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1 Introduction

General relativity (GR) of Einstein is one of the most successful theories in theoretical

physics. It gave a more insightful picture to understanding the gravity and solved some

unanswered problems. Despite its amazing achievements to justify some phenomena, such

as perihelion precession of Mercury, deflection of light, and gravitational redshift, there are

still some unsolved problems in the universe. Among them, one can point out the hierarchy

problem, the cosmological constant problem, and the late time accelerated expansion of

the Universe. This shows that GR is not the final theory and it is logical to search for

a more general and complete theory which be able to solve unanswered problems. GR is

a theory which describes massless spin-2 particles [1]. In order to generalize GR into a

more effective theory, one can give mass to massless spin-2 particles and consider them as

massive spin-2 particles. Such a theory is called a massive theory of gravity.

One of the most well known theories of massive gravity is called dRGT model and

has been introduced by de Rham, Gabadadze, and Tolley [2, 3] which added a potential

contribution to the Einstein-Hilbert action. This potential gives graviton a mass and

modifies the dynamics of GR in the IR limit. The authors indicated that the theory is

ghost free in the decoupling limit to all orders of nonlinearities. On the other hand, massive

couplings ci’s are arbitrary constants and by choosing different massive couplings, different

theories can be obtained. Hassan and Rosen improved the previous result to all orders in

4-dimension [4]. They confirmed that any pathological Boulware-Deser ghost is eliminated
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at the full nonlinear level due to the Hamiltonian constraint and generalize their ghost

analysis to the most general case for arbitrary massive couplings ci’s. It has been also

shown that the massive gravity with a general reference metric is ghost free [5]. The dRGT

massive gravity is almost a successful model in a sense that it does not lead to van Dam-

Veltman-Zakharov discontinuity, it is free of Boulware-Deser ghost, and it can be used in

higher dimensions with admissible validity. Nevertheless, the cosmological solutions do not

admit flat FLRW metric and theory exhibits a discontinuity at the flat FLRW limit [6, 7]

or the model meets instabilities [8–10].

On the other hand, the dRGT model has different modifications which are based on the

definition of the reference metric. The most successful one has been introduced by Vegh [11]

with the motivation of breaking the translational symmetry. In other words, this model pro-

vides an effective bulk description in which momentum is not conserved anymore, and there-

fore, it includes holographic momentum dissipation. This property is what people needed

to study physical systems in the context of gauge/gravity duality. In addition, it was shown

that this model is ghost free and stable [12]. The static black hole solutions and magnetic

solutions in the presence of this model of massive gravity have been investigated in [13–16]

and [17, 18], respectively. Moreover, the thermodynamic properties and van der Waals like

phase transition of black holes have been studied [14, 19–22]. From the cosmological point

of view, it has been shown that it is possible to remove the big bang singularity [23]. In ad-

dition, the behavior of different holographic quantities has been investigated in [11, 24–28].

On the other hand, the existence of some limitations in the Maxwell theory motivates

one to consider nonlinear electrodynamics (NED) [29–37]. Moreover, it was shown that

NED can remove both the big bang and black hole singularities [38–43]. In addition, the

effects of NED are important in superstrongly magnetized compact objects [44–46]. Consid-

ering GR coupled to NED attracts attention due to its specific properties in gauge/gravity

coupling. Besides, NED theories are richer than the linear Maxwell theory and in some

special cases, they reduce to the Maxwell electrodynamics.

One of the most interesting NED theories has been introduced by Born and Infeld [47,

48] in order to remove the divergency of self energy of a point-like charge at the origin.

The Lagrangian of Born-Infeld (BI) nonlinear gauge field is given by

LBI(FM ) = 4β2

(

1−
√

1 +
FM

2β2

)

, (1.1)

where β is BI nonlinearity parameter, FM = FµνF
µν is the Maxwell invariant, Fµν =

2∇[µAν] is the Faraday tensor, and Aν is the gauge potential. Using the expansion of

this Lagrangian for a large value of nonlinearity parameter leads to the Maxwell linear

Lagrangian

LBI(FM ) = −FM +
F2
M

8β2
+O

(

1

β4

)

, (1.2)

in which we receive the Maxwell Lagrangian at β → ∞. BI NED arises in the low-energy

limit of the open string theory [49–54]. From the AdS/CFT correspondence point of view,

it has been shown that, unlike gravitational correction, higher derivative terms of nonlinear
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electrodynamics do not have effect on the ratio of shear viscosity over entropy density [55].

Besides, NED theories make crucial effects on the condensation of the superconductor and

its energy gap [56, 57]. GR in the presence of BI NED has been investigated for static black

holes [58–69], wormholes [70–73], rotating black objects [74–79], and superconductors [57,

80–82]. In addition, black hole solutions and their van der Waals like behavior in massive

gravity coupled to BI NED have been studied in [14, 83].

On the other hand, in addition to the Maxwell field, one can consider the non-abelian

Yang-Mills (YM) field as matter source coupled to gravity. The presence of non-abelian

gauge fields in the spectrum of some string models motivates us to consider them coupled

to GR. In addition, the YM equations are present in the low energy limit of these models.

Considering the YM field coupled with gravity violates the black hole uniqueness theorem

and leads to hairy black holes. In such a situation, the field equations become highly

nonlinear so that the early attempts for finding the black hole solutions in YM theory were

performed numerically.

Nevertheless, Yasskin found the first analytic black hole solutions by using Wu-Yang

ansatz [84]. Then, the black hole solutions in YM theory have been generalized to Gauss-

Bonnet and Lovelock gravity in [85, 86] and [87, 88], respectively. In addition, black holes

have been investigated in non-abelian generalization of BI NED in Einstein gravity [89]

and regular black holes have been obtained in [90–93]. Furthermore, hairy black holes

coupled to YM field have been studied in [94–96]. Nonminimal Einstein-Yang-Mills (EYM)

solutions have been investigated for regular black holes [97, 98], wormholes [99, 100], and

monopoles [101, 102]. Thermodynamics and P − V criticality of EYM black holes in

gravity’s rainbow have been explored in [103]. Besides, the solutions of EYM-dilaton

theory have been considered in [104–110]. In addition, black holes and their van der Waals

like phase transition in Gauss-Bonnet-massive gravity in the presence of YM field have

been investigated in [111].

The purpose of this paper is obtaining the exact black hole solutions of Einstein-

Massive theory in the presence of YM and BI NED fields (which is a more general solution

compared with Reissner-Nordström, Einstein-Born-Infeld [112], Einstein-Yang-Mills [84],

Einstein-massive gravity [13], Einstein-Born-Infeld-massive gravity [14] and etc.), and also,

studying the thermal stability and phase transition of these black holes. Besides, we con-

sider the massless scalar perturbations in the background of asymptotically adS solutions

and calculate the quasinormal modes by employing the pseudospectral method. We inves-

tigate the effects of the free parameters on the quasinormal modes and dynamical stability.

We also show that how the free parameters affect the time scale that a thermal state in

conformal field theory (CFT) needs to pass to meet the thermal equilibrium.

2 Field equations and black hole solutions

Here, we consider the following (3 + 1)-dimensional action of EYM-Massive gravity with

BI NED for the model

IG = − 1

16π

∫

M

d3+1x
√−g

(

R− 2Λ + LBI(FM )−FYM +m2
∑

i

ciUi(g, f)

)

, (2.1)
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where LBI(FM ) and FYM = Tr
(

F
(a)
µν F (a)µν

)

are, respectively, the Lagrangian of BI

NED (1.1) and the YM invariant. In addition, m is related to the graviton mass while

f refers to an auxiliary reference metric which its components depend on the metric under

consideration. Moreover, ci’s are some free constants and Ui’s are symmetric polynomials

of the eigenvalues of 4× 4 matrix Kµ
ν =

√
gµσfσν which have the following forms

U1 = [K] ,

U2 = [K]2 −
[

K2
]

,

U3 = [K]3 − 3 [K]
[

K2
]

+ 2
[

K3
]

,

U4 = [K]4 − 6
[

K2
]

[K]2 + 8
[

K3
]

[K] + 3
[

K2
]2 − 6

[

K4
]

,

.

.

.

where the rectangular bracket represents the trace of Kµ
ν . It is easy to obtain three tensorial

field equations which come from the variation of action (2.1) with respect to the metric

tensor gµν , and the gauge potentials Aµ and A
(a)
µ as

Gµν + Λgµν = TM
µν + T YM

µν −m2χµν , (2.2)

∂µ
[√−gFµν∂FLBI(F)

]

= 0, (2.3)
∧

DµF
(a)µν = 0, (2.4)

where
∧

Dµ is the covariant derivative of the gauge field. The energy-momentum tensor of

electromagnetic and YM fields, and also, χµν can be written as

TM
µν =

1

2
gµνLBI(F)− 2FµλF

λ
ν ∂FLBI(F), (2.5)

T YM
µν = −1

2
gµνF

(a)
ρσ F (a)ρσ + 2F

(a)
µλ F (a)λ

ν , (2.6)

χµν = −c1
2
(U1gµν −Kµν)−

c2
2

(

U2gµν − 2U1Kµν + 2K2
µν

)

− c3
2
(U3gµν − 3U2Kµν (2.7)

+6U1K2
µν − 6K3

µν)−
c4
2
(U4gµν − 4U3Kµν + 12U2K2

µν − 24U1K3
µν + 24K4

µν) + . . . .

In addition, the YM tensor F
(a)
µν has the following form

F (a)
µν = 2∇[µA

(a)
ν] + f

(a)
(b)(c)A

(b)
µ A(c)

ν , (2.8)

in which A
(a)
µ is the YM potential and the symbols f

(a)
(b)(c)’s denote the real structure con-

stants of the 3-parameters YM gauge group SU(2) (note: the structure constants can be

calculated by using the commutation relation of the gauge group generators).

In order to obtain the spherically symmetric black hole solutions of EYM-Massive

theory coupled to BI NED, we restrict attention to the following metric

gµν = diag
[

−f(r), f−1(r), r2, r2 sin2 θ
]

, (2.9)
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with the following reference metric ansatz [11]

fµν = diag
[

0, 0, c2, c2 sin2 θ
]

, (2.10)

where c is an arbitrary positive constant. Using the metric ansatz (2.10), Ui’s reduce to

the following explicit forms [11]

U1 = 2cr−1, U2 = 2c2r−2, Ui = 0 for i ≥ 3. (2.11)

Considering the field equations (2.3) with the following radial gauge potential ansatz

Aµ = h (r) δtµ, (2.12)

one can obtain the following differential equation

β2rE′(r) + 2E(r)
[

β2 − E2(r)
]

= 0, (2.13)

where E(r) = −h′(r) and prime refers to d/dr. Solving eq. (2.13), we obtain

E(r) =
q

r2

(

1 +
q2

β2r4

)−1/2

, (2.14)

where q is an integration constant which is related to the total electric charge of the black

hole. It is clear that in the limit β → ∞, eq. (2.14) tends to q/r2, and therefore, the

Maxwell electric field will be recovered.

Hereafter and for the sake of simplicity, we use the position dependent generators t(r),

t(θ), and t(ϕ) of the gauge group instead of the standard generators t(1), t(2), and t(3). The

relation between the basis of SU(2) group and the standard basis are

t(r) = sin θ cos νϕt(1) + sin θ sin νϕt(2) + cos θt(3)

t(θ) = cos θ cos νϕt(1) + cos θ sin νϕt(2) − sin θt(3)

t(ϕ) = − sin νϕt(1) + cos νϕt(2)

, (2.15)

and it is straightforward to show that these generators satisfy the following commutation

relations
[

t(r), t(θ)
]

= t(ϕ),
[

t(ϕ), t(r)
]

= t(θ),
[

t(θ), t(ϕ)
]

= t(r). (2.16)

In order to solve the YM field equations (2.4), just like the electromagnetic case, it

is required to choose a gauge potential ansatz. Here, we are interested in the magnetic

Wu-Yang ansatz of the gauge potential with the following nonzero components [97, 101]

A
(a)
θ = δ

(a)
(ϕ), A(a)

ϕ = −ν sin θδ
(a)
(θ) , (2.17)

where the magnetic parameter ν is a non-vanishing integer. It is easy to show that the

chosen Wu-Yang gauge potential (2.17) satisfies the YM field equations (2.4). Using the YM

tensor field (2.8) with Wu-Yang ansatz (2.17), one can show that the only non-vanishing

component of the YM field is

F
(r)
θϕ = ν sin θ. (2.18)

– 5 –
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Considering the metric (2.9) with the electromagnetic (2.14) and YM fields (2.18), one

can show that the only two different components of the field equations (2.2) are

tt− component : (2.19)

ett = rf ′(r) + f(r)− 1 +
(

Λ− 2β2
)

r2 −m2
(

cc1r + c2c2
)

+
ν2

r2
+ 2β

√

q2 + β2r4 = 0,

θθ − component : (2.20)

eθθ =
r

2
f ′′(r) + f ′(r) +

(

Λ− 2β2
)

r − m2

2
cc1 −

ν2

r3
+

2β3r3
√

q2 + β2r4
= 0,

Since there is one common unknown function in both ett and eθθ equations, it is

expected to find that the mentioned field equations are not independent. After some

manipulations, one can obtain the second order field equation by a suitable combination

of first order one as

eθθ = e′tt +
1

r
ett (2.21)

and therefore, the solutions of ett with an integration constant satisfy eθθ equation, directly.

Solving eq. (2.19), we can obtain the following metric function

f(r) = 1− m0

r
− Λr2

3
+

ν2

r2
+

m2

2r

(

cc1r
2 + 2c2c2r

)

+
2β2r2

3
(1−H1) , (2.22)

where H1 = 2F1

(

−1
2 ,−3

4 ;
1
4 ;−

q2

β2r4

)

is a hypergeometric function and m0 is the only inte-

gration constant which is related to the total mass of black hole. Considering the obtained

f(r), one finds that the fourth term is related to the magnetic charge (hair), the fifth term

is related to the massive gravitons, and finally, the last term comes from the nonlinear-

ity of electric charge. Now, it is worthwhile to investigate the asymptotic behavior of the

nonlinearity parameter β on the solutions. Expanding the metric function (2.22) for large β

f(r) = 1− m0

r
− Λr2

3
+

ν2

r2
+

m2

2r

(

cc1r
2 + 2c2c2r

)

+
q2

r2
− q4

20β2r6
+O

(

1

β4

)

, (2.23)

one can recover the Maxwellian limit of the solutions. Therefore, for the massless graviton,

m = 0, and linear electrodynamics, β → ∞, the metric function (2.23) reduces to the EYM

solution with Maxwell field, as we expected. On the other hand, for small values of the

nonlinearity parameter (highly nonlinear solutions), we have

f(r) = 1− m0

r
− Λr2

3
+

ν2

r2
+

m2

2r

(

cc1r
2 + 2c2c2r

)

+
Γ2 (1/4)

3

√

β

π

q3/2

r
+O (β) , (2.24)

which shows that the black hole is neutral at the highly nonlinear regime (β → 0).

Considering eq. (2.22), it is clear that the asymptotical behavior of the solutions is adS

(or dS) provided Λ < 0 (or Λ > 0). In order to find the singularity of the solutions, one

can obtain the Kretschmann scalar as

RµνλκR
µνλκ =

4

r4

[

1 + f2(r)− 2f(r) +
[

rf ′(r)
]2

+

(

r2f ′′(r)

2

)2
]

, (2.25)
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which by inserting (2.22), it is straightforward to show that the Kretschmann scalar has

the following behavior

lim
r→0

(

RµνλκR
µνλκ

)

= ∞, lim
r→∞

(

RµνλκR
µνλκ

)

=
8Λ2

3
. (2.26)

Equation (2.26) shows that there is an essential singularity located at the origin, r = 0.

Moreover, the asymptotical behavior of the Kretschmann scalar for the large enough r

confirms that the solutions are asymptotically (a)dS. Moreover, this singularity can be

covered with an event horizon (for Λ < 0), and therefore, one can interpret the singularity

as a black hole (figure 1). As a final point of this section, we should note that the metric

function can possess more than two real positive roots which this behavior is due to giving

mass to the gravitons (see [14, 16] for more details).

3 Thermodynamics

3.1 Conserved and thermodynamic quantities

Here, we first obtain the conserved and thermodynamic quantities of the black hole solu-

tions, and then examine the validity of the first law of thermodynamics.

The Hawking temperature of the black hole on the event (outermost) horizon, r+, can

be obtained by using the definition of surface gravity, κ,

T =
κ

2π
=

1

2π

√

−1

2
(∇µχν) (∇µχν), (3.1)

where χ = ∂t is the null Killing vector of the horizon. Thus, the temperature is obtained as

T =
f ′(r)

4π

∣

∣

∣

∣

r=r+

=
1

4πr+

[

1−Λr2+− ν2

r2+
+m2

(

cc1r++c2c2
)

+2β2r2+

(

1−
√

1+
q2

β2r4+

)]

.

(3.2)

It is worthwhile to mention that fourth term of r.h.s. of eq. (3.2) does not depend on

the horizon radius, and therefore, one can regard it as a constant background temperature,

T0 =
m2cc1
4π . As a result, we can investigate the solutions by using an effective temperature,

T̂ = T − T0.

The electric potential Φ, measured at infinity with respect to the horizon r+, is obtained

by

ΦE = Aµχ
µ|r→∞

− Aµχ
µ|r=r+

=
q

r+
2F1

(

1

2
,
1

4
;
5

4
;− q2

β2r4+

)

. (3.3)

Since we are working in the context of Einstein gravity, the entropy of the black holes

still obeys the so-called area law. Therefore, the entropy of black holes is equal to one-

quarter of the horizon area with the following explicit form

S = πr2+. (3.4)

In order to obtain the electric charge of the black hole, we use the flux of the electric

field at infinity, yielding

QE = q. (3.5)

– 7 –
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Figure 1. f(r) versus r for Λ = −1, m0 = 12.89, β = 1, and c = −c1 = 1.
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It was shown that by using the Hamiltonian approach, one can obtain the total mass

M in the context of massive gravity as [13]

M =
m0

2
, (3.6)

where m0 comes from the fact that f(r = r+) = 0.

In the limit that the parameter β is small, one may think that the last term in eq. (2.24)

should contribute to the total mass along with m0 (since they have the same radial depen-

dence). But it is not correct since in order to calculate the total energy (mass) of spacetime,

we have to regard the related action for large values of r. It is notable that the asymptotic

behavior of the metric function for both limits r −→ ∞ and β −→ ∞ is the same. So, we

should consider eq. (2.23) to find the mass term, as a coefficient of r−1 in four dimensions.

However, the functional form of the mass term should be proportional to r−1 for arbitrary

values of r.

We should also note that the total mass is related to the geometrical mass, which is

an integration constant of the gravitational field equation. If we regard the last term of

eq. (2.24) as a (piece of) mass-term, two problems are appeared; the first one is related

to the higher-order series expansion of eq. (2.24), in which they will be related to higher

orders of mass with the same dimensional analysis, but they are not proportional to r−1 at

all. The second one is related to the Smarr relation. It is straightforward to check that the

Smarr relation is valid only for the mass related to the geometrical mass (m0). Regarding

the mentioned additional term, the Smarr relation is violated.

In addition, since the considered gravitational configuration has a time-like Killing vec-

tor, it is straightforward to calculate the energy (mass) of the system as the corresponding

conserved quantity. Using the Arnowitt-Deser-Misner (ADM) method [113, 114], one finds

the mentioned conserved quantity for general solutions, f(r), is related to the geometrical

mass, m0.

Now, we are in a position to check the validity of the first law of thermodynamics. To

do so, we use the entropy (3.4), the electric charge (3.5), and the mass (3.6) to obtain mass

as a function of entropy and electric charge

M (S,QE) =
1

2

(

S

π

)3/2 [π

S
− Λ

3
+
(πν

S

)2
+

2β2

3
(1−H3)

]

+
m2

4π

(

cc1S + 2c2c2

√

S

π

)

,

(3.7)

where H3 = 2F1

(

−1
2 ,−3

4 ;
1
4 ;−

(

πQE

βS

)2
)

. We consider the entropy (S) and electric charge

(QE) as a complete set of extensive parameters, and define the temperature (T ) and electric

– 9 –
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potential (ΦE) as the intensive parameters conjugate to them

T =

(

∂M

∂S

)

QE

=
1

4π

√

π

S

[

1− ΛS − πν2

S
+

2β2S

π
(1−H3)−

4β2S2

3π

(

∂H3

∂S

)

QE

+m2

(

cc1

√

S

π
+ c2c2

)]

, (3.8)

ΦE =

(

∂M

∂QE

)

S

=

√

π

S
QE 2F1

(

1

2
,
1

4
;
5

4
;−

(

πQE

βS

)2
)

. (3.9)

Using eqs. (3.4) and (3.5), one can easily show that the temperature (3.8) and electric

potential (3.9) are, respectively, equal to eqs. (3.2) and (3.3). Thus, these quantities satisfy

the first law of thermodynamics

dM = TdS +ΦEdQE . (3.10)

On the other hand, the obtained black holes enjoy a global YM charge as well. In

order to find this magnetic charge, we use the following definition

QYM =
1

4π

∫

√

F
(a)
θϕ F

(a)
θϕ dθdϕ = ν. (3.11)

In order to complete the first law of thermodynamics in differential form (3.10), one

can consider the YM charge as an extensive thermodynamic variable and introduce an

effective YM potential conjugate to it as an intensive variable

ΦYM =

(

∂M

∂QYM

)

S,QE

=

(

∂M

∂ν

)

S,QE

/

(

∂QYM

∂ν

)

S,QE

= ν

√

π

S
=

ν

r+
, (3.12)

which satisfies the first law of thermodynamics in a more complete way

dM = TdS +ΦEdQE +ΦYMdQYM . (3.13)

Regarding the differential form of the first law, it is worth mentioning that this equation

may be completed by other additional terms, such as V dP in the extended phase space.

In order to check the validity of the existence of such terms, one should check the first law

in a non-differential form, the so-called Smarr relation. After some manipulations, one can

find that

M = 2TS +ΦEQE +ΦYMQYM − 2V P − Bβ − Cc1, (3.14)

where

P = − Λ

8π
, V =

(

∂M

∂P

)

S,QE ,QY M ,β,c1

,

B =

(

∂M

∂β

)

S,QE ,QY M ,P,c1

, C =

(

∂M

∂c1

)

S,QE ,QY M ,P,β

,

(3.15)

which confirm that the existence of additional terms and leads to a more complete form of

the first law of thermodynamics

dM = TdS +ΦEdQE +ΦYMdQYM + V dP + Bdβ + Cdc1. (3.16)
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It is worthwhile to mention that although it is possible to add C2dc2 to the first law of

thermodynamics (3.16) mathematically, we are not allowed due to the fact that all inten-

sive and extensive thermodynamic parameters should appear in the Smarr formula (3.14).

Therefore, we considered c2 as a constant (not a thermodynamic variable) since it did not

appear in the Smarr formula.

3.2 Thermal stability

In this section, we use the heat capacity for investigating the thermal stability of the ob-

tained black hole solutions. In this regard, one should consider the sign of heat capacity (its

positivity and negativity) to study the stability conditions. The root of heat capacity (or

temperature) represents a bound point. This point is a kind of border which is located be-

tween physical black holes related to the positive temperature and non-physical ones with

a negative temperature. On the other hand, in our case, both divergence points of the heat

capacity indicate one thermal phase transition point where black holes jump from one diver-

gency to the other one. Besides, the heat capacity changes sign at such divergence points.

So, one can conclude that the divergence point is a kind of bound-like point which is located

between unstable black holes with negative heat capacity and stable (or metastable) ones.

Therefore, it is logical to say that the physical stable black holes are located everywhere

that both the heat capacity and temperature are positive, simultaneously.

Here, we study the thermal stability of the asymptotically adS solutions with Λ < 0.

The heat capacity at constant electric and YM charges is given by

CQE ,QY M
=

T
(

∂2M
∂S2

)

QE ,QY M

, (3.17)

where T has been obtained in eq. (3.2). Considering (3.4), (3.5) and (3.7), one can easily

show that the denominator of heat capacity is

(

∂2M

∂S2

)

QE ,QY M

=
1

8π2r3+

[

(

β2 − Λ
)

r2+ − 1−m2c2c2 +
3ν2

r2+

+ 2βq

(

1 +
β2r4+
q2

)−1/2(

1− β2r4+
q2

)

]

.

(3.18)

We recall that thermal stability criteria are based on the sign of heat capacity and it

may change at root and divergence points. Therefore, it is necessary to look for the root

and divergence points of the heat capacity at the first step. But unfortunately, because of

the complexity of eq. (3.17), it is not possible to obtain the root and divergencies of the

heat capacity, analytically. So, we adopt the numerical analysis to obtain both bound and

thermal phase transition points.

Before applying the numerical calculations, we are interested to clarify the general

behavior of the heat capacity and temperature for the small and large black holes. For the

fixed values of different parameters, there could exist two special r+’s, say r+min and r+max

(see figure 2). The small black holes and large black holes are located before r+min and
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after r+max, respectively. The region of r+min < r+ < r+max belongs to the intermediate

black holes. Using the series expanding of (3.2) and (3.17), one obtains







CQE ,QY M
= −2π

3 r2+ +O
(

r4+
)

T = − ν2

4πr3
+

+O
(

1
r+

) , for small r+, (3.19)







CQE ,QY M
= Const.+ 2πr2+ +O (r+)

T = Const.− Λr+
4π +O

(

1
r+

) , for large r+. (3.20)

Considering eq. (3.19), it is clear that for sufficiently small r+, the heat capacity and

temperature are negative, and therefore, we have an unstable and non-physical black hole.

Whereas from eq. (3.20), we find that for large r+, both heat capacity and temperature

are positive and there exists stable and physical black hole. In other words, eqs. (3.19)

and (3.20) confirm that the small black holes (r+ < r+min) are unstable and non-physical,

whereas the large black holes (r+ > r+max) are physical and enjoy thermal stability. It is

notable that in a special case there is just one specific horizon radius, r+s. In this case, we

have unstable black holes for r+ < r+s and stable ones for r+ > r+s. However, it is not pos-

sible to identify this last property analytically, but we show it in figure 2 (see continues line).

Now, we back to the numerical analysis of the heat capacity. Although we studied the

general behavior of the heat capacity for the small and large black holes, the numerical

calculations help us to classified the intermediate black holes (r+min < r+ < r+max).

However, we are not going to study all possible behaviors of the heat capacity (because they

contain different cases due to lots of free parameters) and just take some interesting ones.

Figure 2 shows some different possibilities for the heat capacity. Clearly, this figure

confirms that the small black holes are unstable (eq. (3.19)) and large black holes are stable

(eq. (3.20)). According to the numerical analysis, we find that the heat capacity contains

(i) only one bound point, (ii) one bound point and two divergencies, and (iii) three bound

points and two divergencies. In the first case, we have unstable and non-physical black

holes before the bound point (r+s), but after this point, stable and physical black holes

are presented. It is worthwhile to recall that from eqs. (3.19) and (3.20), we expected such

behavior. In the second case, we have stable and physical solutions between the bound

point and smaller divergency. There are physical and unstable black holes between two

divergencies. It is notable to mention that the large black holes are stable and physical as

well. As for the last case, there are stable and unstable solutions respectively before and

after the larger divergency.

In addition, we investigate the effects of different parameters on the bound points and

divergencies of the heat capacity in tables 1–3. From the table 1, we find that the specific

horizon radius, r+s, increases as the electric (magnetic) charge of black hole increases too.

This could happen when the black hole absorbs electric (magnetic) charge. As a result, the

region of unstable black holes increases. When the nonlinearity parameter increases and

the nonlinear theory tends to the Maxwell case (1.2), the critical horizon radius increases.

On the contrary, r+s is a decreasing function of the graviton mass (m). So, by increasing

m, the region of unstable black holes decreases. Considering table 2, it is clear that the
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Figure 2. CQE ,QY M
(thin lines) and T (bold lines) versus r+ for Λ = c1 = −1, q = β = ν = c = 1,

and c2 = 2.

m β q ν r+crit

1.0 1.0 1.0 1.0 0.7705

1.1 1.0 1.0 1.0 0.7311

1.2 1.0 1.0 1.0 0.6901

1.0 2.0 1.0 1.0 0.8141

1.0 3.0 1.0 1.0 0.8255

1.0 1.0 2.0 1.0 1.0941

1.0 1.0 3.0 1.0 1.4391

1.0 1.0 1.0 2.0 1.2243

1.0 1.0 1.0 3.0 1.5904

Table 1. Case (i): the root of heat capacity for Λ = −1, c = 1, c1 = −1, and c2 = 2.

m β q ν r+min
smaller

divergency
r+max

2.0 1.0 1.0 1.0 0.4142 0.6974 2.8772

2.1 1.0 1.0 1.0 0.3913 0.6530 3.0278

2.2 1.0 1.0 1.0 0.3706 0.6146 3.1760

2.0 2.0 1.0 1.0 0.4602 0.7918 2.8768

2.0 5.0 1.0 1.0 0.5111 0.8412 2.8766

2.0 1.0 1.5 1.0 0.4580 0.7872 2.7861

2.0 1.0 2.0 1.0 0.5203 0.9384 2.6284

2.0 1.0 1.0 1.5 0.6391 1.0627 2.7830

2.0 1.0 1.0 2.0 0.8702 1.4623 2.6076

Table 2. Case (ii): the root and divergencies of the heat capacity for Λ = −1, c = 1, c1 = −1, and

c2 = 2.
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m β q ν r+min
smaller

divergency
middle root

larger

divergency
r+max

3.0 1.0 1.0 1.0 0.259388 0.425718 3.302860 4.321927 5.645748

3.1 1.0 1.0 1.0 0.249991 0.410556 3.049203 4.463070 6.512390

3.2 1.0 1.0 1.0 0.241256 0.396511 2.889876 4.604034 7.304464

3.0 2.0 1.0 1.0 0.275692 0.461745 3.302797 4.321903 5.645750

3.0 5.0 1.0 1.0 0.315215 0.536320 3.302779 4.321897 5.645751

3.0 1.0 2.0 1.0 0.280515 0.455785 3.180750 4.263744 5.685150

3.0 1.0 3.0 1.0 0.308521 0.493284 2.963691 4.158349 5.745924

3.0 1.0 1.0 2.0 0.558740 0.864659 3.179227 4.263212 5.685196

3.0 1.0 1.0 3.0 0.919670 1.306670 2.951630 4.154812 5.746137

Table 3. Case (iii): the root and divergence points of the heat capacity for Λ = −1, c = 1,

c1 = −1, and c2 = 2.

smaller root (r+min) and smaller divergency are decreasing functions of m, but the larger

divergency (r+max) increases as the massive parameter increases. In addition, we have

found the same effects for β, q, and ν, but opposite behavior is seen for m. Table 3 shows

that the smaller root (r+min), the smaller divergency, and middle root decrease as the

massive parameter increases, whereas the larger divergency and the larger root (r+max)

are increasing functions of m. Like case (ii), one can see the same behavior for β, q, and

ν. The smaller divergency, r+min, and r+max are increasing functions of these parameters

(m, β, q, and ν), but the middle and larger divergency are decreasing functions of them.

Based on these three tables, we conclude that the qualitative effects of β, q, and ν on the

heat capacity are quite the same.

3.3 P − V criticality in the extended phase space

It is well known that the most black holes can undergo a van der Waals like phase transition

when one considers the cosmological constant as a thermodynamic pressure. In this section,

we employ this analogy between the cosmological constant and pressure in the canonical

ensemble (fixed QE , QYM , β, and c1) to investigate the P − V criticality and study phase

transition of obtained black holes in extended phase space. Using the temperature given

in eq. (3.2) and the relation of P = −Λ/8π, it is straightforward to show that the equation

of state is given by

P (r+, T̂ ) =
T̂

2r+
− 1

8πr2+

[

1− ν2

r2+
+m2c2c2 + 2β2r2+

(

1−
√

1 +
q2

β2r4+

)]

, (3.21)

where T̂ = T−m2cc1
4π and we made this choice in order to have a unique critical temperature

(see appendix for more details). The thermodynamic volume is an extensive parameter
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which is conjugated to the pressure and has the following form

V =

(

∂H

∂P

)

S

, (3.22)

where H is the enthalpy of the system. In this perspective, the total mass of black hole

plays the role of enthalpy instead of internal energy due to the fact that the cosmological

constant is not a fixed parameter anymore and it is actually a thermodynamic variable.

Therefore, the thermodynamic volume is calculated as

V =
4

3
πr3+. (3.23)

Hereafter, we use r+ instead of V as a thermodynamic variable since it is proportional

to the specific volume [115, 116]. In order to study the phase transition of the black holes,

we need to obtain the Gibbs free energy. In this extended phase space, one can determine

the Gibbs free energy by using the following definition

G = H − TS = −2πr3+
3

P +
3ν2

4r+
+

r+
4

(

1 +m2c2c2
)

− β2r3+
6

(

1 + 2H1+ − 3

√

1 +
q2

β2r4+

)

,

(3.24)

where H1+ = H1(r = r+). In addition, using the properties of inflection point
(

∂P (r+, T̂ )

∂r+

)

T̂=T̂c,r+=r+c

=

(

∂2P (r+, T̂ )

∂r2+

)

T̂=T̂c,r+=r+c

= 0, (3.25)

and after some manipulations, we obtain the following equation

(

1 +m2c2c2
)

r2+c − 6ν2 − 2q2
(

3 +
q2

β2r4+c

)(

1 +
q2

β2r4+c

)−3/2

= 0. (3.26)

Considering this equation, we find that it is not possible to obtain the critical horizon

radius, r+c, analytically. As a result, we will not be able to calculate, analytically, the

other critical parameters as well. So, we use the numerical analysis in order to study the

van der Waals like phase transition of the black holes. In addition, we use such numerical

analysis for investigating the effects of different parameters on the critical quantities.

Paul Ehrenfest has categorized the phase transition of thermodynamical systems based

on the discontinuity in derivatives of the Gibbs free energy. The order of a phase transition

is the order of the lowest differential of the Gibbs free energy that shows a discontinuity at

the phase transition point. Thus, in a first order phase transition, there exists a disconti-

nuity in the first derivative of G (the entropy or volume). Next, in a second order phase

transition, the entropy or volume becomes a continuous function and the heat capacity

which is given by

CP = T̂

(

∂S

∂T̂

)

P

=
8T̂ π2r5+

√

q2 + β2r4+

2βr2+
(

q2 − β2r4+
)

+
√

q2 + β2r4+
[

3ν2 + 2r4+ (4πP + β2)− r2+ (1 +m2c2c2)
]

(3.27)
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Figure 3. r+ − T̂ and CP − T̂ diagrams for ν = 1, q = 2, β = 1, m = 3, c = 1, and c2 =

2. The vertical dashed line in the left panel represents the temperature of the phase transition

point (0.995T̂c), and in the middle and right panels indicates the critical temperature, T̂c. The

discontinuity is present in the first differential of the Gibbs free energy at phase transition point in

the left panel (due to existence of latent heat) which shows SBH and LBH undergo a first order

phase transition for P < Pc. Continuous behavior of volume versus temperature (middle panel)

and the existence of a sharp spike (weak singularity) in the specific heat at T̂c indicate that the

system enjoys a second order phase transition at critical point.
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Figure 4. P − r+, G− T̂ , and P − T̂ diagrams for ν = 1, q = 2, β = 1, c = 1, c2 = 2, and m = 3.

shows a sharp spike. Clearly, figure 3 confirms that the black holes under consideration

enjoy the first order phase transition for temperatures and pressures less than their critical

values and they undergo a second order phase transition at the critical point.

For instance, we plot P − r+ isotherm, G − T̂ , and P − T̂ diagrams for some fixed

parameters to show the general phase transition behavior of the solutions (figure 4). Con-

sidering figure 4, we find that the obtained black holes have a van der Waals like phase

transition between small black holes (SBH) and large black holes (LBH), and therefore,

they enjoy a first order SBH-LBH phase transition. In this figure, P − r+ isotherms show

SBH area on the left, SBH+LBH coexistence area in the middle, and LBH area on the

right. The dotted curve is a boundary between the regions of SBH, SBH+LBH, and LBH

in the P − r+ diagram. For temperatures above the critical temperature, there is no physi-

cal distinction between SBH and LBH phases, and this area is denoted as the supercritical

region. In addition, in the G− T̂ diagram, the phase transition point is located at the cross

point, where SBH+LBH are presented, and black holes always choose the lowest energy.
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Figure 5. G − T̂ and CP − r+ diagrams for P = 0.85Pc, ν = 1, q = 2, β = 1, c = 1, c2 = 2, and

m = 3. The path A − B indicates unstable black holes which is equivalence to the negative heat

capacity between two divergencies. The path A−C (B−C) indicates metastable black holes which

is equivalence to the positive heat capacity between the larger (smaller) divergency and C2 (C1).

The SBH-LBH phase transition occurs at point C in G − T̂ diagram, and a jump between points

C1 and C2 in CP − r+ diagram.
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Figure 6. The coexistence curve of EYM-BI-Massive and Reissner-Nordström black holes for

ν = 1, q = 2, β = 1, c = 1, c1 = 0, c2 = 2, and m = 3.
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q β ν m r+c T̂c Pc

2.0 1.0 1.0 3.0 0.6374 2.5362 0.6900

2.1 1.0 1.0 3.0 0.6416 2.4855 0.6694

2.2 1.0 1.0 3.0 0.6460 2.4353 0.6492

2.0 1.2 1.0 3.0 0.6603 2.3547 0.5966

2.0 1.4 1.0 3.0 0.6893 2.1881 0.5106

2.0 1.0 1.1 3.0 0.7035 2.3138 0.5652

2.0 1.0 1.2 3.0 0.7708 2.1305 0.4718

2.0 1.0 1.0 3.1 0.6120 2.8472 0.8145

2.0 1.0 1.0 3.2 0.5888 3.1814 0.9538

Table 4. The effects of different parameters on the critical values of the horizon radius, temperature,

and pressure for c = 1 and c2 = 2.

Moreover, the P − T̂ diagram indicates the coexistence line between SBH and LBH which

terminates at the critical point. The critical point is located at the topmost of the coex-

istence line with P = Pc, r+ = r+c, and T̂ = T̂c. If black hole crosses the coexistence line

from left to right or top to bottom, the system goes under a first order phase transition

from SBH to LBH. Above the critical point, SBH and LBH are physically indistinguishable

which is denoted by supercritical region.

From the left panel of figure 5, one can see that the red dashed (solid green) line

corresponds to the negative (positive) heat capacity at constant pressure, CP , in the right

panel. In addition, the divergencies of CP is indicated by two small black points A and B in

the G− T̂ diagram. The path bounded by these points is unconditionally unstable, but the

paths A− C and B − C are metastable. Equivalently, in CP diagram, the region between

point C1 (C2) and smaller (larger) divergency is metastable, and SBH-LBH phase transition

does occur between C1 and C2. This figure shows that during the phase transition from SBH

to LBH, the heat capacity of the system increases. Moreover, this figure confirms that in

order to have SBH-LBH phase transition, a local instability in the heat capacity is required.

In addition, figure 6 shows that the generalization of Einstein-Maxwell black holes

into massive gravity and YM theory has a significant effect on the Reissner-Nordström

black holes. In this theory, the region of SBH and LBH increases, and therefore, there is

van der Waals like phase transition for higher temperatures and pressures compared with

Reissner-Nordström black holes.

In order to study the effects of different parameters on the critical points, we take

table 4 based on the numerical analysis. It is worthwhile to mention that by increasing the

critical temperature and pressure, the region of SBH and LBH increases, and therefore,

the region of phase transition increases too. From table 4, we find that the critical horizon

radius is a decreasing function of the massive parameter and the critical temperature

and pressure are increasing functions of this parameter. Considering table 4, one can

see opposite behavior for the other parameters such as q, β, and ν. In other words, the
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critical horizon radius is an increasing function of these parameters, whereas the critical

temperature and pressure are decreasing functions of them.

4 adS/CFT correspondence

In this section, we are going to point out two applications of the obtained solutions in

the context of the adS/CFT correspondence. The adS/CFT correspondence relates string

theory on asymptotically adS spacetimes to a conformal field theory on the boundary [117].

It is well-known that this holographic correspondence between a quantum field theory and

a gravitational theory can be extended to explain some aspects of nuclear physics [118]. In

addition, some phenomena like the Nernst effect [120, 121], superconductivity [122], Hall

effect [119] and the decaying time scale of perturbations of a thermal state in the field

theory [123] have dual descriptions in gravitational theory.

4.1 Holographic superconductors

Here, we give some tips regarding the holographically dual superconductors of the La-

grangian (2.1). First of all, one should note that at the boundary (r → ∞), the metric

function (2.22) tends to

f(r) = 1− m0

r
− Λr2

3
+

ν2

r2
+

m2

2r

(

cc1r
2 + 2c2c2r

)

+
q2

r2
+O

(

1

r6

)

, (4.1)

and we find that the nonlinearity parameter β does not play a significant role in the

conductivity. Therefore, the BI NED can be replaced by Maxwell electrodynamics and the

proper Lagrangian takes the following form

L = R− 2Λ−FM −FYM +m2
∑

i

ciUi(g, f). (4.2)

In this case, due to the presence of Maxwell and YM fields, there are two options to

investigate the holographic superconductors based on perturbing either Maxwell field or

YM field. If we perturb the Maxwell (YM) field, the YM (Maxwell) field can be considered

as an extra filed that is added to the Lagrangian as a matter source. If one wants to

choose the Maxwell field to investigate the holographic superconductors, the case will be

very similar to [11] (except the extra YM field they are the same) and it can be followed.

Otherwise, if the YM field is preferred to describe the conductivity, the SU(2) gauge group

should break down to the gauge symmetry U(1)3 generated by the third component t3 of

the gauge field SU(2) [124] (see also [125, 126]). Thus, the electromagnetic U(1) gauge

symmetry is identified with the abelian U(1)3 subgroup of the SU(2) group. Therefore,

U(1)3 is interpreted as the gauge group of electromagnetism which is considered in the

boundary theory and Maxwell electrodynamics is an extra field.

4.2 Quasinormal modes

In terms of the adS/CFT correspondence, a large black hole in adS spacetime corresponds

to an approximately thermal state in conformal field theory. Scalar perturbations of the
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black hole correspond to perturbations of this state. Thus, the decay of the scalar field

describes the decay of perturbations of this thermal state. Therefore, we can calculate

the time scale for the approach to thermal equilibrium by calculating the quasinormal

modes (QNMs) of a large static black hole in asymptotically adS spacetime. Here, we shall

obtain the QNMs of constructed black hole solutions to find the stability time scale of the

corresponding thermal state. The other advantage of calculating the QNMs is investigating

the dynamical stability of obtained black hole solutions undergoing scalar perturbations.

In order to calculate the QNMs, one can follow either Horowitz-Hubeny approach [123]

or pseudospectral method [127]. The first one is based on Fröbenius expansion of the modes

near the event horizon and forcing the differential equation to obey the boundary condition

at the horizon. The second method replaces the continuous variable by a discrete set of

points and solves the resulting generalized eigenvalue equation. However, we follow the

pseudospectral method and use a public code presented in [128] to calculate the QN modes.

We now consider the fluctuations of a massless scalar field in the background spacetime

of obtained black holes. In order to use the pseudospectral method, it is convenient to

obtain the master equation in Eddington-Finkelstein coordinates. In these coordinates,

the background line element takes the form

ds2 = −f(u)dt2 − 2u−2dtdu+ u−2
(

dθ2 + sin2 θdϕ2
)

, (4.3)

f(u) = 1− 2Mu+
1

u2L2
+ ν2u2 +

m2

2u

(

cc1 + 2c2c2u
)

+
2β2

3u2

(

1− H̃1

)

, (4.4)

where H̃1 = 2F1

(

−1
2 ,−3

4 ;
1
4 ;−

q2u4

β2

)

, L is the adS radius related to the cosmological con-

stant by Λ = −3/L2, and u = 1/r. Thus, u = 0 corresponds to the boundary and u = 1

represents the horizon. The equation of motion for a minimally coupled scalar field is

governed by the Klein-Gordon equation

�Φ = 0. (4.5)

It is convenient to expand the scalar field eigenfunction Φ in the form

Φ (t, u, θ, ϕ) =
∑

ℓm

ψ (u)Yℓm (θ, ϕ) e−iωt, (4.6)

where Ylm (θ, ϕ) denotes the spherical harmonics. Substituting the scalar field decomposi-

tion (4.6) into (4.5) leads to the following second-order differential equation for the radial

part

u3f(u)ψ′′ (u) +
[

2iωu+ u3f ′ (u)
]

ψ′ (u)− [2iω + uℓ (ℓ+ 1)]ψ (u) = 0 (4.7)

in which ℓ is the multipole number and ω = ωr−iωi is the QN frequency with an imaginary

part ωi giving damping of perturbations and a real part ωr giving oscillations. Therefore,

in terms of the adS/CFT correspondence, τ = 1/ωi is the time scale that the thermal state

needs to pass to meet the thermal equilibrium. On the other hand, the negativity of the

imaginary part guarantees the dynamical stability of the black hole [123]. Otherwise, the

perturbations increase in time and the spacetime becomes unstable.
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Causality requires ingoing modes at the event horizon and finite modes at spatial

infinity that results in a discrete spectrum of frequencies ω. In order to analyze the behavior

of modes ψ (u) near the horizon and the spacial infinity, we set r+ = 1 and replace the value

of M by considering f (r+) = 0 without loss of generality. Starting with the horizon, by

substituting an ansatz ψ (u) = (1− u)p in (4.7), we find two solutions as ψin (u) ∝ Const

and ψout (u) ∝ (1− u)iΩ where Ω = ω/ (2πT ). By considering the time dependence e−iωt,

the ψout (u) behaves as

ψout (u) ∝ e−iΩ[2πTt−ln(1−u)]. (4.8)

In order to keep a constant phase, 1−u has to increase as t increases, and thus u should

decrease which means that this solution is outgoing. Therefore, we must consider just the

ingoing solution ψin (u) ∝ Const. There are two solutions near the event horizon; a normal-

izable mode ψ (u) ∝ u3 and a non-normalizable one ψ (u) ∝ Const. If we rescale ψ (u) =

u2ψ̃ (u), then the normalizable mode tends to zero linearly, whereas the non-normalizable

mode diverges as ∼ u−2. Doing this redefinition, the wave equation (4.7) becomes

u3

6

[

−6

(

1

L2
+ u2

(

1 + u2ν2
)

)

− 3cm2u (c1 + 2cc2u) + 4β2
(

H̃1 − 1
)

+A
]

ψ̃′′ (u)

+

[

− 10

3u3+
β2u5H̃1+ +

u2

6

(

6
(

5u3 − 2
)

L2
+ 20β2H̃1 + B + 3uC

)]

ψ̃′ (u) (4.9)

+

[

4

3
β2u

(

1 + 2u−3
+ u3 − 3

√

1 +
q2u4

β2

)

+
8

3
β2u

(

H̃1 − u−3
+ u3H̃1+

)

+ uD
]

ψ̃ (u) = 0,

where

A = u+u
3

{

6ν2 − 4β2u−4
+ H̃1+

+u−2
+

[

6 + 2u−2
+

(

2β2 +
3

L2

)

+ 3cm2
(

c1u
−1
+ + 2cc2

)

]}

, (4.10)

B = −4β2

(

2− 5u−3
+ u3 + 3

√

1 +
q2u4

β2

)

, (4.11)

C = −4iΩ+ cm2
[

2cc2u
(

5u−1
+ u− 4

)

+ c1
(

5u−2
+ u2 − 3

)]

+2u
[

5u−1
+ u− 4 + ν2uu+

(

5− 6u−1
+ u

)]

, (4.12)

D = 2ν2u3u+

(

2− 3u

u+

)

+
2 + 4u−3

+ u3

L2
− 2iΩu

+u2
{

ℓ (ℓ+ 1)− 2 +
4u

u+
+ 2cm2

[

c1u

u2+
+ cc2

(

2u

u+
− 1

)]}

. (4.13)

Now, the normalizable mode behaves smoothly at the boundary and it should be

considered, while we discard the other solution. The wave equation (4.9) is an input for

the code and one can fix the free parameters and the event horizon radius r+ = u−1
+ to

calculate the QN modes.

In the previous section, it was shown that the small black holes are unstable and

non-physical, whereas the large black holes are physical and enjoy thermal stability (see
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m β ν r+ =5 r+ =10 r+ =50 r+ =100

2 1 1
7.3348−11.5624i

12.7580−21.6360i

15.5281−24.8128i

26.8225−46.0131i

88.6935−131.3863i

151.9287−242.6142i

181.0693−264.5858i

309.8333−488.4349i

3 1 1
4.8000−9.1811i

8.5936−17.5565i

11.6144−22.2860i

20.4356−41.6669i

83.8994−129.0660i

144.1318−238.5051i

176.1904−262.3050i

301.9004−484.3753i

2 5 1
7.3348−11.5624i

12.7580−21.6361i

15.5281−24.8128i

26.8225−46.0131i

88.6935−131.3863i

151.9287−242.6142i

181.0693−264.5858i

309.8333−488.4349i

2 1 2
7.3065−11.5752i

12.6996−21.6612i

15.5244−24.8146i

26.8149−46.0167i

88.6935−131.3863i

151.9287−242.6143i

181.0692−264.5858i

309.8333−488.4349i

Table 5. The fundamental mode (first line) and the first overtone (second line) of the QN frequen-

cies for different values of m, β, ν, and r+.

eqs. (3.19) and (3.20)). On the other hand, the large black holes correspond to the thermal

states in CFT. Thus, we shall focus on the QNMs of large black holes (r+ ≫ L) and discard

the small ones (r+ ≪ L) for L = 1 as the adS radius.

Here, we set the free parameters as q = 1, c = 1, c1 = −1, c2 = 2, and ℓ = 0, and

evaluate the QNMs for different values of m, β, ν, and r+. In table 5, we list the QNM fre-

quencies for the fundamental mode (n = 0) and the first overtone (n = 1) of intermediate

black holes (r+ = 5, 10) and large ones (r+ = 50, 100). From this table, one can see that as

the overtone number and the event horizon radius increase, both the real and imaginary

parts of frequencies increase as well. But an opposite behavior is seen for increasing in the

graviton mass. Besides, the real (imaginary) part of the frequencies decreases (increases)

when the magnetic charge increases. We recall that the nonlinearity parameter β does not

play a significant role at the boundary r → ∞ (u → 0), and thus increasing/decreasing in β

does not change the value of QNMs as it can be seen from the table. Therefore, the BI NED

can be replaced by Maxwell electrodynamics when we want to investigate the applications

of the solutions in the context of the adS/CFT correspondence. We should mention that as

the imaginary part of frequencies increases, the corresponds thermal state meets the sta-

bility faster. In addition, the obtained black hole solutions undergoing massless scalar per-

turbations are dynamically stable since all the frequencies have a negative imaginary part.

It is worthwhile to mention that as r+ increases, changing in ν does not affect the

QNMs significantly (compare the first line and last line for r+ = 50, 100 in table 5). But

this is not correct in the case of m (compare the first line and second line for r+ = 50, 100).

In order to explain this fact, one may consider the temperature (3.2) for large black holes

at the first step

T =
3r+ + cc1m

2

4π
+O

(

1

r+

)

, (4.14)

and secondly, look at the relation between the QNMs and this temperature illustrated in

figure 7. As one can see, both the real and imaginary parts of frequencies increase linearly

with increase in the temperature (4.14). Therefore, changing in ν does not affect the QNMs

since it is absent in (4.14), whereas m is present. From (4.14), we can find that increasing
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Figure 7. The QN frequencies for the fundamental mode and the first overtone for m = 2 (left

panel), m = 3 (right panel), q = 2, β = 1, ν = 1, ℓ = 0, c = 1, c1 = −1, and c2 = 2.

in c and c1 leads to increasing in QNMs, but q and c2 do not change the QNMs in the case

of large black holes, as ν did not. The points in figure 7, representing the QNMs, lie on

straight lines through the origin. For the real part, the lines are given by

{

ωr = 7.747T, n = 0

ωr = 13.236T, n = 1
for m = 2, (4.15)

{

ωr = 7.752T, n = 0

ωr = 13.230T, n = 1
for m = 3, (4.16)

while for the imaginary part we have

{

ωi = 11.158T, n = 0

ωi = 20.594T, n = 1
for m = 2, (4.17)

{

ωi = 11.151T, n = 0

ωi = 20.596T, n = 1
for m = 3. (4.18)

In terms of the adS/CFT correspondence, τ = 1/ωi is the time scale for the approach

to thermal equilibrium. Therefore, eqs. (4.17) and (4.18) are the main results of this

subsection. One may note that both the real and the imaginary parts of the frequencies

are linear functions of r+ since the temperature of large black holes is a linear function of

r+. Interestingly, the same result was found for the Schwarzschild-adS black hole [123].

5 Conclusions

In this paper, we have obtained Einstein-Massive black hole solutions in the presence of

YM and BI NED fields. We have also studied the geometric properties of the solutions and

it was shown that there is an essential singularity at the origin which can be covered with

an event horizon. In addition, we have calculated the conserved and thermodynamical

– 23 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
7

quantities, and it was shown that even though the YM and BI NED fields modify the

solutions, the first law of thermodynamics is still valid.

Moreover, we have studied the thermal stability of the obtained black holes and inves-

tigated the effects of different parameters on the stability conditions. We have found that

the large black holes (r+ > r+max) are physical and stable, whereas the small black holes

(r+ < r+min) are non-physical (T < 0). Furthermore, we have classified the medium black

holes (r+min < r+ < r+max) in figure 2 and investigated the effects of different parameters

on thermal stability of these black holes in tables 1–3.

In addition, we have considered the cosmological constant as thermodynamical pressure

and it was shown that the obtained black holes enjoy the first order SBH-LBH phase

transition. Also, we have studied this kind of phase transition in the heat capacity diagram

and specified the unstable and metastable phases of obtained black holes related to the

negative and positive heat capacities, respectively. It was shown that during the phase

transition from SBH to LBH, the heat capacity of the system increases. We have seen that

the generalization of Reissner-Nordström solutions into massive gravity and YM theory

increases the critical temperature and pressure, and as a result, the region of SBH and

LBH increases. Moreover, we have investigated the effects of different parameters on the

critical points, and we found that the parameters q, β, and ν have opposite effect on the

critical points compared with the massive parameter, m.

Besides, we have considered massless scalar perturbations in the background of ob-

tained black holes in asymptotically adS spacetime. We also have calculated the QN fre-

quencies by using the pseudospectral method in order to investigate the dynamical stability

of the black holes, the effects of different parameters on the QNMs, and obtain the time

scale of the thermal state for the approach to thermal equilibrium in CFT. It was seen that

the obtained solutions are dynamically stable and BI NED generalization does not affect

the frequencies. Furthermore, it was shown that increasing in r+, c, c1, and m lead to in-

crease in both the real and imaginary parts of the frequencies. It is worthwhile to mention

that this result depends on the sign of c and c1 (through the text, we considered a negative

value for c1, and therefore, increasing in m has led to decrease in the QNMs). In addition,

we have found that ν, q, and c2 do not affect the QNMs in the case of large black holes.

Since a static large black hole in adS spacetime corresponds to an approximately thermal

state in conformal field theory, ν, q, and c2 have no effect on the time scale of the thermal

state. Just like the Schwarzschild-adS black holes [123], both the real and imaginary parts

of frequencies for the large black holes were linear functions of the temperature.

As a final remark, it is worth mentioning that although we consider the ADM mass

in the context of black hole thermodynamics, there is another extension of mass (so-called

hairy mass) for hairy black holes which is related to the calculation of the null circular

geodesic (photon-sphere) [129, 130]. Such a hairy mass is not related to our discussion in

this paper and it can be considered as a new work with photon-sphere concentration.
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A EYM-Maxwell black holes in massive gravity

Here, we give a brief study regarding the P − V criticality of EYM-Maxwell black holes in

massive gravity. In order to find the related equation of state, one can use the expansion

of the metric function (2.22) for a large value of nonlinearity parameter, β, and follow the

same procedure given in section 3.3, which leads to

P (r+, T ) =
T

2r+
− 1

8πr2+

[

1− q2 + ν2

r2+
+m2

(

r+cc1 + c2c2
)

]

. (A.1)

Using the definition of the inflection point (3.25), we can find the critical horizon

radius, temperature, and pressure as follows

r+c =

√

6 (q2 + ν2)

1 +m2c2c2
, (A.2)

Tc =
m2cc1
4π

+

[

1 +m2c2c2
(

2 +m2c2c2
)]

3π
√

6 (q2 + ν2) (1 +m2c2c2)
, (A.3)

Pc =
1 +m2c2c2

(

2 +m2c2c2
)

96π (q2 + ν2)
. (A.4)

Considering equations mentioned above, we find that Tc depends on c1, but r+c and

Pc are independent of this parameter. This means that for the fixed values of r+c and Pc,

there is infinite Tc for the system depending on the value of c1! So, in order to get rid of

this situation, we define m2cc1
4π as a background temperature, T0, and rescale the critical

temperature into

T̂c = Tc − T0 =

[

1 +m2c2c2
(

2 +m2c2c2
)]

3π
√

(q2 + ν2) (1 +m2c2c2)
, (A.5)

which shows a unique critical temperature.
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