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Abstract: We provide a comprehensive classification of isotropic solid and fluid holo-

graphic models with broken translational invariance. We describe in detail the collective

modes in both the transverse and longitudinal sectors. First, we discuss holographic fluid

models, i.e. systems invariant under internal volume preserving diffeomorphisms. We con-

sider the explicit (EXB) and the spontaneous (SSB) breaking of translations and we em-

phasize the differences with respect to their solid counterpart. Then, we present a study

of the longitudinal collective modes in simple holographic solid and fluid models exhibiting

the interplay between SSB and EXB. We confirm the presence of light pseudo-phonons

obeying the Gell-Mann-Oakes-Renner relation and the validity of the relation proposed in

the literature between the novel phase relaxation scale, the mass of the pseudo-Golstone

modes and the Goldstone diffusion. Moreover, we find very good agreement between the

dispersion relation of our longitudinal sound mode and the formulae derived from the

Hydro+ framework. Finally, our results suggest that the crystal diffusion mode does not

acquire a simple damping term because of the novel relaxation scale proportional to the

EXB. The dynamics is more complex and it involves the interplay of three modes: the

crystal diffusion and two more arising from the splitting of the original sound mode. In

this sense, the novel relaxation scale, which comes from the explicit breaking of the global

internal shift symmetry of the Stückelberg fields, is different from the one induced by elastic

defects, and depending solely on the SSB scale.
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1 Introduction

Symmetry is pleasing but not as sexy.

Einstein is cool but Picasso knows what

I’m talking about.

— Amy Poehler

Classifying the different phases of matter present in Nature is one of the fundamental

task of Physics and Science in general. Historically, this organizational program has been

initiated by looking at simple physical properties such as thermodynamical and transport

features. Ice has a lower density than water; an insulator has lower electric conductivity

than a metal and a superconductor has even infinite conductivity. Later on with time,

physicists realized the importance of classifying the various phases of matter accordingly

to the dynamics of the collective excitations therein. With this purpose in mind, the

idea of building effective field theories (EFTs) in terms of these (few) low-energy degrees

of freedom lead to important theoretical developments. Hydrodynamics is certainly one

of them. Importantly, its formulation is based on conservation laws, already revealing

the crucial importance of symmetries. In this sense, hydrodynamics can be applied not

only to fluids but also to more complex systems, like solids and liquid crystals [1, 2],

superconductors [3], charge density waves [4] and systems in strong magnetic field [5]. In

other words, hydrodynamics can still be predictive and very useful in presence of broken

spacetime/internal symmetries [6, 7].
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The most important theoretical step for the classification of the various phases of

matter has been the realization that symmetries are the key feature. In particular, the var-

ious phases like liquids, solids and even more exotic ones (supersolids, framids, . . . ), can

be simply classified according to the different spontaneous symmetry breaking patterns

of Poincaré symmetry they correspond to [8]. The idea is that the Poincaré symmetry

represents a fundamental and universal feature at high energy, even though it appears to

be spontaneously broken at low energy.1 Matter configurations select a preferred refer-

ence frame, breaking this invariance. The simplest example is that of the Ionic lattice in

ordered crystals.

Let us explain in more detail how this classification works, focusing our attention to the

most common phases of matter: fluids and solids. For simplicity, we restrict our discussion

to homogeneous and isotropic systems. The description is based on a set of scalar fields:

ΦI(~x, t) with I = 1, 2, . . . , d (1.1)

which label the positions of the individual volume elements at fixed time; in other words,

they can be thought as a set of comoving coordinates. The scalars enjoy internal shift

symmetry and they define the equilibrium configuration by their expectation value:

〈ΦI〉 = δIi x
i (1.2)

where xI are the spatial coordinates of the system (in our case I = x, y). The capital letters

indicate the internal indices while the lower case denotes the spacetime ones.2 Obviously,

the equilibrium configuration, defined by eq. (1.2), breaks Lorentz invariance spontaneously.

More precisely, it breaks spatial translations and rotations (and boosts). In order to retain

the properties of homogeneity and isotropy, the scalar fields have to be invariant under

internal translations and rotations:

ΦI → φI + aI , ΦI → SO(d) · ΦI (1.3)

where d indicates the number of spatial directions. The union of these two transformations

is usually indicated as the group ISO(d).

The scalars ΦI can be identified as Goldstone modes, which appear because of the

SSB induced by the equilibrium configuration (1.2). It is important to observe that de-

spite broken spacetime translations, a diagonal group between internal translations and

spacetime translations is preserved. In fact, the system is invariant under the combined

transformation:

〈internal translations〉 ⊗ 〈spacetime translations〉
ΦI → ΦI + aI xI → xI − aI (1.4)

where the index I here only represents the spatial directions.

1This program can be rigorously formalized using opportune Coset construction and mathematical

tools [9, 10].
2In the following, we will forget about this difference and denote both coordinates in the same way.
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Figure 1. The distinction between a solid and a liquid from the symmetry point of view. Both

systems are invariant under ISO(d) but the liquid is also invariant under a bigger symmetry group,

volume preserving diffeomorphisms. That is just the mathematical formulation of the statement

that “liquids take the shape of the container in which they are placed”.

Once the symmetries of the system are defined, we are in the position of writing the

effective action for our EFT. The fundamental building block is the kinetic matrix:

XIJ ≡ ∂µΦI ∂µΦJ (1.5)

from which the two following scalar quantities can be constructed:

X ≡ Tr
[
XIJ

]
, Z ≡ det

[
XIJ

]
(1.6)

Both terms are invariant under an ISO(d) transformation (1.3). The most generic effective

action can therefore be written as:

S =

∫
d3xV (X ,Z) (1.7)

where V is an arbitrary scalar potential.3

The simple action in eq. (1.7) represents the most generic effective field theory for

(isotropic and homogeneous) solids and liquids. All the thermodynamic properties and the

relevant low energy collective excitations can be obtained introducing perturbations on top

of it. The full theory of elasticity and (non dissipative) hydrodynamics can be recovered

as well using this framework [12].

Until this point, we have not made any distinction between solids and fluids; both

phases of matter enjoy invariance under the ISO(d) group defined in (1.3). The difference

between the two phases are clear when we think about our everyday experience. Fluids

take the shape of the container in which they are placed; solids do not. From a more

mathematical perspective, this means that fluids enjoy a larger symmetry, which takes

3Strictly speaking this statement is not correct. The potential V (X ,Z) has to satisfy some basic condi-

tions in order for the theory to be unitary, causal and stable. See [11] for more details.
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the name of volume preserving internal diffeomorphism (VPdiffs). In particular, fluids are

invariant under the internal transformation:

ΦI → ξI(Φ) , det
∂ξI

∂ΦJ
= 1 (1.8)

with unitary Jacobian matrix. Invariance under the transformations of eq. (1.8) strongly

constraints the original action (1.7) and in particular it does not permit any possible

dependence on the scalar object X. Finally, the effective action for fluids take the form:

Sfluids =

∫
d3xV(Z) (1.9)

At the level of the physical observables, the fluid choice above forces the shear elastic

modulus and the propagation speed of transverse phonons to be zero:

G = 0 , c2
T = 0 (1.10)

since both these quantities are proportional to the X-derivative of the potential appearing

in eq. (1.7). In summary, using this framework, we can recover the well-known properties

of fluids simply using symmetry arguments.

The EFT framework just presented is elegant and powerful but it inherently has two

important flaws. First, it is not easily generalizable to finite temperature. It is extremely

hard, and still an open question, to include dissipation within this framework. Including

dissipation within this framework is not only extremely difficult but still an open ques-

tion [13]. The same problem has been recently discussed in the context of the Lagrangian

formulation for hydrodynamics [14–17]. Second, the EFT picture is not valid in a scale

invariant system like a quantum critical material. Scale invariance implies the absence of

a mass gap and the presence of a continuum of states with no separation of scales, making

invalid the basic assumptions of the effective field theory methods. Therefore, it is far

from obvious how to apply this construction to critical materials, especially if they are

strongly coupled.

Given the outlined shortcomings, it is valuable and important to extend the EFT

methods to dissipative and quantum critical systems. The Holographic methods [18] are a

concrete possibility to overcome these problems. In order to consider the previous picture

in the context of the gauge-gravity duality, all the spacetime symmetries have to be gauged4

and the following action has to be considered:

S =

∫
d4X

√
−g

[
R − 2 Λ − m2 V (X,Z)

]
(1.11)

where g is the metric tensor of the curved spacetime background, R the corresponding

Ricci scalar and Λ a possible cosmological constant.5

4The question regarding the internal symmetries of the Stückelberg fields is more subtle. We will not

gauge those symmetries in the bulk. See [19] for more discussions about this point.
5A negative cosmological constant is actually necessary to formally apply the AdS-CFT correspondence.
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The holographic action in eq. (1.11) is built using a set of bulk scalar fields φI(~x, t, u)

from which:

IIJ = ∂µφ
I∂µφJ , X = Tr[IIJ ] , Z = Det[IIJ ], (1.12)

in analogy with the previous field theory discussion. Before proceeding, it is important

to distinguish the bulk fields φI(~x, t, u) from the EFT scalar fields ΦI(~x, t). The fields φI ,

living in our four dimensional bulk geometry, are the duals, in the holographic sense, of

the EFT fields ΦI . At the same time, the relation between the bulk potential V (X,Z) and

the EFT potential V(X ,Z) is not direct and transparent. In other words, a bulk theory

defined by a potential V (X,Z) does not correspond to a dual field theory defined by the

same potential V (X ,Z).

That said, it is well known in the literature [20–22] that the theory defined above

in eq. (1.11) defines a Lorentz violating massive gravity theory, where the mass of the

graviton m can be thought as the consequence of the fixed reference frame induced by the

matter content. The set of scalars φI are simply the Stückelberg fields for the massive

gravity theory or in other words the Goldstone bosons for the broken symmetries. The

role of these theories in the context of holography has been discussed in several previous

works [11, 23–29], for a simple review see [30].

Before proceeding, let us make an important remark. From the bulk spacetime perspec-

tive, the equilibrium scalars profile φI = xI breaks the spacetime symmetries (translations)

spontaneously. The scalars are just the bulk phonons. From the point of view of the dual

field theory, the situation is different. The bulk scalars φI correspond to a set of operators

in the dual field theory OI breaking translations. Nevertheless, the nature of the symme-

try breaking, whether explicit (EXB) or spontaneous (SSB), depends on the asymptotic

behaviour of the bulk scalars φI close to the UV AdS boundary. In particular, the generic

asymptotic behavior for the scalars reads:

φ = φ0 + φ1 u
p + . . . (1.13)

where the UV boundary is set at u = 0. Here, following the AdS-CFT dictionary [31], two

possibilities arise:6

1. p > 0: φ0 is the source for the dual operator O and φ1 its VEV φ1 ≡ 〈O〉. In this

case, the background solution φI = xI represents a source for the dual operator and

therefore the breaking of translations is explicit.

2. p < 0: φ0, is the VEV this time, and φ1 is the source. In this scenario the breaking

is spontaneous, indeed totally dynamical.7

As explained in detail in [27], in order to have SSB, we have to choose a potential with:

V (X,Z) = XN , N > 5/2 for solids (1.14)

V (X,Z) = ZN , N > 5/4 for fluids (1.15)

6We do not consider here the possibility of taking the “alternative quantization” scheme nor that of

doing a double trace deformation with mixed boundary conditions.
7For subtleties regarding the minimization of the Free energy and thermodynamic stability see [27].
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Figure 2. The dynamics of crystal diffusion in presence of phase relaxation. Phase relaxation

mechanisms, Ω, induced by the proliferation of elastic defects, as dislocations, produce a damping

term for the crystal diffusion mode ω = − iΩ − Dφk
2. In the holographic models, the relaxation

mechanism Ω̄ is proportional to the explicit breaking of translations and does induce a complicated

dynamics between three different modes. In summary, the two mechanisms can not be simply

thought as different contributions to the total phase relaxation Ωrel.

while for smaller powers the breaking is always explicit (see for example [32]). Moreover,

with the same class of models, it is possible to implement the pseudo-spontaneous breaking

of translations, where the breaking is mostly, but not totally, spontaneous. This was done

in [26, 29] and will be explained further in the following.

In this manuscript we analyze in detail the collective modes in holographic models

breaking translations. We consider both solids but most importantly fluids, which have

received less attention in the existing literature so far. We discuss the explicit (EXB),

spontaneous (SSB), and pseudo-spontaneous breaking patterns. We aim to complete and

collect in a comprehensive picture the study of solid and fluid holographic models with

broken translational invariance. We provide a systematic description of the transport

properties and the low energy collective modes and we show the agreement between the

numerical results and the expected behaviours obtained via hydrodynamic methods.

Finally, we address a very specific question, which has been discussed in recent liter-

ature [26, 29, 33–35]. Can the interplay of explicit and spontaneous translations breaking

induce a novel contribution to the phase relaxation of the phonons? Phase relaxation,

Ω, is usually attributed to the presence and the proliferation of topological defects, such

as dislocations or disclinations [36]. In that sense, from the microscopic point of view,

it is related to the SSB of translational invariance and it should be insensitive to the ex-

plicit breaking mechanisms. Its presence has important consequences on the hydrodynamic

modes and transport coefficients [4]. At the moment, there are no holographic models able

to describe the physics of those elastic defects. Probably, the closest model is that intro-

duced in [37]. Nevertheless, recent works [26, 29, 33–35] noticed the presence of a similar

contribution, denoted by Ω̄, which crucially depends on the EXB scale. This relaxation

mechanism, independently of its microscopic nature, is significantly different from the one

we just mentioned. Apparently, it has already been discussed in the condensed matter

community [38, 39], but its complete hydrodynamic formulation is missing. Curiously, it

– 6 –
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enters in most of the observables8 as the “proper” phase relaxation Ω. Here, we perform

an additional test of this hypothesis by checking directly the dispersion relation of the

crystal diffusion mode in the pseudo-spontaneous regime. More concretely, we question

the presence of a mode with dispersion relation

ω = − i
?

Ωrel − iDφ k
2 + . . . Ωrel = Ω + Ω̄ (1.16)

where Ωrel is the total phase relaxation rate, namely the sum of all the possible contribu-

tions, whether dependent on the SSB or the EXB scale.

Given that in our model Ω = 0, the only possibility to have the mode in eq. (1.16)

damped is given by the coexistence of EXB and SSB, encoded in the novel parameter Ω̄.

This analysis does not aim to shed light on the microscopic mechanism behind the novel

relaxation scale Ω̄, but it can certainly give more indications whether it acts exactly like

the phase relaxation induced by topological defects or not.

The numerical results suggest that this novel relaxation scale Ω̄ does not induce a sim-

ple dynamics as that explained above in eq. (1.16). In particular, Ω̄ does not immediately

give any finite damping contribution to the crystal diffusion mode present in the longitu-

dinal spectrum. On the contrary, it produces a much more complicated phenomenology,

which shows non-trivial interactions between three different soft modes. One of them is the

crystal diffusion mode and the other two come from the splitting of the original longitudinal

sound mode. For a simplified representation see figure 2. In summary, the interplay of SSB

and EXB produces a novel relaxation time scale whose effects on the hydrodynamic mode

are different from those of the phase relaxation discussed in [4]. Unfortunately, this means

that not only a microscopic understanding of such novel phase relaxation mechanism is

absent. An effective and hydrodynamic treatment in accordance with numerical results is

to the best of our knowledge, still lacking.

On the positive side, our numerical results concerning the holographic fluid models

confirm the universal relation proposed in [34, 35] between the phase relaxation rate Ω̄, the

pinning frequency ω0 and the Goldstone diffusion ξ:

Ω̄ ∼ M2 ξ ∼ ω2
0 χPP

G
ξ (1.17)

This might represent the first step to understand the fundamental nature of this new phase

relaxation mechanism dependent on the explicit breaking of translations.

2 The class of holographic models

We consider the most generic Lorentz violating holographic massive gravity theory intro-

duced in [11] and defined by the following action:

S = M2
P

∫
d4x
√
−g
[
R

2
+

3

`2
− m2V (X,Z)

]
, (2.1)

8It does not produce anyway a pole in the frequency dependent viscosity η(ω), as shown in [29]. Whether

the reason for this is simply the range of parameters chosen or some more fundamental reason is not clear yet.

– 7 –
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in d+ 1 = 4 bulk dimensions. We define the kinetic matrix XIJ ≡ 1
2 g

µν ∂µφ
I∂νφ

J and the

corresponding scalar invariants X ≡ Tr[XIJ ] and Z ≡ det[XIJ ]. The φI are the Stückelberg

fields for the massive gravity theory [11, 20]. They display a simple bulk profile:

φI = xI (2.2)

where we indicate the internal and spatial coordinates with the same latin index. The scalar

fields are the Goldstone bosons for spacetime bulk translations. From the dual field theory

perspective, they break spacetime translations and internal shifts down to the diagonal

group, as explained in the introduction.

We study 4D asymptotically AdS black hole configurations using Eddington-

Finkelstein (EF) coordinates:

ds2 =
1

u2

[
−f(u) dt2 − 2 dt du+ dx2 + dy2

]
, (2.3)

with u ∈ [0, uh] the radial holographic direction spanning from the boundary u = 0 to the

horizon, defined through f(uh) = 0. We consider backgrounds with zero charge density;

the blackening factor reads:

f(u) = u3

∫ uh

u
dξ

[
3

ξ4
− m2

ξ4
V (ξ2, ξ4)

]
. (2.4)

The corresponding temperature of the dual QFT takes the following form:

T = −f
′(uh)

4π
=

6− 2m2V
(
u2
h, u

4
h

)
8πuh

, (2.5)

while the entropy density is simply s = 2π/u2
h. Without loss of generality, we will set the

radius of the BH horizon to uh = 1 throughout the manuscript. Finally, we can write down

the energy density of the system as:

ε = 1 + m2

∫ 1

0

V (ζ2, ζ4)

ζ4
dζ (2.6)

and the momentum susceptibility as χPP = 3/2 ε.

In the following we will consider both the transverse and longitudinal sectors of the

fluctuations and in particular we will in detail analyze the corresponding collective modes.

We will assume different choices for the potential V (X,Z); in other words, we will focus on

different symmetry breaking patterns. For details about the technical computations and

the numerical techniques we refer the reader to the appendices A and B.

3 An holographic fluid with broken translations

The first model we consider is a fluid model with explicitly broken translational invariance.

It is defined by the potential:

V (X,Z) = Z (3.1)

– 8 –



J
H
E
P
1
0
(
2
0
1
9
)
2
3
5

V(X,Z) = Z

V(X,Z) = X

1/4π

m/T

η/s
V(X,Z) = X

V(X,Z) = Z
σDC

ω

Re[σ(ω)]

Figure 3. The difference between the linear axion model V (X,Z) = X [32] and the fluid model

V (X,Z) = Z. Both models break translations explicitly and have a finite DC conductivity. Nev-

ertheless the first violates the Kovtun-Starinets-Son (KSS) bound while the second does not. The

violation of the KSS bound in the first case can be derived analytically (dashed line) [25].

and it can be thought as the fluid counterpart of the widely used linear axions model [32].

From a technical point of view, it differs from the solid model due to the presence of an

additional internal symmetry. In specific, the model defined in (3.1) is invariant under

internal volume preserving diffeomorphisms (VPDiffs):

φI −→ ξI(φ) , det
∂ξI

∂φJ
= 1 (3.2)

which are the fundamental difference between solids and fluids. Moreover, the invariance

under VPDiffs forces the mass of the helicity-2 component of the graviton to be zero. As

a consequence, the equation of motion for the transverse and traceless component of the

graviton hTT simply reads:

2hTT = 0 (3.3)

as in translational invariant systems, e.g. Schwarzschild background.

From equation (3.3), using the membrane paradigm [40], we immediately obtain that

in this fluid model:
η

s
=

1

4π
(3.4)

namely the Kovtun-Son-Starinets (KSS) bound [41] is saturated.

This represents a striking difference with the solid linear axion models [32], which is

known to violate the viscosity-entropy ratio bound [25, 42–44]. This is an important point

given the confusion in the literature regarding the explicit breaking of translations and the

violation of the KSS bound. From the results in this model, it is evident that momentum

dissipation does not necessarily imply such a violation. The key technical point is the

vanishing of the helicity-2 graviton mass, which is the real reason behind the failure of the

KSS bound, as explained in general terms in [25, 42].

Nonetheless, both the solid and fluid models display a finite mass for the helicity-1

component of the graviton [11]. That accounts for the non-conservation of the momentum

operator of the dual field theory and more practically for a finite DC conductivity [11].

The comparison between the solid and fluid models is shown in figure 3.

Let us now move to discuss in detail the collective modes of the fluid model (3.1).

– 9 –
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T

Figure 4. Left: the imaginary part of the lowest mode of the transverse spectrum for the fluid

model (3.1) in function of the dimensionless parameter m/T . The red dashed line is formula (3.7).

Around m/T ∼ 1.8 the collision indicating the coherent-incoherent transition happens. Right: the

dispersion relation of the lowest mode for m/T = 0.2966. The dashed line is the expression obtained

formula (3.7). The agreement at k/T � 1 is good.

The transverse sector. We start considering the transverse sector of the fluctuations

and the corresponding QNMs. For this concrete model, the masses of the helicity-2 and

helicity-1 components of the graviton read:

m2
T = 0, m2

V = 2u2m2 VZ , (3.5)

where the abbreviation VZ stands for ∂ZV (X,Z), e.g. VZ = 1 for the specific choice in

eq. (3.1). Moreover, the DC conductivity was computed in [11] and it is given by:

σDC = 1 +
µ2

2m2 VZ
(3.6)

where µ is the chemical potential, and it is indeed finite for m 6= 0. From the point of view

of the electric transport properties, this model is completely analogous to the linear axion

model [45, 46].

For slow momentum dissipation m/T � 1, the least damped QNM is a pseudo-diffusive

mode defined by the following dispersion relation:

ω = − iΓ − iD k2 + O(k4) , Γ =
m2 VZ
π T

+ O(m4) , D =
η

χPP
+ . . . (3.7)

where Γ is the momentum relaxation rate [47] and D the diffusion constant. We show

the imaginary part of the lowest QNM in expression 3.7, at zero momentum k = 0, in

figure 4. The results indicate that for slow momentum dissipation, m/T � 1, formula (3.7)

is in agreement with the numerical data. Increasing further the strength of the explicit

breaking, a coherent-incoherent transition appears as the first QNM collides with a second

one producing a pair of off-axes modes (see figure 4). This phenomenon is totally analogous

to what is observed in the linear axions model in [45, 46].

In figure 4 we exhibit the dispersion relation of the lowest QNMs (3.7). As expected,

the hydrodynamic prediction (3.7) provides a good approximation of the diffusion constant.

– 10 –
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Figure 5. A snapshot of the first four modes in the transverse spectrum of the fluid model (3.1).

We fixed m/T = 0.9525.
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Figure 6. The two lowest modes in the transverse spectrum of the fluid model (3.1) for m/T ∈
[0.67, 6.28] (from blue to red).

Clearly, at k/T � 1, higher order corrections enter and the dispersion relation is no longer

purely diffusive.9 This is the reason of the discrepancies in that regime.

Finally, we are interested in analyzing the behaviour of the QNMs beyond the hydro-

dynamic limit ω/T, k/T � 1. This is motivated by the interesting features observed in the

solid version of the model [49, 50]. In particular it is plausible that this model also exhibits

the so-called k−gap phenomenon [51], namely the appearance of a propagating shear wave

beyond a certain momentum k > kg.

First, we give a snapshot of the first four modes in the spectrum at a specific value

of m/T in figure 5. The dynamics beyond the hydrodynamic limit, is quite complicated

and qualitative similar to what is found in [26]. In particular, the first two modes display

a curious interplay which seems more complex than a single k-gap phenomenon.

In order to study this better, we isolate the first two modes and we follow their dis-

persion relation until large momenta k/T � 1, varying the value of the dimensionless

parameter m/T . We show our results in figure 6. We observe that, for small values of

the dimensionless parameter m/T , the two modes collide at an initial value of momentum

k1, creating a finite real part in a k−gap fashion [51]. Nevertheless, at a second value of

the momentum k2 > k1 the modes split up and the real part becomes zero. In summary,

the real part of the dispersion relation is non-zero only in a finite interval of momenta

9The same corrections are present in pure relativistic hydrodynamics and can be found for example

in [48].
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Figure 7. The dispersion relation of the lowest modes for m2 = {0.297, 0.773, 0.544} (from black

to magenta). The dashed lines are the hydrodynamic formula (3.8) which works well for m/T � 1.

k1 < k < k2. This is similar to what is already observed in [26]. Increasing the value of

m/T , the [k1, k2] interval gets larger and larger until the first momentum k1 reaches the

origin, k1 = 0. At that point, the modes become gapped and they display, at low momenta,

a dispersion relation of a massive particle type ω2 = M2 + v2 k2. This tendency is very

similar to what happens in the linear axions model [49], but in that case no closing up at

larger momentum k2 happens. This difference can be qualitative motivated by the fact that

the V (X,Z) = Z model contains higher derivatives with respect to its solid counterpart

V (X,Z) = X, and therefore more complex dynamics at high momenta.

The longitudinal sector. We now consider the longitudinal part of the spectrum. We

follow closely the analysis of [45]. First, we consider the regime in which momentum is

slowly dissipated; this happens whenever Γ/T � 1 or in terms of our parameters when

m/T � 1. Using hydrodynamic arguments, which can be found in [45], in this regime, the

generic dispersion relation of the lowest mode, reads:

ω = ± k

√
∂p

∂ε
− 1

4

(
Γ k−1 +

η

χPP
k

)2

− i

2

(
Γ +

η

χPP
k2

)
+ . . . (3.8)

which comes from solving the equation:

i ω

(
− i ω Γ +

η

ε + p
k2

)
= k2 ∂p

∂ε
(3.9)

and expanding the result at small momentum. In absence of momentum dissipation, Γ = 0,

we recover the sound mode of relativistic hydrodynamics:

ω = vs k −
1

2
i

η

ε + p
k2 + . . . (3.10)

where v2
s = 1/2 and η/(ε+ p) = 1/(8πT ) [52].

At small momenta, k/Γ � 1, sound is destroyed by momentum dissipation and the

relevant hydrodynamic poles are:10

ω = − i ∂p
∂ε

Γ−1 k2 + . . . , ω = − iΓ + i k2

(
∂p

∂ε
Γ−1 − η

ε + p

)
+ . . . (3.11)

10The ellipsis in all the following expressions represent higher order corrections in ω/T, k/T which go

beyond the low energy hydrodynamic approximation.
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Figure 8. Left: the lowest mode in the longitudinal sector for very large graviton mass m/T �
1 (m/T ∈ {50.66, 105.13} red to blue), i.e. in the incoherent regime. The dashed black line is

eq. (3.14). Right: the momentum of the poles collision k? extracted from the numerical data

(red bullets). The dashed line is the hydrodynamic approximation of eq. (3.13) which show good

agreement for m/T � 1. At very large m/T , the data increase linearly in the dimensionless EXB

strength m/T .

Increasing the momentum, these two modes collide with each other and they form a prop-

agating sound mode:

ω =
∂p

∂ε
k − i

(
Γ +

η

ε + p

)
+ . . . (3.12)

This diffusion to sound crossover, appearing from the usual pole collision, happens at a

specific momentum k∗. We can see this behaviour explicitly in figure 7 for different values

of the graviton mass, in the limit of weak momentum dissipation. At small m/T , using

hydrodynamics, we can define the momentum of the poles collision via:

Γ

k∗
+

η

ε + p
k∗ = 2

√
∂p

∂ε
(3.13)

which comes directly from eq. (3.8). The agreement between the numerical data and this

formula is shown in the right panel of figure 8. At very large explicit breaking our data

suggests that the momentum of the collision grows linearly with the EXB strength m/T .

On the other side, when momentum is strongly dissipate we have Γ/T � 1, which relates to

the regimem/T � 1, the physics is totally diffusive and there is a single hydrodynamic pole:

ω = − iD‖ k2 + . . . , D‖ =
κ

cv
, (3.14)

where the diffusion constant is given by the thermal conductivity κ and the specific heat

cv = Tds/dT . In other words, the left diffusive mode simply corresponds to the conserva-

tion of energy. The appearance of this mode is shown in figure 8. Its diffusion constant is

in good agreement with formula (3.14), where we have used:

cv =
16π2 T

3 + m2
, κ =

(2π)2 T

m2
(3.15)

and fixed uh = 1, as usual.

Given the agreement between the lowest modes and the hydrodynamic predictions, we

extend our analysis to the higher modes in the spectrum. In figure 9 we show the large
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Figure 9. The longitudinal spectrum of the fluid model V (Z) = Z for m/T = 0.773.

frequency and momentum dynamics for a specific value of the EXB. Several gapped and

strongly damped modes appear in the spectrum producing a very non trivial interplay of

collisions and crossovers. Let us notice that at large k/T � 1 all the modes obey Re(ω) = k

which is simply dictated by the relativistic symmetry of the UV fixed point.

4 Phonons in an holographic fluid with SSB

In this section we consider a second fluid model defined by the potential:

V (X,Z) = ZN , N > 5/4 (4.1)

and for concreteness we just set N = 2. We have checked explicitly that the results

are qualitative the same for higher N . This choice is still invariant under VPdiffs (3.2)

but it displays a different symmetry breaking pattern of the translational invariance. In

particular, in this case, translations are broken spontaneously. The main difference between

this fluid model and its solid counterpart described in [27] is again the vanishing of the

helicity-2 mass. As a consequence, the elastic shear modulus G is zero, as in realistic fluids,

and the KSS bound is saturated.

Understanding what is the field theory description dual to the bulk action (4.1) and

to which extent it differs from the relativistic hydrodynamics, encoded in the simple

Schwarzschild background, are the aims of this section. Both models, simple Einstein

gravity and (4.1), represent fluid configurations at finite temperature. In the Schwarzschild

case the solution is purely conformal, and therefore the value of the temperature itself is

not meaningful since it can not be compared with any other scale. The potential (4.1) is

different from this point of view. More than that, is there any difference in the hydrody-

namic modes? How does the m/T parameter in (4.1) modify the transport coefficients and

the dynamics?

The transverse sector. In a system with spontaneously broken translations, we gener-

ically expect the appearance of propagating transverse modes satisfying:

ω = vT k − iD k2 + . . . (4.2)

which take the name of transverse phonons.
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Figure 10. Left: the shear diffusion mode in the transverse spectrum of the fluid model (4.1).

The red dashed line is the hydrodynamic formula (4.4). We fix the dimensionless SSB parameter

to m/T = 0.148. Right: the shear diffusion constant in function of the dimensionless parameter

m/T . The dashed line indicates the approximated formula (4.5).

Importantly, their propagation speed is fixed by the elastic properties of the material

to be:

v2
T =

G

χPP
(4.3)

where G is the shear elastic modulus and χPP the momentum susceptibility. As a conse-

quence of the fluid symmetry (3.2) of this model, the shear modulus vanishes and therefore

there are no propagating transverse phonons. This is a very well-known fact for fluids and it

is usually taken as their main difference with respect to solids. All in all, we expect instead

of the propagating transverse sound, a simple hydrodynamic diffusive mode of the type:

ω = − iD k2 + . . . , D =
η

χPP
+ . . . (4.4)

where the diffusion constant is determined by the viscosity of the fluid.

More specifically, fixing uh = 1, we can obtain the expression:

DT =
5
(
3 − m2

)
12π (m2 + 5)

(4.5)

The presence of this mode is confirmed numerically in figure 10. The diffusive mode appears

independently of the value of the SSB strength, i.e. m/T , and the diffusion constant is

indeed given by the hydrodynamic formula (4.4).

Let us spend some words about this mode. It is well known that transverse phonons

have zero speed of propagation in liquids. Nevertheless, it is still interesting to think about

them as Goldstone bosons for translational symmetry. This suggests that, in dissipative

liquids,11 the transverse Goldstone bosons are diffusive and not propagating. Apparently,

in dissipative systems, the presence of Goldstone modes which are diffusive is expected from

field theory arguments [53]. It would be valuable to understand them better in terms of

the type A Goldstone bosons [54–58].12 We will see later on how these diffusive Goldstone

bosons are affected by the additional EXB of translations.

11In absence of dissipation and viscosity (e.g. a perfect fluid) the dispersion relation of the transverse

phonons will be just ω = 0.
12We thank Amadeo Jimenez for discussions regarding this point.
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Figure 11. The higher modes of the transverse spectrum of the model (4.1) for m/T = 0.953.

After confirming the nature of the hydrodynamic modes, we proceed by considering

higher and more damped excitations in the system. We show a snapshot of the results

in figure 11. We observe a set of gapped and highly damped modes. Moreover, as in the

simplest relativistic hydrodynamics case, we observe the crossing (but not the collision) of

the hydrodynamic diffusive mode and a second non-hydro mode. This crossover is usually

taken as the definition for the breakdown of the hydrodynamic approximation [59].

The longitudinal sector. Fluids and solids share the same qualitative features in the

longitudinal spectrum. In both cases, we have a propagating longitudinal sound mode with

dispersion relation:

ω = vL k − iDs k
2 + . . . (4.6)

where Ds is the related sound attenuation constant. The speed of longitudinal sound can

be obtained from the elastic moduli as:

v2
L =

G + K

χPP
(4.7)

where G and K are the elastic shear and bulk moduli. In this case, due to the fluid

symmetry (3.1), the shear modulus is zero. The bulk modulus can be derived using ther-

modynamics as:

K = −V dp

dV
=

3

4
ε (4.8)

where p and V are the pressure and the volume of our system.

Using the definition of the momentum susceptibility, χPP = 3/2 ε, we obtain the final

value for the longitudinal speed:

v2
s =

1

2
(4.9)

which is surprisingly independent of the value of the SSB strength m/T .13 We have con-

firmed this result numerically for several values of the SSB strength. A specific example is

shown in figure 12. Both the speed and the attenuation constant of the sound mode are

in agreement with our formulas (4.9), (4.10). It is interesting to notice that, despite the

introduction of the SSB of translations, the speed of longitudinal sound is exactly that of

13This is true only at zero chemical potential. At finite chemical potential, or in presence of other

deformations of the CFT, K 6= 3
4
ε and this result is modified.
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Figure 12. The sound (red) and crystal diffusion (green) modes present in the longitudinal spec-

trum of the fluid model (4.1) for m/T = 0.470. Left: the real part of the modes. The white

dashed line is the hydrodynamic formula (4.6) with speed (4.9). Right: the white dashed line is the

hydrodynamic formula (4.6) with diffusion constant (4.10). The black dashed line is the fit for the

crystal diffusion mode.
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Figure 13. Left: the crystal diffusion constant of the mode (4.11) in function of the dimensionless

SSB parameter m/T . Right: the sound attenuation constant Ds in function of m/T . The black

line is the hydrodynamic formula (4.10). Within the precision of the numerical data, the agreement

is good for m/T � 1.

an un-deformed CFT [52]. Likewise, the sound attenuation constant, at leading order in

the SSB breaking parameter, is given by:

Ds =
1

2

η

χPP
+ . . . (4.10)

where the ellipsis indicates higher corrections in m/T .

Moreover, because of the introduction of the new dynamical Goldstone degrees of free-

dom, we have an additional hydrodynamic mode in the longitudinal sector. In particular,

there is an additional diffusive mode, sometimes referred to as “crystal diffusion”, whose

dispersion relation reads:

ω = − iDφ k
2 + . . . (4.11)

where the ellipsis indicates higher order corrections in the dimensionless parameter m/T .

This second hydrodynamic modes appears in the spectrum obtained numerically and it

was already observed in [60, 61]. In figure 12 we show the results for a specific value of the

SSB parameter m/T . By fitting the numerical dispersion relation, we are able to extract

the behaviour of the crystal diffusion constant Dφ as function of the dimensionless param-

eter m/T . The results are shown in figure 13. The crystal diffusion constant decreases by

– 17 –



J
H
E
P
1
0
(
2
0
1
9
)
2
3
5

0 5 10 15

-30

-20

-10

0

10

20

30

k/T

R
e
[ω

]/
T

0 5 10 15

-20

-15

-10

-5

0

k/T

Im
[ω

]/
T

Figure 14. The modes in the longitudinal sector of model (4.1) for m/T = 0.1.

increasing the SSB parameter m/T indicating that the ordered phase becomes more and

more stable and “rigid”. In the same figure, we show the behaviour of the sound attenua-

tion constant Ds and compare it to the hydrodynamic approximation in (4.10). Within the

precision of the numerics, the agreement, in the range m/T � 1, is good. As a final task,

we extend the analysis beyond the first two hydrodynamic modes until large frequencies

and momenta. First, we focus on the behaviour of the hydrodynamic poles. The longitu-

dinal sound mode (4.6) interpolates smoothly between the low frequency speed v2
s = 1/2

to a UV relativistic dispersion relation ω = c k, with c = 1. This is a simple consequence

of the UV behaviour of the geometry. Additionally, its imaginary part stops to increase

diffusively and it asymptotes to a constant value at large momenta. This behaviour is

shown in figure 14. At the same time, the dynamics of the higher modes in this model is

very rich and complex as shown in the bottom panel of figure 14.

A digression: the Hydro+ formalism. The sound mode displays two interesting

behaviours: (I) it interpolates between a low momentum dispersion relation ω =
√

1
2 k to

an high momentum relation ω = k. (II) The sound attenuation does not grow arbitrarily

but it saturates to a small value at high momenta. Recently, an extension of hydrodynamics

(”Hydro+”), which considers parametrically slow modes, has been proposed in [62] and

motivated from the description of fluctuations out of equilibrium. Importantly, a new

formula for the sound mode, containing those corrections, has been derived in the form of:

ω2 = k2

(
c2
s +

ω

ω + i γ
∆

)
. (4.12)

The scale γ is the relaxation of the putative additional slow mode and it defines the scale at

which the corrections become important. The second parameter ∆ describes the increase

in the sound speed due to the stiffening of the equation of state.

Interestingly, the phenomenological equation (4.12) reproduces perfectly the trend of

our numerical data until very large momenta; see figure 15. The value of γ grows by

increasing the dimensionless parameter m/T . For larger m/T , the linear behaviour ω =√
1
2 k extends towards larger momenta. It would be interesting to investigate this point

further by computing the coefficients of Hydro+ from first principles, and by considering

the fluctuations out of equilibrium in our specific setup.
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Figure 15. The numerical data for the lowest sound mode for m/T = 0, 10, 50. The black line is

the fit to the Hydro+ formula (4.12).

5 Pseudo-phonons in holographic fluids

After focusing on two holographic fluid models exhibiting respectively explicit (section 3)

and spontaneous (section 4) breaking of translations, we are interested in analyzing their

interplay. In order to do that, we consider the following potential:

V (X,Z) = αZ + β Z2 (5.1)

where α and β are free tunable, and dimensionless, parameters. The model still represents

a fluid system, because of the absence of any X dependence in the potential (5.1). For

β = 0 the breaking is purely explicit, like in section 3, while for α = 0 the breaking is purely

spontaneous, as in section 4. Our main interest regards the regime α/β � 1, which realizes

the pseudo-spontaneous breaking of translational symmetry. For more details related to

the importance and the definition of this regime we refer to [26, 29] and references therein.

The typical effect coming from the interplay of explicit and spontaneous symmetry

breaking is the appearance of a mass term for the Goldstone bosons. This mass term,

usually defined as pinning frequency ω0, is just the consequence of the GMOR relation and

it is the analogous of the Pion mass [63]. Pinned charge density waves [64] are a typical

condensed matter example. The value of the mass depends both on the explicit 〈EXB〉 and

the spontaneous 〈SSB〉 breaking scales and it obeys the famous Gell-Mann-Oakes-Renner

relation (GMOR) relation [65]:

ω2
0 = 〈EXB〉 〈SSB〉. (5.2)

The validity and role of this relation for phonons have been already discussed in the context

of field theory and holography in [26, 29, 35, 60, 66–69].

Moreover, it has been shown in the previous literature [26, 29, 35], that, in the trans-

verse sector, the pseudo-Goldstone modes appear from an interesting dynamics between

two light modes, governed by the expression:

(Γ − i ω)
(
Ω̄ − i ω

)
+ ω2

0 = 0 , (5.3)

ω± = − i

2

(
Ω̄ + Γ

)
± 1

2

√
4ω2

0 −
(
Γ − Ω̄

)2
. (5.4)
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which was obtained from hydrodynamics in [4]. In the previous equations, Γ is the momen-

tum relaxation rate already discussed. The new ingredient is encoded in the new relaxation

scale Ω̄, which has been the topic of many recent discussions (see for example [29]). The

parameter Ω̄ is small only in the pseudo-spontaneous regime and it is controlled by the

ratio of the EXB and SSB scales:

Ω̄ ∼ 〈EXB〉
〈SSB〉

(5.5)

as suggested in [29], and recently confirmed in [33]. Importantly, this novel relaxation mech-

anism is not due to the proliferation of topological defects or the dynamics of dislocations

as studied in [4].

The presence of two relaxation scales Γ and Ω̄ can be understood as follows. The first

quantity is simply the momentum relaxation rate, which appears as a consequence of the

explicit breaking of spacetime translations:

((((((((
xI → xI + aI =⇒ Γ 6= 0 (5.6)

and it directly relates to the gravitational sector, where the momentum operator is encoded.

The second, and more interesting, relaxation scale Ω̄ comes from the scalar sector, as

already suggested in [29, 33, 35]. It arises because of the explicit breaking of the internal

shift symmetry of the Stückelberg fields:

((((((((
φI → φI + bI =⇒ Ω̄ 6= 0 (5.7)

which is a global bulk symmetry. When the coupling between the two sectors, mediated by

the graviton mass, is switched on, the two relaxation scales interplay between each other

and they produce the pseudo-phonon degrees of freedom.

The aim of this section is to test the validity of the discussion above in a concrete model

which breaks translations pseudo-spontaneously but displays invariance under VPDiffs, i.e.

is a fluid.

The transverse sector. We start by considering the transverse sector of the fluctuations.

For the purely explicit and purely spontaneous case we refer to sections 3 and 4. Let us

start by briefly summarizing the results in those two cases. In the SSB case, the only

hydrodynamic mode in the transverse sector is a diffusive mode. In the EXB scenario,

on the contrary, the diffusive mode acquires a finite damping and collides with a second

non-hydrodynamic mode producing a k-gap. Concretely, we consider a situation with a

soft explicit breaking, 〈EXB〉 � 1. This is simply achieved by demanding the UV graviton

mass to be small (see [26, 29]), and more precisely mα/T � 1. Given this limit, at β = 0,

the lowest hydrodynamic mode has a negligible damping Γ ∼ 0. We then increase the

value of the dimensioless parameter β from zero to very large values. Doing so, we enter in

the pseudo-spontaneous regime, defined by 〈EXB〉/〈SSB〉 � 1. The results are shown

in figure 16. The pseudo-diffusive hydrodynamic mode ω ∼ − iD k2 goes down along the

imaginary axes upon increasing β. More importantly, a second mode, which for small β

was strongly damped, comes up. At a certain critical value β∗, the two modes collide on
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Figure 16. The dynamics of the lowest two modes in the transverse sector for m/T = 0.3, α = 0.05

and increasing the parameter β from zero to large values. The collision between the two poles

happens at β ∼ 1 and it produces the two light pseudo-phonons with a finite real part and a small

damping. The arrows guide the eyes in the direction of increasing β.
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Figure 17. Dependence of the novel relaxation scale Ω̄ and the pinning frequency ω0 in function of

the SSB parameter 〈SSB〉 ∼
√
β. The other parameters are set to m/T = 0.3, α = 0.05 such that

〈EXB〉 � 1. The pseudo-spontaneous regime coincides with β � 1. There, the red lines guide the

eyes towards the linear scalings.

the imaginary axes and create a pair of off-axes poles with a finite real part, the pseudo-

phonons. Increasing the SSB scale further, the damping (imaginary part) of those poles

becomes smaller while their mass (real part) grows. These two off-axes poles are exactly

the pseudo-Goldstone modes expected in the pseudo-spontaneous regime. The situation

is very similar to what is already observed in the solid models in [26, 29]. The second

mode, appearing in the spectrum, is the one related to the novel relaxation time scale Ω̄

and coming from the scalar fields sector.

At this point, we want to fit the data in figure 16 using the hydrodynamic formula (5.4),

and taking the approximation Γ ∼ 0, motivated by the small explicit breaking regime. The

SSB scale is directly related to the parameter β and more precisely 〈SSB〉 ∼
√
β (see [29]

for details). We show the dependence of the pinning frequency ω0 and the relaxation scale

Ω̄ in terms of the spontaneous breaking scale in figure 17. From there, we can immediately

conclude (see red lines in figure 17), that in the pseudo-spontaneous regime the following
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Figure 18. The lowest modes in the transverse sector for m/T = 0.1, β = 1, α ∈ {0.001, 0.151}
(blue to red). At small EXB, i.e. small α, a gapped phonon is present in the spectrum. Going to

large EXB, such mode is destroyed and the k−gap, typical of the pure EXB case, appears.

relations hold:

Ω̄ ∼ 〈EXB〉
〈SSB〉

, ω2
0 ∼ 〈EXB〉 〈SSB〉 (5.8)

This result is obtained by noticing that:

〈EXB〉 = m
√
α , 〈SSB〉 = m

√
β, (5.9)

and by using the numerical results shown in figure 17, Ω̄ ∼ 1/
√
β and ω2

0 ∼
√
β. The

dependence of Ω̄, ω2
0 with respect to the other parameter α is not shown directly in the

text but it is checked to be consistent with eq. (17). The analysis is performed in the same

way of [29].

In summary, our numerical results support that:

1. In the holographic model under consideration the GMOR relation holds. The mass

squared of the pseudo-Goldstone bosons relates to the spontaneous symmetry break-

ing scale linearly, as expected.

2. The novel relaxation parameter Ω̄ is inversely proportional to the SSB scale, as al-

ready suggested in [29].

Let us pause to discuss an interesting phenomenon. In this model, at zero explicit breaking,

there are no propagating modes. As in every fluid, the transverse phonons have zero speed

of propagation, and they become simply diffusive. This suggests that in dissipative systems

one could have Goldstone bosons which are diffusive, as already studied in [53].

Nevertheless, when adding a source of EXB breaking, light and underdamped prop-

agating modes appear, the pseudo-phonons. Given the fact that their speed is zero in

absence of EXB, and that they are totally diffusive, it is an interesting question to under-

stand what happens in the pseudo-spontaneous regime. We are not aware of any study of

this sort for diffusive Goldstone bosons like that of [53]. In order to analyze this feature,

we take a different limit with respect to what discussed above; we start from the purely

SSB regime (α = 0) and continuously increase the strength of the EXB. The numerical

outcomes are shown in figure 18. At α = 0, the breaking is purely spontaneous, and the

dispersion relation of the lowest modes is the one shown in section 4, i.e. a purely diffusive
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shear mode. It corresponds to the transverse phonon mode with zero propagating speed,

as expected in fluids. Once a small source of explicit breaking is introduced, the massless

Goldstone acquire a finite mass ω0, usually referred to as the pinning frequency,14 which

satisfies the GMOR relation. Increasing the EXB scale ∼ α further, the pseudo-phonon is

destroyed and the k−gap phenomenon enters the dynamics. In this regime, we recover, as

expected, the results for the purely EXB breaking presented in section 3. Let us notice that

the dynamics of the modes can be understood phenomenologically by solving the simple

equation:

ω2 + i ω D k2 + i ω Γ = ω2
0 + v2 k2 (5.11)

where Γ and ω0 clearly depend on the EXB scale, see [29], as:

Γ ∼ 〈EXB〉2, ω2
0 ∼ 〈EXB〉, (5.12)

Notice that in order to reproduce the qualitative trend of the data in figure 18 a diffusive

term ∼ D is necessary in eq. (5.11). Such a term is not present in the pseudo-phonons

description for solids (see for example [26]). That is responsible for the presence of the flat

band at small explicit breaking. Now the important question is what is the scale controlling

the emerging speed v? Clearly, it can not be the shear elastic modulus as in solids, since in

liquids that is just zero, G = 0. Equation (5.11) seems to predict quite well the behaviour

of the modes at small explicit breaking, as shown in the cartoon figure 19. The speed of

propagation, in order to fit the qualitative behaviour of the data, seems to grow as well

with the explicit breaking parameter. More precisely, we observe a qualitative trend of

the type:

v ∼ 〈EXB〉
〈SSB〉

(5.13)

which we are not able to explain at the moment. Notice that a contribution to the pseudo-

phonons speed given by the explicit breaking was also found in holographic solids in [26].

Here, this is still more surprising since at zero explicit breaking there is no propagating

mode at all. Can the EXB induce a propagating shear wave in liquids? We find this

observation very interesting and similar to what discussed in [49–51, 70]. It would be

valuable, to show with field theory methods that diffusive Goldstone bosons, like in [53],

acquire a small propagating speed (together with a mass and a damping), when EXB

is introduced.

A significant advance in the understanding of the new phase relaxation mechanism

discussed in this paper has been proposed in [34, 35]. In particular, a (supposedly) universal

relation between the phase relaxation rate Ω̄, the pinning frequency ω0 and the Goldstone

diffusion ξ:

Ω̄ ∼ M2 ξ ∼ ω2
0 χPP

G
ξ (5.14)

has been suggested. In eq. (5.14), M is the mass of the pseudo-Goldstone mode.

14Notice that the real part of the pseudo-phonons does not corresponds exactly to the pinning frequency

ω0. From eq. (5.4), we immediately obtain:

Re(ω) =

√
ω2
0 −

1

4
(Γ − Ω)2 (5.10)
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Figure 19. A cartoon of the transverse pseudo-phonons dynamics in liquids using eq. (5.11). The

two lines are constructed by mimicking the increasing of the EXB parameter α. More specifically,

from blue to green line, both the damping Γ, the pinning frequency ω0 and the emergent speed

v are increased. The behaviour is very similar to what observed in figure 18 (see blue and green

lines). This suggest that the emergent speed v grows with the EXB scale.
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Figure 20. The novel phase relaxation scale in the fluid model V (X,Z) = αfZ + βfZ
2. We fix

m/T = 0.3, αf = 0.05 and dial βf . This is a successful numerical check of the relation (5.14). The

validity of this relation has been tested for more values of the free coefficients of the model.

This relation can be directly guessed from the scaling of the various quantities. The

pinning frequency scales like ω2
0 ∼ 〈EXB〉〈SSB〉 in accordance with the GMOR relation,

the shear elastic modulus scales like G ∼ 〈SSB〉2, while the momentum susceptibility and

the Goldstone diffusion constant are O(0) in these scales. Using the observation made

in [29], that Ω̄ ∼ 〈EXB〉/〈SSB〉, the equation above is certainly verified:

〈EXB〉
〈SSB〉

∼ 〈EXB〉〈SSB〉 1

〈SSB〉2
X (5.15)

In order to proceed, we have used the numerical values of Ω̄ and ω2
0 extracted from the

QNMs, as described previously. Additionally, we have used the formula:

ξ

G
=

4π s T 2

2m2 χ2
PP (VX(1, 1) + 2VZ(1, 1))

(5.16)

which was derived in [71] and confirmed numerically for our models in [72]. Finally, we

have used the fact that χPP = 3/2 ε, where ε is the energy density of the system [27].

We have tested the validity of eq. (5.14) numerically and the results are displayed in

figure 20. The data confirm the validity of this relation in our holographic fluid models.15

15For the same test in holographic solid models see [29].
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Figure 21. The two lowest mode in the longitudinal sector for m/T = 0.1, α = 0.01 and increasing

the parameter β from zero to large values. The collision of the poles and the presence of the light

pseudo-phonons are evident. Also, the damping of the crystal diffusion mode is consistent with

zero. The arrows in the bottom panel guide the eyes in the direction of increasing β.

The validity of the relation (5.14) is a valuable guidance to understand the fundamental

nature of the novel phase relaxation mechanism from an effective field theory point of view.

The longitudinal sector. In this section we consider the dynamics of the longitudinal

collective modes in a fluid model exhibiting pseudo-spontaneous breaking of translations.

To the best of our knowledge, no discussions about the longitudinal modes in the regime

of pseudo-spontaneous breaking are present in the literature so far (neither in solid nor

in fluid models). We follow the same logic as in the previous section. We fix the explicit

breaking scale to be very small from the beginning and we gradually increase the SSB

scale. The results for the lowest modes are shown in figure 21. We observe that: (i)

the Goldstone modes acquire a finite mass and they become pseudo-phonons; (ii) the

pinning frequency ω0 satisfies the GMOR relation; (iii) the relaxation scale obeys the simple

scaling Ω̄ ∼ 〈EXB〉/〈SSB〉, as it happens in the transverse sector. Despite the strong

similarities with the transverse sector discussed in the previous section, one important

difference appears. As we can see in figure 21, in this case, at zero or very small EXB,

there is an additional hydrodynamic mode. Such a mode represents the crystal diffusion

mode discussed and observed in [4, 60] and it appears to be completely decoupled from the

dynamics of the other modes. In absence of explicit breaking, its dispersion relation is of
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the type:

ω = − iDφ k
2 (5.17)

and it represents an additional hydrodynamic mode, corresponding to the conservation

of the phase of the Goldstone modes. What happens to this mode by dialing the explicit

breaking parameter α, or in other words in the pseudo-spontaneous regime? The motivation

behind this question is that in presence of an honest phase relaxation mechanism, such a

mode should acquire a finite damping:

ω = − iΩrel − iDφ k
2 (5.18)

where Ωrel relates to the relaxation of the phase of the Goldstone modes [4]. In [29], it has

been argued that in the pure SSB this is not the case. This suggests that no phase relaxation

mechanism driven by topological defects or the proliferation of dislocations is present in

this and similar models [34, 35]. Nevertheless, several works [29, 33–35], noticed that

in the pseudo-spontaneous regime a novel relaxation parameter Ω̄, playing an analogous

role to Ωrel, appears. It is therefore valuable to test these assumptions here, by varying

the parameter α in the pseudo-spontaneous regime. In summary, we want to prove if

the relaxation time for the crystal diffusion mode is given by the same relaxation scale

appearing in the pseudo-phonons dynamics, Ωrel
?
= Ω̄ ∼ 〈EXB〉

〈SSB〉 , which vanishes for zero

explicit breaking. More precisely, we fix the SSB parameter β and we increase the EXB, α,

from zero to a finite and small value. The results are presented in figure 22. The explicit

breaking is increased from panel a) to panel h). In panel a), α = 0, and the breaking

is purely spontaneous. The mode displayed with the black colour is the crystal diffusion

mode. The other mode is the longitudinal sound. In panel b) we introduce a small amount

of EXB and we notice that the crystal diffusion mode does not acquire any damping. On

the contrary, it is the sound mode that becomes softly gapped and damped. Moreover, the

crystal diffusion mode and the sound mode now cross each other at a certain momentum.

At this stage, we already notice that the phase relaxation rate Ω̄, proportional to the EXB,

does not imply a simple damping term for the crystal diffusion mode.

Increasing further the EXB scale ∼ α, the dynamics become more complicated and, at

a certain value α?, the sound mode splits into two new modes (see panel (g)). One of the

two modes, produces the k−gap dynamics appearing in panel h). The other one becomes

a pseudo-diffusive mode with zero real part, whose damping increases with the EXB. At

very large of the EXB, this last mode decouples from the low energy dynamics and what

we are left with is just the simple k−gap dynamics that we expect in the purely explicit

regime. The behaviour just described is more evident in figure 23.

In summary, our numerical results prove that the dynamics of the crystal diffusion

mode is complicated and highly entangled with the dynamics of the longitudinal sound.

The dynamics of the crystal diffusion mode is not described by the simple expression:

ω = − Ω̄︸︷︷︸
∼〈EXB〉

− iDφ k
2 + . . . (5.19)

as hinted in [4]. Additionally, our results are at odds with the idea presented in [34, 35] that

the novel relaxation scale Ω̄ plays the same role of the proper phase relaxation Ω given by
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Figure 22. The lowest modes in the longitudinal sector for α = {0, 0.1185},m/T = 0.1 and β = 5.

The EXB strength increases from panel a) to panel h). In panel a) the crystal diffusion mode is

shown in black color. Increasing further the EXB, the damping of the black mode in panel h)

becomes larger and larger.
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Figure 23. Lowest modes in the longitudinal sector of the fluid model V (Z) = αZ + βZ2. The

parameter are fixed to m/T = 0.1, β = 5 and the EXB scale ∼ α varies.

the topological elastic defects. We do not believe that the full dynamics of the system can

be understood by just adding various contributions to the total phase relaxation rate as:

Ωrel = Ω︸︷︷︸
∼〈SSB〉

+ Ω̄︸︷︷︸
∼〈EXB〉

+ . . . (5.20)

6 Longitudinal pseudo-Goldstones in holographic solids

In this last section we look back at the solid model described in the previous literature. In

particular, we consider the solid potential

V (X,Z) = αX + β XN , N > 5/2 (6.1)

which was discussed in [26, 29]. At large β � 1, this setup realizes the pseudo-spontaneous

breaking of translational invariance and it displays a light gapped and damped transverse

pseudo-phonon mode. Here, we aim to complete its description, by discussing in detail the

longitudinal spectrum of the collective modes.

At β = 0, the breaking is purely explicit and the collective modes have been analyzed

in [45]. At α = 0, on the contrary, the breaking is purely spontaneous and it has been

recently analyzed in detail in [72]. Here, we are interested in the interplay and the crossover

between these two situations.

With no surprise, the dynamics of the longitudinal collective modes is completely anal-

ogous to the fluid case discussed in the previous section. Given the qualitative similarities

with the fluid model, we just remind here of the main features:

• The dynamics of the lowest modes is perfectly described by the hydrodynamic for-

mula (5.4). Two modes, governing by the momentum relaxation rate Γ and the novel

relaxation scale Ω̄, collide on the imaginary axes and produce two off-axes modes.

Those are exactly the light pseudo-phonons expected by symmetry arguments.

• The Gell-Mann-Oakes-Renner (GMOR) relation holds true.

• The novel relaxation time scale obeys the relation:

Ω̄ ∼ 〈EXB〉
〈SSB〉

(6.2)

as claimed recently in [29].
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Figure 24. The lowest modes in the longitudinal sector of the solid model V (X) = αX + βX5 for

β = 5,m/T = 0.1 and α ∈ [0.0005, 0.0412] (from top to bottom).

At the same time, we analyzed the dynamics of the crystal diffusion mode in the pseudo-

spontaneous regime. Also in this case, we find results which are completely analogous to

those of the previous section as shown in figure 24.

All in all, this study of the solid model,in the pseudo-spontaneous regime, confirms the

original idea that fluids and solids do not qualitative differ within the longitudinal sector.

Moreover, the results in the solid model give further evidence regarding the nature of

the novel phase relaxation mechanism encoded in the Ω̄ parameter. They confirm that the

involved dynamics can not be simply understood and explained by using the hydrodynamic

framework of [4] nor the idea suggested in [34, 35] of just replacing Ω→ Ω̄.

7 Conclusions

In this work we provide a detailed and comprehensive description of simple holographic

models with broken translations (see the schematic representation in figure 25). We com-

plete the previous analysis by studying models with fluid symmetry, i.e. invariant under

internal volume preserving diffeomorphisms. This last class has not received lot of atten-

tion in the literature so far, but it certainly exhibits interesting properties, briefly analyzed

in [11, 25]. We focus on the dynamics of the collective modes (quasinormal modes) in both

the transverse and longitudinal sectors.
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First, we analyze the QNMs of two fluid models exhibiting respectively explicit and

spontaneous breaking of translational invariance. Our main findings are:

1. In both fluid models the shear modulus is zero (G = 0) and the viscosity-to-entropy

ratio saturates the KSS bound η/s = 1/4π, as already observed in [25]. This is the

consequence of the vanishing of the mass for the helicity-2 graviton component. It

also indicates that momentum dissipation does not necessarily induce the violation

of the KSS bound.

2. In case of EXB (section 3), the dynamics of the fluid model at small frequencies and

momenta (ω/T, k/T � 1) is very similar to the solids described in [45]. Both a k−gap

phenomenon [49] and a coherent-incoherent transition [46] appear. Nevertheless, the

fluid model displays a more complex structure beyond the hydrodynamic limit, which

is due to its higher derivative nature compared to the solid counterpart.

3. In the case of SSB (section 4), the distinction between fluid and solid is much more

evident. In the fluid model, no propagating transverse shear waves are present in the

hydrodynamic regime. The speed of transverse sound is simply zero because of the

absence of a finite shear modulus. The transverse sector dynamics is similar to what

observed in simple relativistic hydrodynamics: a single and simple shear diffusion

mode. The longitudinal spectrum contains a sound mode and a crystal diffusion

mode like the solid counterpart. Nevertheless, the speed of the longitudinal sound

mode is constant v2
L = 1/2 and surprisingly identical to the conformal field theory

result [52].

The fluid model with SSB of translations is interesting and it presents some points for

discussion. What is the difference between this model and the relativistic hydrodynamics

dual to the Schwarzschild background [52, 73]? The hydrodynamic modes are exactly the

same. Nevertheless, in this case the diffusive mode in the transverse spectrum has to be

thought as a Goldstone mode. More precisely, it corresponds to a double pole, a couple

of transverse phonons with zero propagating speed. It would be interesting to understand

these modes better in terms of diffusive Goldstone bosons. As discussed in [53], in dissipa-

tive systems, the appearance of such modes can be understood in terms of standard field

theory. The same action, constructed using the determinant Z, has already been used as

an EFT for dissipative fluids in [8, 13, 17, 74, 75]. A more detailed comparison to our

results would be definitely valuable.

We then proceed by considering a fluid model which display the interplay between the

EXB and the SSB of translations. We discuss in detail both the transverse and longitudinal

sectors. Our main findings can be summarized in:

1. Both the transverse and longitudinal sectors display the presence of light pseudo-

phonons, as expected by symmetry arguments.

2. The appearance of the pseudo-Goldstone modes is produced by the collision of two

purely immaginary poles. One of them is controlled by the momentum relaxation

rate Γ, while the other by the novel relaxation scale Ω̄.
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Figure 25. A schematic diagram of all the holographic massive gravity models with broken trans-

lations. The right branch of this diagram have been completed in this manuscript.

3. The pseudo-Goldstone bosons obey the Gell-Mann-Oakes-Renner (GMOR) relation.

4. The novel relaxation scale satisfies the scaling relation:

Ω̄ ∼ 〈EXB〉
〈SSB〉

(7.1)

suggested in [29], where 〈EXB〉, 〈SSB〉 are respectively the explicit and spontaneous

scales.

In addition we confirm the validity of the universal relation:

Ω̄ ∼ M2 ξ ∼ ω2
0 χPP

G
ξ (7.2)

proposed in [34, 35]. which might be a promising hint towards a fundamental understanding

of this novel phase relaxation dynamics.

Interestingly, the interplay of SSB and EXB, produces softly gapped and damped

pseudo-phonons even when the original Goldstone boson is purely diffusive and not prop-

agating. Our numerics suggest that a small propagating speed for the pseudo-phonons

appears and it relates to the EXB scale. We are not aware of any field theory computation

confirming this picture. It would be interesting to add a source of EXB in the analysis

of [53] and check the dispersion relation of the expected pseudo-Goldstone modes.

Finally, we discuss the longitudinal sector of solid and fluid holographic models in the

pseudo-spontaneous regime. With no big surprise, the results are qualitative identical for

the two cases.
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Figure 26. Two possible sources for phase relaxation. 1) the presence and proliferation of topo-

logical defects, such as dislocations, as contemplated in [4]. 2) the interplay between spontaneous

and explicit breaking of the symmetry, observed in the holographic models [26, 29, 34, 35]. The

microscopic mechanism and the hydrodynamic description of the second scenario are still unknown.

Our results suggest that the two mechanism can not be simply added together into the total phase

relaxation rate, since their dynamics appears quite different.

Our numerical results show that the dynamics of the crystal diffusion mode in the

pseudo-spontaneous regime is quite complex and not consistent with the simple expression:

ω = − iΩrel − iDφ k
2 (7.3)

where Ωrel is the total relaxation rate of the Goldstone phase. In particular, the crystal

diffusion mode does not immediately acquire a finite damping term as a consequence of the

introduction of a small EXB source. The full phenomenology involves a non trivial interplay

between the crystal diffusion mode and the longitudinal sound, which clearly deserves more

investigation. The numerical results can not be explained simply by assuming a simple

sum of the various phase relaxation mechanisms as suggested in [34, 35]. At this stage,

no complete hydrodynamic framework is able to describe successfully our observations is

present in the literature.

Let us add some more remarks about the nature of the relaxation time scale Ω̄. This

quantity originates from the Stückelberg sector and it is related to the explicit breaking of

the global internal shift symmetry:

φI → φI + ci (7.4)

where cI is just a constant shift. This represents another proof of the uncorrelation between

this scale and the presence of topological elastic defects. As explained in [37], the presence

of dislocations or defects in the EFT will break the conservation of the higher form currents:

Jn1 ,..., nd
I ≡ εn1 ,..., nd, ν ∂νφI (7.5)

whose associated charge:

N =

∫
S1

? J (7.6)
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represents indeed the density of defect lines. This density is clearly zero in our model and

in the models of [34, 35].

It would be interesting now to try to use the framework discussed in a more phe-

nomenological way to test the proposal of [76] explaining the electric transport properties

of bad metals via the interplay of EXB and SSB and to investigate in more detail the rela-

tion between these models and the physics of the Boson peak and glassy dynamics [77–79].

These models could possibly be relevant for the study of phonons at quantum criticality,

as recently discussed in the condensed matter community [80, 81].

One immediate possible direction is to break isotropy with the introduction of an exter-

nal magnetic field. The interplay between the external source and the dynamical phonons

should provide interesting outcomes as discussed in [5]. Finally, one could study time de-

pendent configurations which might be relevant for viscoelastic materials, extending the

study of [28, 82]. Moreover, one could also consider more complicated spatial configura-

tions for the scalars φI , like for example vortex configurations relevant for the study of

elastic defects, such as dislocations [83].

We leave these questions for the near future.
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A Equations of motions

In this appendix we provide the detail of the computations performed in the main text. To

keep the equations simple, we will not consider the most general case V (X,Z), but only

the two separate cases V (X), V (Z). We consider the momentum aligned in the y direction,
~k = (0, 0, k). For a more complete analysis see [11].

Transverse sector. In the transverse sector we consider the following set of bulk

fluctuations:

{δφx, htx, hxy} (A.1)

where we assumed the radial gauge hxu = 0.
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V (Z) case. Assuming the fluid potential V (Z), we obtain the following equations of

motion:

V ′
(
δφ′x

(
f ′ + 2 i ω

)
+ fδφ′′x + h′tx

)
+ 4u3 V ′′

(
f δφ′x + htx + i ω δφx

)
= 0 (A.2)

htx
(
2u f ′ − 6f + k2u2 + 4m2u4 V ′ − 2m2 V + 6

)
+ u

(
−u f h′′tx + 2f h′tx + k uω hxy + 4 im2 u3 ω δφ′x V

′ − i u ω h′tx
)

= 0

(A.3)

u
(
h′xy

(
−u f ′ + 2 f − 2 i u ω

)
− ufh′′xy − i k u h′tx

)
+ 2hxy

(
u f ′ − 3f −m2 V + i u ω + 3

)
+ 2 i k u htx = 0 (A.4)

i k u h′xy − u
(
4m2 u2 δφ′x V

′ + h′′tx
)

+ 2h′tx = 0 (A.5)

where we use the short notation V ′ ≡ dV (Z)/dZ, V ′′ ≡ d2V (Z)/dZ2 and we have

omitted the arguments of the various functions.

V (X) case. For the solid potential V (X), we obtain the following equations of motion:

− 2(1− u2 V ′′/V ′)htx + uh′tx − i k u hxy −
(
k2 u+ 2 i ω(1− u2 V ′′/V ′)

)
δφx

+ u f δφ′′x +
(
−2(1− u2 V ′′/V ′) f + u (2iω + f ′)

)
δφ′x = 0 (A.6)

2 im2 u2ωV ′ δφx + u2 k ω hxy + (6 + k2 u2 − 2m2(V − u2 V ′)

− 6f + 2uf ′)htx +
(
2u f − i u2ω

)
h′tx − u2 f h′′tx = 0 (A.7)

2i k u htx − iku2h′tx − 2 i k m2 u2V ′δφx + 2hxy
(
3 + i u ω − 3f + uf ′

− m2(V − u2V ′)
)
−
(
2i u2 ω − 2uf + u2 f ′

)
h′xy − u2 f h′′xy = 0 (A.8)

2h′tx − uh′′tx − 2m2 uV ′ δφ′x + ik u h′xy = 0 (A.9)

where this time V ′ ≡ dV (X)/dX, V ′′ ≡ d2V (X)/dX2.

Longitudinal sector. In the longitudinal sector we consider the following set of bulk

fluctuations:

{hx,s = 1/2 (hxx + hyy), hx,a = 1/2 (hxx − hyy), δφy, htt, hty} (A.10)

where we again assumed the radial gauge: hµu = 0, with µ ∈ {t, u, x, y, z}.

V (Z) case. For the fluid potential V (X) we obtain:

f ′ δφ′y V
′ + fδφ′′y V

′ + 4u3 fδφ′y V
′′ − δφy

(
k2 V ′ + 2u3

(
k2 u− 2 i ω

)
V ′′
)

− i k hxx
(
2u4 V ′′ + V ′

)
+ h′ty V

′ + 2 i ω δφ′y V
′ + 4u3 hty V

′′ = 0 (A.11)

2hty
(
−uf ′ + 3f − 2m2u4V ′ +m2V − 3

)
+ u(ufh′′ty + (−2f + i u ω)h′ty

+ i k u h′tt − 4 im2 u3ωδφy V
′) + k u2 ω (hx,s + hx,a)− 2 i k u htt = 0 (A.12)
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6htt + u
(
−u f ′ h′x,s + 2 f h′x,s + 4 i k m2 u3 δφy

(
2u4 V ′′ + V ′

)
− i k u h′ty + 2 i k hty − 8m2 u7 hx,s V

′′ + 2 i hx,s
(
ω + 2 im2 u3 V ′

)
+ uh′′tt − 4h′tt − 2 i u ωh′x,s

)
= 0 (A.13)

hx,s
(
2u f ′ − 6 f + k2 u2 + 4m2 u4 V ′ − 2m2 V + 4 i u ω + 6

)
− u2 f ′ h′x,s

− u2 f ′ h′x,a + 2uhx,a f
′ − u2 f h′′x,s − u2 f h′′x,a + 4u f h′x,s + 2u f h′x,a

− 6 f hx,a + k2 u2 hx,a − 4 i k m2 u4 δφy V
′ + 2 i k u hty − 2m2 hx,a V

− 2 i u2 ω h′x,s − 2 i u2 ω h′x,a − 2uh′tt + 6htt + 2 i u ωhx,a + 6hx,a = 0 (A.14)

hx,s
(
2uf ′ − 6 f + k2 u2 + 4m2 u4 V ′ − 2m2 V + 4 i u ω + 6

)
− u2f ′ h′x,s

+ u2 f ′ h′x,a − 2uhx,a f
′ − u2 f h′′x,s + u2 fh′′x,a + 4u f h′x,s − 2u f h′x,a

+ 6 f hx,a + k2 u2 hx,a − 4 i k m2 u4 δφy V
′ − 2 i k u2 h′ty + 6 i k u hty

+ 2m2 hx,a V − 2 i u2 ω h′x,s + 2 i u2 ω h′x,a − 2uh′tt

+ 6htt − 2 i u ω hx,a − 6hx,a = 0 (A.15)

2h′ty − u
(
i k
(
h′x,s + h′x,a

)
+ 4m2 u2 δφ′y V

′ + h′′ty
)

= 0 (A.16)

h′′x,s = 0 (A.17)

where V ′ ≡ dV (Z)/dZ, V ′′ ≡ d2V (Z)/dZ2.

V (X) case. For the solid potential V (X) we get:

uf ′ δφ′y V
′ + 2u2 f δφ′y V

′′ + u f δφ′′y V
′ − 2 f δφ′y V

′ − k2 u δφy V
′ − k2 u3 δφy V

′′

+ i k u hx,a V
′ − i k u3 hx,s V

′′ + 2 i u2 ω δφy V
′′ + uh′ty V

′ + 2 i u ω δφ′y V
′

− 2 i ω δφyV
′ − 2hty

(
V ′ − u2 V ′′

)
= 0 (A.18)

u(f
(
uf ′ h′x,s − 2 f h′x,s − 2 i k m2 u3 δφy V

′′ − uh′′tt + 4h′tt
)

+ k hty
(
i u f ′ − 2 i f + 2uω

)
+ hx,s

(
2m2 u3 f V ′′ + ω

(
i u f ′ − 2 i f + 2uω

)))
+ htt

(
u
(
−uf ′′ + 4 f ′ + 2m2 uV ′

)
− 12 f + k2 u2 − 2m2 V − 2 i u ω + 6

)
= 0

(A.19)

2hty
(
u
(
f ′ +m2 uV ′

)
− 3 f −m2 V + 3

)
− u
(
u f h′′ty − 2 f h′ty + i k u h′tt

+ k uω hx,s + k uω hx,a − 2 im2 uω δφy V
′ + i u ω h′ty

)
+ 2 i k u htt = 0 (A.20)

hx,s
(
2u
(
f ′ +m2 uV ′

)
− 6 f + k2 u2 − 2m2 V + 4 i u ω + 6

)
− u2 f ′ h′x,s

− u2 f ′ h′x,a + 2uhx,a f
′ − u2 f h′′x,s − u2 f h′′x,a + 4u f h′x,s + 2u f h′x,a

− 6 f hx,a + k2 u2 hx,a + 2 i k u hty + 2m2 u2 hx,a V
′

− 2m2 hx,a V − 2 i u2 ω h′x,s − 2 i u2 ω h′x,a − 2uh′tt

+ 6htt(u) + 2 i u ω hx,a + 6hx,a = 0 (A.21)

hx,s
(
2u
(
f ′ +m2 uV ′

)
− 6 f + k2 u2 − 2m2 V + 4 i u ω + 6

)
− u2 f ′ h′x,s + u2 f ′ h′x,a − 2uhx,a f

′ − u2 f h′′x,s + u2 f h′′x,a + 4u f h′x,s
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− 2u fh′x,a + 6 f hx,a + k2 u2 hx,a − 4 i k m2 u2 δφy V
′ − 2 i k u2 h′ty

+ 6 i k u hty − 2m2 u2 hx,a V
′ + 2m2 hx,a V − 2 i u2 ω h′x,s + 2 i u2 ω h′x,a

− 2uh′tt + 6htt − 2 i u ω hx,a − 6hx,a = 0 (A.22)

− 6htt + u (u f ′ h′x,s − 2 f h′x,s − 2 i k m2 u3 δφy V
′′ + i k u h′ty − 2 i k hty

+ 2m2 u3 hx,s V
′′ − uh′′tt + 4h′tt + 2 i u ω h′x,s − 2 i ω hx,s) = 0 (A.23)

k u
(
h′x,s + h′x,a

)
− i u

(
2m2 δφ′y V

′ + h′′ty
)

+ 2 i h′ty = 0 (A.24)

h′′x,s = 0, (A.25)

where again V ′ ≡ dV (X)/dX, V ′′ ≡ d2V (X)/dX2.

B Numerical techniques

In this section we briefly review the numerical methods we applied to solve the equations of

motions. For a detailed introduction see for example [84, 85]; we follow [84–88] Throughout

this work we restrict ourselves to solving the linearized response of our system to small per-

tubations from the equilibrium state, the so called Quasi Normal Modes (QNMs). QNMs

are the solutions to the linearized equations of motion of the scalar field and metric fluc-

tuations subject to specific boundary conditions. On the one hand we do not allow for

sources to the fluctuations which thus have to fulfill a Dirichlet boundary condition at the

conformal boundary of our asymptotic AdS spacetime. On the other hand we subject the

fluctuations to a ingoing wave condition at the horizon since classical black holes do not

emit radiation. As a consequence of this choice the corresponding eigenvalue problem will

be non-Hermitian resulting in complex eigenfrequencies. In order to solve this eigenvalue

problem we apply so called pseudo-spectral methods which proved to be a very efficient

and highly accurate approach.

(Pseudo-)spectral methods. In order to solve the equations of motion we discretize

them in the radial direction, using a Chebychev Lobatto grid with N gridpoints. The

assumption of spectral methods is that we may write the solutions to a given differential

equation as a linear combination of basis functions; in our case we choose the so called

Chebychev polynomials Tk = cos(k arccos(x)), where x ∈ [−1, 1] as basis functions. In

order to solve the equations by means of a pseudospectral method, we expand the unknown

functions on the gridpoints in the Chebychev basis

X(zi) =

N−1∑
k=0

ci Tk(zi). (B.1)

Note, that derivatives of the unknown functions simply translate to derivatives of the basis

functions, which we know analytically X ′(zi) =
∑N−1

k=0 ci (d/dz Tk(z))z=zi . Plugging this

in the discretized EOMs and collecting in powers of ω leads to the matrix valued equation

of the form

(Aω −B)x = 0, (B.2)

– 36 –



J
H
E
P
1
0
(
2
0
1
9
)
2
3
5

60 80 100 120 140 160

10
-15

10
-12

10
-9

nz

|ω
N
-
ω
N
-
1
|

Im[ω3,nz] Re[ω2,nz] Im[ω2,nz]

60 80 100 120 140 160

10
-17

10
-14

10
-11

nz

|ω
N
-
ω
N
-
1
|

Im[ω1,nz] Re[ω2,nz] Im[ω2,nz]

60 80 100 120 140 160

10
-17

10
-14

10
-11

nz

|ω
N
-
ω
N
-
1
|

Im[ω1,nz] Re[ω2,nz] Im[ω2,nz]

0 20 40 60 80 100 120

10-32

10-22

10-12

10-2

nz

|c
k
|

δϕx htx hxy

0 20 40 60 80 100 120

10-30

10-20

10-10

1

nz

|c
k
|

δϕy htt hty hx,as

0 20 40 60 80 100 120

10-25

10-20

10-15

10-10

10-5

1

nz

|c
k
|

δϕy htt hty hx,as

Figure 27. Top panel: moving of the eigenvalues; monitored is the difference of the absolute value

of the eigenvalues with increasing gridsize of the lowest QNMs. The difference decreases with higher

grid resolutions. The plots correspond to the transverse sector of the V (Z) model, the longitudinal

sector of the V (Z) model and the longitudinal sector of the V (X) model (from left to right). Bottom

panel: Chebychev coefficients of the eigenfunctions of the lowest QNM.

where x = {δφx, htx, hxy} in the transversal cases and x = {δφy, hx,a, htt, hty} in the longi-

tudinal cases, respectively. We may solve this equation by solving the generalized eigenvalue

problem, where the unknown functions are the eigenfunctions and the quasinormal modes

ωn are the eigenvalues of the matrix equation (B.2).

Convergence of the numerical methods. In order to demonstrate that the numerical

solution converges to the exact solution of the equation, we performed several consistency

and accuracy checks. We present all the tests in the “hardest”” numerical regime. The

asymptotic expansion of the scalar field in the case of V (Z) = ZN is given by

δφi = z0 (φ1z + . . .) + z5−4N (φ2 + . . .+ φll log(z)). (B.3)

For N = 1, we identify the φ1 with the source term φ1 ≡ φs and the second with the

vacuum expectation value φ2 ≡ φv, respectively; for N = 1 however, we identify φ2 ≡ φs
and φ1 ≡ φv, respectively. Note, that we always have to set φs=0. If we choose the

potential to be of the form V (Z) = αZ + βZ2, the asymptotic behavior is the same as for

N = 1; in the limit α → 0, we should recover the asymptotic behavior of V (Z) = β Z2

which behaves as δφi ∼ u0. In order to correctly resolve this behavior for a function

f̃ = u f , we need a lot of gridpoints around u = 0.

Keeping in mind that this is the most extreme case for our code, we present all plots for

this case. First of all for an increasing number of gridpoints, the solution should converge
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to the exact solution. This means, that the difference between a solution with N gridpoints

and a solution with N −1 gridpoints should go to zero which we depict for the numerically

hardest case in the first row of figure 27. Second of all, we can test our solutions by plugging

the numerical solution (namely the eigenvectors and eigenfunctions) back in the EOMs and

constraint and check that these are fulfilled with the wanted precision. Lastly, we checked

that the Chebychev coefficients drop down to the wanted precision which is depicted in the

second line of figure 27.
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