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1 Introduction

At low energy string theory is well described by supergravity. Stringy corrections beyond

supergravity are captured by higher-derivative α′ corrections. While Einstein’s gravity

and supergravity are well understood in terms of Riemannian geometry, we have no good

understanding of the geometry of string theory or even of classical string theory. Classical

string theory includes α′ corrections. Our goal in this paper is to better understand the

geometry behind these corrections.
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Concretely, we ask whether there is a symmetry explanation for higher-derivative α′

corrections, i.e., a symmetry principle that requires α′ corrections. We know of such sym-

metry principles in some cases; for instance, in heterotic string theory Green-Schwarz

anomaly cancellation [1] requires an O(α′) deformation of the gauge transformations of the

b-field, which in turn requires higher-derivative terms in the action. We have encountered

this phenomenon as a special case of our geometrical formalism [2]. Building up on the

work of [3] we will give extra evidence that there is indeed a gauge principle governing the

α′ corrections of classical string theory more generally.

Conventionally, α′ corrections to the effective field theory of bosonic strings are writ-

ten in terms of higher powers of curvature tensors, the three-form field strength H of

the b-field, and their covariant derivatives. These actions are manifestly compatible with

diffeomorphism invariance and the abelian b-field gauge invariance. Therefore, these cor-

rections are not required by gauge symmetries. In this paper we will invoke T-duality

covariance to study α′ corrections, using closed string field theory [4, 5] and double field

theory (DFT) [6–10]. While T-duality results in a global continuous symmetry of the

effective theory after dimensional reduction, DFT features a T-duality covariance prior

to any reduction. It also features duality-covariant generalized diffeomorphisms, and the

duality symmetry that emerges after dimensional reduction is realized as gauge symme-

tries [9, 11, 12]. In a duality covariant formulation, gauge symmetries acquire α′ corrections

and in that sense ‘explain’ the origin of α′ corrections to the effective action.

In closed string field theory on torus backgrounds T-duality covariance is built in by

having coordinates dual to both momentum and winding modes, thereby realizing the T-

duality group on this doubled space. More precisely, in closed string field theory we have

a perturbative expansion in which the (fluctuating) field variables around T-dual back-

grounds are related by simple transformations that make T-duality manifest [5]. String

field theory enables one to read off gauge transformations and actions, including α′ cor-

rections. String field theory was the starting point for the construction of DFT in [7].

While T-duality is manifest in string field theory variables, the gauge symmetries do not

have the form expected for ‘Einstein’ variables that originate from the the conventional

metric tensor. To O(α′) the field redefinitions needed to connect Einstein variables to

T-duality covariant fields are not generally covariant, leading to fields that transform in a

non-standard way under gauge symmetries.

DFT is what follows from closed string field theory after restricting to the massless

sector, performing duality-covariant field redefinitions, and implementing background in-

dependence. Moreover, one generally imposes a duality covariant “strong constraint” that

means that effectively all fields depend only on half of the doubled coordinates.1 To zeroth

order in α′, duality-covariant field and parameter redefinitions in closed string field theory

(CSFT) simplify the gauge transformations, which then form the algebra governed by the

C-bracket [8]. This bracket becomes the Courant bracket defined in [18] upon reduction to

un-doubled coordinates.

1While there is work on DFT without the strong constraint [13–17], our understanding of such theories

is still preliminary.
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In a DFT formulation of bosonic strings we have to describe the Riemann-squared term

well known to appear to first order in α′. There is a duality-covariant generalized Riemann

tensor, but it cannot be fully determined in terms of physical fields because the connection

contains undetermined components [6, 21, 22]. Therefore, we cannot write directly an

α′ corrected action that preserves duality covariance. Additionally the Riemann-squared

action cannot be written in terms of higher derivatives of the generalized metric [22]. To

cubic order, however, the tensor structure in Riemann-squared that causes this difficulty

can be removed by a non-covariant field redefinition of the metric. This leads to fields

with non-standard gauge transformations, and a gauge algebra with α′ corrections. This is

in quantitative agreement with [25] that studied T-duality in reductions to one dimension.

In that work α′ corrections require field redefinitions of O(α′) that are quadratic in first

derivatives of the metric, and thus cannot originate from covariant field redefinitions.

Doubled α′ geometry [3] is also a formulation in which T-duality is unchanged but

the gauge structure is changed. It features a field independent deformation of the C-

bracket and an action that is exactly gauge invariant. This deformation, however, does

not correspond to the O(α′) deformation of bosonic string theory; it does not give rise to

Riemann-squared terms. The construction of [3] was based on a chiral CFT introduced

in [6] and further studied in [3]. This CFT has one-loop worldsheet anomalies and captures

some of the structure needed for heterotic string theory [2]. Indeed, in this theory the

gauge transformations for the b-field make the field strength H with gravitational Chern-

Simons modification gauge invariant. Although this geometry does not describe the full

α′ corrections of heterotic string theory, it contains important ingredients. A different

approach to describe α′ corrections to heterotic DFT has been discussed in [27], as we will

discuss in the conclusions. See also [28–31] for Courant algebroids in ‘generalized geometry’

formulations of heterotic strings.

We use closed SFT to compute the gauge algebra to first nontrivial order in α′. Af-

ter simplification, the result is a deformation of the C-bracket that differs from that of

doubled α′ geometry by a sign factor linked to the symmetry of bosonic closed strings

under orientation reversal — a Z2 symmetry that is not part of the T-duality group. The

four-derivative terms in [3] are in fact Z2 parity odd. We call this theory DFT− although

it has no overall Z2 symmetry. We find that higher-derivative actions that respect the

Z2 symmetry of bosonic strings exist. This theory, called DFT+, is built to cubic order.

The correction to the C-bracket in DFT+ features the appearance of background fields, as

opposed to the background independent deformation of DFT−. In O(D,D) covariant no-

tation, with fundamental indices M,N = 1, . . . , 2D, and gauge parameters ξM , the gauge

algebra of DFT− reads

DFT− :
[
ξ1, ξ2

]M
−

=
[
ξ1, ξ2

]M
C
− 1

2
ηKLηPQ ηMNK[1KP ∂NK2]LQ . (1.1)

Here KiMN = 2∂[MξiN ] = ∂MξiN − ∂NξiM , i = 1, 2, antisymmetrization of indices or

labels is defined by A[1B2] ≡ 1
2(A1B2−A2B1), and η denotes the O(D,D) invariant metric.

Moreover, [ξ1, ξ2]C denotes the C-bracket governing the gauge algebra of the two-derivative

– 3 –
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DFT:

[
ξ1, ξ2

]M
C

= ξK1 ∂KξM2 − ξK2 ∂KξM1 −
1

2
(ξK1 ∂Mξ2K − ξK2 ∂Mξ1K)

= 2 ξK[1 ∂KξM2] − ηKLηMNξ[1K∂Nξ2]L .

(1.2)

The second term in (1.1) is the higher-derivative correction. The factor of α′ that multiplies

it is left implicit. In contrast, the gauge algebra for DFT+ reads

DFT+ :
[
ξ1, ξ2

]M
+

=
[
ξ1, ξ2

]M
C

+
1

2
H̄KLηPQ ηMNK[1KP ∂NK2]LQ , (1.3)

where H̄KL denotes the background value of the generalized metric that encodes the back-

ground metric and b-field. It should be emphasized that this is not the complete algebra of

DFT+ which, given the appearance of H̄, is expected to be field dependent. At the present

stage of our perturbative calculation only the background value of the fields appear. Start-

ing from the DFT+ gauge algebra we are able to write α′-deformed gauge transformations

that realize the algebra, and we show that they are related to standard tensor gauge trans-

formations by duality-violating redefinitions of precisely the expected form that absorbs

the problematic structure of Riemann-squared.

Given this discrete freedom in the deformation of the gauge structure of DFT, it is

natural to ask whether one can built an ‘interpolating’ theory with both Z2 even and Z2

odd contributions. Such a theory indeed exists at this cubic level, and it corresponds to

having both the gravitational Chern-Simons modification of H and a Riemann-squared

term. The gauge algebra for the interpolating theory reads

[
ξ1, ξ2

]M
α′

=
[
ξ1, ξ2

]M
C

+
1

2

(
γ+H̄KL − γ−ηKL

)
ηPQ K[1KP ∂MK2]LQ , (1.4)

with parameters γ± that at this level are unconstrained.

To confirm the consistency of our constructions we build the cubic action, both for

DFT+ and DFT−, including all terms with four derivatives and show that it is consistent

with gauge invariance. While the cubic DFT− action is simple, the DFT+ action is quite

involved, but we can show that it encodes Riemann-squared (or Gauss-Bonnet) at the

cubic level.

The main conclusion suggested by the results in this paper can be summarized as

follows: while it is always possible to write α′ corrections in terms of standard ‘Einstein

variables’ g and b, string theory strongly suggests that these are not the best variables

when α′ effects are turned on. Rather, making the duality symmetries of string theory

manifest requires field variables that have non-covariant transformations of O(α′) under

standard diffeomorphisms. This may seem a radical step since diffeomorphism invariance

is the basic principle of Riemannian geometry, but in string theory this gauge principle

is replaced by a duality covariant one, with a gauge algebra that extends the Lie bracket

to the duality covariant bracket (1.4) with O(α′) contributions. It is to be expected that

there will be a (generalized) geometric formulation of classical string theory that organizes

the notoriously complicated α′ corrections in an efficient way that is manifestly covariant

under all symmetries.

– 4 –
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This paper is organized as follows. In section 2 we review some of the basics of closed

string field theory and then determine the gauge algebra including terms with one and three

derivatives. This algebra is simplified by doing duality covariant field-dependent parameter

redefinitions in section 3. We use the simple final form to write field transformations that

realize this DFT+ algebra. At this stage we also note that a simple variant gives the DFT−

algebra. In section 4 we discuss the relation between the CSFT perturbative field variables

and the ‘Einstein’ variables. We do this for DFT+ showing that duality non-covariant field

redefinitions relate the DFT variables to Einstein variables. For DFT− the relation is more

subtle, as reviewed here. In section 5 we develop the perturbation theory of DFT−, which

is a useful step to develop the same perturbation theory for DFT+. We discuss in detail the

Z2 orientation reversal transformation and its action on the perturbative DFT fields. We

also explain how to relate CSFT variables to the perturbative DFT variables and confirm

our identification of DFT+ with the theory that arises from CSFT. Finally, in section 6 we

perform a very nontrivial check of the existence of DFT+: we show that an invariant cubic

action including four-derivative terms exists. The cubic terms show direct evidence of the

Gauss-Bonnet terms in the effective action. We conclude with some additional discussion

of our results in section 7.

2 The gauge algebra from string field theory

In this section we review the facts about string field theory necessary to extend the results

of [7] to include α′ corrections in the gauge algebra. We compute the algebra of gauge

transformations directly from the string field theory, including the first nontrivial α′ cor-

rections. We also review the simplification of the gauge algebra to zeroth order in α′. This

section prepares the ground for the next where we will perform redefinitions directly on

the gauge algebra in order to obtain a simple form of the α′ corrections to the algebra.

2.1 Generalities of closed string field theory

The string field theory action is non-polynomial and takes the form

(2κ2)S = − 4

α′

(
1

2
〈Ψ, QΨ〉+ 1

3!
〈Ψ, [Ψ ,Ψ]〉+ 1

4!
〈Ψ, [Ψ ,Ψ ,Ψ]〉+ · · ·

)
. (2.1)

Here |Ψ〉 is the classical off-shell closed string field, a ghost-number two, Grassmann even

state of the full matter and ghost conformal field theory that describes the closed string

background. The off-shell string field must satisfy (L0 − L̄0)|Ψ〉 = 0 and (b0 − b̄0)|Ψ〉 = 0.

The ghost-number one operator Q is the BRST operator of the conformal field theory and

〈·, ·〉 denotes the (linear) inner product:

〈A ,B〉 ≡ 〈A| c−0 |B〉 , c±0 ≡
1

2
(c0 ± c̄0) , (2.2)

where 〈A| is the BPZ conjugate of the string field |A〉. The inner product vanishes unless

gh(A)+gh(B) = 5. The cubic interaction is defined in terms of a closed string bracket [· , ·]
or product. This product, whose input is two string fields and its output is another string
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field, is graded commutative: [B1, B2] = (−1)B1B2 [B2, B1] where the B1 and B2 in the

sign factor denote the Grassmanality of the string fields B1 and B2, respectively. Moreover

we have gh([B1, B2]) = gh(B1) + gh(B2) − 1. Thus, for the Grassmann even classical

field [Ψ,Ψ] does not vanish and it has ghost number three, which is suitable for the cubic

coupling of the theory not to vanish. The quartic term in the action is defined in terms of

a three-product [B1, B2, B3] that is also graded commutative. This product parametrizes

the failure of the bracket to be a Lie bracket, and is the next element in the L∞ structure

of the classical theory. The dots in the action denote terms quartic and higher order in the

string field.

The field equations F(Ψ) = 0 and gauge transformations δΛΨ of the theory take

the form

F(Ψ) ≡ QΨ+
1

2
[Ψ ,Ψ ] +

1

3!
[Ψ ,Ψ ,Ψ ] + · · · = 0

δΛΨ = QΛ + [Ψ ,Λ ] +
1

2
[Ψ,Ψ,Λ ] + · · · ,

(2.3)

where Λ is a ghost-number one string field and the dots denote terms with higher powers

of the string field Ψ. The gauge algebra of the theory takes the form

[
δΛ1

, δΛ2

]
= δΛ12(Ψ) + [Λ1,Λ2,F ] + · · · . (2.4)

The transformations only close on shell (using the three-product) and the dots represent

higher terms that also vanish on-shell. The resulting gauge parameter takes the form

Λ12(Ψ) = [Λ2 ,Λ1 ] + [ Λ2,Λ1 ,Ψ ] + · · · (2.5)

showing that the algebra has field-dependent structure constants. Since the gauge param-

eters are ghost number one string fields they are Grassmann odd and thus the bracket

[ Λ2 ,Λ1 ] is properly antisymmetric under the exchange of the gauge parameters. We will

compute the first term on the above right hand side.

The theory generically has gauge invariances of gauge invariances. A gauge param-

eter of the form Λ̂ = Qχ will generate no leading order gauge transformations in (2.3)

because Q2 = 0. To all orders one only has on-shell gauge invariances of gauge invariances.

Indeed, for

Λ̂ = Qχ+ [Ψ, χ] +
1

2
[Ψ,Ψ, χ] + · · · , (2.6)

one finds a gauge transformation that vanishes on-shell: δ
Λ̂
Ψ = −[F , χ ]− [F ,Ψ , χ] +

O(Ψ3).

2.2 String field and gauge parameter

The closed string field for the massless sector takes the form

|Ψ〉 =
∫

dp

(
−1

2
eij(p)α

i
−1ᾱ

j
−1 c1c̄1 + e(p) c1c−1 + ē(p) c̄1c̄−1

+ i

√
α′

2

(
fi(p) c

+
0 c1α

i
−1 + f̄j(p) c

+
0 c̄1ᾱ

j
−1

)
|p〉 .

(2.7)

– 6 –
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This string field features five component fields: eij , e, ē, fi, and f̄i. The field eij contains

the gravity and b-field fluctuations as its symmetric and antisymmetric parts, respectively.

One linear combination of the e and ē fields (the difference) is the dilaton and the other

linear combination (the sum) can be gauged away. The fields fi and f̄i are auxiliary fields

and can be solved for algebraically. The gauge parameter |Λ〉 associated to the above string

field takes the form

|Λ〉 =
∫
[dp]

(
i√
2α′

λi(p)α
i
−1c1 −

i√
2α′

λ̄i(p) ᾱ
i
−1c̄1 + µ(p) c+0

)
|p〉 . (2.8)

The string field Λ has ghost number one and is annihilated by b−0 . It contains two vectorial

gauge parameters λi and λ̄i that encode infinitesimal diffeomorphisms and infinitesimal

b-field gauge symmetries in some suitable linear combinations. There is also one scalar

gauge parameter µ that can be used to gauge away the field e + ē. The linearized gauge

transformations are

δΛeij = Diλ̄j + D̄jλi ,

δΛfi = −
1

2
�λi +Diµ ,

δΛf̄i =
1

2
� λ̄i + D̄iµ ,

δΛe = −
1

2
Diλi + µ ,

δΛē =
1

2
D̄iλ̄i + µ .

(2.9)

All indices are raised and lowered with the background metric Gij . The derivatives D and

D̄ are defined as

Di =
1√
α′

(
∂

∂xi
− Eik

∂

∂x̃k

)
, D̄i =

1√
α′

(
∂

∂xi
+ Eki

∂

∂x̃k

)
. (2.10)

The weak constraint means that the following equality holds acting on any field or

gauge parameter

� ≡ D2 = D̄2 . (2.11)

The strong constraint is DiADiB = D̄iAD̄iB for any A,B. We can now introduce fields d

and χ by

d =
1

2
(e− ē) , and χ =

1

2
(e+ ē) . (2.12)

The gauge transformations of d and χ are

δΛd = −1

4
(Diλi + D̄iλ̄i) , δΛχ = −1

4
(Diλi − D̄iλ̄i) + µ . (2.13)

It is clear that a choice of µ can be used to set χ = 0. Since further λ, λ̄ gauge transfor-

mations would then reintroduce χ, these gauge transformations must be accompanied by

compensating µ gauge transformations with parameter µ(λ, λ̄)

µ(λ, λ̄) =
1

4
(D · λ− D̄ · λ̄) . (2.14)

– 7 –
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Effectively, the new gauge transformations δΛ are δλ + δλ̄ + δµ(λ,λ̄). The extra term does

not affect d nor eij , as neither transforms under µ gauge transformations. It changes the

gauge transformations of f and f̄ , but this is of no concern as these are auxiliary fields to

be eliminated. We denote by δΛ the gauge transformations generated by λ and λ̄, and use

δλ and δλ̄ for the separate transformations. We have

δΛeij = Diλ̄j + D̄jλi , δΛd = −1

4
D · λ− 1

4
D̄ · λ̄ , (2.15)

The theory is invariant under the Z2 symmetry

eij → eji , Di → D̄i , D̄i → Di , d → d , (2.16)

related to the invariance of the closed string theory under orientation reversal. Note that

this relates the transformations under λ to those under λ̄. Invariance under one set of gauge

transformations implies invariance under the other set. This holds both as we include field

dependent terms and higher derivatives.

The component fields in the string field theory have simple transformations under T-

duality. Since the formulation of the theory is not background independent the theory

around some background E must be compared with the theory formulated around a T-

dual background E′. The fluctuation fields of the two theories, as explained in section

4.2 of [7], are related by simple matrix transformations. Schematically eij = Mi
kM̄j

le′kl
and the dilaton d is duality invariant. Note that the first index of e transforms with the

unbarred M and the second with the barred M . Every expression in which indices are

contracted consistently, i.e., unbarred with unbarred and barred with barred indices, is

therefore T-duality covariant. T-duality covariant redefinitions respect such structure in

contractions of indices.

2.3 Cubic terms and gauge transformations from CSFT

The algebra of gauge transformations is described by (2.5), and the field-independent part

is given by

Λ12 ≡ [ Λ2 ,Λ1 ] . (2.17)

We use uppercase gauge parameters to encode all the component gauge parameters:

Λ1 = (λ1, λ̄1, µ1), Λ2 = (λ2, λ̄2, µ2) , Λ12 = (λ12, λ̄12, µ12). (2.18)

The computation of the gauge algebra is a straightforward but somewhat laborious matter

in string field theory. There are contributions with various numbers of derivatives or powers

of α′. We will be interested in the terms at zero order and first order in α′. We will write

this as

λi
12 =λ

(0)i
12 + α′λ

(1)i
12 + . . .

λ̄i
12 =λ̄

(0)i
12 + α′λ̄

(1)i
12 + . . .

µi
12 =µ

(0)i
12 + α′µ

(1)i
12 + . . . ,

(2.19)

– 8 –
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where the superscripts in parenthesis denote the power of α′. The result to zeroth order in

α′ is

λ
(0)i
12 =

1

2

(
λ2 ·Dλi

1 − λ1 ·Dλi
2

)
− 1

4

(
λ2 ·Diλ1 − λ1 ·Diλ2

)
− 1

4

(
λi
2D · λ1 − λi

1D · λ2

)

+
1

4

(
λ̄2 · D̄λi

1 − λ̄1 · D̄λi
2

)
+

1

8

(
λi
1D̄ · λ̄2 − λi

2D̄ · λ̄1

)
− 1

4
(λi

1 µ2 − λi
2µ1) ,

λ̄
(0)i
12 =

1

2

(
λ̄2 · D̄λ̄i

1 − λ̄1 · D̄λ̄i
2

)
− 1

4

(
λ̄2 · D̄iλ̄1 − λ̄1 · D̄iλ̄2

)
− 1

4

(
λ̄i
2 D̄ · λ̄1 − λ̄i

1 D̄ · λ̄2

)

+
1

4

(
λ2 ·Dλ̄i

1 − λ1 ·Dλ̄i
2

)
+

1

8

(
λ̄i
1D · λ2 − λ̄i

2D · λ1

)
+

1

4
(λ̄i

1 µ2 − λ̄i
2µ1) ,

µ
(0)
12 = − 1

8

(
λ1 ·D + λ̄1 · D̄

)
µ2 −

1

16

(
D · λ1 + D̄ · λ̄1

)
µ2 . (2.20)

A partial version of this result is given in equation (3.8) of [7]. In that reference we only

determined the contribution to λ
(0)i
12 from λ1 and λ2. Such terms are in the first line of λ

(0)i
12 .

There are also contributions that involve λ̄1 and λ̄2 as well as µ1 and µ2. Such terms were

not needed for [7], where the gauge algebra was recalculated after a number of parameter

and field redefinitions. The order α′ results will be given below in (2.28).

The gauge transformations of the fields, including terms linear in fields but only two

derivatives, are somewhat complicated and were given in [7]. Their simplification took a

few steps. One must substitute the leading values for the auxiliary fields f and f̄ . Again,

one can gauge fix e + ē to zero and work with just the dilaton d. This is followed by a

redefinition of the gauge parameters:

λ′
i = λi +

3

4
λid−

1

4
λ̄keik ,

λ̄′
i = λ̄i +

3

4
λ̄id−

1

4
λkeki ,

(2.21)

and finally a duality-covariant redefinition of the fields:

e′ij = eij + eijd ,

d′ = d+
1

32
eije

ij +
9

16
d2 .

(2.22)

Dropping primes, the final form of the α′-independent gauge transformations is

δΛeij = D̄j λi +
1

2

[
(Diλ

k −Dkλi) ekj + λkD
keij

]

+ Di λ̄j +
1

2

[
(D̄j λ̄

k − D̄kλ̄j) eik + λ̄kD̄
keij

]
,

δΛ d = − 1

4
D · λ+

1

2
(λ ·D) d − 1

4
D̄ · λ̄+

1

2
(λ̄ · D̄) d .

(2.23)

Trivial gauge parameters do not generate gauge transformations and take a simple form

λi = Diχ , λ̄i = −D̄iχ , (2.24)
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as can be checked using the strong constraint. These trivial gauge parameters have no field

dependence and the resulting transformations of fields vanish without using equations of

motion. This is simpler than what could have been expected from (2.6). We will see that

such simplicity is preserved with α′ corrections. The algebra of gauge transformations can

be recalculated using (2.23) with the conventions
[
δΛ1

, δΛ2

]
= δΛc,12

, Λc,12 = (λc,12, λ̄c,12) , (2.25)

with subscripts ‘c’ for C-bracket. We find

λi
c,12 =

1

2

[
(λ2 ·D + λ̄2 · D̄)λi

1 − (λ1 ·D + λ̄1 · D̄)λi
2

]

+
1

4

[
λ1 ·Diλ2 − λ2 ·Diλ1

]
− 1

4

[
λ̄1 ·Diλ̄2 − λ̄2 ·Diλ̄1

]
,

λ̄i
c,12 =

1

2

[
(λ2 ·D + λ̄2 · D̄) λ̄i

1 − (λ1 ·D + λ̄1 · D̄) λ̄i
2

]

− 1

4

[
λ1 · D̄iλ2 − λ2 · D̄iλ1

]
+

1

4

[
λ̄1 · D̄iλ̄2 − λ̄2 · D̄iλ̄1

]
.

(2.26)

This is the gauge algebra that written in background independent language gives the C-

bracket [8]: Λc,12 = [Λ2 ,Λ1 ]C . This algebra is different from the zeroth-order algebra

in (2.20). It would have been convenient if (2.26) could have been derived from (2.20)

without recourse to the gauge transformations of fields. We will do this in the next section

as a warm-up, before extending the analysis to include the α′ corrections. As a first step,

we rewrite here λ
(0)i
12 in terms of λi

c,12. A short calculation gives

λ
(0)i
12 = λi

12 c +
1

4

(
λ̄1 ·Diλ̄2 − λ̄2 ·Diλ̄1

)
− 1

4

(
λi
2D · λ1 − λi

1D · λ2

)

− 1

4

(
λ̄2 · D̄λi

1 − λ̄1 · D̄λi
2

)
+

1

8

(
λi
1D̄ · λ̄2 − λi

2D̄ · λ̄1

)
− 1

4
(λi

1 µ2 − λi
2µ1) .

(2.27)

The order α′ terms in the gauge algebra, as defined in (2.19) are also calculated from

the string field theory and the result is

λ
(1)i
12 = − 1

32

(
Di

1 −Di
2

)(
D

j
1 + 2Dj

2

)(
2Dk

1 +Dk
2

)
λ1jλ2k

− 1

64

(
Di

1 −Di
2

)(
D

j
1 + 2Dj

2

)(
2D̄k

1 + D̄k
2

)
(λ1 j λ̄2 k − λ2 j λ̄1 k) (2.28)

+
1

32

(
Di

1 −Di
2

)(
D

j
1 + 2Dj

2

)
(λ1 jµ2 − λ2 jµ1)

+
1

32

(
Di

1 −Di
2

)(
D̄

j
1 + 2D̄j

2

)
(λ̄1 j µ2 − λ̄2 j µ1) ,

λ̄
(1)i
12 = − 1

32

(
D̄i

1 − D̄i
2

)(
D̄

j
1 + 2D̄j

2

)(
2D̄k

1 + D̄k
2

)
λ̄1j λ̄2k

− 1

64

(
D̄i

1 − D̄i
2

)(
D̄

j
1 + 2D̄j

2

)(
2Dk

1 +Dk
2

)
(λ̄1 jλ2 k − λ̄2 jλ1 k)

− 1

32

(
D̄i

1 − D̄i
2

)(
D̄

j
1 + 2D̄j

2

)
(λ̄1 jµ2 − λ̄2 jµ1)

− 1

32

(
D̄i

1 − D̄i
2

)(
D

j
1 + 2Dj

2

)
(λ1 j µ2 − λ2 j µ1) ,

µ12 =
1

32
(Dj

1 + 2Dj
2 ) ( 2D̄

k
1 + D̄k

2)λ1,j λ̄2,k − (1↔ 2) .
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In here we have a collection of derivatives acting on products (or a sum of products)

of gauge parameters. The convention is that D1 acts on the first function and D2 on

the second function. Thus, for example, Di
1(f · g) = Dif · g, Di

2(f · g) = f · Dig, and

D
j
1D

i
2(f · g) = Djf ·Dig. Care must be exercised not to exchange the order of functions

until all derivatives have been applied. Note that λ̄i
12 is obtained from λi

12 by conjugating

all objects and changing the sign of any term involving µ1 or µ2.

3 Simplifying the closed string theory gauge algebra

In this section we perform redefinitions of the gauge parameters in order to simplify the

closed string field theory gauge algebra obtained in section 2. We begin by showing how

to compute in general the change of a gauge algebra under a field-dependent parameter

redefinition. Then we illustrate this technique by applying it to the CSFT gauge algebra

to zeroth order in α′, to recover the C-bracket result (2.26). We apply it next to the CSFT

gauge algebra to first order in α′, and after some steps we obtain the rather simple form

given in (3.34). Based on this final form of the gauge algebra, we determine the associated

gauge transformations to first order in α′. In the last subsection, we point out that consis-

tency of such a higher-derivative deformation of bracket and gauge transformations does

not uniquely determine these transformations. Rather, there is a Z2 freedom that leaves

one sign undetermined.

3.1 General remarks on gauge parameter redefinitions

We start with a general discussion of (perturbative) gauge transformations and show how

field-dependent redefinitions of the gauge parameters can change the gauge algebra. Note

that, in contrast, field redefinitions leave the gauge algebra unchanged, even though they

can change the form of gauge transformations. We consider gauge transformations of fields,

collectively denoted by φ, with respect to a gauge parameter λ. They are perturbatively

defined to first order in fields,

δλφ = f(λ) + g(λ, φ) +O(φ2) , (3.1)

where f is a linear function of λ, and g is a linear function of both λ and φ. We also write

f(λ) = δ
[0]
λ φ , g(λ, φ) = δ

[1]
λ φ , (3.2)

indicating by the superscript in brackets the power of fields. In general, closure of the

gauge transformations requires

[
δλ1

, δλ2

]
φ = δλ12(λ1,λ2;φ)

φ + h(λ1, λ2, F (φ)) , (3.3)

where λ12(λ1, λ2; φ) are field dependent structure constants, and F (φ) is a function of

the fields such that h = 0 on-shell. To linear order in φ we can only determine the part

of the gauge algebra (3.3) that is independent of φ, since terms O(φ) are affected by
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the δ[0] variation of unknown terms O(φ2). Thus, h cannot be calculated from the field

transformations to this order. Similarly, writing

λ12(λ1, λ2; φ) = λ12(λ1, λ2) +O(φ) , (3.4)

we can only determine the φ-independent part. Equation (3.3) then reduces to

[
δλ1

, δλ2

]
φ = f(λ12(λ1, λ2)) +O(φ) = δ

[0]
λ12(λ1,λ2)

φ +O(φ) . (3.5)

On the other hand, computing the left-hand side directly from the transformations we find

[
δλ1

, δλ2

]
φ = δλ1

(
f(λ2) + g(λ2, φ) +O(φ2)

)
− (1↔ 2)

= g(λ2, f(λ1))− g(λ1, f(λ2)) +O(φ) .
(3.6)

Comparing with (3.5) we learn that

f(λ12(λ1, λ2)) = g(λ2, f(λ1))− g(λ1, f(λ2)) . (3.7)

Now we examine how a field-dependent parameter redefinition changes the gauge algebra.

We consider

λ → λ+ Λ(λ, φ) , (3.8)

with Λ(λ, φ) linear in λ and φ. More precisely, we define new gauge transformations δ̃λ by

δ̃λφ ≡ δλ+Λ(λ,φ) φ = δλφ+ δΛ(λ,φ)φ = f(λ) + g(λ, φ) + f(Λ(λ, φ)) +O(φ2) . (3.9)

From this we next compute the new gauge algebra, which is of the form

[
δ̃λ1

, δ̃λ2

]
φ = δ

[0]

λ̃12(λ1,λ2)
φ+O(φ) = f(λ̃12(λ1, λ2)) +O(φ) . (3.10)

From the left-hand side we get

[
δ̃λ1

, δ̃λ2

]
φ = δ̃λ1

(
f(λ2) + g(λ2, φ) + f(Λ(λ2, φ)) +O(φ2)

)
− (1↔ 2)

= g(λ2, f(λ1)) + f(Λ(λ2, f(λ1))− (1↔ 2) +O(φ)

= f(λ12(λ1, λ2)) + f(Λ(λ2, f(λ1))− f(Λ(λ1, f(λ2)) +O(φ) ,

(3.11)

using (3.7) in the last step. Recalling that δ
[0]
λ φ = f(λ), we compare with (3.10) and infer

that up to irrelevant trivial parameters

λ̃12(λ1, λ2) = λ12(λ1, λ2) + Λ
(
λ2, δ

[0]
λ1
φ
)
− Λ

(
λ1, δ

[0]
λ2
φ
)
. (3.12)

This relation allows us to compute the modification of the gauge algebra under field-

dependent parameter redefinitions generated by Λ(λ, φ) knowing only the inhomogeneous

transformations δ[0] of the fields. We will apply this repeatedly below.
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3.2 Simplifying the gauge algebra

We first illustrate the above method by simplifying the gauge algebra following from CSFT

to zeroth order in α′. After using the gauge fixing condition (2.14) in (2.27) we find that

λ12 to zeroth order in α′ can be written as

λ
(0)i
12 = λi

c,12 +
1

4

[
λ̄k
1 D

iλ̄2,k − λ̄k
2 D

iλ̄1,k

]
− 1

4

[
λ̄k
2D̄kλ

i
1 − λ̄k

1 D̄k λ
i
2

]

+
3

4

[
−λi

1

(
−1

4
(D · λ2 + D̄ · λ̄2)

)
+ λi

2

(
−1

4
(D · λ1 + D̄ · λ̄1)

)]
.

(3.13)

Next let us combine terms in the first and second line to find

λ
(0)i
12 = λi

c,12 +
1

4
λ̄k
1 (D

iλ̄2,k + D̄kλ
i
2) +

3

4

[
−λi

1

(
−1

4
(D · λ2 + D̄ · λ̄2)

)]
− (1↔ 2) , (3.14)

where the (1↔ 2) antisymmetrization applies to all terms except λi
c,12. We wrote the terms

such that they take the form of the δ[0] transformations of eij and d as given in (2.15).

Thus, using the (1↔ 2) antisymmetry, we can write

λ
(0)i
12 = λi

c,12 −
1

4
λ̄k
2 δ

[0]
λ1
eik +

3

4
λi
2 δ

[0]
λ1
d − (1↔ 2) . (3.15)

Looking back at (3.12) we infer that the final two terms have precisely the structure needed

to be removable by a parameter redefinition. More precisely, with

Λi(λ, λ̄, e, d) =
1

4
λ̄k eik −

3

4
λi d , (3.16)

we obtain with (3.12) and (3.15) for the redefined gauge algebra

λ̃i
12(λ1, λ2) = λ

(0)i
12 (λ1, λ2) +

1

4
λ̄k
2 δ

[0]
λ1

eik −
3

4
λi
2 δ

[0]
λ1

d− (1↔ 2) = λi
c,12 . (3.17)

The extra terms have cancelled and the gauge algebra reduces to the one defined by the

C-bracket. The above parameter redefinitions are those in (2.21), and combined with the

field redefinitions (2.22) lead to the simplified form (2.23) of the gauge transformations.

Note that, more efficiently, terms in the gauge algebra of the form Λ
(
λ2, δ

[0]
λ1
φ
)
−Λ

(
λ1, δ

[0]
λ2
φ
)

can be simply dropped.

In the following we apply this strategy to the O(α′) corrections of the gauge algebra.

With the above simplification, the O((α′)0) part of the algebra is that of the C-bracket

and the O(α′) terms remain unchanged so that, deleting tilde’s, we can write

λi
12 = λi

c,12 + α′λ
(1)i
12 . (3.18)

Here λ
(1)i
12 represents the α′ correction given in (2.28) that, grouping differential operators,

can be written as:

λ
(1)i
12 =− 1

32
(Di

1 −Di
2)(D

j
1 + 2Dj

2)

[
(2Dk

1 +Dk
2)λ1jλ2k

+
1

2
(2D̄k

1 + D̄k
2)(λ1j λ̄2k − λ2j λ̄1k)− λ1jµ2 + λ2jµ1

]

+
1

32
(Di

1 −Di
2 ) ( D̄

j
1 + 2D̄j

2) (λ̄1,j µ2 − λ̄2,j µ1) .

(3.19)
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Next we eliminate µ in favor of λ using (2.14) and expand the innermost differential operator

λ
(1)i
12 =− 1

32
(Di

1 −Di
2)(D

j
1 + 2Dj

2)

[
2Dkλ1j λ2k + λ1jD

kλ2k + D̄kλ1j λ̄2k − D̄kλ2j λ̄1k

+
1

2
λ1jD̄

kλ̄2k −
1

2
λ2jD̄

kλ̄1k −
1

4
λ1j(D · λ2 − D̄ · λ̄2) +

1

4
λ2j(D · λ1 − D̄ · λ̄1)

]

+
1

32
(Di

1 −Di
2 ) ( D̄

j
1 + 2D̄j

2)

(
1

4
λ̄1,j (D · λ2 − D̄ · λ̄2) −

1

4
λ̄2,j (D · λ1 − D̄ · λ̄1)

)
.

(3.20)

Acting then with the second differential operator yields

λ
(1)i
12 =− 1

32

(
Di

1 −Di
2

){
2DjDkλ1j λ2k +Djλ1j D

kλ2k +DjD̄kλ1j λ̄2k −DjD̄kλ2j λ̄1k

+
1

2
Djλ1j D̄

kλ̄2k −
1

2
Djλ2j D̄

kλ̄1k + 4Dkλ1j D
jλ2k + 2λ1jD

jDkλ2k

+ 2D̄kλ1j D
j λ̄2k − 2D̄kλ2jD

j λ̄1k + λ1jD
jD̄kλ̄2k − λ2jD

jD̄kλ̄1k

− 1

4
Djλ1j

(
D · λ2 − D̄ · λ̄2

)
+

1

4
Djλ2j

(
D · λ1 − D̄ · λ̄1

)

− 1

2
λ1jD

j
(
D · λ2 − D̄ · λ̄2

)
+

1

2
λ2jD

j
(
D · λ1 − D̄ · λ̄1

)

− 1

4
D̄j λ̄1j

(
D · λ2 − D̄ · λ̄2

)
+

1

4
D̄j λ̄2j

(
D · λ1 − D̄ · λ̄1

)

− 1

2
λ̄1jD̄

j
(
D · λ2 − D̄ · λ̄2

)
+

1

2
λ̄2jD̄

j
(
D · λ1 − D̄ · λ̄1

)}
.

(3.21)

We can now combine and simplify various terms inside the parenthesis (i.e. before acting

with the outer differential operator). We note that (D1 −D2) imposes an antisymmetry:

when exchanging the first and second factor of any term we get a sign. It is then an easy

calculation to show, for instance, that the terms quadratic in D · λ and D̄ · λ̄ combine into

1

2

(
D ·λ1+D̄ ·λ̄1

)(
D ·λ2+D̄ ·λ̄2

)
= −

(
δ
[0]
λ1
d
)(
D ·λ2+D̄ ·λ̄2

)
−
(
D ·λ1+D̄ ·λ̄1

)(
δ
[0]
λ2
d
)
. (3.22)

Performing similar manipulations for the remaining terms in (3.21) we find in total

λ
(1)i
12 =− 1

32

(
Di

1 −Di
2

){
−
(
D · λ1 + D̄ · λ̄1

)
δ
[0]
λ2
d +

3

2
λ
j
1Dj

(
D · λ2 + D̄ · λ̄2

)

+
1

2
λ̄
j
1D̄j

(
D · λ2 + D̄ · λ̄2

)
+ 2Dkλ1j D

jλ2k + 2D̄kλ1j D
j λ̄2k − (1↔ 2)

}
,

=− 1

32

(
Di

1 −Di
2

){
−
(
D · λ1 + D̄ · λ̄1

)(
δ
[0]
λ2
d
)
− 6λj

1Dj

(
δ
[0]
λ2
d
)
− 2λ̄j

1D̄j

(
δ
[0]
λ2
d
)

+ 2Dkλ1j D
jλ2k + 2D̄kλ1j D

j λ̄2k − (1↔ 2)

}
, (3.23)

where (1↔ 2) means (λ1 ↔ λ2). Consider the second term on the last line. We write it in

terms of δ[0]e and use the strong constraint to find

2D̄kλ1j

(
δ
[0]
λ2
ejk − D̄kλ

j
2

)
− (1↔ 2) = 2D̄kλ1j δ

[0]
λ2
ejk − 2Dkλ1j Dkλ

j
2 − (1↔ 2) . (3.24)
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As a result, we have

λ
(1)i
12 =− 1

16

(
Di

1 −Di
2

){
− 1

2

(
D · λ1 + D̄ · λ̄1

)(
δ
[0]
λ2
d
)
− 3λj

1Dj

(
δ
[0]
λ2
d
)
− λ̄

j
1D̄j

(
δ
[0]
λ2
d
)

+ D̄kλ1j

(
δ
[0]
λ2
ejk

)
+Dkλ1j D

jλ2k −Dkλ1j Dkλ
j
2 − (1↔ 2)

}
. (3.25)

It is now clear that all terms that involve a δ[0] have the structure that allows them to be

removed by a suitable parameter redefinition. It thus follows that the new gauge algebra is

λ̃
(1)i
12 = − 1

16

(
Di

1 −Di
2

) {
2Dkλ1j D

jλ2k − 2Dkλ1j Dkλ
j
2

}
, (3.26)

where we noted that the antisymmetry in λ1 ↔ λ2 is automatic under the operator (Di
1 −

Di
2). Dropping the tilde from now on, we have simplified the gauge algebra to

λ
(1)i
12 = − 1

16

(
Di

1 −Di
2

)(
Dkλ1j −Djλ

k
1

)(
Djλ2k −Dkλ

j
2

)

=
1

16

(
Dkλ1j −Djλ

k
1

)←→
D

i(
Djλ2k −Dkλ

j
2

)
,

(3.27)

with A
←→
DB ≡ ADB −DAB. In the notation of (3.18) we have identified the α′-corrected

gauge algebra or bracket as

λi
12 ≡ λi

c,12 −
1

16
α′
(
Djλ

k
1 −Dkλ1j

)←→
D

i(
Djλ2k −Dkλ

j
2

)
. (3.28)

Note that for trivial parameters λi = Diχ the full α′ corrected bracket vanishes. Moreover,

this algebra is purely holomorphic. An exactly analogous treatment of the barred parameter

would yield

λ̄i
12 ≡ λ̄i

c,12 −
1

16
α′
(
D̄j λ̄

k
1 − D̄kλ̄1j

)←→̄
D

i(
D̄j λ̄2k − D̄kλ̄

j
2

)
. (3.29)

Employing the notation

Kij ≡ 2D[i λj] , K̄ij ≡ 2D̄[i λ̄j] , (3.30)

the algebra takes the form

λi
12 ≡ λi

c,12 −
1

16
α′

(
Kkl

1 DiK2kl − (1↔ 2)
)
,

λ̄i
12 ≡ λ̄i

c,12 −
1

16
α′

(
K̄kl

1 D̄iK̄2kl − (1↔ 2)
)
.

(3.31)

Although this holomorphic/antiholomorphic presentation of the bracket is intriguing,

it turns out to be useful to perform one more parameter redefinition that mixes holomorphic

and antiholomorphic parts. In fact, the original string field theory gauge algebra mixes

holomorphic and antiholomorphic parameters, and the C-bracket does as well. Such mixing

leads to a simplified form of the gauge transformations, which we will discuss in the next
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subsection. The parameter redefinition, in the form (3.12), uses parameters Λi and Λ̄i

given by

Λi = −1

8
α′
(
D̄kλ̄l − D̄lλ̄k

)
D̄keil , Λ̄i = −1

8
α′
(
Dkλl −Dlλk)D

keli . (3.32)

This leads to the redefined gauge algebra

λ̃i
12 = λi

12 −
1

8
α′
[(
D̄kλ̄2l − D̄lλ̄2k

)
D̄k

(
Diλ̄l

1 + D̄lλi
1

)
− (1↔ 2)

]

= λi
12 −

1

16
α′
[(
D̄kλ̄2l − D̄lλ̄2k

)
Di

(
D̄kλ̄l

1 − D̄lλ̄k
1

)
− (1↔ 2)

]
,

(3.33)

where we noted that the second derivative D̄kD̄l is symmetric in k, l and so drops out of

the antisymmetric contraction. Dropping the tilde, and combining with (3.31) the gauge

algebra finally becomes

CSFT gauge algebra: λi
12 ≡ λi

c,12 −
1

16
α′
(
Kkl

1 DiK2kl − K̄kl
1 DiK̄2kl − (1↔ 2)

)
,

λ̄i
12 ≡ λ̄i

c,12 −
1

16
α′
(
K̄kl

1 D̄iK̄2kl −Kkl
1 D̄iK2kl − (1↔ 2)

)
,

(3.34)

where we have included the corresponding antiholomorphic part. This is the final form

of the CSFT gauge algebra that we will use next to determine the α′-deformed gauge

transformation. The Cα′ bracket is read from the above results and the definitions:

[
δΛ1

, δΛ2

]
= δΛ12

, Λ12 ≡ [ Λ2 ,Λ1 ]c
α′

→ (λ12, λ̄12) ≡ [ (λ2, λ̄2) , (λ1, λ̄1) ]c
α′

.

(3.35)

3.3 Gauge transformations

We now determine the corrected gauge transformations that close according to the gauge

algebra (3.34). Rather than finding them from CSFT by performing a series of laborious

field and parameter redefinitions it is easier to obtain them from the gauge algebra. To

this end we consider the commutator of transformations on the field eij . If we only know

the δ[0] and δ[1] transformations we find

[
δΛ1

, δΛ2

]
eij = δ

[0]
Λ1

(
δ
[1]
Λ2
eij

)
− (1↔ 2) +O(e)

= δ
[0]
Λ12

eij +O(e) = Diλ̄12 j + D̄jλ12 i +O(e) ,
(3.36)

which means that

δ
[0]
Λ1

(
δ
[1]
Λ2
eij

)
− (1↔ 2) = Diλ̄12 j + D̄jλ12 i . (3.37)

We can look at the first order in α′ part of this equation. Noting that δ[0] receives no α′

correction but δ[1] does, we will write

δ[1] = δ[1](0) + α′δ[1](1) +O(α′2) , (3.38)
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and use this to evaluate the left-hand side. For the right-hand side we need the parts in

λ12 and λ̄12 (3.34) linear in α′. A quick computation gives

δ
[0]
Λ1

(
δ
[1](1)
Λ2

eij
)
− (1↔ 2) = −1

8

(
DiK̄

kl
1 D̄jK̄2kl −DiK

kl
1 D̄jK2kl − (1↔ 2)

)
. (3.39)

We note that the terms of the form KDDK cancelled under the (1↔ 2) antisymmetriza-

tion, while the terms of the form DKDK added up. We now have to rewrite the right-hand

side as a total δ[0] variation. To this end we write out one of the K factors in each term,

using the manifest antisymmetry imposed by the other factor, and compute

δ
[0]
Λ1

(
δ
[1](1)
Λ2

eij
)
− (1↔ 2) = −1

4

(
D̄kDiλ̄

l
1 D̄jK̄2kl −DiK

kl
1 DkD̄jλ2l − (1↔ 2)

)

= −1

4

(
δ
[0]
λ1

(
D̄kei

l
)
D̄jK̄2kl +DiK

kl
2 δ

[0]
λ1

(
Dkelj

)
− (1↔ 2)

)

= −1

4
δ
[0]
λ1

(
D̄kei

l D̄jK̄2kl +DiK
kl
2 Dkelj − (1↔ 2)

)
, (3.40)

where we used the (1↔ 2) antisymmetry in passing from the first to the second line. Note

also that while δ[0]eij has two terms, only one term survives due to the contraction with the

antisymmetric K’s. After a slight reordering of terms, we infer that closure of the gauge

algebra holds for

δ
[1](1)
Λ eij = −

1

4

[
Dkelj DiK

kl + D̄keil D̄jK̄
kl
]
. (3.41)

Writing out K, the result takes the form

δ
[1](1)
Λ eij = −

1

4

[
Dkelj Di

(
Dkλ

l −Dlλk

)
+ D̄keil D̄j

(
D̄kλ̄

l − D̄lλ̄k

)]
, (3.42)

which closes according to the α′-deformed gauge algebra (3.34) predicted by CSFT. Let

us finally note that for this gauge algebra, to order α′, we have D · λ12 + D̄ · λ̄12 = 0.

This implies that the dilaton gauge transformations need not be deformed in order to

be compatible with the deformed gauge algebra. Indeed, we will see below that a gauge

invariant action can be constructed without changing the dilaton gauge transformations.

3.4 A two-parameter freedom in the gauge algebra

We have used CSFT to determine a consistent deformation of the gauge algebra of the

two-derivative theory and the associated deformations of the gauge transformations. One

may have suspected that this would be the unique deformation (up to parameter and field

redefinitions) of the gauge structure to first order in α′. We will see, however, that there is

more freedom, given that the gauge algebra deformation of [3] does not coincide with the

CSFT deformation above. There are two possibilities with definite Z2 properties under the

transformation b→ −b and a continuum of possibilities with indefinite Z2.

The more general gauge transformation can be obtained by using independent co-

efficients for the two terms in (3.41); the term involving λ and the term involving λ̄.

Introducing parameters γ± we write this more general transformation as

δ
[1](1)
Λ eij = −

1

4

[
(γ+ + γ−)Dkelj DiK

kl + (γ+ − γ−)D̄keil D̄jK̄
kl
]
. (3.43)
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A short computation shows that these close according to the deformed gauge algebra

λi
12 ≡ λi

c,12 −
1

16
α′
[
(γ+ + γ−)Kkl

1 DiK2kl − (γ+ − γ−)K̄kl
1 DiK̄2kl − (1↔ 2)

]
,

λ̄i
12 ≡ λ̄i

c,12 −
1

16
α′
[
(γ+ − γ−)K̄kl

1 D̄iK̄2kl − (γ+ + γ−)Kkl
1 D̄iK2kl − (1↔ 2)

]
.

(3.44)

For γ+ = 1, γ− = 0 this reduces to the CSFT transformations and gauge algebra, re-

spectively. The second interesting case is γ+ = 0, γ− = 1, which introduces a relative

sign between holomorphic and antiholomorphic parts and for which we obtain the gauge

transformation

δ
[1](1)−
Λ eij ≡ −

1

4

[
Dkelj Di

(
Dkλ

l −Dlλk

)
− D̄keil D̄j

(
D̄kλ̄

l − D̄lλ̄k

)]
, (3.45)

where we indicated the new transformation by adding the superscript −. The corresponding

gauge algebra reads

λi−
12 = λi

12,c −
1

16
α′
(
Kkl

1 DiK2kl + K̄kl
1 DiK̄2kl − (1↔ 2)

)
,

λ̄i−
12 = λ̄i

12,c +
1

16
α′
(
Kkl

1 D̄iK2kl + K̄kl
1 D̄iK̄2kl − (1↔ 2)

)
.

(3.46)

We note that for arbitrary γ+ and γ− we still have D · λ12 + D̄ · λ̄12 = 0. Therefore, this

deformation is also consistent with a dilaton gauge transformation that is not changed.

As we will show in more detail below, the δ− gauge transformation is an inequivalent

deformation of the two-derivative gauge structure of DFT and is the one that arises in [3].

In fact, while the α′ deformation implied by CSFT preserves the Z2 symmetry of the two-

derivative DFT, the deformation δ− violates Z2 maximally. In the following these two

different theories are referred to as DFT+ and DFT−, respectively. We will discuss in

the next section their relation to higher-derivative deformations of Einstein gravity with

conventional gauge transformations.

4 α
′ corrections in Einstein variables

In this section we discuss the relation of the CSFT field variable eij , that has α
′-deformed

gauge transformations, to the usual variables hij in Einstein gravity, that transform under

conventional diffeomorphisms. We first show that in order to write the Riemann-squared

term appearing in the α′ expansion of string theory in a T-duality covariant way, we have

to perform a redefinition that is not diffeomorphism covariant. This redefinition induces

an α′ deformed gauge transformation that in turn can be matched with that of CSFT.

Finally, we discuss the Z2 odd gauge transformations of DFT−. We find that on the b-field

the deformed gauge transformation cannot be related to that of a conventional 2-form. It

has an anomalous term that, however, is exactly as required by the familiar Green-Schwarz

anomaly cancellation.
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4.1 Riemann-squared and T-duality

We start with the low-energy effective action of closed bosonic string theory to first order

in α′ [24, 25]. For simplicity we set for now the dilaton and the b-field to zero. The action

is then given by

S =

∫
dx
√
g

(
R+

1

4
α′RijklR

ijkl

)
, (4.1)

where Rijkl denotes the Riemann tensor. We recall that the Riemann-squared term gives

a tensor structure in gij that cannot be written in a O(D,D) covariant way [22]. In a

perturbative expansion gij = ηij +hij around a constant background and to cubic order in

fluctuations one finds

S =

∫
dx
√
g R +

1

4
α′

∫
dx ∂khlp ∂ihpq ∂i∂kh

q
l + · · · , (4.2)

where to order α′ we indicated only the cubic structure that is problematic. This term can

be read off from eq. (4.42) in [22], upon expanding to cubic order in h. The claim is that

all other cubic terms, indicated by dots, can be written in O(D,D) covariant form.

Before proceeding, let us briefly explain why this term is problematic for O(D,D)

covariance. We claim that there is no O(D,D) covariant term that reduces to this structure

upon setting ∂̃ = 0 and b = 0. Such a term would have to be written in terms of eij and

derivatives Di and D̄i. It is easy to convince oneself, however, that such a term cannot be

written, for a natural candidate like

DkelpDiepq DiDkel
q , (4.3)

violates the rules for consistent index contractions reviewed in section 2. Indeed, the

summation index p in the first factor has to be considered barred, but in the second factor

unbarred, therefore violating O(D,D) covariance. There is no other index assignment that

would be consistent. Thus, Riemann-squared expanded to cubic order cannot be written

in a T-duality covariant way in terms of eij .

In order to proceed we now perform a field redefinition that removes the problematic

term. We first note that the term can be written as

∂khlp ∂ihpq ∂i∂kh
q
l =

1

2
∂i
(
∂khlp ∂ihpq ∂kh

q
l

)
− 1

2
∂2hpq ∂khlp ∂khl

q . (4.4)

Ignoring the boundary term, the action (4.2) becomes

S
[
g
]
=

∫
dx
√
g R− 1

8
α′

∫
dx ∂2hpq ∂khlp ∂khl

q + · · · . (4.5)

Consider now a field redefinition of the metric fluctuation,

g′ij = ηij + h′ij = ηij + hij + δhij , (4.6)

where we view δhij to be of first order in α′. Under such a redefinition, the Einstein-Hilbert

term is shifted by

δ(
√
gR) =

√
g δgij

(
Rij −

1

2
gijR

)
= −√g δhij

(
Rij − 1

2
gijR

)
. (4.7)
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We thus get for the action (4.5) expressed in terms of the redefined fields, to first order

in α′,

S
[
g
]
= S

[
g′ − δg

]
= S

[
g′
]
+

∫
dx
√
g δhij

(
Rij − 1

2
gijR

)
+O(α′2)

=

∫
dx

√
g′R(g′) +

∫
dx
√
g δhij

(
Rij − 1

2
gijR

)

− 1

8
α′

∫
dx ∂2hpq∂

khlp∂khl
q +O(α′2).

(4.8)

As this is valid up to cubic terms in h, we can employ the linearized Ricci tensor and Ricci

scalar in the second term,

S
[
g
]
=

∫
dx

√
g′R(g′)

−
∫

dx δhij

(
1

2
∂2hij − ∂(i∂kh

j)k +
1

2
∂i∂jh+

1

2
ηij(−∂2h+ ∂p∂qhpq)

)

− 1

8
α′

∫
dx ∂2hpq ∂khlp ∂khl

q +O(α′2) .

(4.9)

We now specialize the field redefinition to be of the form

δhij = −
1

4
α′ ∂khi

l ∂khjl . (4.10)

This cancels precisely the undesired term in the last line of (4.9). It is easy to see that the

remaining terms in (4.9) can be written in O(D,D) covariant form.

To summarize, performing the following redefinitions of the metric fluctuation

h′ij = hij −
1

4
α′ ∂khi

p ∂khjp + · · · , (4.11)

we removed the problematic structure in Riemann-squared, which is necessary in order

to make T-duality manifest. This result is compatible with a similar conclusion of Meiss-

ner [25], that analyzed reductions to D = 1 of the low-energy action to first order in α′ and

found that field redefinitions are necessary in order to make T-duality manifest. Specifi-

cally, he found the need for a redefinition of the external components gij of the metric by

terms quadratic in the first derivatives of gij . This redefinition precisely reduces to (4.11)

when expanded in fluctuations and for zero b-field. Being first order in derivatives, such

redefinitions are not diffeomorphism covariant and lead to modified metric gauge transfor-

mations, as expected from the CSFT results. In the next subsection we determine the full

field redefinition including terms involving the b-field.

4.2 Relation to Einstein variables for Z2 even transformations

We now aim to connect the full closed SFT field eij to the (perturbative) Einstein variable

ěij defined as the fluctuation of the field Eij formed by adding the metric to the Kalb-

Ramond field

Eij = Gij + hij +Bij + bij = Eij + ěij . (4.12)
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Here Eij = Gij + Bij is the sum of the background metric and Kalb-Ramond field and

ěij = hij + bij is the sum of their fluctuations. In the two-derivative DFT this field

redefinition is given by [8, 19]

ěij = eij +
1

2
ei

kekj + · · · , (4.13)

where we omitted terms of higher order in fields (that are known in closed form). The

form of the field redefinition can be fixed from the standard gauge transformation of ěij
under diffeomorphisms and b-field gauge transformations for ∂̃ = 0 [8]. The conventional

diffeomorphism and b-field gauge transformations are given by

δěij = ∂iǫj + ∂jǫi + ∂iǫ̃j − ∂j ǫ̃i + ǫk∂keij + ∂iǫ
kekj + ∂jǫ

keik , (4.14)

where ǫi is the diffeomorphism parameter and ǫ̃i the one-form parameter. The relation to

the DFT gauge parameter ξM = (ξ̃i, ξ
i) is given by

ǫi = ξi , ǫ̃i = ξ̃i +Bijξ
j . (4.15)

The parameters ǫi and ǫ̃i are related to the CSFT parameters by

λi = ǫi − ǫ̃i , λ̄j = ǫj + ǫ̃j . (4.16)

The form of the quadratic term in the field redefinition (4.13) is such that the gauge

transformation of ěij on the left-hand side follows as required by (4.14), with the right-

hand side transforming according to the CSFT gauge transformations to zeroth order in

α′, as shown in detail in [8].

Let us now investigate how (4.13) generalizes when including the first α′ correc-

tion. Since in this case δeij receives a higher-derivative correction, there must be higher-

derivative terms in the field redefinition (4.13) so that the extra variations cancel and the

Einstein variable still transforms as in (4.14). In general, the relation (4.16) between the

gauge parameters may also receive α′ corrections. Making a general ansatz one finds that

the field redefinition takes the form

ěij = eij +
1

2
ei

kekj + · · ·

+
1

4
α′

[
∂kei

l ∂kelj − ∂lei
k ∂kelj − ∂kelj ∂i

(
ekl − elk

)

+ ∂kei
l ∂j

(
ekl − elk

)
− 1

2
∂ie

kl∂j
(
ekl − elk

) ]
+ · · · ,

(4.17)

where the dots represent terms higher order in fields and higher order in α′. Moreover, the

relation between gauge parameters indeed gets α′ corrected,

λi = ǫi − ǫ̃i −
1

4
α′∂i

(
ekl − elk

)
∂kǫl +O(α′2) ,

λ̄j = ǫj + ǫ̃j +
1

4
α′∂j

(
ekl − elk

)
∂kǫl +O(α′2) ,

(4.18)
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or for the inverse

ǫ̃i = −
1

2

(
λi − λ̄i

)
− 1

8
α′ ∂i

(
ekl − elk

)
∂l
(
λk + λ̄k

)
+O(α′2) ,

ǫi =
1

2

(
λi + λ̄i

)
+O(α′2) .

(4.19)

Note that these redefinitions are T-duality violating, as it should be. In order to verify

the claim that the above redefinitions are the right ones one has to compute the gauge

transformation of the right-hand side of (4.17) by means of the α′-deformed gauge trans-

formation (3.42) and the inhomogeneous transformation δ[0]eij in the O(α′) terms, setting

∂̃ = 0. A straightforward computation yields

δ[1](1)ěij = −
1

4
∂ie

[kl] ∂j∂k
(
λl + λ̄l

)
+

1

4
∂je

[kl] ∂i∂k
(
λl + λ̄l

)

= ∂i

(
+
1

4
∂je[kl] ∂

k
(
λl + λ̄l

))
− ∂j

(
1

4
∂ie[kl] ∂

k
(
λl + λ̄l

))
,

(4.20)

where, as indicated by the notation on δ on the left-hand side, we included only the terms

O(α′) and linear in fields. This is precisely of the form of the O(α′) terms originating

in δěij = ∂iǫ̃j − ∂j ǫ̃i through the deformation of the parameter redefinition in (4.19).

Thus, we trivialized the higher-derivative deformation. Together with the analysis in [8]

it follows that the gauge transformations reduce to the conventional diffeomorphism and

b-field ransformations (4.14) for ěij . This proves that the field and parameter redefini-

tions (4.17), (4.18) connect to conventional Einstein variables and symmetries. From the

leading term in the second line of (4.17) one may verify that this field redefinition indeed

contains the minimal redefinition (4.11) needed in order to describe Riemann-squared (note

here that eij has to be identified with h′ij and ěij with hij).

4.3 Relation to Einstein variables for Z2 odd transformations

Let us now turn to the Z2 violating gauge transformations of DFT− defined in (3.45),

δ
[1](1)−
Λ eij = −

1

4

[
Dkelj Di

(
Dkλ

l −Dlλk

)
− D̄keil D̄j

(
D̄kλ̄

l − D̄lλ̄k

)]
. (4.21)

We will show that in contrast to the DFT+ transformations discussed above, these trans-

formations cannot be related to those of conventional metric and b-field fluctuations upon

field and parameter redefinitions. More precisely, the deformed gauge transformation (4.21)

leads a gauge transformation for the antisymmetric b-field part of the fluctuation that has

a non-removable higher-derivative deformation of the diffeomorphism transformation.

To analyze the relation of (4.21) to standard gauge transformations of Einstein-type

variables we have to set ∂̃ = 0. Useful relations between the different gauge parameters

then follow from (4.16)

∂kλl − ∂lλk = 2∂[kǫl] − 2∂[k ǫ̃l] ,

∂kλ̄l − ∂lλ̄k = 2∂[kǫl] + 2∂[k ǫ̃l] .
(4.22)
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Here ǫi and ǫ̃i are the diffeomorphism and b-field gauge parameter, respectively. Thus, the

linearized gauge transformations for the symmetric and antisymmetric part of eij ≡ hij+bij

read to lowest order in fields

δhij = ∂iǫj + ∂jǫi , δbij = ∂iǫ̃j − ∂j ǫ̃i . (4.23)

Next, we evaluate the deformed gauge transformation (4.21) for h and b by using (4.22)

and decomposing into the symmetric and antisymmetric parts,

δ[1](1)−hij =
1

2
∂khlj ∂i∂[k ǫ̃l] +

1

2
∂kbi

l ∂j∂[k ǫl] + (i↔ j) ,

δ[1](1)−bij = −
1

2
∂khlj ∂i∂[k ǫl] +

1

2
∂kblj ∂i∂[k ǫ̃l] − (i↔ j) .

(4.24)

These higher-derivative deformations, which are not present for standard Einstein vari-

ables, were the starting point for the analysis in [2]. There we showed that these gauge

transformations can be brought to the form of those needed for Green-Schwarz anomaly

cancellation. Specifically, we showed that through a combined parameter and field redefi-

nition the gauge transformation of hij can be trivialized, so that, to this order, it reduces

to (4.23), while the gauge transformation of bij can be brought to the form

δbij = ∂iǫ̃j − ∂j ǫ̃i + ∂[i∂
kǫl ω

(1)
j]kl , (4.25)

with the linearized spin connection ω
(1)
j,kl ≡ −∂[k hl]j . To this order, this is the gauge trans-

formation of the Green-Schwarz mechanism, viewed as a deformation of diffeomorphisms

(as opposed to local Lorentz transformations). We also showed in [2] that the non-linear

form of these deformed diffeomorphisms provides an exact realization of the deformed

C-bracket of DFT−.

5 Perturbation theory of DFT− and DFT+

In this section we compare the gauge structure discussed so far to that of the theory

developed in the context of a ‘doubled α′-geometry’ in [3]. We will show that this theory

corresponds, in the above terminology, to DFT−, i.e., to the Z2 violating case. To this

end we first develop the perturbation theory for the fundamental ‘double metric’ fieldM
introduced in [3] and discuss the Z2 action on these fields. We finally show how to relate

these perturbative variables to those appearing in CSFT.

5.1 Perturbative expansion of double metric in DFT−

The theory constructed in [3] features as fundamental fields the ‘double metric’ MMN ,

with O(D,D) indices M,N = 1, . . . , 2D, and the dilaton density φ (which is related to the

CSFT dilaton used above by φ = −2d). In contrast to the generalized metric formulation

of double field theory in [10], the fieldMMN is not constrained by assuming that it takes

values in O(D,D). Rather, it is an unconstrained field that does not even need to be

invertible off-shell. In [3] an exactly gauge invariant action with up to six derivatives
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was constructed. Although M is unconstrained, its field equations read MM
KMKN =

ηMN + · · · , where the dots represent higher-derivative corrections. To lowest order this

equation implies M ∈ O(D,D), from which invertibility follows, but since this equation

receives higher-derivative corrections its relation to the usual generalized metric and thus

to the conventional metric and b-field is subtle.

In the following we discuss the perturbative expansion of this theory around a constant

background 〈M〉. Being constant, the higher-derivative terms in the background field

equations vanish and so the field equations are solved for any 〈M〉 ∈ O(D,D). Thus, the

background double metric can be identified with a background generalized metric,

〈MMN 〉 ≡ H̄MN =

(
Gij −GikBkj

BikG
kj Gij −BikG

klBlj

)
, (5.1)

where G and B are the (constant) background metric and B-field. In the following it will

be convenient to use a notation introduced in [22]. To explain this notation note that due

to HMNHN
P = ηMP we may introduce the two background projectors [10]

P =
1

2

(
η − H̄) , P̄ =

1

2

(
η + H̄

)
, (5.2)

satisfying P 2 = P , P̄ 2 = P̄ and PP̄ = 0. Then we define projected O(D,D) indices by

WM ≡ PM
N WN , WM̄ ≡ P̄M

N WN , (5.3)

and similarly for arbitrary O(D,D) tensors. Note that due to the projector identity P+P̄ =

1 we can decompose any tensor into components with projected indices, e.g., for a vector

WM = WM +WM̄ . We also use this notation for the partial derivatives, so that the strong

constraint implies

∂M∂M = 0 ⇒ ∂M∂M = −∂M̄∂M̄ . (5.4)

We are now ready to set up the perturbative expansion ofM around the background

H̄. SinceM is unconstrained off-shell, the expansion is simply

MMN = H̄MN +mMN = H̄MN +mM̄N̄ +mM̄N +mMN̄ +mMN , (5.5)

with unconstrained symmetric fluctuations mMN = mNM that we decomposed into pro-

jected indices as explained above. Being unconstrained, the perturbation fields mMN has

more than the D × D components needed to encode the metric and b-field fluctuations,

but we will show that the projections mM̄N̄ and mMN are auxiliary fields, while the phys-

ical part is encoded in mMN̄ = mN̄M (symmetry properties of tensors imply the same

properties for the projected components).

In order to verify this claim we have to inspect the Lagrangian in a derivative expansion

around the background. The relevant action can be straightforwardly computed from the

two-derivative truncation, see eq. (7.13) in [3], which reads

S =

∫
eφ

[
1

2
ηMN (M− 1

3
M3)MN +

1

2
(M2 − 1)MPMP

N∂M∂Nφ

+
1

8
MMN∂MMPQ∂NMPQ −

1

2
MMN∂NMKL∂LMKM −MMN∂M∂Nφ

]
.

(5.6)
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Note that this action contains terms without derivatives. Inserting the expansion (5.5) and

keeping all terms with no derivatives and quadratic terms with two derivatives we find the

Lagrangian

L =
1

2
mMM mMN −

1

2
mMN mM

P̄ mNP̄ −
1

6
mMN mN

P mNP

− 1

2
mM̄N̄mM̄N̄ −

1

2
mM̄N̄ mP

M̄ mPN̄ −
1

6
mM̄N̄ mN̄

P̄ mN̄P̄

+
1

2
∂M̄mPQ̄ ∂M̄mPQ̄ +

1

2
∂MmPQ̄ ∂PmMQ̄ −

1

2
∂M̄mPQ̄ ∂Q̄mPM̄

− 2mMN̄ ∂M∂N̄φ− 2φ∂M̄∂M̄φ

+
1

4
∂M̄mP̄ Q̄ ∂M̄mP̄ Q̄ +

1

4
∂M̄mPQ ∂M̄mPQ

+
1

2
∂MmPQ ∂QmPM −

1

2
∂M̄mP̄ Q̄ ∂Q̄mP̄ M̄ .

(5.7)

The first two lines are the terms with no derivatives, the next two lines contain the physical

fields, and the last two lines contain derivatives of the auxiliary fields. Solving for the

auxiliary fields to lowest order in fields and without derivatives, the first two terms in the

first and second lines give

mMN =
1

2
mM

P̄mNP̄ + . . . ,

mM̄N̄ = − 1

2
mP

M̄mPN̄ + . . . ,

(5.8)

where dots indicate terms with more fields or derivatives. Next we eliminate the auxiliary

fields, which does not affect the two-derivative quadratic action for the physical fields. This

action is then

L(2) = 1

2
∂M̄mPQ̄ ∂M̄mPQ̄ +

1

2
∂MmPQ̄ ∂PmMQ̄ −

1

2
∂M̄mPQ̄ ∂Q̄mPM̄

− 2mMN̄ ∂M∂N̄φ− 2φ∂M̄∂M̄φ .

(5.9)

This is the quadratic approximation to the two-derivative standard DFT action [6, 7].

Beyond this approximation the auxiliary fields will be determined non-trivially in terms of

the physical fields.

Let us now turn to the gauge symmetries for the fluctuations mMN . These can be

obtained from the gauge transformations in [3], eq. (6.39), which are2

δξMMN = ξP∂PMMN + (∂MξP − ∂P ξ
M )MPN + (∂NξP − ∂P ξ

N )MMP

− 1

2

[
∂MMPQ ∂P (∂Qξ

N − ∂NξQ) + 2 ∂QMKM ∂N∂KξQ + (M ↔ N)
]

− 1

2
∂K∂(MMPQ ∂N)∂P∂Qξ

K .

(5.10)

2The different coefficient on the final term arises because here we use a symmetrization convention with

unit weight.
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Upon insertion of (5.5), and including up to three derivatives in the transformation rules

one obtains

δ−ξ mMN = ξP∂PmMN +
(
∂MξP − ∂P ξM

)
H̄PN +

(
∂NξP − ∂P ξN

)
H̄PM

+
(
∂MξP − ∂P ξM

)
mPN +

(
∂NξP − ∂P ξN

)
mPM

− 1

2
∂MmPQ ∂P

(
∂QξN − ∂NξQ

)
− 1

2
∂NmPQ ∂P

(
∂QξM − ∂MξQ

)

− ∂QmMK ∂N∂KξQ − ∂QmNK ∂M∂KξQ .

(5.11)

We added the minus superscript to δξ to emphasize that these are the gauge transformations

for DFT−. Next we decompose the indices into their projected parts according to (5.3).

Using H̄ = P̄ − P , which follows from (5.2), we compute

δ−ξ mMN =
(
∂MξN̄ − ∂N̄ξM

)
+

(
∂NξM̄ − ∂M̄ξM

)
−
(
∂MξN − ∂NξM

)
−
(
∂NξM − ∂MξN

)

+ ξP∂PmMN +
(
∂MξP − ∂P ξM

)
mPN +

(
∂NξP − ∂P ξN

)
mPM

− 1

2
∂MmPQ ∂P

(
∂QξN − ∂NξQ

)
− 1

2
∂NmPQ ∂P

(
∂QξM − ∂MξQ

)

− ∂QmMK ∂N∂KξQ − ∂QmNK ∂M∂KξQ . (5.12)

We now specialize this to the external projection corresponding to the physical fluctuation

mMN̄ and eliminate the auxiliary fields by use of the lowest-order result (5.8). This yields

for the gauge transformation of the physical field

δ−ξ mMN̄ = 2
(
∂MξN̄ − ∂N̄ξM

)

+ ξP∂PmMN̄ +
(
∂MξP − ∂P ξM

)
mPN̄ +

(
∂N̄ξP̄ − ∂P̄ ξN̄

)
mMP̄

− 1

2
∂MmPQ̄ ∂P

(
∂Q̄ξN̄ − ∂N̄ξQ̄

)
− 1

2
∂N̄mQP̄ ∂P̄

(
∂QξM − ∂MξQ

)

− 1

2
∂N̄mPQ̄ ∂P

(
∂Q̄ξM − ∂MξQ̄

)
− 1

2
∂MmQP̄ ∂P̄

(
∂QξN̄ − ∂N̄ξQ

)

− ∂QmMK̄ ∂N̄∂K̄ξQ − ∂Q̄mKN̄ ∂M∂KξQ̄

− ∂QmKN̄ ∂M∂KξQ − ∂Q̄mMK̄ ∂N̄∂K̄ξQ̄ .

(5.13)

Similarly, we can compute from (5.12) the gauge transformation of the auxiliary fields,

using again the lowest-order result (5.8). We find for mMN

δ−ξ mMN =
(
∂MξP̄ − ∂P̄ ξM

)
mNP̄ +

(
∂NξP̄ − ∂P̄ ξN

)
mMP̄

− 1

2
∂MmPQ̄ ∂P

(
∂Q̄ξN − ∂NξQ̄

)
− 1

2
∂NmPQ̄ ∂P

(
∂Q̄ξM − ∂MξQ̄

)

− 1

2
∂MmP̄Q ∂P̄

(
∂QξN − ∂NξQ

)
− 1

2
∂NmP̄Q ∂P̄

(
∂QξM − ∂MξQ

)

− ∂QmMK̄ ∂N∂K̄ξQ − ∂Q̄mMK̄ ∂N∂K̄ξQ̄ − ∂QmNK̄ ∂M∂K̄ξQ

− ∂Q̄mNK̄ ∂M∂K̄ξQ̄ ,

(5.14)
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where we made the MN symmetrization manifest in each line. We observe that there is

no inhomogenous term, as required for (5.8) to be consistent with the gauge symmetries.

The gauge transformations determine the form of the auxiliary field to next order, which

we give here for completeness,

mMN =
1

2
mM

P̄mNP̄ −
1

4
∂(MmPQ̄ ∂N)mPQ̄ + ∂(MmPQ̄ ∂PmN)Q̄

− 1

2
∂P̄mMQ̄ ∂Q̄mNP̄ +

1

2
∂P̄mM

Q̄ ∂P̄mNQ̄ + · · · .
(5.15)

It is straightforward to verify, using the gauge transformations of the physical field, that

this expression gives rise to the required transformations (5.14). Analogous relations hold

for the auxiliary field mM̄N̄ .

In order to relate the perturbative field variable here to that of CSFT we first sim-

plify the gauge transformations (5.13) by field and parameter redefinitions. Consider the

following field redefinition

m′
MN̄

= mMN̄ +
1

2
∂P̄mQN̄ ∂MmQ

P̄ −
1

2
∂PmMQ̄ ∂N̄mP

Q̄ . (5.16)

With (5.13) we can compute the gauge transformation ofm′, after which we drop the prime,

δ−ξ mMN̄ = 2
(
∂MξN̄ − ∂N̄ξM

)

+ ξP∂PmMN̄ +
(
∂MξP − ∂P ξM

)
mPN̄ +

(
∂N̄ξP̄ − ∂P̄ ξN̄

)
mMP̄

− 1

2
∂MmPQ̄ ∂P

(
∂Q̄ξN̄ − ∂N̄ξQ̄

)
− 1

2
∂N̄mQP̄ ∂P̄

(
∂QξM − ∂MξQ

)

+
1

2
∂N̄mPQ̄ ∂P

(
∂Q̄ξM − ∂MξQ̄

)
+

1

2
∂MmQP̄ ∂P̄

(
∂QξN̄ − ∂N̄ξQ

)

+ ∂P̄mQN̄ ∂M

(
∂QξP̄ − ∂P̄ ξQ

)
− ∂Pm

MQ̄ ∂N̄

(
∂P ξQ̄ − ∂Q̄ξP

)

− ∂QmMK̄ ∂N̄∂K̄ξQ − ∂Q̄mKN̄ ∂M∂KξQ̄

− ∂QmKN̄ ∂M∂KξQ − ∂Q̄mMK̄ ∂N̄∂K̄ξQ̄ .

(5.17)

The third and fourth lines combine and so do the fifth and sixth, giving

δ−ξ mMN̄ = 2
(
∂MξN̄ − ∂N̄ξM

)

+ ξP∂PmMN̄ +
(
∂MξP − ∂P ξM

)
mPN̄ +

(
∂N̄ξP̄ − ∂P̄ ξN̄

)
mMP̄

+
1

2
∂MmPQ̄ ∂N̄

(
∂P ξQ̄ − ∂Q̄ξP

)
+

1

2
∂N̄mPQ̄ ∂M

(
∂Q̄ξP − ∂P ξQ̄

)

− ∂Q̄mKN̄ ∂M∂Q̄ξ
K − ∂QmMK̄ ∂N̄∂Qξ

K̄

− ∂QmKN̄ ∂M∂KξQ − ∂Q̄mMK̄ ∂N̄∂K̄ξQ̄ .

(5.18)
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Next we use the strong constraint in the line before last and relabel both there and in the

line below to obtain

δ−ξ mMN̄ = 2
(
∂MξN̄ − ∂N̄ξM

)

+ ξP∂PmMN̄ +
(
∂MξP − ∂P ξM

)
mPN̄ +

(
∂N̄ξP̄ − ∂P̄ ξN̄

)
mMP̄

+
1

2
∂MmPQ̄ ∂N̄

(
∂P ξQ̄ − ∂Q̄ξP

)
− 1

2
∂N̄mPQ̄ ∂M

(
∂P ξQ̄ − ∂Q̄ξP

)

+ ∂PmQN̄ ∂M
(
∂P ξQ − ∂QξP

)
+ ∂P̄mMQ̄ ∂N̄

(
∂P̄ ξQ̄ − ∂Q̄ξP̄

)
.

(5.19)

It is convenient to rewrite this in terms of

KMN ≡ ∂MξN − ∂NξM , (5.20)

which yields

δ−ξ mMN̄ = 2KMN̄ + ξP∂PmMN̄ +KM
P mPN̄ +KN̄

P̄ mMP̄

+
1

2
∂MmPQ̄ ∂N̄KPQ̄ −

1

2
∂N̄mPQ̄ ∂MKPQ̄

+ ∂PmQN̄ ∂MKPQ + ∂P̄mMQ̄ ∂N̄KP̄ Q̄ .

(5.21)

The final form of the gauge transformations is obtained by performing a parameter redefi-

nition, which eliminates the terms in the second line. We take

ξ′M = ξM −
1

4
∂MKPQ̄mPQ̄ , (5.22)

or, more explicitly, for the different projections,

ξ′M = ξM −
1

4
∂MKPQ̄mPQ̄

ξ′
N̄

= ξN̄ −
1

4
∂N̄KPQ̄mPQ̄ .

(5.23)

Dropping primes, the final form of the gauge transformations is

δ−ξ mMN̄ = 2KMN̄ + ξP∂PmMN̄ +KM
P mPN̄ +KN̄

P̄ mMP̄

+ ∂PmQN̄ ∂MKPQ + ∂P̄mMQ̄ ∂N̄KP̄ Q̄ .
(5.24)

Summarizing, the O(α′) correction to the gauge transformation is the second line above

and is linear in the fields:

δ
[1](1)−
ξ mMN̄ = ∂PmQN̄ ∂MKPQ + ∂P̄mMQ̄ ∂N̄KP̄ Q̄ . (5.25)

– 28 –



J
H
E
P
1
1
(
2
0
1
4
)
0
7
5

5.2 Z2 action on fields

We will now show that the deformations of gauge transformations determined in the previ-

ous subsection are Z2 odd and thus belong to DFT−. To this end we first have to determine

the action of Z2 on the field variables mMN̄ , on derivatives and on gauge parameters. In

the generalized metric formalism, the action of Z2 has been discussed in section 4.1 of [10].

This symmetry acts on the background fields as Bij → −Bij , so it is easy to see that on

the (background) generalized metric (5.1) it is implemented by the 2D × 2D matrix

ZM
N ≡

(
Zi

j Zij

Zij Zi
j

)
=

(
−δij 0

0 δi
j

)
, Z2 = 1 , (5.26)

satisfying Z2 = 1. More precisely, Z2 acts on O(D,D) indices via

∂M → ZM
N∂N ,

H̄MN → ZM
PZN

QH̄PQ ,

ξM → ξN ZN
M .

(5.27)

On the D-dimensional components this indeed reduces to the expected Z2 action, e.g.,

Bij → −Bij , ∂̃i → −∂̃i , ξ̃i → −ξ̃i , (5.28)

leaving all objects without tilde unchanged. It is important to recall that Z2 is not part of

O(D,D). Indeed, the Z2 transformation does not leave the O(D,D) metric invariant,

ZM
PZN

QηPQ = −ηMN ⇐⇒ ZN
K ηMK = −ZM

K ηNK , (5.29)

with the analogous relation for ηMN with upper indices. This has important consequences

for the Z2 action on O(D,D) tensors for which indices have been raised or lowered with η.

Specifically, taking the O(D,D) tensors in (5.27) as fundamental, the corresponding ones

with raised and lowered indices transform as

∂M → − ∂N ZN
M ,

H̄M
N → − ZM

PZQ
NH̄P

Q ,

ξM → − ZM
NξN ,

(5.30)

as a direct consequence of (5.29).

Let us now determine the Z2 action on the various objects of the perturbative formalism

introduced above, starting with the background projectors (5.2). If we view them as having

index structure PM
N and P̄M

N the Z2 action changes the sign of the H̄M
N term according

to (5.30), thereby exchanging P and P̄ . We thus find

PM
N → ZM

P P̄P
Q ZQ

N , P̄M
N → ZM

P PP
Q ZQ

N . (5.31)

If we view P and P̄ as tensors with lower indices, the leading ηMN term changes sign

according to (5.29), leading to an exchange of P and P̄ up to a global sign,

PMN → −ZM
PZN

Q P̄PQ , P̄MN → −ZM
PZN

Q PPQ . (5.32)
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From these results we can immediately determine the transformation of the projected

derivatives,

∂M → ZM
P∂P̄ , ∂M̄ → ZM

P∂P ,

∂M → −∂P̄ZP
M , ∂M̄ → −∂P ZP

M .
(5.33)

This implies for the differential operator

∂M̄∂M̄ → −∂M∂M = ∂M̄∂M̄ , (5.34)

using the strong constraint in the last step. Thus, the operator ∂M̄∂M̄ , which reduces to

the usual Laplace operator for ∂̃ = 0, is Z2 invariant. The same conclusion follows for

∂M∂M . Note that this result is consistent with the fact that ∂M∂M = ∂M∂M + ∂M̄∂M̄ ,

containing one η, is odd under Z2, because by the strong constraint, which we used above,

it is actually zero.

Next, we discuss the Z2 action on the fluctuation fields m. They are defined via

M = H+m and so according to the rules for the Z2 action on O(D,D) indices we have

mMN → ZM
PZN

QmPQ . (5.35)

The analogous relations follow for any of the projections with (5.31),

mMN̄ → ZM
PZN

QmQP̄ ,

mMN → ZM
PZN

Qm P̄ Q̄ ,

mM̄N̄ → ZM
PZN

QmPQ .

(5.36)

Similarly, the projected gauge parameters transforms as

ξM → ξP̄ZP
M , ξM → −ZM

P ξP̄ , (5.37)

and completely analogously for ξM̄ .

We are now in the position to test the Z2 properties of the gauge transformations for

mMN̄ . On account of (5.36), for Z2 even transformations we should have

δξmMN̄ → ZM
PZN

Q δξmQP̄ . (5.38)

In order to verify the Z2 parity in tensors with several (free or contracted) O(D,D) indices

it can be a bit laborious to insert every single Z matrix, most of which drop out by Z2 = 1.

Rather, one may just apply the following simple rule which summarizes the above results:

Rule for Z2 parity: An expression with free indices M and N̄ is Z2 even/odd if the

following action gives back the expression with the same/opposite sign. First exchange

M ↔ N̄ . Second, exchange bars and under-bars in all other indices, keeping the same

letter as index label. Third, include a minus sign factor for each index that is not in its

canonical position. For an expression without free indices, steps two and three must leave

it invariant.
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The canonical positions for fluctuations, derivatives and gauge parameters are mMN ,

∂M and ξM , respectively. On the m field the index substitution is implemented as mPQ̄ →
mQP̄ since, by convention, we always put the under barred index first. Moreover, ξP∂P ,

for example, is Z2 even.

We can verify now that in the gauge transformation (5.24) the part with one derivative

is Z2 even but the higher derivative correction is Z2 odd. Applying the above rule to the

inhomogeneous term we find that it is left invariant

2
(
∂MξN̄ − ∂N̄ξM

)
→ −2

(
∂N̄ξM − ∂MξN̄

)
= 2

(
∂MξN̄ − ∂N̄ξM

)
, (5.39)

where the sign originated because the gauge parameters have their index in the non-

canonical position. Similarly, the terms homogeneous in fields and with one derivative

are, as a whole, Z2 even:

ξP∂PmMN̄ → ξP∂PmMN̄ ,

KM
P mPN̄ = (∂MξP − ∂P ξM )mPN̄ → (∂ N̄ξP̄ − ∂P̄ ξ N̄ )mMP̄ = KN̄

P̄ mMP̄ ,

KN̄
P̄ mMP̄ = (∂N̄ξP̄ − ∂P̄ ξN̄ )mMP̄ → (∂MξP − ∂P ξM )mPN̄ = KM

P mPN̄ .

(5.40)

Note that the second and third terms were exchanged under the transformation. Consider

now the higher-derivative terms in the gauge transformation of mMN̄ . For the first term

∂P mQN̄ ∂MKPQ = ∂P mQN̄ ∂M (∂P ξQ − ∂QξP ) → − ∂ P̄ mMQ̄ ∂ N̄ (∂P̄ ξQ̄ − ∂Q̄ξ P̄ )

= − ∂ P̄ mMQ̄ ∂ N̄KP̄ Q̄ ,

(5.41)

which is minus the second term. Similarly, the transformation of the second term is minus

the first. Thus the α′ terms in (5.24) are Z2 odd.

Let us finally point out that also the field redefinition (5.16) was Z2 violating. This is

as it should because it eliminates Z2 odd terms through variations of inhomogeneous Z2

even terms in δξm. Similarly, the parameter redefinitions (5.23) are Z2 odd. Summarizing,

the gauge transformations of order α′, determined for the theory constructed in [3], are Z2

odd, and so this theory actually corresponds to DFT−. In the next subsection we relate the

field variables here to those in the CSFT language, confirming explicitly this conclusion.

5.3 Relating CSFT and DFT frameworks

We now relate in detail the gravitational field variable eij of CSFT to the double metric

fluctuationmMN̄ . On the face of it they appear to be rather different: the former carriesD-

dimensional indices as in standard gravity, and the latter carries doubled O(D,D) indices.

Since the O(D,D) indices are projected, however, they are effectively D-dimensional. The

two formalisms are essentially equivalent, as we will show in the following.

The most efficient way to establish this relation is in terms of a frame or vielbein

formalism [6, 21], see [26]. More specifically, here we employ a frame formalism for the

constant background fields. The ‘tangent space’ symmetry in this case reduces to a global

GL(D) × GL(D) symmetry, indicated by flat frame indices A = (a, ā), so that a tangent
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space tensor is decomposed as UA = (Ua, Uā). Next we define the background vielbein for

a particular ‘gauge choice’,

EAM =

(
Eai Eai
Eāi Eāi

)
=

(
−Eai δa

i

Eiā δā
i

)
. (5.42)

Some components have been fixed to be Kronecker deltas, which in turn allows us to

identify i, j indices with a, b indices. The matrix E describes, as in section 2, the sum of

background metric and B-field. For completeness we also give the inverse frames EMA,

satisfying EMAEAN = δM
N as well as EAMEMB = δA

B:

EMA =

(
E ia E iā
Eia Eiā

)
=

(
−1

2G
ia 1

2G
iā

1
2EbiG

ab 1
2Eib̄G

āb̄

)
. (5.43)

Next, we inspect the tangent space metric, defined from the metric ηMN by

GAB ≡
(
Gab Gab̄
Gāb Gāb̄

)
≡ EAMEBNηMN = EAi EB i + EA i EBi =

(
−2Gab 0

0 2Gāb̄

)
, (5.44)

where the last equality follows by a direct calculation from (5.42). Consequently, the inverse

metric GAB is given by

GAB ≡
(
Gab Gab̄
Gāb Gāb̄

)
≡ EMAENBηMN =

(
−1

2G
ab 0

0 1
2G

āb̄

)
. (5.45)

These tangent space metrics are used to raise and lower frame indices A,B. Due to the

factors of ±2 and ±1
2 appearing in the metric G and its inverse, respectively, there is an

ambiguity regarding which metric is used when D-dimensional indices are contracted. Here

we follow the conventions in which

• the tangent space metric G (and its inverse) is used to contract indices whenever they

are written with latin letters from the beginning of the alphabet, i.e., a, b or ā, b̄, but

• the metric G (and its inverse) is used to contract indices whenever they are written

with latin letters from the middle of the alphabet, i.e., i, j, etc.

The background projectors (5.2) are defined in terms of the frame fields as

PM
N = EMa EaN , P̄M

N = EMā EāN . (5.46)

Alternatively, we have

PMN = Gab EaM EbN , P̄M
N = Gāb̄ EāM Eb̄N . (5.47)

Using the frame field and its inverse we now can introduce various ‘flattened’ objects.

The partial derivatives in flat indices,

DA ≡ EAM∂M = (Da, Dā) , (5.48)
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take the following explicit form for the choice (5.42),

Da = ∂a − Eai∂̃
i , Dā = ∂ā + Eia∂̃

i . (5.49)

Looking back at section 2, we infer that these operators coincide with the differential

operators introduced there under the same name (recalling that for (5.42) we can identify

flat and curved indices). Similarly, for the flattened gauge parameters we identify

ΛA ≡ EAMξM = (Λa,Λā) = (−λa, λ̄ā) , (5.50)

so that we find with (5.42)

λa = −ξ̃a + Eai ξ
i , λ̄ā = ξ̃ā + Eia ξ

i . (5.51)

This coincides with the gauge parameters λi, λ̄i of CSFT as discussed in section 3 of [8].

Note that we introduced a relative sign in (5.50) in order to comply with the conventions of

CSFT. Note that in CSFT we view the parameters λi, λ̄i with lower indices as fundamental,

while in the O(D,D) covariant language ξM with upper indices is fundamental. This

requires some care when translating expressions from a frame-like basis to the CSFT basis.

For instance, the contraction of two O(D,D) vectors U and V , whose fundamental indices

are lower, barred indices, reads

U P̄VP̄ = P̄PQUPVQ = Gāb̄EāPEb̄Q UPVQ = Gāb̄UāVb̄ =
1

2
GijŪiV̄j =

1

2
ŪiV̄

i , (5.52)

using (5.47) and Gāb̄ = 1
2G

āb̄. Here we indicated the barred nature of the indices on U

and V by barring the objects, as it is customary in DFT. We also have, in completely

analogous fashion

UPVP = PPQUPVQ = Gab EaPEbQ UPVQ = GabUaVb = −
1

2
GijUiVj = −

1

2
UiV

i . (5.53)

As a general translation tool, these are most useful in the form

U P̄VP̄ = U āVā , UPVP = UaVa , (5.54)

where the flat indices are raised with the appropriate G. It is a simple matter to verify that

flattening of projected indices works according to the association M ↔ a of under-barred

indices with normal latin indices and M̄ ↔ ā of barred indices:

EaMBM = Ba , EaMBM̄ = 0 , EāMBM = 0 , EāMBM̄ = Bā . (5.55)

The transport operator ξM∂M has a simple translation into frame objects:

ξM∂M = ΛADA = GabΛaDb + Gāb̄ΛāDb̄ = −GabλaDb + Gāb̄λ̄aD̄b =
1

2

(
λiDi + λ̄iD̄i

)
.

(5.56)

In the above we converted curved into flat indices and decomposed into λ and λ̄ components

according to (5.50). In the last step we used the metric components G according to (5.45).

This introduced a factor of 1
2 and cancelled the minus sign from the frame definition of λi.
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Our main goal in this formalism is to translate the gauge variation of the double metric

fluctuation mMN̄ to that in terms of the CSFT fluctuation eij in order to compare results.

We claim that these fluctuations are related by

eab̄ =
1

2
EaMEb̄NmMN̄ , or mMN̄ = 2 EMaEN b̄ eab̄ , (5.57)

as we will show that it relates the gauge transformations to leading order in derivatives

δ−Λ eab̄ =
1

2
EaMEb̄Nδ−ξ mMN̄ . (5.58)

We evaluate the right-hand side using (5.24):

δ−Λ eab̄ =
1

2
EaMEb̄N

(
2(∂MξN̄ − ∂N̄ξM ) + ξP∂PmMN̄

+ (∂MξP − ∂P ξM )mPN̄ + (∂N̄ξP̄ − ∂P̄ ξN̄ )mMP̄

+ ∂M (∂P ξ
Q − ∂QξP )∂PmQN̄ + ∂N̄ (∂P̄ ξ

Q̄ − ∂Q̄ξP̄ )∂
P̄mMQ̄

)

= DaΛb̄ −Db̄Λa + ξP∂P eab̄ +
(
DaΛ

c −DcΛa

)
ecb̄ +

(
Db̄Λ

c̄ −Dc̄Λb̄

)
eac̄

+Da(DcΛ
d −DdΛc)D

cedb̄ +Db̄(Dc̄Λ
d̄ −Dd̄Λc̄)D

c̄ead̄ ,

where we used repeatedly (5.54). We pass to D-dimensional curved indices letting a → i

and b̄→ j. Note that then Λa → −λi and Λb̄ → λ̄j . A short calculation then gives

δ−Λ eij = Diλ̄j + D̄jλi

+
1

2

(
λiDi + λ̄iD̄i

)
eij +

1

2

(
Diλ

k −Dkλi

)
ekj +

1

2

(
D̄j λ̄

k − D̄kλ̄j

)
eik

− 1

4
Di(Dkλ

l −Dlλk)D
kelj +

1

4
D̄j(D̄kλ̄

l − D̄lλ̄k)D̄
keil ,

(5.59)

The factors of 1
4 on the last line originate from the two inverse metrics G−1 required by the

two index contractions. Since the same type metric is used twice on each term the sign

difference between Gab and Gāb̄ is immaterial. The first two lines on the above equation

are the familiar CSFT gauge transformations of eij [7]. This confirms the correctness of

the identification (5.57) of e with m.

The α′ correction of the gauge transformation is on the last line. It differs from the

CSFT result (3.42) in the sign of the second term, but agrees precisely with the DFT−

transformation (3.45). Thus, in agreement with the previous section, the theory studied

so far in this section is DFT−.

We close this subsection by verifying the above conclusion at the level of the gauge

algebra. We first recall the gauge algebra for the background-independent DFT constructed

in [3]

− ξM12 =
[
ξ1, ξ2

]M
= ξN1 ∂NξM2 − ξN2 ∂NξM1 −

1

2
ξK1
←→
∂

M
ξ2K +

1

2
∂KξL1

←→
∂

M
∂Lξ

K
2 , (5.60)
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where the last term encodes the O(α′) correction. We relate this algebra to the CSFT one

by converting to flat indices. One finds for the flattened parameter (5.50)

Λ12A =
1

2
(λ̄1 ·D + λ̄1 · D̄)Λ2A − (1↔ 2)

+
1

4

(
λ1 ·
←→
D Aλ2 − λ̄1 ·

←→
D Aλ̄2

)

− 1

16

(
K1 kl

←→
D AK kl

2 + K̄1 kl
←→
D A K̄kl

2 − 2L1 kl
←→
D A L kl

2

)
,

(5.61)

where as before: Kkl = Dkλl − Dlλk, K̄kl = D̄kλ̄l − D̄lλ̄k and we defined Lkl ≡ Dkλ̄l +

D̄lλk = δλekl. As in various previous examples, the last term in (5.61) can thus be removed

by a parameter redefinition. Doing this and converting the external flat index the gauge

algebra reads

λi
12 = λi

12,c −
1

16
α′

(
Kkl

1

←→
D

i
K2 kl + K̄kl

1

←→
D

i
K̄2 kl

)
,

λ̄i
12 = λ̄i

12,c +
1

16
α′

(
Kkl

1

←→̄
D

i

K2 kl + K̄kl
1

←→̄
D

i

K̄2 kl

)
.

(5.62)

The sign difference between the O(α′) contributions is due to the relative sign in the frame

definition of λ and λ̄ in (5.50). This agrees with the DFT− gauge algebra anticipated

in (3.46).

5.4 Direct comparison of gauge algebras

We have seen that the background-independent gauge algebra (5.60) introduced in [3]

corresponds to DFT−. Since this is the unique field-independent deformation of the C-

bracket there is no analogous background-independent form for the DFT+ algebra. It is

illuminating, however, to give a form in which every tensor is written with un-projected

O(D,D) indices.

To this end it is convenient to rewrite the DFT+ gauge transformations and algebra

in terms of objects with (doubled) O(D,D) indices, using mMN̄ as field variable, which is

straightforward using the map (5.57) between the two formalisms. We should start from

the form of the DFT− gauge transformations that gave the background independent gauge

algebra (5.60) directly, without further parameter redefinitions, which is given in (5.21).

Changing the relative signs in the last two lines of (5.21) in order to make it Z2 invariant,

one finds

δ+ξ mMN̄ = 2KMN̄ + ξP∂PmMN̄ +KM
P mPN̄ +KN̄

P̄ mMP̄

+
1

2
∂MmPQ̄ ∂N̄KPQ̄ +

1

2
∂N̄mPQ̄ ∂MKPQ̄

+ ∂PmQN̄ ∂MKPQ − ∂P̄mMQ̄ ∂N̄KP̄ Q̄ ,

(5.63)

where we indicated by a super-script + that this describes the DFT+ transformations.

In the DFT− case the corresponding terms in the second line could be removed by the

parameter redefinition (5.23), but this introduces a background dependence in the gauge

algebra; in contrast, the terms here are removable by a field redefinition, which does not
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change the algebra and so does not affect the background dependence. Specifically, the

terms in the second line of (5.63) equal a total variation,

1

4
∂MmPQ̄ ∂N̄

(
δξmPQ̄

)
+

1

4
∂N̄mPQ̄ ∂M

(
δξmPQ̄

)
=

1

4
δ
[0]
ξ

(
∂MmPQ̄ ∂N̄mPQ̄

)
, (5.64)

and are thus removable by a field redefinition. Computing the gauge algebra directly

from (5.63) one finds

ξM12 = −1

4
K

PQ
2 ∂MK1PQ +

1

4
K

P̄ Q̄
2 ∂MK1P̄ Q̄ − (1↔ 2) . (5.65)

Next, we eliminate the background projectors by (5.2) in order to find the O(D,D) covari-

ant form without projected indices. A straightforward computation yields

DFT+ : ξM12 = ξM12C −
1

2
H̄KLηPQK[1KP∂

MK2]LQ . (5.66)

This is to be contrasted with the DFT− algebra, which in the same notation reads

DFT− : ξM12 = ξM12C +
1

2
ηKLηPQ K[1KP∂

MK2]LQ . (5.67)

Note the background field dependence H̄ in the DFT+ algebra. This strongly suggests that

in a manifestly background independent formulation of DFT+ the gauge algebra will be

field dependent.

We close this section by discussing the general gauge algebra for arbitrary γ+, γ−. To

this end it is convenient to start from the gauge transformations that follow from (5.21)

and (5.63)

δ
γ
ξmMN̄ = 2KMN̄ + ξP∂PmMN̄ +KM

P mPN̄ +KN̄
P̄ mMP̄

+
1

2
(γ+ + γ−)∂MmPQ̄ ∂N̄KPQ̄ +

1

2
(γ+ − γ−)∂N̄mPQ̄ ∂MKPQ̄

+ (γ+ + γ−)∂PmQN̄ ∂MKPQ − (γ+ − γ−)∂P̄mMQ̄ ∂N̄KP̄ Q̄ .

(5.68)

The terms in the second line proportional to γ+ are removable by a field redefinition (and

can thus be ignored for the sake of computing the gauge algebra); the terms in the second

line proportional to γ− are removable by a parameter redefinition (and thus should be kept

as in (5.21)). A direct computation then shows closure with the effective parameter

ξM12 = ξM12C −
1

4
(γ+ + γ−)K

PQ
2 ∂MK1PQ +

1

4
(γ+ − γ−)KP̄ Q̄

2 ∂MK1P̄ Q̄

− 1

2
γ−K

PQ̄
2 ∂MK1PQ̄ − (1↔ 2) .

(5.69)

Eliminating now the projectors by (5.2) we find the gauge algebra

ξM12 = ξM12C −
1

2

(
γ+HKL − γ−ηKL

)
K[1K

P∂MK2]LP , (5.70)

which interpolates between the background-dependent (5.66) and the background-

independent (5.67).
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6 Cubic actions for DFT− and DFT+

We now explicitly construct cubic actions of order α′, i.e., with three fields and four deriva-

tives, for both DFT− and DFT+ and thereby also for the interpolating theories. It is

convenient to cast the cubic action into a semi-geometric form, partially written in terms

of linearized connections and curvatures that have simple transformation rules under the

lowest-order gauge symmetries. In the first subsection we introduce these objects and use

them to define the O(D,D) covariant form of the Gauss-Bonnet term (to quadratic order

in fields). Then we define the cubic DFT− and DFT+ actions and discuss their respective

differences as well as the interpolating case related to the heterotic string.

6.1 Linearized connections, curvatures and Gauss-Bonnet

The two-derivative DFT can be cast into a geometric form, with generalized connections

and curvatures, but an important difference to standard geometry is that not all connection

components can be determined in terms of the physical fields [6, 21–23, 34]. (This is the

very reason that α′ corrections are non-trivial and require an extension of the framework,

cf. the discussion in [22, 23].) In the following, however, it is sufficient to work with the

linearized version of the determined connections, which are given by

ΓM̄NK ≡ ∂NmKM̄ − ∂KmNM̄ ,

ΓMN̄K̄ ≡ ∂N̄mMK̄ − ∂K̄mMN̄ ,

ΓM ≡ ∂N̄mMN̄ − 2∂Mφ ,

ΓM̄ ≡ ∂NmNM̄ + 2∂M̄φ .

(6.1)

It is convenient to record the Z2 properties of the connections. These are easily found

applying the rules spelled out in section 5.2 (recalling that the dilaton is Z2 invariant):

ΓM̄NK
Z2−→ ΓMN̄K̄ ,

ΓM̄
Z2−→ − ΓM ,

KM̄N̄
Z2−→ − KMN .

(6.2)

The gauge variations of these connections under the lowest-order gauge transformation,

cf. (5.21),

δ
[0]
ξ mMN̄ = 2(∂MξN̄ − ∂N̄ξM ) , δ

[0]
ξ φ = ∂MξM + ∂M̄ξM̄ , (6.3)

can be conveniently written in terms of the gauge parameters:

KM̄N̄ ≡ ∂M̄ξN̄ − ∂N̄ξM̄ , KMN ≡ ∂MξN − ∂NξM , (6.4)

and read

δ
[0]
ξ ΓM̄NK = − 2∂M̄KNK , δ

[0]
ξ ΓMN̄K̄ = 2∂MKN̄K̄ , (6.5)

δ
[0]
ξ ΓM = 2∂NKNM , δ

[0]
ξ ΓM̄ = − 2∂N̄KN̄M̄ . (6.6)
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Note, in particular, that ΓM̄NK and ΓM are gauge invariant under ξM̄ transformations.

Similarly, ΓMN̄K̄ and ΓM̄ are gauge invariant under ξM transformations. This fact simpli-

fies the construction of gauge invariant actions below.

Next, we can define the linearized Ricci tensor and scalar curvature:

RMN̄ ≡ ∂KΓN̄KM + ∂N̄ΓM = −∂K̄ΓMK̄N̄ − ∂MΓN̄ ,

R ≡ ∂MΓM = ∂M̄ΓM̄ .
(6.7)

The equivalence of the two definitions in each case can be verified with the explicit form of

the connections (6.1). These tensors are gauge invariant as can be easily verified with (6.5).

Inserting (6.1) the explicit form of the linearized curvatures is given by

RMN̄ = �mMN̄ − ∂M∂KmKN̄ + ∂N̄∂K̄mMK̄ − 2∂M∂N̄φ ,

R = ∂M∂K̄mMK̄ − 2�φ ,
(6.8)

where � = ∂M∂M . These curvatures appear in the general variation of the quadratic

two-derivative action (5.9),

δS(2) =

∫
δmMN̄ RMN̄ − 2 δφR . (6.9)

It is also interesting to note that, up to boundary terms, the two-derivative action can be

written in terms of connections,

L(2) = 1

4
ΓMP̄Q̄ΓMP̄Q̄ +

1

2
ΓM̄ΓM̄ . (6.10)

There is no O(D,D) covariant Riemann tensor that is fully determined in terms of

the physical fields [6, 22] or that even encodes the physical Riemann tensor among unde-

termined components [23]. However, there is a linearized gauge invariant Riemann tensor

(that encodes the linearized physical Riemann tensor for vanishing b-field), as noted in [6].3

It is defined by

RMNK̄L̄ = 2∂[MΓN ]K̄L̄ ≡ 2∂[K̄ΓL̄]MN ≡ RK̄L̄MN . (6.11)

Its explicit form is given by

RMNK̄L̄ = ∂M∂K̄ mNL̄ − ∂N∂K̄ mML̄ − ∂M∂L̄mNK̄ + ∂N∂L̄mMK̄ . (6.12)

It is easily seen with (6.5) or (6.3) that this tensor is indeed gauge invariant. The linearized

Riemann and Ricci tensor and the curvature scalar satisfy differential Bianchi identities,

∂MRMNK̄L̄ = 2∂[K̄R|N |L̄] , ∂M̄RM̄N̄KL = −2∂[KRL ]N̄ ,

∂MRMN̄ = ∂N̄R , ∂M̄RNM̄ = −∂NR .
(6.13)

These are easily verified using the definition of these curvatures in terms of connections.

3This tensor does not have a non-linear completion: there is no tensor that is covariant under the non-

linear (un-deformed) gauge transformations of DFT and reduces to it upon expansion around a background.
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We close this subsection by giving an O(D,D) covariant form of the Gauss-Bonnet

combination (to quadratic order in fields), because this will be important below when

relating to the usual O(α′) actions of string theory that are conveniently written in terms

of Gauss-Bonnet [32]. Using the linearized O(D,D) covariant curvatures above, the Gauss-

Bonnet combination is defined by

GB ≡ RMNK̄L̄RMNK̄L̄ + 4RMN̄ RMN̄ + 4R2 . (6.14)

This combination is a total derivative (as is the conventional Gauss-Bonnet combination

at the quadratic level). Indeed, we can write

GB = ∂MBM + ∂M̄BM̄ , (6.15)

where

BM = ΓNK̄L̄RMNK̄L̄ + 2ΓK̄MN RNK̄ − 2ΓN̄ RMN̄ + 2ΓM R ,

BM̄ = ΓN̄KLRM̄N̄KL − 2ΓKM̄N̄ RKN̄ + 2ΓN RNM̄ + 2ΓM̄ R .
(6.16)

In order to check that the divergence of these vectors leads to the Gauss-Bonnet combi-

nation (thereby proving that the latter is a total derivative) one has to use repeatedly the

Bianchi identities (6.13).

It is instructive to investigate the gauge transformations of BM and BM̄ , because

they play a role analogous to the Chern-Simons three-forms whose exterior derivatives

define the conventional Gauss-Bonnet term tr(R ∧R). These Chern-Simons forms are not

gauge invariant but transform into exterior derivatives, and it is interesting to find the

DFT analogue of this fact. Using again the Bianchi identities, one finds that the gauge

variations of the BM can be written as

δξB
M = ∂N̄CMN̄ + ∂NCMN , δξB

M̄ = −∂NCNM̄ − ∂N̄CM̄N̄ , (6.17)

where

CMN̄ = − 4KMK RK
N̄ + 4KN̄K̄ RM

K̄ ,

CMN = 2KK̄L̄RMNK̄L̄ − 4KMN R ,

CM̄N̄ = 2KKLRM̄N̄KL − 4KM̄N̄ R .

(6.18)

As CMN and CM̄N̄ are by definition antisymmetric, this makes it manifest that the total

divergence of the BM is gauge invariant.

6.2 Cubic action for DFT at order α
′

We now turn to the construction of the cubic action to first order in α′, i.e., with four

derivatives. We will denote this action by S(3,4) where the first superscript denotes the

number of fields and the second the number of derivatives. For DFT+ we will call this

action S
(3,4)
+ and for DFT− we will call it S

(3,4)
− . The quadratic action, which is known, is
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written as S(2,2); it has two fields and two derivatives. The cubic action S(3,4) is determined

by gauge invariance, which to this order in fields requires

δ[1](1)S(2,2) + δ[0]S(3,4) = 0 , (6.19)

where we recall that the superscripts on δ indicate the number of fields in brackets and

the power of α′ in parenthesis. Here we assumed that the action does not contain terms

quadratic in fields with four derivatives. This assumption is justified, because one can

always choose a field basis in which the curvature-squared invariants enter in the Gauss-

Bonnet combination, which reduces to a total derivative at the quadratic level. In fact,

in CSFT there are no such terms. Sometimes it may be more convenient to work with

another field basis, and we will return to this case below.

Let us now discuss the invariance condition in a little more detail. It turns out to

be convenient to write the variation of order α′ in terms of linearized connections. In

fact, (5.25) can be written as

δ
[1](1)σ
ξ mMN̄ =

1

2

(
∂MKKL ΓN̄KL − σ ∂N̄KK̄L̄ ΓMK̄L̄

)
, (6.20)

with σ = +1 for DFT+ and σ = −1 for DFT−. In constructing the cubic action it is

sufficient to focus on one projection of the gauge parameter, provided the action has a

definite Z2 parity. Indeed, for DFT+ gauge invariance under ξ implies gauge invariance

under ξ̄:

δ
[1](1)+
ξ S(2,2) + δ

[0]
ξ S

(3,4)
+ = 0

Z2−→ δ
[1](1)+

ξ̄
S(2,2) + δ

[0]

ξ̄
S
(3,4)
+ = 0 . (6.21)

Similarly, for DFT− we have

δ
[1](1)−
ξ S(2,2) + δ

[0]
ξ S

(3,4)
− = 0

Z2−→ −δ[1](1)−
ξ̄

S(2,2) − δ
[0]

ξ̄
S
(3,4)
− = 0 . (6.22)

As before, ξ̄ invariance follows from ξ invariance. More generally, given cubic, four-

derivative actions S
(3,4)
− and S

(3,4)
+ we can construct an invariant action for linear com-

binations. In fact, the gauge transformations with parameters γ+ and γ− in (5.68) are

equivalent to

δ
[1](1)γ
ξ = γ+ δ

[1](1)+
ξ + γ− δ

[1](1)−
ξ . (6.23)

Then the cubic action

S(3,4)
γ ≡ γ+ S

(3,4)
+ + γ− S

(3,4)
− , (6.24)

leads to a gauge invariant action as a direct consequence of (6.21) and (6.22).

We now discuss the specific construction for DFT−. As explained above, it is sufficient

to focus on, say, the ξ variation, which is given by

δ
[1](1)
ξ mMN̄ =

1

2
∂MKKL ΓN̄KL . (6.25)

(Note that, as long as we ignore ξ̄, δ+ and δ− coincide.) Inserting this variation into the

general form (6.9) we compute

δ
[1](1)
ξ S2 = −1

2
∂MKPQΓN̄

PQ

(
∂K̄ΓMK̄N̄ + ∂MΓN̄

)
, (6.26)
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using the (second) definition of the linearized Ricci tensor in (6.7). In order to determine

the cubic action we have to find cubic coupling whose δ[0] variations cancel these terms.

It turns out that these terms can be naturally written in terms of the connections (6.1).

After some manipulations, discarding total derivatives and using the strong constraint, one

can show that the cubic couplings are

S
(3,4)
− = − 1

8

(
ΓPM̄N̄ ΓM̄

KL ∂PΓN̄KL + ΓP̄MN ΓM
K̄L̄ ∂P̄ΓNK̄L̄

− ΓM̄
KL ΓN̄KL ∂M̄ΓN̄ − ΓM

K̄L̄ ΓNK̄L̄ ∂MΓN

)
.

(6.27)

With the Z2 action (6.2) on the connections and the rules explained in section 5.2 it follows

that this action is Z2 odd. Indeed, in the first line there are five η implicit, leading to a sign

change under Z2; in the second line there are four η implicit, but Z2 acts as ΓM̄ → −ΓM ,

which also leads to a sign change.

6.3 Cubic action for DFT+

We now turn to the cubic action for DFT+. It can be written in various different forms,

all related by total derivatives or covariant field redefinitions. Here we give two forms, one

for a field-basis with Riemann-squared, one for the Gauss-Bonnet combination.

The Riemann-squared case turns out to be a little simpler, so we start with this one.

We now have to include an S(2,4) term quadratic in fields and with four-derivatives, namely

the square of the Riemann tensor (6.11). The full gauge invariance requires

δ
[1](1)+
ξ S(2,2) + δ

[1](0)
ξ S(2,4) + δ

[0]
ξ S(3,4) = 0 . (6.28)

A gauge invariant action to this order is then given by

S = S(2,2) + S(3,2)

+
1

4
RMNK̄L̄RMNK̄L̄ +

1

4
φRMNK̄L̄RMNK̄L̄

− 1

8

(
ΓPM̄N̄ ΓM̄

KL ∂PΓN̄KL − ΓP̄MN ΓM
K̄L̄ ∂P̄ΓNK̄L̄

− ΓM̄
KL ΓN̄KL ∂M̄ΓN̄ + ΓM

K̄L̄ ΓNK̄L̄ ∂MΓN

)

− 1

2
RMNK̄L̄ ΓK̄MP ΓL̄N

P +
1

2
RKLM̄N̄ ΓKM̄P̄ ΓLN̄

P̄

− 1

2
mMN̄ RMKP̄Q̄ ∂N̄ΓKP̄Q̄ +

1

2
mMN̄ RPQN̄K̄ ∂MΓK̄PQ

+
1

2
RMNK̄L̄ ∂PmMK̄ ∂Pm

NL̄ .

(6.29)

Here S(2,2) and S(3,2) are the quadratic and cubic couplings of the two-derivative theory,

S(2,4) is the term quadratic in the Riemann tensor, and all remaining terms belong to S(3,4),

the cubic couplings with four derivatives. Note that the explicit form of S(3,2) is not needed

for the O(α′) proof of gauge invariance. The gauge invariance can be verified systematically

by computing the variation in (6.28) and integrating by parts so that all terms appear with
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an undifferentiated gauge parameter ξ. These terms have to cancel, without any total

derivative ambiguities. We have verified this (and in fact constructed (6.29)) with the help

of a Mathematica code.

Next we turn to the field basis with Gauss-Bonnet combination (6.14). In this case

the quadratic terms with four derivatives contribute only a boundary term and can thus

be ignored. A gauge invariant action to this order is then given by

S =S(2,2) + S(3,2)

+
1

4
φ
(
RMNK̄L̄RMNK̄L̄ + 4RMN̄ RMN̄ + 4R2

)

− 1

8

(
ΓPM̄N̄ ΓM̄

KL ∂PΓN̄KL − ΓP̄MN ΓM
K̄L̄ ∂P̄ΓNK̄L̄

− ΓM̄
KL ΓN̄KL ∂M̄ΓN̄ + ΓM

K̄L̄ ΓNK̄L̄ ∂MΓN

)

+ 4mMN̄ ∂M∂N̄φ�φ− 4mMN̄ ∂M∂Kφ∂N̄∂Kφ+ 4�φ∂Kφ∂Kφ

+ ∂P∂QmMN̄ ∂PmMK̄ ∂K̄mQN̄ + ∂P∂Q̄mMN̄ ∂PmKN̄ ∂KmMQ̄

+ ∂M∂LmLN̄ ∂N̄mKP̄ ∂KmM
P̄ − ∂M̄∂L̄mNL̄ ∂NmPK̄ ∂K̄mP

M̄

− 1

2
∂M∂N̄mMN̄ ∂KmKP̄ ∂Lm

LP̄ +
1

2
∂M∂N̄mMN̄ ∂K̄mPK̄ ∂L̄m

PL̄

+
1

2
∂M∂N̄mMN̄ ∂KmLP̄ ∂KmLP̄

+
1

2
RMNK̄L̄ ∂PmMK̄ ∂Pm

NL̄ .

(6.30)

Note that we obtained cubic couplings of the form dilaton times Gauss-Bonnet. This is

consistent with the conventional spacetime action of O(α′) in string frame where such terms

arise. Again, we proved the gauge invariance condition (6.19) by computing the variation

and integrating by parts to show that all terms cancel.

Let us stress that there is a large field-redefinition ambiguity and total derivative am-

biguitiy, so the forms given in (6.29) and (6.30) are not unique. The Riemann-squared

completion in (6.29) takes a ‘semi-geometric’ form, written in terms of (linearized) con-

nections and curvatures. We did not manage to find a similarly geometric form of (6.30).

It would be interesting, however, to further elucidate the geometrical content of this ac-

tion, thus arriving at a DFT-extended form of the Gauss-Bonnet action discussed at the

linearized level in section 6.1.

We close this section by briefly mentioning the ‘interpolating’ heterotic case (for van-

ishing gauge vectors). The corresponding action is given by (6.24) with both γ+ and γ−

switched on, thus containing a linear combination of the cubic action (6.27) and, depending

on the field basis, (6.29) or (6.30). Dropping ∂̃ derivatives and writing the action in terms

of conventional perturbative variables, it encodes both a Riemann-squared term and the

gravitational Chern-Simons modification of the b-field field strength.
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7 Conclusions and outlook

In this paper we have developed DFT+, the double field theory for bosonic string theory to

first order in α′ and compared it to the ‘doubled α′ geometry’ in [3]. As reviewed here and

discussed in more detail in [2], the latter theory, DFT−, has elements of heterotic string

theory. Indeed, the gauge algebra for DFT+ differs from that for DFT−. We computed

the gauge algebra for the cubic DFT+ from closed string field theory to first order in α′.

Then we computed the gauge transformations that close according to this gauge algebra

and determined the cubic action. While the cubic action for DFT− describes (part of) the

Chern-Simons modifications of the three-form curvature needed for Green-Schwarz anomaly

cancellation, the cubic action for DFT+ describes the T-duality invariant extension of the

Riemann-squared term that is known to appear in bosonic string theory. The claim that

DFT+ encodes Riemann-squared requires a justification.4 Therefore we summarize in the

following three independent arguments that imply this result:

(1) As explained in section 4.1, writing the cubic terms of Riemann-squared in a T-

duality invariant way requires a non-covariant field redefinition [22]. This leads to

modified diffeomorphism transformations that agree with the gauge transformations

of DFT+.

(2) The results in [25] imply that, upon reduction to one dimension, writing the O(α′)

terms in bosonic string theory in an O(d, d) covariant way requires field redefinitions

that are in quantitative agreement with those discussed under (1).

(3) The gauge algebra (and therefore, indirectly, the gauge transformations) of DFT+

have been determined from bosonic closed string field theory and thus must lead

to a theory that encodes the known Riemann-squared correction. In fact, taken

together with the results under (1) our analysis determined the coefficient of the

Riemann-squared term as predicted from string field theory and agrees perfectly

with the literature.

A final observation supporting the conclusion that DFT+ describes Riemann-squared is

that the cubic actions (6.29) or (6.30) contain cubic couplings involving the dilaton times

Riemann-squared or Gauss-Bonnet, exactly as expected for the cubic couplings of the O(α′)

terms in the string frame.

So far we constructed only the cubic action for DFT+ or, more generally, for the

interpolating theory relevant for heterotic string theory, describing both gravitational

Chern-Simons modifications and Riemann-squared. It is clearly desirable to construct the

background-independent theory, i.e., to all orders in fluctuations. As the DFT+ gauge al-

gebra (5.66) is background-dependent this requires a further extension to a field-dependent

gauge algebra. Most likely, this extension goes beyond replacing the background general-

ized metric by the full generalized metric.

4The fact that the cubic action (6.29) includes the square of the linearized Riemann tensor does not

suffice: up to field redefinitions this term may be replaced by the Gauss-Bonnet combination (6.15), which

is a total derivative [32].
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Very recently an interesting proposal appeared [27] that aims to describe the complete

O(α′) corrections of heterotic string theory in DFT. It starts from the heterotic DFT [6, 33,

35, 36] that incorporates n gauge vectors in an enlarged generalized metric taking values in

O(D,D+n). The theory is defined on a further extended space with n new coordinates and

subject to additional constraints. By declaring part of the connections to be (torsionful)

Lorentz connections one obtains the desired O(α′) corrections of heterotic string theory as

in [37]. It is asserted in [27] that this procedure is compatible with O(D,D), which however

is modified in terms of the conventional fields. This would suggest an alternative picture

in which the gauge transformations are unchanged, but instead the action of O(D,D) on

fields is α′ corrected. It may be of interest to search for a relation to the constructions

in [38–40] that also extend the coordinates to encode Lorentz algebra directions.
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