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1 Introduction

The AdS/CFT conjecture and more generally the gauge/gravity duality offered a new venue

of describing many physical systems holographically. The holographic description allows

the connection of a d-dimensional quantum field theory with its dual gravitational theory

that lives in (d + 1) dimensions [1–3]. The dual nature of these two theories means that

a strong-coupling limit of one of them corresponds to a weak-coupling limit of the other.

This is a powerful result since, by employing the gauge/gravity duality, strongly coupled

phenomena can be studied using dual gravitational systems in weak coupling.

This holographic description has attracted considerable interest for its potential ap-

plications to study strongly coupled systems related to condensed matter (CM) physics.
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One noticeable application of the gauge/gravity application to CM physics is the study

of the many-body system at finite charge density. The dual description of such a system

is achieved by introducing in the gravity sector, charged fermions probe coupled to the

gauge field and exploring the ground state of the holographic system [4–6]. The spectral

function of the holographic fermion system was analyzed to study its Fermi surface, low

energy excitations and possible types of Fermi and non-Fermi liquids.

In this direction and in an attempt to describe the various phases of a metallic state

at low temperatures, a dipole coupling to massless charged fermions was introduced [7, 8].

Then by studying the modified Dirac equation, it was found that the boundary fermionic

propagator produces a spectrum which has vanishing spectral weight at a range of energies

around ω = 0 without the breaking of any symmetry. Another interesting result was that

as the dipole coupling strength was varied, the fluid possessed Fermi, marginal Fermi,

non-Fermi liquid phases and an insulating phase which shared similarities with the Mott

insulators including the dynamic formation of a gap and spectral weight transfer. These

results had stimulated further studies [9–16] on the behaviour of the dipole coupling. A

remarkable property was observed in [17] where it was found that there exists a duality

between zeroes and poles in holographic systems with massless fermions and a dipole

coupling and this property was also verified in [18].

The AdS/CFT correspondence was initially applied to describe holographic fermionic

systems in which the space of their gravity sector was described by an AdS geometry.

However, in many condensed matter systems, there exist some phase transitions governed

by fixed points with Lifshitz dynamical scaling and many non-relativistic fixed points.

Therefore, there was a need to formulate the duality principle to describe quantum field

theories violating conformal invariance but keeping scale-invariance, having as a gravity

dual to a gravity theory with a metric with Lifshitz scaling [19–22]

ds2 = −r2zdt2 +
dr2

r2
+ r2dx2i , (1.1)

which is however invariant under the scaling transformation

t → λzt, xi → λxi, r → λ−1r . (1.2)

This metric is characterized by a dynamical critical exponent z 6= 1, in which with z = 1

we go back to the AdS metric.

This generalization of the holographic principle from AdS spaces of the gravity sector to

Lifshitz spaces had produced interesting results. It was showed that the Lifshitz exponent

z in the holographic fermion systems plays an important role in the retarded Green’s

function [23, 24]. For a specific value of the critical exponent z, the Luttinger’s theorem

is violated [25] and even a dynamical gap can be generated in the presence of a dipole

coupling [26–28].

More recently, a larger class of scaling metrics besides the Lifshitz one was found, by

including both Abelian gauge field and a dilaton field in the bulk theory. These metrics

with an overall hyperscaling factor which can be considered as an extension of the Lifshitz
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metric have the form [29]

ds2 = r
−2θ
d

(

−r2zdt2 +
dr2

r2
+ r2dx2i

)

(1.3)

with z and θ the dynamical critical exponent and the hyperscaling violation exponent

respectively [30]. Note that the metric (1.3) transforms as ds → λθ/dds under the trans-

formation (1.2). Under this scaling the distance is not invariant with a non-zero θ and

according to the AdS/CFT correspondence this indicates a hyperscaling violation in the

dual field theory. Thermodynamically in these theories the entropy scales as T (d−θ)/z while

in theories with hyperscaling, the entropy scales as T d/z. This implies that the theory with

hyperscaling violation brings in an effective dimension deff = d − θ. Holographic gravity

theories with hyperscaling violation were discussed in [31–33]. It was found in [34, 35] that

theories with hyperscaling violation in the probe approximation and without the presence

of fermions exhibit similarities with the behaviour of a Fermi liquid.

In this work we will consider a holographic fermion system dual to a gravity bulk

with hyperscaling violation and with finite charge density. Our aim is to study in details

the behaviour of infrared (IR) and ultra violet (UV) Green’s functions in an attempt to

understand the formation of Fermi surface and the types of the Fermi liquids present in

these theories. We will also study the possibility of generating dynamically a gap which will

indicate the presence of a Mott insulating phase in theories with hyperscaling violation.

Finally, we will explore the spectral function of the non-relativistic fixed point by adding

the Lorentz-violating boundary condition into the bulk action.

Holographic study of the fermion system in the gravity dual with hyperscaling violation

was discussed in [36]. Their gravitational background was with neutral charge. The fermion

system in a charged background was studied in [37]. The UV Green’s function in the probe

fermions limit was studied numerically and it was found that the increase of the Lifshitz

factor z and the hyperscaling factor θ broadened and smoothed out the sharp peak.

The work is organized as follows. In section 2 we review the charged black hole

background with hyperscaling factor and analyze the geometry in the near horizon limit

at zero temperature. We set up the formalism describing the equation of motion in the

fermionic system in the bulk theory in section 3. In section 4 we analytically investigate

the low energy behaviour and emergent quantum critical behavior of the retarded Green

function of the dual Fermi operator. In section 5 we numerically study various properties of

the UV Green’s function. Then we explore the holographic non-relativistic fixed point with

Lorentz-violating boundary condition in section 6. Finally section 7 are our conclusions.

2 The charged black holes with hyperscaling violation from Einstein-

Dilaton-Maxwell theory

We start with the Einstein-Maxwell-Dilaton action in (3+1)-dimensional spacetime [22]

Sg = − 1

16πG

∫

d4x
√−g

[

R− 1

2
(∂φ)2 + V (φ)− 1

4

(

eλ1φFµνFµν + eλ2φFµνFµν

)

]

. (2.1)
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The action contains two U(1) gauge fields coupled to a dilaton field φ. The U(1) field A

with field strength Fµν is required to have a charged black hole solution, while the other

gauge field A with field strength Fµν and with its coupling to the dilaton field is necessary

to generate an anisotropic scaling. We can deduce the equations of motion for all the fields

from the above action. The Einstein equation of motion for the metric is

Rµν−
1

2
Rgµν =

1

2
∂µφ∂νφ− V (φ)

2
gµν

+
1

2

[

eλ1φ

(

FµρF
ρ
ν −

gµν
4

F ρσFρσ

)

+eλ2φ

(

FµρFρ
ν −

gµν
4

FρσFρσ

)]

. (2.2)

The equation of motion for the dilaton field is

∇2φ = −dV (φ)

dφ
+

1

4

(

λ1e
λ1φFµνFµν + λ2e

λ2φFµνFµν

)

, (2.3)

while the Maxwell equations for the gauge fields read

∇µ

(√−geλ2φFµν
)

= 0 , (2.4)

∇µ

(√−geλ1φFµν
)

= 0 . (2.5)

We will introduce a potential of the form

V (φ) = V0e
γφ , (2.6)

which is very helpful to generate a general Lifshitz solution with hyperscaling violation [37].

Here λ1,λ2,γ and V0 are free parameters of the theory to be determined. We consider the

following ansatz for the metric

ds24 = r−θ

(

−r2zf(r)dt2 +
dr2

r2f(r)
+ r2(dx2 + dy2)

)

. (2.7)

Before we proceed with the solution we remark that the two gauge fields appear in the

action (2.1) on the same footing. To determine them with their corresponding parameters

λi we first decouple the gauge field Fµν which is responsible for the charge of the background

black hole and from the field equations (2.2), (2.3) and (2.4) we determine the gauge field

Fµν , and then with the use of the Maxwell equation (2.5) we determine the gauge field

Fµν . Then the solutions are as follows [37]

f = 1−
(rh
r

)2+z−θ
+

Q2

r2(z−θ+1)

[

1−
(rh
r

)θ−z
]

, (2.8)

Frt =
√

2(z − 1)(2 + z − θ)e
2−θ/2√

2(2−θ)(z−1−θ/2)
φ0
r1+z−θ , (2.9)

Frt = Q
√

2(2− θ)(z − θ)e
−
√

z−1+θ/2
2(2−θ)

φ0r−(z−θ+1) , (2.10)

eφ = eφ0r
√

2(2−θ)(z−1−θ/2) . (2.11)
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Here, rh is the radius of horizon satisfying f(rh) = 0 and Q = 1
16πG

∫

eλ1φFrt is the total

charge of the black hole. All the parameters in the action depend on the Lifshitz scaling

exponent z and hyperscaling violation exponents θ and they can be written as

λ1 =

√

2(z − 1− θ/2)

2− θ
,

λ2 = − 2(2− θ/2)
√

2(2− θ)(z − θ/2− 1)
,

γ =
θ

√

2(2− θ)(z − 1− θ/2)
,

V0 = e
−θφ0√

2(2−θ)(z−1−θ/2) (z − θ + 1)(z − θ + 2) . (2.12)

Note that we have z ≥ 1 and θ ≥ 0. Especially, the above solution is not valid for θ = 2.

Also from equations (2.9) and (2.10) we obtain

At = −/µr
2+z−θ
h

[

1−
(

r

rh

)2+z−θ
]

, (2.13)

At = µrθ−z
h

[

1−
(rh
r

)z−θ
]

, (2.14)

where we have defined

/µ =

√

2(z − 1)(2 + z − θ)

2 + z − θ
e

2−θ/2√
2(2−θ)(z−1−θ/2)

φ0
, (2.15)

µ = Q

√

2(2− θ)

z − θ
e
−
√

z−1+θ/2
2(2−θ)

φ0 . (2.16)

The Hawking temperature of the black hole is

T =
(2 + z − θ)rzh

4π

[

1− (z − θ)Q2

2 + z − θ
r
2(θ−z−1)
h

]

. (2.17)

Before proceeding, we would like to remark on the parameters z and θ. First, the

background solution given by the equations (2.7)–(2.11) is valid only for z ≥ 1 and θ ≥ 0.

The case of z = 1 and θ = 0 corresponds to AdS geometry. Second, the condition z−θ ≥ 0

is required to make the chemical potential well-defined in the dual field theory. Third, it is

easy to see that θ < 2 from equation (2.16). Combining the requirement of the null energy

condition (− θ
2 + 1)(− θ

2 + z − 1) ≥ 0 [37], one can have θ ≤ 2(z − 1). Thus, in this charged

background, the region of the parameters is
{

0 ≤ θ ≤ 2(z − 1) for 1 ≤ z < 2 ,

0 ≤ θ < 2 for z ≥ 2 .
(2.18)

For convenience, we make the following rescaling

r → rhr , t → t

rzh
, (x, y) → 1

rh
(x, y) ,

Q → r
(z−θ+1)
h Q , At → rhAt , At → rθ−z−2

h At . (2.19)
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With the rescaling above, we can set rh = 1. In addition, note that φ0 is an integration

constant and we will set φ0 = 0 in the following. With such rescaling, the redshift factor

f(r) and the gauge fields At, At can be expressed respectively as,

f = 1− 1 +Q2

rz+2−θ
+

Q2

r2(z−θ+1)
, (2.20)

At = −/µ
[

1− r2+z−θ
]

, (2.21)

At = µ

[

1−
(

1

r

)z−θ
]

. (2.22)

and the dimensionless temperature has the form

T =
(2 + z − θ)

4π

[

1− (z − θ)Q2

2 + z − θ

]

. (2.23)

By setting

Q =

√

2 + z − θ

z − θ
, i. e., µ =

√

2(2− θ)(2 + z − θ)

z − θ
, (2.24)

one can obtain the zero-temperature limit, in which the redshift factor f(r) becomes

f(r)|T=0 = 1− 2(z − θ + 1)

z − θ

1

rz−θ+2
+

z − θ + 2

z − θ

1

r2(z−θ+1)
. (2.25)

Obviously, in the r → 1 limit,

f(r)|T=0,r→1 ≃ (z − θ + 1)(z − θ + 2)(r − 1)2 ≡ 1

L2
2

(r − 1)2. (2.26)

Therefore, at the zero temperature, we obtain the near horizon geometry AdS2 × R
2 with

the curvature radius L2 ≡ 1/
√

(z − θ + 1)(z − θ + 2) of AdS2 to depend explicitly on the

Lifshitz scaling exponent z and hyperscaling violation exponent θ. So, near the horizon,

the metric and the gauge fields are given by

ds2 =
L2
2

ς2
(−dτ2 + dς2) + dx2 + dy2 ,

Aτ =
/e

ς
, Aτ =

e

ς
, (2.27)

with /e = /µ(2+ z− θ)L2
2 and e = µ(z− θ)L2

2 where we have considered the following scaling

limit

r − 1 = ǫ
L2
2

ς
, t = ǫ−1τ , (2.28)

with ǫ → 0, ς and τ to be finite.

– 6 –
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3 The Dirac equation

3.1 The Dirac equation

To probe the geometry with hyperscaling violation, we consider the following Dirac action

including the bulk minimal coupling between the fermion and the gauge field

SD = i

∫

d4x
√−gζ (ΓaDa −m) ζ , (3.1)

where Da = ∂a +
1
4(ωµν)aΓ

µν − iqAa . From the above action, we can derive the following

Dirac equation in Fourier space

(
√
grrΓr∂r −m)F − i(ω + qAt)

√

gttΓtF + ik
√
gxxΓxF = 0 . (3.2)

In the above equation, we have made a redefinition of ζ = (−ggrr)−
1
4F and a Fourier

transformation F = Fe−iωt+ikix
i
. In addition, due to the rotational symmetry in x − y

plane, we have set kx = k and ky = 0. Choosing the following gamma matrices

Γr =

(

−σ3 0

0 −σ3

)

, Γt =

(

iσ1 0

0 iσ1

)

, Γx =

(

−σ2 0

0 σ2

)

, . . . . (3.3)

the Dirac equation becomes
[

(∂r +m
√
grrσ

3)−
√

grr
gtt

(ω + qAt)iσ
2 − (−1)Ik

√

grr
gxx

σ1

]

FI = 0 , (3.4)

where I = 1, 2. After splitting FI into FI = (AI ,BI)
T , one has

(∂r +m
√
grr)AI −

√

grr
gtt

(ω + qAt)BI − (−1)I
√

grr
gxx

kBI = 0 , (3.5)

(∂r −m
√
grr)BI +

√

grr
gtt

(ω + qAt)AI − (−1)I
√

grr
gxx

kAI = 0 . (3.6)

Defining ξI ≡ AI
BI

and v =
√

grr
gtt

(ω + qAt) the above equations can be brought in the form

of a flow equation of ξI

(∂r + 2m
√
grr)ξI −

[

v + (−1)Ik

√

grr
gxx

]

−
[

v − (−1)Ik

√

grr
gxx

]

ξ2I = 0 . (3.7)

For the convenience of numerical calculation later, we can make a transformation r = 1/u,

so that the flow equation (3.7) can be rewritten as

(

√

f∂u − 2mu
θ
2
−1
)

ξI +

[

ṽ

u
+ (−1)Ik

]

+

[

ṽ

u
− (−1)Ik

]

ξ2I = 0 , (3.8)

where we have redefined ṽ = uz√
f
(ω + qAt).

Since the IR geometry of the charged geometry with hyperscaling violation is AdS2 ×
R
2, we can easily derive the boundary conditions of ξ at the horizon r = 1 for ω 6= 0 [5, 6, 10]

ξI = i . (3.9)

For the case of ω = 0, we refer to [5, 6].
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3.2 Green’s functions

In the background with hyperscaling violation in the UV limit, from equation (1.3) we know

that grr = r−θ−2, gtt = r2z−θ and gxx = gyy = r2−θ. Therefore, the Dirac equation (3.4)

becomes

[

∂r +mr−
θ
2
−1σ3 − r−1−z(ω + qµ)iσ2 − (−1)Ikr−2σ1

]

FI = 0 . (3.10)

Since we have θ < 2 from equation (2.18), in the limit of r → ∞, equation (3.10) reduces to

(

∂r +
m

r
θ
2
+1

σ3

)

FI ≈ 0 , (3.11)

which gives the following solutions

AI = aIe
2m
θ

r−
θ
2 ≃ aI

(

1 +
2m

θ
r−

θ
2 + . . .

)

, (3.12)

BI = bIe
− 2m

θ
r−

θ
2 ≃ bI

(

1− 2m

θ
r−

θ
2 + . . .

)

. (3.13)

Thus, at the leading order, FI behaves as

FI
r→∞≈ bI

(

0

1

)

+ aI

(

1

0

)

, (3.14)

which agrees well with the case of zero mass in AdS or Lifshitz-AdS geometry.

In the regime of linear response, the boundary Green’s functions can be extracted by

GII = aI
bI
. At the same time, since

ξI ≡ AI

BI
=

aI
bI

= GI , (3.15)

the boundary retarded Green’s functions can be expressed in term of ξI

G(ω, k) =

(

G1 0

0 G2

)

= lim
r→∞

(

ξ1 0

0 ξ2

)

. (3.16)

Also, from equation (3.8), we can see that the Green function has the following properties

G1(ω, k;m) = G2(ω,−k;m), GI(ω, k;−m) = − 1

GI(ω,−k;m)
. (3.17)

4 Low energy behavior and emergent quantum critical behaviour

As pointed out in section 2, the extremal near horizon geometry of this charged black hole

with hyperscaling violation is AdS2 × R
2. Thus, we can discuss the retarded Green’s

function and some related emergent quantum critical behavior by using the matching

method [6].
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4.1 IR Green’s function

For the near horizon geometry AdS2 × R
2, in the limit of ω → 0, the Dirac equation is

ς∂ςFI −
[

mL2σ
3 − (−1)IkL2σ

1 − iσ2qe
]

FI = 0 . (4.1)

In the above equation, we have chosen the same Gamma matrices as in equation (3.3)

except Γς = −Γr to reflect the change between the radial coordinate r and the coordinate

ς. The above equation can be rewritten as

ς∂ςFI = UFI , (4.2)

where

U =

(

mL2 −(−1)IkL2 − qe

−(−1)IkL2 + qe −mL2

)

. (4.3)

Therefore, near the AdS2 boundary (ς → 0), the leading behaviour of FI is

FI = b
(0)
I v−ς

−νI(k) + a
(0)
I v+ς

νI(k) , (4.4)

where v± are real eigenvectors of U and ±νI(k) are eigenvalues in the form

νI(k) =
√

(m2 + k2)L2
2 − q2e2 . (4.5)

Then the dimension in the IR CFT of the operator O~k
is given by δk = 1

2 + νI(k), which

obviously depends on the Lifshitz dynamical critical exponent z and hyperscaling violating

exponent θ. We can exactly solve the Dirac equation (4.1) in AdS2 and obtain the retarded

Green’s functions of O~k
in the dual IR CFT as [6]

GI(k, ω) = c(k)e−iπνI(k)ω2νI(k) . (4.6)

4.2 The analytical expressions of the UV Green’s function and the dispersion

relation

In this subsection, we will discuss the case of νI(k) being real. The case of the imaginary

νI(k) will be discussed in the next subsection.

In general, the bulk spacetime can be divided into the inner and outer regions

Inner : r − 1 = ω
L2
2

ς
, ǫ < ς < ∞ , (4.7)

Outer : r − 1 > ω
L2
2

ǫ
, (4.8)

where ω, ǫ, ω
L2
2
ǫ → 0, but ς is finite. When ς → 0 and ω/ς → 0, there is a non-zero

overlapping region between the inner and outer regions. Thus, within this region, aI and

bI in equation (3.14) can be expanded in terms of the power of ω

aI = [a
(0)
I + ωa

(1)
I + . . .] + [ã

(0)
I + ωã

(1)
I + . . .]GI(k, ω) , (4.9)

bI = [b
(0)
I + ωb

(1)
I + . . .] + [b̃

(0)
I + ωb̃

(1)
I + . . .]GI(k, ω) , (4.10)

– 9 –
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so that the UV Green’s function can be expressed in terms of the IR Green’s function

GI(ω, k) = K
a
(0)
I + ωa

(1)
I +O(ω2) + (ã

(0)
I + ωã

(1)
I +O(ω2))G(k, ω)

b
(0)
I + ωb

(1)
I +O(ω2) + (b̃

(0)
I + ωb̃

(1)
I +O(ω2))G(k, ω)

, (4.11)

where K is a constant. Then, we have for a
(0)
I 6= 0

Im GI(ω, k) ≃ K
a
(0)
I

b
(0)
I

(

ã
(0)
I

a
(0)
I

− b̃
(0)
I

b
(0)
I

)

c(k)ω2νI(k) (4.12)

which will bring us the spectral function near small frequency

A(ω, k) = ImTr[G] ∝ c(k)ω2νI(k) (4.13)

with the scaling exponent 2νI(k) dependent on the bulk exponent. For a
(0)
I = 0, at small

ω and near the Fermi momentum kF , to the leading order, one has

GI(ω, k) ≃
h1

k̃ − ω
vF

− h2eiγ(k)ω2νI(k)
, (4.14)

where vF , h1 and h2 depend on the UV data and are usually determined numerically. From

the above equation, it is easy to conclude that the dispersion relation is

ω̃(k̃) ∝ k̃δ, with δ =

{

1
2νI(kF ) νI(kF ) <

1
2

1 νI(kF ) >
1
2

. (4.15)

Usually, the Fermi momentum kF is determined numerically. In the next section, we will

study how both Lifshitz exponent z and hyperscaling exponent θ affect the Fermi surface

structure, the dispersion relation and what kind of Fermi liquids they give.

4.3 Log-periodicity

Now we move on to study the case of the imaginary νI(k), which usually gives a log-periodic

oscillatory behaviour of the fermionic systems. When

k2 < k20 ≡ q2e2

L2
2

−m2 , (4.16)

νI(k) is purely imaginary. Now, to the leading order, the UV Green’s function at small ω

becomes

GII(ω, k) ≃
a
(0)
I + ã

(0)
I c(k)ω−2iλI(k)

b
(0)
I + b̃

(0)
I c(k)ω−2iλI(k)

, (4.17)

where we have denoted νI(k) = −iλI(k) with

λI(k) =
√

q2e2 − (m2 + k2)L2
2 . (4.18)

It is easy to find that the Green’s function (4.17) is log-periodic with a period τk = π/λI(k)

for the imaginary νI(k). Therefore, we refer to the region (4.16) as the oscillatory region [6,

26–28], which depends on the Lifshitz exponent z and hyperscaling exponent θ. Finally,

we would like to point out that for spinors, the log-periodic oscillatory behaviour does not

mean an instability as it was discussed in [6, 26–28].
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Figure 1. The 3d and density plots of ImG22(ω, k). The plots above are for θ = 0 and the plots

below are for θ = 0.1 (q = 0.5, m = 0 and z = 1.2).
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Im@G22D

Figure 2. The plot of ImG22 as a function of k for z = 1.2 and small ω, with different hyperscaling

violating exponent θ (red for θ = 0, black for θ = 0.1, blue for θ = 0.3 and green for θ = 0.4). Here

q = 0.5 and m = 0.

5 Properties of the UV Green’s function

Now, we turn to study the properties of the UV Green’s function by using numerical meth-

ods. Previous studies on the effects of the Lifshitz exponent z to the holographic fermionic

systems showed that the Lifshitz scaling exponent z gives a clear peak in the retarded

Green’s function in defining a Fermi surface and revealing its quasi-particle behaviour.

Here, we will mainly focus on the effects of hyperscaling exponent θ. In figure 1, one can

notice that in the hyperscaling violation gravity, the quasi-particle-peak becomes wider

than that in RN-AdS background as pointed out in [37].
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Figure 3. Left plots: the red line is the relation between the hyperscaling exponent θ and the loca-

tion of the peak for ω → 0 for fixed Lifshitz exponent z. The blue shade in the k−θ space indicates

the unstable oscillatory region and above it is the stable region. Right plots: the relation between

the hyperscaling exponent θ and the scaling exponent δ of dispersion relation for fixed Lifshtiz expo-

nent z. Here, q = 0.5, m = 0. In addition, z = 1.2 in the plot above and z = 1.25 in the plot below.

5.1 Hyperscaling exponent θ dependence

Now, we will study how the Fermi momentum kF and the scaling exponent δ of the dis-

persion relation depend on the hyperscaling exponent θ for fixed q, z and zero mass of the

fermions and what types of Fermi liquids we get depending on the value of θ.

We show the Green’s function with the momentum near zero frequency in hyperscaling

violation gravity in figure 2. We find that for fixed z = 1.2, larger θ corresponds to

higher Fermi momentum, indicating that the hyperscaling exponent θ has different effects

compared to the Lifshitz scaling exponent z. This can be explained by the fact that the

non-zero hyperscaling exponent introduces an effective dimension of the theory deff = d−θ.

So larger θ means lower effective dimension which calls for higher Fermi momentum. This

dependence of Fermi momentum on the dimension with minimal coupling was first disclosed

and understood in [11].

In the left plot in figure 3, the relation between the hyperscaling exponent θ and the

location of the peak for ω → 0 is presented. In the k− θ space the region in the blue shade

is the log-periodic oscillatory region [5, 6]. When the location of the peak falls in the region

above, it indicates a Fermi surface. But when the location is in the oscillatory region, the

peak loses the meaning of Fermi surfaces. From the left plot in figure 3, we find that in

the range of allowed θ, all the peaks are located in the region above for z = 1.2, but for

z = 1.25, when θ ≤ θc ≃ 0.3, the peak begins to enter the oscillatory regime and then it

loses its meaning as Fermi surface. Furthermore, one can find that in the range of allowed

θ, when z ≤ 1.21, all the peaks lie outside the oscillatory region corresponding to a Fermi

– 12 –
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Figure 4. The plot of ImG22 as a function of k in the RN-AdS black hole for tiny ω, with different

m (blue for m = 0.4, black for m = 0.1, red for m = 0 and green for m = −0.2). Here q = 0.5.
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Figure 5. Left plots: the relation between the mass m and the location of the peak for ω → 0

in the RN-AdS black hole. The shade region is the oscillatory region. Right plots: the scaling

exponent δ of dispersion relation as a function of m in the RN-AdS black hole. Here, q = 0.5.

liquid. But for z ≥ 1.22, the peaks begin to enter the oscillatory region when θ is smaller

than some critical value θc. This indicates the existence of a marginal Fermi liquid.

Once the Fermi momentum kF is worked out numerically, the dispersion relation

can be determined by equation (4.15). Obviously, from the right plots in figure 3, the

exponent δ of the dispersion relation decreases rapidly as the hyperscaling exponent θ

becomes larger due to the decrease the effective dimension of the dual theory, which is

consistent with the dependence of dispersion relation on the dimension discussed in [11].

This indicates that with the increase of θ, it shows smaller degree of deviating from the

Landau Fermi liquid phase to a non-Fermi liquid phase.

5.2 Mass dependence

It is well known that the types of fermion liquids and possible transition from Fermi to

non-fermi liquids depend also on the fermion mass in the holographic fermionic systems [6,

38, 39]. For comparison, we first present the results of the mass dependence in a fermionic

system in a Reissner-Nordström-AdS (RN-AdS) black hole background and then we will

discuss the mass dependence in the charged black hole with hyperscaling violation.
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5.2.1 Mass dependence in a gravity bulk with a RN-AdS black hole

The UV Green’s function in the gravity bulk with a RN-AdS black hole is [5, 6]

G(ω, k) = lim
u→0

u−2m

(

ξ1 0

0 ξ2

)

. (5.1)

For the purpose of numerical calculation, we make a transformation GII = u−2mξI , so that

one has

(

√

f∂u + 2mu−1
√

f − 2mu−1
)

GII +

[

ṽ

u
+ (−1)Ik

]

u−2m +

[

ṽ

u
− (−1)Ik

]

u2mG2
II = 0 .

(5.2)

Solving the above equation with the boundary condition (3.9), one can directly read off

the UV boundary Green’s function GII .

In figure 4, we plot the Green’s function ImG22 vs. k for tiny ω with different m. One

can observe that with the decrease of m, the quasi-particle-peak becomes sharper and the

Fermi momentum kF is larger. Furthermore, we present the relation between m and the lo-

cation of the peak for ω → 0 in the left plot in figure 5. One finds that the Fermi momentum

kF almost linearly decreases with the increase of m. When m > 0.2, the quasi-particle-peak

begins to enter into the oscillatory region and loses its meaning of Fermi surface.

After Fermi momentum kF has been worked out numerically, we can use equation (4.15)

to calculate the scaling exponent δ of the dispersion relation. The result is presented in the

right plot in figure 5 where one observes that with the decrease of m, the scaling exponent

δ decreases. When m ≤ −0.4, δ = 1, which is a linear dispersion relation. It indicates that

there is a transition from non-Fermi liquid to Fermi liquid as the m decreases in holographic

fermionic system with a RN-AdS black hole in its dual gravity bulk.

5.2.2 Mass dependence in charged black hole gravity bulk with hyperscaling

violation

Now, we turn to study the mass dependence in charged black hole gravity bulk with

hyperscaling violation. The relations between m and the location of the peak for ω → 0

as well as the scaling exponent δ as a function of m with different z, θ are presented in

figure 6. The characteristics of the mass dependence in charged black hole gravity bulk

with hyperscaling violation are summarized as follows

• For small Lifshitz exponent z and hyperscaling exponent θ, the Fermi momentum kF
almost linearly decreases with the increase of m as that in RN-AdS black hole bulk

(the above two plots in the left plots in figure 6). In addition, with the decrease of

m, the scaling exponent δ decreases and there is a transition from non-Fermi liquid

to Fermi liquid as the m decreases (the above two plots in the right of figure 6).

• From the bottom plot in the left of figure 6, we can see that for large Lifshitz exponent

z and hyperscaling exponent θ, the Fermi momentum kF still linearly decreases with

the increase of m in the region of large m. However it does not persist when m

– 14 –
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Figure 6. Left plots: the relation between the mass m and the location of the peak for ω → 0 with

different z and θ. The shade region is the oscillatory region. Right plots: the scaling exponent δ of

dispersion relation as a function of m with different z and θ. Here, q = 0.5.

approaches the low bound (m = −0.5). Also, in the region of m ∈ (−0.5, 0.5), the

scaling exponent δ is always larger than 1, which indicates that it is a non-Fermi

liquid (the bottom plot in the right of figure 6).

5.3 Failure to generate a dynamical gap in holographic fermionic systems with

hyperscaling violation

We showed that the variation of the hyperscaling factor θ can generate various liquid

phases like Fermi liquids, non-Fermi liquids, marginal-Fermi liquids and log-oscillatory.

The question is if in a holographic fermionic system with hyperscaling violation a gap

can be dynamically generated indicating the presence of a Mott insulating phase. In the

allowed region (2.18) of z and θ, we numerically obtained the density plot of the Green

function G22, but we can not see the generated gap near the zero frequency. Two samples

of our density plots are showed in figure 7 where we have set q = 0.5 and m = 0. We have

checked also that other choices of q and m can not generate the Mott gap. It has been

firstly proposed in [7, 8] that a dipole coupling between the fermions and gauge field mimics
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Figure 7. Samples of density plots of the Green function G22. Here we set q = 0.5 and m = 0.

The left plot is for z = 3 and θ = 1.5 while the right one is for z = 2 and θ = 1.99.

doping in the Hubbard model and large enough dipole coupling strength could introduce

a Mott gap phase in AdS black hole from holography. Then, it has been addressed in [17]

that the pseudo-gap phase can be observed by studying the poles and zeros duality through

the det GR. In order to have a complete study of the liquid phases in holographic Fermi

systems beyond the dual AdS geometry, it is natural to introduce the dipole coupling in the

gravity background with the hyperscaling violation.1 The complete study of the effect of

the hyperscaling violation on the liquid phase transition between Fermi Liquid, non-Fermi

liquids, pseudo-gap and Mott gap is under preparation.

6 Non-relativistic fermionic fixed point

Our studies above were focused on the dual relativistic field theory which corresponds to

considering the bulk action with the Lorentz covariance boundary term as

Sbdy =
i

2

∫

∂M
d3x

√
−ggrr ζ̄ζ . (6.1)

In this section, taking into account that our bulk gravity is not boost invariant, we intend

to explore some properties of the non-relativistic fixed point by adding a Lorentz violating

boundary term into bulk action (3.1)

Sbdy =
1

2

∫

∂M
d3x

√
−ggrr ζ̄Γ1Γ2ζ . (6.2)

This boundary term was first proposed in [40], where the authors observed that the spectral

function of the dual holographic non-relativistic system showed a flat band of gapless

excitation. According to the analysis in [40, 41], the retarded Green function of non-

relativistic fixed point can be related to Green functions of the relativistic fixed point as

GR =

(

2G1G2
G1+G2

G1−G2
G1+G2

G1−G2
G1+G2

−2
G1+G2

)

(6.3)

1We have benefited from discussions we had with Philip Phillips on this point.
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Figure 8. Density plots of the spectral function of non-relativistic fixed point. Here we set q = 0.5

and m = 0. The parameters of the plots from left to right are: z = 1; θ = 0, z = 2; θ = 0 and

z = 2; θ = 1.5.

which is off-diagonal with det GR = −1 and its eigenvalue λ± can be expressed in terms

of GI as

λ± =
G1G2 − 1±

√

1 +G2
1 +G2

2 +G2
1G

2
2

G1 +G2
. (6.4)

For simplicity, we will focus on m = 0 in this section. Then we have G1 = −1/G2 from

the symmetry (3.17). Thus, the spectral function has the form

ANR(ω, k) = Im Tr[GR] = Im

[

4GI

1−G2
I

]

. (6.5)

Thus we can obtain the spectral function of the non-relativistic fermionic fixed point

through extracting the Green function GI by solving the flow equation (3.8).

In figure 8, we show the results of the spectral function ANR(ω, k) with samples of ex-

ponents. For comparison, in the left plot, we reproduced the spectral function for RN-AdS

gravity. Then we turned on the dynamical exponent and hyperscaling violation exponent.

We found in hyperscaling violation gravity, that the non-relativistic fixed point also pre-

sented a flat band with the the similar property of poles distributing continuously at a

finite interval of momenta as that in RN-AdS gravity. Namely, the finite band is mildly

dispersed at low momentum, but it shows strong peak at high momentum due to the fact

that the high momentum modes sit outside the lightcone and can’t decay [40].

Furthermore we observed that at large enough momentum the flat band shifts to the

frequency ω which depends on z and θ. This is because the frequency ω is measured

relative to the chemical potential. The flat band corresponds to some zero modes in

the Minkowski vaccum, with the vanishing absolute energy of Fermion characterized by

ωeff = ω + qAt in the Dirac equation on the boundary. From equation (2.22) , it is clear

that At = µ at the boundary, so that the frequency ω is related to the chemical potential

with µ =

√
2(2−θ)(2+z−θ)

z−θ in equation (2.24), which is determined by both the dynamical

exponent and hyperscaling violation exponent.

We move on to explore the Fermi momentum and the effect of flat band in the non-

relativistic fixed point. Before processing, it is necessary to point out some features of
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θ 0 0.1 0.2 0.3 0.4

kF (R) 0.681 0.688 0.694 0.701 0.708

kF (NR) 0.44 0.456 0.47 0.485 0.498

Table 1. The Fermi momentum changes with the hyperscaling exponent with fixed dynamical

exponent z = 1.2 for relativistic and non-relativistic fixed point.

the spectral function (6.5) with massless Dirac field. It was found in [42] that in RN-AdS

background the spectral function of the non-relativistic fermionic fixed point has the same

scaling behavior at low frequency and dispersion relation expression near the Fermi surface

as the relativistic case. Then following [6, 42], we can easily obtain that in the hyperscaling

violation gravity, the scaling of ANR(ω, k) near small ω is the same as the relativistic A(ω, k)

in equation (4.13) and the dispersion relation of ANR(ω, k) coincides with equation (4.15).

Thus, we can numerically determine the Fermi momentum and employ eq. (4.15) to get

the dispersion relation of the non-relativistic fixed point.

We give the values of the Fermi momentum with m = 0 and q = 0.5 in table 1. To

compare, we set the same exponents for the non-relativistic and relativistic cases and we

have chosen z and θ as that in figure 2. From the table, we see that similar to the relativis-

tic case, the Fermi momentum for non-relativistic case also increases as the hyperscaling

violation exponent. However, with any z and θ, the Fermi momentum for non-relativistic

case is lower than that in the relativistic case, meaning that the Fermi surface is suppressed

by the flat band. This phenomenon was also observed in RN-AdS gravity [41] and charged

dilaton gravity [12]. It would be interesting to consider the case with massive fermions.

7 Conclusions and discussion

We have studied the features of the fermionic response in a holographic system with a

charged black hole with hyperscaling violation in the bulk. Since the near horizon geometry

is AdS2, we followed the matching method of [6] to obtain the analytical expressions of

the UV Green’s function and the dispersion relation, which have a similar form as that

in RN-AdS black hole [6] and charged Lifshitz background [26–28]. However, since both

the Fermi momentum kF and the dimension δk in the IR CFT depends on the Lifshitz

dynamical critical exponent and hyperscaling violating exponent, the dispersion relation

also varies with the two exponents.

We numerically determined the Fermi momentum kF to obtain a relation between the

scaling exponent δ of the dispersion relation and the hyperscaling violating exponent θ.

We found that for the case of fixed q, z and zero mass of the fermions, the exponent δ

decreases rapidly as the hyperscaling exponent becomes larger. This indicates that with

the increase of θ, the degree of deviation from the Landau Fermi liquid becomes smaller.

Since the boundary Green’s function depends on the mass of the fermions, we stud-

ied the mass dependence. We found that for small Lifshitz exponent z and hyperscaling

exponent θ, with the increase of m, the Fermi momentum kF almost linearly decreases as

that in RN-AdS black hole and the scaling exponent δ decreases. We found that there is a
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transition from non-Fermi liquid to Fermi liquid as the m decreases. For large z and θ, the

Fermi momentum kF still linearly decreases with the increase of m in the region of large

m, but this does not hold when m approaches the low bound (m = −0.5). Also, in the

region of m ∈ (−0.5, 0.5), the scaling exponent δ is always larger than 1, which indicates

that it is always in a non-Fermi liquid phase.

We looked for the possibility to generate dynamically a gap indicating the presence of

a Mott insulating phase. In the allowed region of z and θ values we numerically obtained

the density plot of the Green function G22, but we failed to observe a generation of a gap

near the zero frequency. We have also checked that other choices of values of q and m

could not generate the Mott gap. This indicates that in order to generate a Mott gap we

need to introduce another scale in the fermionic system, such as a dipole moment.

Finally, we added a Lorentz-violating boundary term into the bulk action and investi-

gated the holographic non-relativistic fixed point dual to the hyperscaling violation gravity

bulk. Similar to the case in RN-AdS black hole [40], we also observed a flat band of gapless

excitation which suppressed the Fermi momentum. Furthermore, here the spectral function

at high momentum shifted to frequency dependent on the dynamical exponent and hyper-

scaling violation exponent, because in the flat band state, the frequency is measured relative

to the chemical potential determined by the two exponents in the form of equation (2.24).

It would be interesting to extend this study into a system with a dipole coupling

between the gauge field and the fermions and see how the hyperscaling violation imprints

on the generation of an insulating phase both in the relativistic and non-relativistic fixed

points. Another interesting direction would be to study the case of non-zero temperature.

In this way we can study how the phenomena and features disclosed due to the presence

of hyperscaling violation would complement the behaviour of quantum liquids and their

realization in condensed matter physics.
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