polynomials containing at least one power of L3/J−1 are either equivalent

to polynomials in L1/J and L2/J (from L2
1 +L2

2 +L2
3 = N2− 1), or subleading, as we will

see in a moment.

The vector defined in equation (3.18) together with |α〉 given in equation (3.19) is

an approximate zero eigenvector of this more general Heff as well, as we have confirmed

numerically. Generically, Ap decreases with large N like N−1/2.

Analytically, we first compute the following quantities

〈α|L−L+

J2
|α〉 ≈ 2

J

|ξ|2

1− |ξ|2
(3.53)

〈α|L+L−
J2
|α〉 ≈ 2

J

1

1− |ξ|2
(3.54)

〈α|L+L+

J2
|α〉 ≈ 2

J

ξ

1− |ξ|2
(3.55)

〈α|L−L−
J2
|α〉 ≈ 2

J

ξ̄

1− |ξ|2
. (3.56)

These imply that corrections to x3 due to the polynomials p
(2)
k in equation (3.52) are

of order J−1, same as correction in equation (3.43). In fact, we can compute the new
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corrections to the eigenvalue x3 in this case:

c− x3 =
1

J

(
c
|ξ|2

1− |ξ|2
− |1 + ξ|2e3,1 + |1− ξ|2e3,2 + i(ξ − ξ̄)e3,3

2(1− |ξ|2)

)
. (3.57)

figure 3 shows comparison between this approximate result and the exact numerical values.

The agreement is excellent.

To summarize the size of the various higher order corrections, we notice that

‖ (L3/J − 1)|α〉 ‖ ∼ O(N−1) (3.58)

‖ (L1/J)|α〉 ‖ ∼ O(N−1/2) and
∥∥ (L1/J)2|α〉

∥∥ ∼ O(N−1) (3.59)

‖ (L2/J)|α〉 ‖ ∼ O(N−1/2) and
∥∥ (L2/J)2|α〉

∥∥ ∼ O(N−1) . (3.60)

To go further in our analysis, we could ask how introducing higher-order polynomials

affects |β〉 and |∆α〉 (and therefore Ap as well as the angle the actual normal vector makes

with its expected direction), or more generally, what is the effect of all these terms on

the exact eigenvector. The analysis parallels one at the end of the previous subsection:

coefficients of the quadratic terms in p
(3)
3 enter in the same way that c does and coefficients

of the quadratic terms in p
(2)
3 and p

(2)
3 enter in the same way that a and b do. Thus, again,

having a larger curvature on the surface affects ‖β‖2 while having the noncommutativity

vary quickly affects ‖∆α‖2 (as we will see).

As before, formulas for the first few coefficients of |β〉 can be computed recursively.

The results are too complicated to be illustrative, however, they are qualitatively similar

to those for the ellipsoid: ‖β‖2 falls off like 1/J , grows with c2 and quadratically with the

coefficients in p
(2)
3 and depends in a nontrivial way on |ξ|. In contrast to the ellipsoid case,

it is possible for ‖β‖2 to be nonzero even with zero |ξ|.
Finally, even higher order polynomials are proportionately more suppressed. For ex-

ample terms involving (L3/J − 1)2 are suppressed by N−2:

〈α| (L3/J − 1)2 |α〉 ≈ 1

J2

|ξ|2(2 + |ξ|2)

(1− |ξ|2)2
. (3.61)

3.6 Local noncommutativity

Consider −i[X1, X2], using the form in equation (3.12). We have

−i[X1, X2] = (c1c4 − c2c3)(L3/J
2) + terms linear in (L1/J

2) and (L2/J
2)

+ terms with higher powers of Li . (3.62)

From the formulas in section 3.5, the expectation value of this operator in the coherent

state is just

θ12 = 〈α| − i[X1, X2]|α〉 = (c1c4 − c2c3)/J , (3.63)

since the corrections to 〈α|L3/J |α〉 ≈ 1, as well as 〈α|L1/J
2|α〉, 〈α|L2/J

2|α〉 and those

terms that are higher order (in Lis), all lead to subleading contributions (of order 1/J2 or

smaller). It is important to insist that c1c4 − c2c3 is nonzero, so the leading contribution

above does not vanish.
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Figure 4. θ23/θ12 for the example in figure 3. This ratio appears to decrease like J−1.

We can examine 〈α|− i[X1, X3]|α〉 and 〈α|− i[X2, X3]|α〉 in a similar way. In this case,

only those sub-leading terms are nonzero and we obtain that

θi3 = 〈α| − i[Xi, X3]|α〉 ∼ 1/J2 for i = 1, 2. (3.64)

Therefore, we have that θi3/θ12 is of order 1/J , which is well supported by our numerical

data (see figure 4). We can then take θ = θ12. A more general, rotationally invariant

equation is

θ = 〈α| Θ |α〉 , where Θ :=

√
−
∑
i 6=j

[Xi, Xj ]2 . (3.65)

We have introduced a new operator, Θ, which will play an important role in the next

section.

Equation (3.63) has a simple geometric interpretation: the local noncommutativity on

the round sphere is constant and equal to 1/J . A single noncommutative ‘cell’ with this

area is mapped to an ellipse with area (det C)/J , which is just the noncommutativity in

equation (3.63). In other words, the local noncommutativity is the volume form on the

emergent surface divided by the volume form on the sphere, times J−1.

The local noncommutativity is not constant on the surface. An explicit computation
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Figure 5. Magnitude of the overlap between the eigenstate corresponding to the point p at the

north pole and the eigenstate corresponding to a point p’ a distance |d| away. The green H corre-

spond to points p’ with x2 = 0, while the blue N correspond to p’ with x1 = 0. The dashed line

corresponds to equation (3.70). Plotted for an ellipsoid with c1=1, c2=0.75, c=12, with N=16,384.

on the ellipsoid in equation (3.14) shows that its derivatives are

∂θ

∂x
=
b(c1c3 + c2c4)− a(c2

3 + c2
4)

(c1c4 − c2c3)J
and (3.66)

∂θ

∂y
=
a(c1c3 + c2c4)− b(c2

1 + c2
2)

(c1c4 − c2c3)J
. (3.67)

If we include higher order polynomials, the appropriate coefficients in p
(2)
1 and p

(2)
2 enter

in the same way as a and b above. Thus, we see that having these coefficients larger makes

the noncommutativity vary faster, as we have mentioned before.

3.7 Coherent states overlaps, U(1) connection and Fµν on a D2-brane

Since coherent states are associated with points, it is important that the overlap between

coherent states corresponding to well-separated points be small. Consider two points p

and p′ on the emergent surface which are within a distance of order 1/
√
N of each other.

For large N ,8 the coefficients ci, a, b, c etc. . . that locally characterize the surface are

approximately the same. However, the corresponding pre-images of p and p′ on the unit

sphere in w-space are sufficiently far apart that the basis in which equation (3.19) is written

is completely different. Therefore, the approximate coherent state at the point p′ can be

8The question of what constitutes a large enough N is discussed in section 4.
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obtained from the coherent state at the point p by an SU(2) rotation (in the N -dimensional

representation). Explicitly,

|α′〉 = ei(−D2L1+D1L2) |α〉 , (3.68)

where D1 and D2 are small displacements in w-space corresponding to moving from p to

p′. Since we have positioned p at the north pole of the unit sphere, there is no displacement

in the 3-direction. L1 and L2 can be written in terms of A and A† via equation (3.16), and

we get that

|α′〉 = e
i

2θ
(dA+d̄A†) |α〉 , (3.69)

where d = x′2 − ix′1, with x′1, x′2 being the coordinates of point p′. To compute the

overlap between |α〉 and |α′〉, we use the Baker-Campbell-Hausdorff formula to leading

order, together with A|α〉 ≈ 0:

〈α|α′〉 = 〈α| e−
1

8θ2
dd̄[A,A†] |α〉 ≈ e−

|d|2
4θ , (3.70)

since [A,A†] = 2θ(L3/J). As can be seen in figure 5, the actual coherent states have exactly

this expected behaviour.

Further, we can look at the connection defined (to within a factor of 2) in equation

(28) of [1],

2viAi = −ivi〈α(xi)|∂i|α(xi)〉 , (3.71)

where vi is a tangent vector on the emergent surface. To evaluate it, we rewrite equa-

tion (3.69) in terms of the small displacements x1 and x2:

|α′〉 = e
i
θ

(−x2X1+x1X2) |α〉 . (3.72)

Thus, the connection is just (A1, A2) = (−x1/2θ, x2/2θ) and the curvature is F12 = θ−1.

This is exactly the expected result on an emergent D2-brane [16].

3.8 Nonpolynomial surfaces

Not surprisingly, our general conclusions are applicable even when the maps from the

sphere to the surface of interest are not polynomial. As long as the maps are smooth

enough to be approximated by a Taylor polynomial, the large N limit behaviours should

be similar. Examples with many desired properties can be relatively easily ‘cooked up’.

Here we consider two of conceptual relevance.

Our first example using a non-polynomial map is designed to probe into the role of the

parameter ξ. To this end, we examine

x1 = w3w1 +
√

1− w2
3 w2 , (3.73)

x2 = −
√

1− w2
3 w1 + w3w2 . (3.74)

x3 = w3 . (3.75)

This example is designed produce a round sphere with a constant local noncommuta-

tivity θ by ‘shearing’ the original sphere (to preserve the volume form). We have checked
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Figure 6. Angle φ between the normal vector ~n computed using equation (2.7) and the noncom-

mutativity vector εijkθjk, for the surface in equation (3.76) at a point given by x = 0.5, y = 0. The

blue N correspond to N=3000 and the red H to N=12 000; the agreement between plots at different

N shows that the plotted quantities scale with N in the expected way. On the horizontal axis we

have a derivative of the noncommutativity along the surface scaled by
√
θ, which increases as µ is

increased in equation (3.76).

explicitly that θ is constant over the surface and equal to 1/J in the large N limit. The

parameter ξ, however, is not constant, instead, we have ξ = −i sin(φ)/(2− i sin(φ)). This

shows that ξ does not play a role in the large N limit of the surface: it can be changed

by applying a volume preserving automorphism to the sphere. Another way to look at

it is that the three matrices Xi defined by equations (3.73)–(3.75) can be obtained from

Li/J by a conjugation (up to some ordering ambiguities). ξ can thus be viewed as a

basis-dependent quantity.

Another interesting example is given by

x1 =
w1√

w2
1 + w2

2 + µ2w2
3

,

x2 =
w2√

w2
1 + w2

2 + µ2w2
3

, (3.76)

x3 =
µw3√

w2
1 + w2

2 + µ2w2
3

.

In this example, we again get a round sphere, but the local noncommutativity is no longer

constant. As we would expect, the actual surface at finite N differs from a round sphere at

order 1/N ; this corresponds to the normal vector deviating from the radial direction at the

same order, as given by equation (3.49). Further, we can compute the noncommutativity
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vector εijkθjk. Our assertion is that these two vectors should be nearly parallel. Figure 6

shows that, indeed, the angle between these two vectors decreases as 1/N . This angle

increases as the coefficient µ is increased, resulting in a more rapidly changing noncommu-

tativity. Interestingly, Ap turns out to be subleading, of order 1/N3/2 or smaller, instead

of 1/N1/2, implying that |∆α〉 is nearly parallel to |β〉.
The two examples in this subsection demonstrate that our approach works for surfaces

which are not given by polynomial maps from the sphere. This is not surprising, as our

approach should work for any surface which can be locally approximated by a polynomial

map over the sphere. Relaxing the polynomial condition allows for just about any smooth

surface which is topologically equivalent to a sphere to be studied with our approach.

4 Large N limit and the Poisson bracket

In the previous section, we have provided a series of examples increasing in generality and

all sharing the following common features: there existed a family of matrix triplets Xi

labeled by their size N . Each such triplet give rise to a surface SN given by the locus of

points where Heff(xi) had a zero eigenvalue. The zero eigenvector of Heff at a point on a

surface such that the normal to this surface was pointing in the x3 direction was, either

exactly or approximately, of the form [
|α〉
0

]
. (4.1)

Where the zero eigenvector was not exactly of this form, the corrections were small, of

order N−1/2.

More generally, since a rotation of the coordinate system can be effected by an SU(2)

rotation of the σi matrices in Heff , the zero eigenvector at an arbitrary point p has the form

|Λp〉 =

[
|α1〉
|α2〉

]
=

[
a|αp〉
b|αp〉

]
+ O

(
N−1/2

)
(4.2)

where |a|2 + |b|2 = 1 and where |αp〉 is a unit N -dimensional vector.

Given the two parts of a zero eigenvector of Heff , |α1〉 and |α2〉, at finite N , we compute

|αp〉 as follows: find the normal vector to the surface, ni = 〈Λp|σi|Λp〉. Then, find the SU(2)

rotation that brings this vector to point in the positive x3 direction and apply it to 〈Λp〉.
Then, the top component of of |Λp〉 is |αp〉. Explicitly,

|αp〉 = cos(θn̂/2)eiφn̂/2|α1〉 + sin(θn̂/2)e−iφn̂/2|α2〉 , (4.3)

where θn̂ and φn̂ are the polar angles of the unit normal vector n̂.

Once the coherent state |αp〉 corresponding to a point is identified, we can define a

correspondence between functions on the large-N surface f and operators (N×N matrices)

Mf through

f(τ) = 〈αp|Mf |αp〉 , (4.4)

where τ = (τ1, τ2) is a coordinate of some point p on the surface.
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The function s : Mf → f is usually called the symbol map; using a coherent state to

define the symbol is an approach due to Berezin [4]. The implied noncommutative star

product is

(f ? g)(τ) := 〈αp|Mf Mg|αp〉 . (4.5)

The star product is not unique, ie it is not fixed by the surface and the noncommu-

tativity parameter θ alone. There are many different triplets of matrices that give the

same surface and noncommutativity; different triplets would lead to different star prod-

ucts. Only the leading order of the commutator f ? g− g ? f ≈ θ is universal. For example,

the details of the star product depend on ξ which we know to be arbitrary. However, the

star product implies, in the large N limit, a unique antisymmetric bracket,

{f, g} := N (f ? g − g ? f) . (4.6)

We would like this bracket to give us a Poisson structure on our emergent surface. It is

naturally skew-symmetric and satisfies the Jacobi identity, so it is a Lie bracket. To be a

Poisson bracket, it also needs to satisfy the Leibniz Rule:

{fg, h} = f{g, h}+ g{f, h} . (4.7)

(Notice that these are ordinary multiplications now, not star-products.)

Instead of directly proving that the Leibniz Rule holds, we will show that our definition

of a star product is equivalent to

{f, g} =
1

ρ
εab ∂af ∂bg (4.8)

for some function ρ on the surface. In particular, we will have

ρ =

√
det g

Nθ
, (4.9)

where g is the pullback metric on the noncommutative surface and θ is the local noncom-

mutativity parameter defined in subsection 3.6.

Let’s follow our previous approach, and consider not only Xi to be polynomials in

L1/J , L2/J and L3/J − 1, but also consider operators that are polynomials in Xi (and

therefore polynomials in L1/J , L2/J and L3/J −1). The degrees and coefficients of all the

polynomials are fixed while N → ∞. First, consider the expectation value 〈αp|M |αp〉 of

some such operator M = m(X1, X2, X3) in a coherent state, where m(·, ·, ·) is a polynomial

function. We can compute 〈αp|M |αp〉 at a point p where the normal points straight up

by first writing M as a polynomial in L1/J , L2/J , and (L3 − 1)/J . Then, from equa-

tions (3.58), (3.59) and (3.60), we see that the leading order piece (which stays finite as

N →∞) is simply the constant term.9 Thus,

〈αp|M |αp〉 = m(y1, y2, y3) , (4.10)

where yi are the coordinates of the surface at point p as defined in equations (3.12).

9Any ambiguities due to the fact that L2
1 + L2

2 + L2
3 = N2 − 1 are subleading in N.
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Now that we have shown that the expectation value in a coherent state at a point

of any polynomial (in Xi) operator is exactly what we would expect, let’s think about

the expectation value of the commutator of two such operators M1 and M2. Consider

then two polynomials, m1 and m2 in x1, x2 and x3, and the corresponding operators

M1 = m1(X1, X2, X3) and M2 = m2(X1, X2, X3). We have already argued that θ12 is

much larger than θ13 and θ23. A similar argument extended to functions of Xi shows that,

as long as Xis are of the form (3.12), we have

〈αp|−i[M1,M2]|αp〉=θ12

(
∂m1(y1, y2, y3)

∂y1

∂m2(y1, y2, y3)

∂y2
− ∂m1(y1, y2, y3)

∂y2

∂m2(y1, y2, y3)

∂y1

)
.

(4.11)

Thus, for the two functions on the noncommutative surface given as restrictions of the

polynomials ma: fa(σ) = ma(xi(σ)), the bracket is

{f1, f2} = N〈αp| [M1,M2] |αp〉 (4.12)

= Nθ

(
∂σa
∂x1

∂σb
∂x2
− ∂σa
∂x2

∂σb
∂x1

)
∂f1

∂σa

∂f2

∂σb
= Nθ

εab√
det g

∂f1

∂σa

∂f2

∂σb
,

in agreement with equations (4.8) and (4.9).

To summarize, we have proven that our emergent surface is equipped with natural

Poisson bracket which satisfies the correspondence principle

{·, ·} ↔ − iN [·, ·] . (4.13)

Essential for our argument to work was the noncommutativity vector εijkθjk being

nearly parallel to the normal vector ni, as shown in figure 6. If this was not the case, the

bracket we defined would fail to be a Poisson bracket.

For the remainder of this section, we will answer the following question: given a genus-

zero surface embedded in three dimensions and a Poisson structure on this surface, does

there exist a matrix description that approximates this surface?

Our construction gives a positive answer to this question, and provides restrictions on

the surface and on Nθ for the approximation to be good. We focus on Nθ (rather than θ

itself) as this is a finite quantity in the large N limit and determines the Poisson structure

through equation (4.9). Given a surface and a function Nθ on this surface, we can always

define a map from the unit sphere to this surface such that the ratio of the volume form on

the surface to the volume form on the sphere is Nθ (see equation (3.13)), up to corrections

subleading in N .10 In fact, we can find many such functions. Which we pick will affect ξ and

the higher orders of the star product, but not the overall noncommutative structure. Note,

however, that it is not possible to set ξ to zero everywhere for a generic noncommutative

surface. ξ is zero if the metric on the emergent surface is proportional to the metric on

the sphere, while the coefficient of this proportionality must be the noncommutativity θ,

which is fixed. These two requirements would fix (up to diffeomormisms) the metric on the

emergent surface, which is already fixed by the embedding. To view this in a different way,

10The correspondence proposed in equation (4.13) is only expected to hold to leading order in N . The

non-integer part of the Poisson symplectic form will be subleading in N and can therefore be neglected.

– 25 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
9

the freedom in choosing a map from the sphere to the emergent surface is the freedom to

pick two functions on the sphere. One of these functions is fixed by requiring a particular

noncommutativity θ. The remaining function can be used to change ξ. However, ξ is a

complex function, so requiring it to vanish over-constrains the problem.

Given a map from the sphere to the desired surface, we need only replace the rectilinear

coordinates on the sphere with some SU(2) generators Li and we obtain a triplet of matrices

Xi which lead us to the appropriate noncommutative structure. Here, again, there is

ambiguity in the ordering of the operators. Its effects are suppressed by powers of 1/N

and it affects higher order terms in the star product (but not the leading order term).

For this construction to work, the surface we start with must be sufficiently smooth.

Alternatively, we could say that we need to pick an irrep of SU(2) large enough to accom-

modate a rapidly varying surface. Two conditions seem necessary: that the curvature radii

of the surface at any point be much larger than the diameter of a noncommutative ‘cell’

(Rcurvature �
√
θ ∼ N−1/2) and that θ change slowly. Let θ′ be a derivative of θ in some

tangent direction. Then, the change in noncommutativity over a single cell (which has

an approximate diameter of
√
θ),
√
θθ′, should be be small when compared with θ itself:

θ′/
√
θ � 1 (θ′/

√
θ ∼ N−1/2). As we have already discussed, in equation (3.50)—which was

was the basis for our perturbative definition of a general surface near some point — the

coefficients in the two diagonal terms (such as c) control the curvature of the surface while

the coefficients of the off-diagonal terms (such as a and b) control θ′/θ (see equations (3.66)

and (3.67)). Further, as we have discussed, large ‘curvature coefficients’ lead to large |β〉
while large ‘theta variability coefficients’ lead to large |∆α〉. The larger these coefficients

are, the larger N must be to compensate, or higher order terms would spoil the correspon-

dence with the classical limit we have built up. Generally speaking, the factorization of

eigenstate property in equation (4.2) fails when curvatures are too large at a given N (since

|β〉 becomes large). On the other hand, when the noncommutativity varies too quickly, the

Poisson brackets involving it (such as {Nθ, f}) will turn out to be too large.

Since the arguments offered in this section are in some sense local, it is plausible that

they can be extended to higher-genus surfaces. As a demonstration, following the same

prescription we were able to explicitely define matrices corresponding to a noncommutative

torus embedded in three dimensions in section 6.

5 Area and minimal area surfaces

In equation (3.65), we introduced an operator whose expectation value in a coherent state

is the local noncommutativity θ. The noncommutativity θ has units of length-squared,

and it can be interpreted as the area of a single noncommutative ‘cell’. This is similar to

thinking of phase space as made up of elementary cells whose area is ~. In string theory,

where a noncommutative surface is made up of lower dimensional D-branes ‘dissolved’ in

the surface, we can think of θ as the area occupied by a single D-brane, or, equivalently,

the inverse of the D-brane density. If we divide the surface into N noncommutative cells,

adding up the areas of all these cells we should get the total area of the surface. This is in

fact borne out here, as the operator Θ introduced in equation (3.65) has a second role: its
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Figure 7. Relative error in the noncommutative area as given in equation (5.1) compared to the

classical area, for an ellipsoid with major axes 6, 3 and 1. The error falls off with J like J−1; a best

fit line, 1.02/J , is shown to guide the eye.

trace seems to correspond to the area of the surface11

A = 2π Tr Θ = 2π Tr

√
−
∑
i,j

[Xi, Xj ]2 . (5.1)

Numerical evidence that this formula holds in is shown in figure 7.

Consider now minimal area surfaces. If we parametrize our emergent surface with

coordinates σa and define the pullback metric on this surface:

gab =
3∑
i=1

∂xi
∂σa

∂xi
∂σb

, (5.2)

(locally) minimal surfaces are solutions to the equations

∆xk(σa) = 0 , k = 1 . . . 3 , (5.3)

where the Laplacian is, as usual

∆ =
1
√
g

∂

∂σa

√
ggab

∂

∂σb
, (5.4)

and where g is the determinant of the metric gab.

11Factor of 2π can be arrived at by considering the round sphere. Since our matrices Xi are the SU(2)

generators scaled by J, the more usual factor of 4π/N is multiplied by J ≈ N/2.
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It is easy to check that these minimal surface equations can be written in terms of the

Poisson bracket (4.8) as12

3∑
i=1

{xi, {xi, xk}} −
1

2

3∑
i=1

ρ2

g

{
xi,

g

ρ2

}
{xi, xk} = 0 . (5.5)

Let’s now rewrite this equation in terms of θ (using equation (4.9)):

3∑
i=1

{xi, {xi, xk}} −
1

2

3∑
i=1

θ−2
{
xi, θ

2
}
{xi, xk} = (5.6)

3∑
i=1

{xi, {xi, xk}}+

3∑
i=1

θ
{
xi, θ

−1
}
{xi, xk} = 0 ,

or, in a more suggestive form (removing an overall factor of θ),

3∑
i=1

{xi, θ−1{xi, xk}} = 0 . (5.7)

This should be compared with the variation of our expression for the area of the noncom-

mutative surface (5.1):

∂A

∂X1
=

1

2

( [
X2,Θ

−1[X2, X1] + [X2, X1]Θ−1
]

+ (2→ 3)
)

= 0 . (5.8)

Taking an expectation value of equation (5.8) w.r.t. a coherent state, we obtain equa-

tion (5.7), confirming that the area of the noncommutative surface is indeed given by

equation (5.1).

Notice that this equation differs from that for a static configuration in a generic matrix

model (such as BFSS or IKKT), which is

[Xi, [Xi, Xk]] = 0 . (5.9)

This is because the Lagrangian for these matrix models contain a term of the form [Xi, Xj ]
2

which is the square of our operator Θ. When considering minimum area surfaces in matrix

models, when the noncommutativity varies over the surface, the appropriate equation is

not (5.9), but (5.8), or more generally

Θ−1[Xi, [Xi, Xk]] + [Xi, [Xi, Xk]]Θ
−1 + [Xi,Θ

−1][Xi, Xk] + [Xi, Xk][Xi,Θ
−1] = 0 , (5.10)

which, in the large N limit where ordering issues can be ignored, can be simplified to

[Xi, [Xi, Xk]] + Θ[Xi,Θ
−1][Xi, Xk] = 0 (5.11)

12This approach was used to study matrix models for minimal area surfaces in [17]. In that work, an

assumption was made that ρ =
√
g. This assumption, combined with an identification of g with the

pullback metric from the embedding space, restricts the local noncommutativity to be constant. This

should be contrasted with our approach where ρ 6= √g in general, and with the approach of [10] where the

simplification of the Laplacian operator due to ρ =
√
g is made possible by assuming the effective metric

to be a Weyl rescaling of the pullback metric.
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or

[Xi, [Xi, Xk]] −
1

2
Θ−2[Xi,Θ

2][Xi, Xk] = 0 . (5.12)

This last equation matches the original equation (5.5). It is important to notice that the

second term in the above equation (5.12) has the same N-scaling as the first term: both

are proportional to N−2. Thus, this term cannot be neglected even in the large N limit.

To gain more insight into the formula for the area of the surface, we can examine the

formula for the area in terms of the Poisson bracket:

A =

∫
d2σ

√
g

Nθ

√∑
i,j

{xi, xj} →
∫
d2σ

√
g

θ

√
−[Xi, Xj ]2 . (5.13)

The formula in equation (5.13) is essentially the bosonic part of the Nambu-Goto action

for a string worldsheet. This action is classically equivalent to the Schild action [18], whose

quantization via matrix regularization gives the IKKT model [19]. Equivalence of these

two actions is proven by the standard method involving an auxiliary field the inclusion of

which removes the square root from the action [20] (for a review, see [21]). In the case of

the correspondence between the Nambu-Goto and the Polyakov action, this auxiliary field

is the worldsheet metric. Here, its role seems to be linked to the local noncommutativity θ.

This is not surprising: if the matrix model is to be viewed as a quantization of the surface,

we should be free to pick any local noncommutativity we chose, so it can play the role of

an auxiliary field. This point of view provides a physical interpretation to the quantum

equivalence of the IKKT and the nonabelian Born-Infeld model.

Finally, our computation allows us to write down the noncommutative Laplacian on

our emergent surface; it is, ignoring higher 1/N -corrections

∆ = Θ−2[Xi, [Xi, · ]] − 1

2
Θ−4[Xi,Θ

2][Xi, · ] . (5.14)

This equation could be the starting point for a study of the effects of varying noncommu-

tativity on noncommutative field theory.

6 The torus

Our construction has a natural extension to a toroidal surface embedded in flat three space.

Just as surfaces topologically equivalent to a sphere were build by considering maps from

the noncommutative sphere algebra, to make a torus we use maps from the appropriate

algebra.

Consider a surface given by

x1 = (R+ r cosu) cos v , (6.1)

x2 = (R+ r cosu) sin v , (6.2)

x3 = r sinu , (6.3)
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where u, v ∈ [0, 2π] and r < R. Now, consider the standard clock-and-shift matrices U and

V that are usually used to define the noncommutative two-torus:

UV = e2πi/NV U , (6.4)

Ukl = δkle
2πi(k/N) , (6.5)

Vkl = δkmodN ,(l+1)modN
. (6.6)

In the noncommutative torus, operators of the form UnV m are associated with functions

on the torus of the form eınueımv. To define the noncommutative torus embedded in R3

we thus simply substitute eiu → U and eiv → V in equations (6.1)–(6.3), symmetrizing

when necessary to obtain hermitian matrices. Numerical analysis shows that the resulting

toroidal surface is smooth and has the appropriate large N limit (with Ap decreasing for

large N as N−1/2, the surface approaching the classical shape and the area of the surface

well approximated by equation (5.1)).

Once we have obtained this particular toroidal surface, any other surface with this

topology (including surfaces with the same shape but different local noncommutativity,

for example uniform one) can be obtained by smooth maps in a way that parallels our

discussion of spherical surfaces. It would be interesting to consider a deformation which

connects the torus and the sphere and to examine what happens at the point of topological

transition in detail.

7 Open questions and future work

There are many questions which our work does not address.

For example, one can ask if equation (5.1) can be proven analytically, starting with

the definition of the surface from Heff . A reasonable start for such a proof might be

equation (5.13). If we assume that

1

N
Tr · =

1

2π

∫
d2σ

√
g

Nθ
〈α(σ)| · |α(σ)〉 , (7.1)

we recover equation (5.1). Equation (7.1) is equivalent to

1

2π

∫
d2σ

√
g

θ
|α(σ)〉〈α(σ)| = 1N . (7.2)

Above equation implies a relationship between the trace and the integral of the noncom-

mutative surface
1

N
Tr ↔ 1

2π

∫
d2σ

√
g

Nθ
. (7.3)

A completeness relationship such as (7.2) is necessary for the symbol map from op-

erators to functions on the emergent surface to have a unique inverse, which in turn is

necessary for the definition of the star product to make sense. In principle, it should be

possible to prove such a completeness relationship starting with equation (1.1).

In subsection 3.7, we briefly addressed the question of the U(1) connection on the

emergent D2-brane. Extending this approach should allow us to prove the equivalence of
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the nonabelian effective action for D0-branes and the abelian effective action for a D2-

brane. More simply, it should be possible to show the equivalence of the BPS conditions

in these two scenarios.

It would be interesting to see how our set up could be extended to surfaces which are

not topologically equivalent to a sphere or a torus. It should be possible, for example,

to find matrix triplets Xi which correspond to emergent surfaces with a larger number

of handles — and for which the large N limit we describe holds. One could check, for

example, whether the noncommutative surfaces given in [14] have a large N limit in the

sense in which we define it here. Further, it would be interesting to see how our toroidal

construction in section 6 is related to that in [14].

Finally, there are many generalizations of equation (1.1) that would be interesting

to explore, including generalizations to higher dimensions (both of the embedding space

and the emergent surface) and those to curved embedding space. One could also consider

Lorentzian signature models, which would be useful in the context of recent progress in

cosmology arising from matrix models, as in [22].
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