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1 Introduction

A remarkable property of the AdS/CFT correspondence is its weak/strong coupling nature,

which allows the use of this duality to study strongly coupled phenomena. However, this

property is also the obstacle which prevents from comparing straightforwardly gauge and

string theory results. In this regard, the discovery and study of observables that can be

exactly described as functions of the coupling constant proves valuable. In some cases, the

possibility of obtaining exact results is due to supersymmetry, as happens for instance for

the expectation value of circular Wilson loops in N = 4 super Yang-Mills theory [1, 2],

which are studied using localization techniques [3]. Exact results for other supersymmetric

Wilson loops are also known (see for example [4–10]).

Exact results for certain states which are not supersymmetric have also been obtained.

Most of those cases involve a near BPS limit, i.e. a parametric expansion around some BPS

or supersymmetric state. One example is the exact computation of the Bremsstrahlung

radiation for a quark inN = 4 super Yang-Mills [11–16]. Another example is the BMN limit

for single trace operators [17]. Large R-charge BMN operators are almost BPS and this

underlies the successful comparison between gauge and string theory results in that case.

In the article [18] a limit was proposed to study the expectation value for Wilson loops

in large totally symmetric representations of U(N). More precisely, it was observed that

when the rank of the representation k is much larger than the rank of the gauge group N ,

ladder diagrams1 dominate over the interaction diagrams in the perturbative expansion.

Moreover, the color factors associated with different ladder diagrams are such that the

leading contribution to the `-loop order in this limit turns out to be the `-th power of

the 1-loop ladder diagram and their sum exponentiates the 1-loop result. This led to the

conjecture

〈WSk〉 ' exp〈W (1-loop)
Sk

〉 , if k � N . (1.1)

If this result is exact, it should also be valid for large values of the ’t Hooft coupling,

when the expectation value of the Wilson loop should agree with the exponential of the

on-shell action of some D3-branes,

〈WSk〉 ' exp(−SD3
on-shell) , (1.2)

1Feynman diagrams with no internal vertices.
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Figure 1. Internal space trajectory.

where one should take N � k � N2 to ensure no backreaction deforming the AdS5 × S5

background takes place.

In [18] the coincidence between (1.1) and (1.2) in the strong coupling limit for large

k was verified for a very particular type of Wilson loop. More specifically, this was shown

for a Wilson loop defined over a straight line in spacetime with a cusp in one direction of

the internal space. The coincidence can also be observed for circular Wilson loops [10, 19].

The main goal of this note is to provide a more sophisticated verification of the coin-

cidence between (1.1) and (1.2) by considering a Wilson line for an arbitrary trajectory in

the internal space, as seen schematically in figure 1.

The most general Wilson loop for a given representation R is defined by an arbitrary

curve C in spacetime and an arbitrary trajectory in the internal space given by ~n(s), which

account for the coupling with the gauge potential Aµ and the scalar fields ~Φ respectively,

WR(C, ~n) =
1

dim(R)
trR Pexp

∮
C

(
iAµẋ

µ + |ẋ|~Φ · ~n
)
ds . (1.3)

In this note we consider a Wilson loop in the k-th rank symmetric representation

of U(N), i.e. we take R = Sk, defined for a straight line in spacetime and an arbitrary

trajectory in S5 corresponding to an arbitrary unit vector ~n(s) ∈ R6.

The expectation value of (1.3) is computed perturbatively by expanding the exponen-

tial. For the straight line, up to 1-loop order one has

〈WR〉 ' 1 +
tr(T aT b)

2 dim (R)

∫∫
dtdt′

(
ni(t)nj(t′)〈Φa

i (t)Φ
b
j(t
′)〉 − ẋµ(t)ẋν(t′)〈Aaµ(t)Abν(t′)〉

)
,

(1.4)

where T a are the generators in representation R and the expectation values are just given

by free propagators. Thus,

〈W (1-loop)
R 〉 =

λ

16π2
C2(R)

N

∫∫
dtdt′

1− ni(t)ni(t′)
(t− t′)2

, (1.5)
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where C2(R) is the quadratic Casimir coefficient and λ = g2YMN is the t’Hooft coupling

constant. For totally symmetric representations C2(Sk) = k(N + k − 1), so

〈W (1-loop)
Sk

〉 ' λ

16π2
k2

N

∫∫
dtdt′

1− ni(t)ni(t′)
(t− t′)2

, for k � N . (1.6)

The straight line in R4 can be equivalently pictured as two antipodal lines along the

cylinder R×S3, sitting at ψ = 0 and ψ = π. This alternative picture is more convenient to

compare with D3-brane results obtained for global coordinates. Using the Euclidean time

of the cylinder as the curve parameter, the 1-loop expectation value (1.6) can be recast as

〈W (1-loop)
Sk

〉 ' λ

32π2
k2

N

∫∫
dτdτ ′

1− niψ(τ)niψ′(τ ′)

cosh(τ − τ ′)− cos (ψ − ψ′)

∣∣∣∣∣
ψ,ψ′=0,π

for k � N ,

(1.7)

where ~n(t) has been split into ~n0(τ) and ~nπ(τ). For (1.1) and (1.2) to coincide, (1.7) should

agree with minus the on-shell action for the dual D3-brane configurations.

2 Large k D3-brane

We take the metric of Euclidean AdS5 × S5 with radius L in the coordinates

ds2

L2
=

du2

1 + u2
+
(
1 + u2

)
dτ2 + u2

(
dψ2 + sin2 ψ dΩ2

2

)
+ dΩ2

5 , (2.1)

and write down the action for a D3-brane with asymptotically AdS2 × S2 worldvolume

spanning ζI = (τ, ψ, θ, φ), where θ and φ parametrize the S2 ⊂ AdS5. We let the angles in

the S5 be ϕi for i = 1, · · · , 5 and make the ansatz u(τ, ψ) and ϕi(τ, ψ). The DBI part of

the action is

SDBI =
N

2π2

∫
d4ζ

√
det

(
dxµ

dζI
dxν

dζJ
gµν +

2π√
λ
FIJ

)
, (2.2)

where we assume the only non-vanishing components of the electromagnetic field are

Fψτ = −Fτψ = ∂ψAτ (τ, ψ). For the Wess-Zumino term we have

SWZ = −2N

π

∫
dτ dψ sin2 ψ u(τ, ψ)4, (2.3)

where we already performed the trivial integration over the S2. Because the action S =

SDBI +SWZ only depends on ∂ψAτ (τ, ψ) we can use the equation of motion for Aτ (τ, ψ) to

introduce the momentum
1

N

∂LDBI+WZ

∂(∂ψAτ )
= iΠA(τ), (2.4)

where the i is put to ensure ΠA(τ) is a real quantity, as the gauge field is imaginary in the

Euclidean theory.

We may solve the equation for Aτ (τ, ψ) in terms of ΠA(τ), u(τ, ψ) and ϕi(τ, ψ), and

then use this in the remaining equations of motion. The information about the dual Wilson

loop is encoded in electric flux carried by the D3-brane and the boundary conditions of the

– 3 –
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embedding coordinates [20, 21]. We shall look for solutions by deforming the well-known

1/2 BPS solution [22], so we will take

u(τ, ψ) =
κ

sinψ
f(τ, ψ) and ΠA(τ) =

k

N
pA(τ) . (2.5)

where κ = k
√
λ/4N . Note that because we want to relate our solution to a Wilson loop

in the symmetric representation of rank k, we will immediately take pA(τ) 7→ 1. Moreover

we are interested in the k → ∞ limit, in which the equations of motion are drastically

simplified. Before we consider the most general case, we will first take a trajectory in some

S1 ⊂ S5. For example, if we take ϕ1 = · · · = ϕ4 = π
2 we have

∆f = f |~∇ϕ5|2 , and f∆ϕ5 + 2~∇f · ~∇ϕ5 = 0 , (2.6)

where ∆ = ~∇2 is the Laplacian operator. Equations (2.6) have to be solved with the

following boundary conditions2

f(τ, ψ)|ψ=0,π = 1 , ϕ5(τ, ψ)|ψ=0,π = aψ(τ) , (2.7)

for arbitrary functions aψ(τ), which corresponds to the choice

~nψ(τ) = (0, 0, 0, 0, sin aψ(τ), cos aψ(τ)) (2.8)

in the dual Wilson loop. To look for solutions of these equations of motion, we perturb

around the BPS solution f = 1 and ϕ5 = 0,

f(τ, ψ) = 1 + εf1(τ, ψ) + ε2f2(τ, ψ) + · · · (2.9)

ϕ5(τ, ψ) = ε φ1(τ, ψ) + ε2φ2(τ, ψ) + · · · , (2.10)

and introduce this expansion in the equations (2.6). We find, that f2n+1 and φ2n van-

ish because they have to solve the Laplace equation with vanishing Dirichlet boundary

conditions. The non-vanishing f2n and φ2n−1 satisfy

∆f2n =
n−1∑
j=0

f2j

n−j∑
i=1

~∇φ2i−1 · ~∇φ2(n−j)−(2i−1) , (2.11)

∆φ2n−1 = −
n∑
i=1

2~∇f2i · ~∇φ2n−2i+1 + f2i∆φ2n−2i+1 , (2.12)

where we defined f0(τ, ψ) = 1 for convenience. In order to find solutions to the sys-

tem (2.11)–(2.12), it is useful to define functions gn as

gn =

{
fn if n is even ,

iφn if n is odd ,
(2.13)

2In our specific case, there are two boundaries at ψ = 0 and ψ = π, so we would have

ϕ5(τ, 0) = a0(τ) and ϕ5(τ, π) = aπ(τ) .
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which allows us to write the equation for the m-th coefficient gm in terms of some ordered,

restricted partitions P 1e
m of the number m,

∆

 ∑
Y∈P 1e

m

∏
yi∈Y

gyi

 = 0 , (2.14)

where the elements of P 1e
m contain at most one even element. By excluding the trivial

partition, a solution for the coefficient gm is given in terms of the previous ones,

gm = −
∑
Y∈P 1e

m
′

∏
yi∈Y

gyi , (2.15)

where the sum is now over the non-trivial ordered partitions P 1e
m
′
, with at most one even

element. The restricted partitions and their corresponding coefficients can be conveniently

packed in the following generating function

Z(ε) =

∞∑
k=0

g2kε
2k
∞∏
n=1

( ∞∑
l=0

1

l!

(
g2n−1ε

2n−1)l)

=

∞∑
k=0

f2kε
2k exp

(
i

∞∑
n=1

φ2n−1ε
2n−1

)
= feiϕ5 . (2.16)

Due to (2.14), the Laplacian of the generating function is vanishing. This means that

expanding around the BPS solution was unnecessary, since with a simple change of variables

the system (2.6) could have been linearized and decoupled. Indeed, if we define the complex

function Z(τ, ψ) = f(τ, ψ) eiϕ5(τ,ψ) we see that

∆Z = eiϕ5

(
∆f − f |~∇ϕ5|2

)
+ i eiϕ5

(
f∆ϕ5 + 2~∇f · ~∇ϕ5

)
. (2.17)

Thus, ∆Z = 0 is equivalent to the original system (2.6). To solve the Laplace equation

with Dirichlet boundary conditions, i.e.

∆Z = 0 with Z|ψ=0,π = ei aψ(τ) , (2.18)

one can use the Green function method. In our case, where the two dimensional domain is

a strip with boundaries at ψ = 0 and ψ = π, we shall use the Green function

G(τ, ψ; τ ′, ψ′) =
1

4π
log

cosh(τ − τ ′)− cos(ψ + ψ′)

cosh(τ − τ ′)− cos(ψ − ψ′)
. (2.19)

Thus, the solution to this Dirichlet problem is

Z(τ, ψ) =

∫
dτ ′ ∂′⊥G(τ, ψ; τ ′, ψ′)ei aψ′ (τ ′)

∣∣∣
ψ′=0,π

, (2.20)

where ∂⊥ denotes the normal (to the boundary) outward derivative, so that ∂′⊥ = −∂ψ′ at

ψ′ = 0 and ∂′⊥ = +∂ψ′ at ψ′ = π.
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Armed with the intuition provided by the S1 case, we may now proceed to solve the case

corresponding to a general trajectory in the S5. Introducing χa = (f, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5),

the equations of motion in the large k limit can be compactly written as

∆χa = Γabc
~∇χb · ~∇χc , (2.21)

where Γabc are the Christoffel symbols corresponding to R6 in spherical coordinates with

f as the radius. Introducing cartesian coordinates Xi

X1(τ, ψ) = f(τ, ψ) sinϕ1(τ, ψ) sinϕ2(τ, ψ) sinϕ3(τ, ψ) sinϕ4(τ, ψ) sinϕ5(τ, ψ) ,

X2(τ, ψ) = f(τ, ψ) sinϕ1(τ, ψ) sinϕ2(τ, ψ) sinϕ3(τ, ψ) sinϕ4(τ, ψ) cosϕ5(τ, ψ) ,

X3(τ, ψ) = f(τ, ψ) sinϕ1(τ, ψ) sinϕ2(τ, ψ) sinϕ3(τ, ψ) cosϕ4(τ, ψ) ,

X4(τ, ψ) = f(τ, ψ) sinϕ1(τ, ψ) sinϕ2(τ, ψ) cosϕ3(τ, ψ) , (2.22)

X5(τ, ψ) = f(τ, ψ) sinϕ1(τ, ψ) cosϕ2(τ, ψ) ,

X6(τ, ψ) = f(τ, ψ) cosϕ1(τ, ψ) ,

the equations (2.21) become

∆Xi = 0 , (2.23)

which have to be solved with boundary conditions

Xi(τ, ψ)
∣∣∣
ψ=0,π

= niψ(τ) . (2.24)

Thus, in this large k limit the solution for an arbitrary internal space trajectory is given by

Xi(τ, ψ) =

∫
dτ ′ ∂′⊥G(τ, ψ; τ ′, ψ′)niψ′(τ ′)

∣∣∣
ψ′=0,π

. (2.25)

On-shell action

We would like to evaluate the action on-shell. In addition to the bulk action terms SDBI

and SWZ there will be boundary terms of the form [22, 23]

Sbdry = −
∫
dτ

(
u
∂LDBI+WZ

∂(∂ψu)
+Aτ

∂LDBI+WZ

∂(∂ψAτ )

)∣∣∣∣ψ=π
ψ=0

. (2.26)

The boundary term for Aτ can be rewritten as an integral over the bulk∫
dτ Aτ (τ, ψ)

∂LDBI+WZ

∂(∂ψAτ )

∣∣∣∣ψ=π
ψ=0

= Ni

∫
dτ dψ ∂ψAτ (τ, ψ) ΠA(τ) . (2.27)

If we perform a similar trick with the boundary term for u, we can write the full on-shell

action as an integration over the bulk. Once all the contributions are brought together,

the on-shell action in the k →∞ limit reads

Son-shell =
k2λ

16πN

∫
dτdψ

1− f2

sin2 ψ
− |~∇f |2 − 2f∆f + f2

5∑
i=1

|~∇ϕi|2
i−1∏
j=1

sin2 ϕj

+ 2 (∂τf)2 + 2f
(
cotψ∂ψf + ∂2τf

) . (2.28)
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Using the equation of motion for f , which states that

∆f = f
5∑
i=1

|~∇ϕi|2
i−1∏
j=1

sin2 ϕj , (2.29)

we can rewrite this as

Son-shell =
k2λ

16πN

∫
dτdψ

(
1

2
∆f2 + ∂ψ

[
cotψ(f2 − 1)− ∂ψf2

])
. (2.30)

The second term in the above expression gives upon integration a boundary term which

vanishes when we take f(τ, ψ)→ 1 at the boundary. If we further use that XiXi = f2, we

then see that the on-shell action is obtained by evaluating the integral

Son-shell =
k2λ

32πN

∫
dτ dψ∆(XiXi) =

k2λ

16πN

∫
dτ X i∂⊥X

i
∣∣∣
ψ=0,π

. (2.31)

Using our representation (2.25), the on-shell action takes the form of a double integral over

the boundary,

Son-shell =
k2λ

16πN

∫∫
dτdτ ′ ∂⊥∂

′
⊥G(τ, ψ; τ ′, ψ′)niψ(τ)niψ′(τ ′)

∣∣∣
ψ,ψ′=0,π

(2.32)

= − k2λ

64π2N

∫∫
dτdτ ′

[
niψ(τ)− niψ′(τ ′)

]2
cosh(τ − τ ′)− cos(ψ − ψ′)

∣∣∣∣∣∣∣
ψ,ψ′=0,π

(2.33)

where we used the Green function property presented in the appendix. Finally, since ni is

a unit vector, the on-shell action takes the form

Son-shell = − k2λ

32π2N

∫∫
dτdτ ′

1− niψ(τ)niψ′(τ ′)

cosh(τ − τ ′)− cos(ψ − ψ′)

∣∣∣∣∣
ψ,ψ′=0,π

, (2.34)

which is exactly minus the 1-loop contribution to the Wilson loop expectation value in the

large rank limit given in (1.7).

The agreement between the on-shell action and the 1-loop expectation value in the

large k limit is indicating that the ladder exponentiation proposed in [18] is correct. We

would like to stress that although the spacetime trajectory of the Wilson loop considered is

a straight line, the internal space trajectory is kept completely arbitrary. As a result, the

verification of the ladder exponentiation is more general that the one found in [18], where

the Wilson loop had an internal cusp which corresponds to the case of a step function in

an S1 ⊂ S5. This strengthens the idea that the ladder exponentiation in the large rank

limit takes place for arbitrary Wilson loops. Note that this exact result to leading order in

the proposed large rank limit is not related to supersymmetry. The large rank limit does

not seem to be in any obvious way a near BPS limit.

The ladder exponentiation resembles the Abelian eikonal exponentiation of QED, ac-

cording to which the vacuum expectation value of a Wilson loop is exactly the exponential

– 7 –
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of the 1-loop result, given by the photon propagator [24]. For non-Abelian theories, the

vacuum expectation value of a Wilson loop is the exponential of a more complicated ex-

pression to which not only the 1-loop diagram contributes. Given the fact that the Abelian

part exponentiates it is possible to write this expression in terms of a smaller set of dia-

grams known as webs [25–27]. However, in our limit the color factors of all these terms

are such that their contribution to 〈W 〉 is subleading with respect to the Abelian part

involving powers of the quadratic Casimir.
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A Green function integrals

To evaluate the on-shell action we will need to perform integrals of the form

I[u, v] =

∫∫
dτdτ ′uψ(τ)vψ′(τ ′) ∂⊥∂

′
⊥G(τ, ψ; τ ′, ψ′)

∣∣∣
ψ,ψ′=0,π

. (A.1)

These split into four cases depending on the choice of ψ,ψ′ = 0, π, so it is convenient to

perform a change of variables to join them into a single integration. We will take

x = eτ cosψ and y = eτ sinψ, (A.2)

so that we map the strip (τ, ψ) ∈ R× [0, π] into the half-plane y > 0. We then have

I[u, v] =

∫∫
dx dx′u(x)v(x′) ∂y∂y′G̃(x, y;x′, y′)

∣∣∣
y,y′=0

, (A.3)

In these new variables, the Green function has the simpler form

G̃(x, y;x′, y′) =
1

4π
log

(x− x′)2 + (y + y′)2

(x− x′)2 + (y − y′)2
, (A.4)

so that

I[u, v] =
1

π
lim
y→0

∫∫
dx dx′u(x)v(x′)

(x− x′)2 − y2

((y)2 + (x− x′)2)2
. (A.5)

At this point it would be incorrect to take the y → 0 limit before integrating because it

would lead to an integrand with a double pole, which would be unphysical. Thus, before

taking the limit we shall write the integrand as a principal value integral. It is easy to

see that

I[u, v] =
1

π2
lim
y→0

∫∫
dx dx′u(x)v(x′)

∫
−
z 6=x

dz

(z − x)2

(
y

y2 + (z − x′)2
− y

y2 + (x− x′)2

)
.

– 8 –
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We further rephrase this by introducing another integral with a delta function and repli-

cating the expression

I[u, v] = lim
y→0

∫∫
dx dx′u(x)v(x′)

∫
dz′
∫
−
z 6=z′

dzδ(z′ − x)

2π2(z − z′)2

(
y

y2 + (z − x′)2
− y

y2 + (z′ − x′)2

)

+ lim
y→0

∫∫
dx dx′u(x)v(x′)

∫
dz

∫
−
z′ 6=z

dz′δ(z − x)

2π2(z − z′)2

(
y

y2 + (z′ − x′)2
− y

y2 + (z − x′)2

)
.

If we now take the limit inside the integrals we obtain four products of delta functions

whose combination results in a convergent integral, even without taking principal values

I[u, v] =

∫∫
dx dx′u(x)v(x′)

∫∫
dzdz′

(δ(z − x)− δ(z′ − x))(δ(z′ − x′)− δ(z − x′))
2π(z − z′)2

=

∫∫
dzdz′

(u(z)− u(z′))(v(z′)− v(z))

2π(z − z′)2
. (A.6)

We can express this result in terms of the original coordinates. For z > 0 we have

z = eτ that corresponds to the line at ψ = 0, while for z < 0 we have z = −eτ . Thus,

I[u, v] = − 1

4π

∫∫
dτdτ ′

(uψ(τ)− uψ′(τ ′))(vψ(τ)− vψ′(τ ′))

cosh(τ − τ ′)− cos(ψ − ψ′)

∣∣∣∣
ψ,ψ′=0,π

. (A.7)
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