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1 Introduction

There has been good progress in the last twenty years in formulating and computing the
quantum entropy of supersymmetric black holes. This is a notion that extends the semi-
classical Bekenstein-Hawking entropy, which is valid in the thermodynamic limit when the
black hole size is infinite, to a quantity that is defined when the curvatures and coupling
constants cannot be ignored. Starting from the work of [1], developments in this direction
have led to the formulation of the quantum black hole entropy as a functional integral over
all the fields of the gravitational theory in the Euclidean near-horizon AdSy region of the
black hole [2]. In this formulation, the corrections to the Bekenstein-Hawking formula are
split into two types of effects. The first type consists of corrections that can be encoded
in the effective action as the inclusion of local higher-dimension operators — these can
be recovered as a saddle point approximation to the functional integral. The second type
consists of quantum corrections that arise from loop effects around the AdSs background.



The leading logarithmic one-loop quantum corrections to the semiclassical entropy
has been computed in a variety of situations (see [3] for a summary). In situations with
supersymmetry one can go further and try to compute the full functional integral, using the
technique of localization, to obtain the ezact quantum entropy [4-6]. There are, of course,
many subtleties and difficulties in applying localization to supergravity, but the basic ideas
seem to be in good enough shape by now to be applied to various situations. In particular,
we now understand how to formulate a notion of a rigid off-shell () which acts covariantly
on all the fields of the theory, using an adaptation of the background field method [7, 8].
One starts with a supersymmetric background to an off-shell supergravity theory — the
attractor black hole configuration in our situation — with one choice of Killing spinor, and
the problem then reduces to finding all configurations of the supergravity theory which
admit some Killing spinor that asymptote to the attractor background in a manner that the
Killing spinor asymptotes to the chosen background Killing spinor. The off-shell nature of
the supersymmetry variations allows us to consider the problem separately in the Weyl and
matter multiplets of the theory. One lists the set of all supersymmetric matter fluctuations
around each supersymmetric Weyl multiplet configuration, and the localization manifold
consists of the combined space of solutions.

Most of the progress in applying these ideas to exact quantum black hole entropy has
been in the context of supersymmetric black holes in A/ = 2 supergravity theories in four-
dimensional asymptotically flat space [9-13], leading up to a gravitational derivation of the
OSV conjecture [14] in its sharpened form [15]. It is natural to ask if this progress can be
extended to supersymmetric black holes in higher dimensions. In this paper we study this
problem for a class of spinning black holes in five-dimensional asymptotically flat space,
namely the BMPV black holes [16]. These 5d black holes are intimately related to the 4d
black holes mentioned above via the 4d/5d connection [17]. Indeed, embedding the BMPV
black holes in M-theory compactified on a Calabi-Yau 3-fold and placing this configuration
on the tip of a Taub-NUT space brings us to a 4d black hole solution in Type IIA string
theory on the same Calabi-Yau. The spin of the 5d black hole become angular momentum
around the Taub-NUT space which is seen as a gauge charge by the 4d black hole.

In the context of the current paper we regard the 5d supersymmetric spinning BMPV
black holes as solutions to 5d off-shell N' = 2 supergravity coupled to n, + 1 vector multi-
plets [18-21]. In the near-horizon attractor region, the metric is fixed to AdSy x S? x St,
where the S! is fibered over the AdSy as well as the S?, and the vector fields are fixed to
have constant electric field strengths [22]. In this paper we perform a complete analysis
of the localization manifold in the vector multiplet sector with attractor boundary condi-
tions. We also begin an analysis of the general solution in the Weyl multiplet sector, but
we postpone an exhaustive analysis to future work.!

"We follow this strategy partly because the analysis in the Weyl multiplet sector is technically quite
intricate, and partly because a similar strategy in 4d led to rapid progress in understanding the quantum
entropy [4]. In the 4d situation, it was then shown rigorously that essentially the only BPS solution in
the Weyl multiplet sector with the attractor boundary conditions is the (fully supersymmetric) attractor
solution itself [9].



The problem of finding the localization manifold in the vector multiplet sector has
been addressed previously in [23] making heavy use of the off-shell 4d/5d connection [24].
The off-shell 4d/5d connection spells out a precise relation between solutions of off-shell
BPS equations in 5d with their 4d counterparts. The basic statement is that of a consistent
truncation of the off-shell BPS equations: off-shell BPS configurations in 4d lift to off-shell
BPS configurations in 5d. In the black hole context, the complete set of solutions in 4d has
been solved in [4, 9], and the solution set consists of a one-parameter family in each vector
multiplet, thus yielding a (real) (ny + 1)-dimensional manifold. Integrating the action of
this manifold then leads to an OSV-type integral formula for the quantum entropy. Putting
together the 4d/5d black hole connection [17] with the off-shell 4d/5d connection, the work
of [23] showed that the above 4d solutions can be lifted to 5d solutions around the black
hole attractor. More precisely, the analysis of [23] showed that if we switched off some of
the auxiliary fields in the 5d vector multiplet, the remaining fluctuations are constrained
by a set of equations similar to the contact instanton equations arising in [25].

The obvious question that arises is whether there are any other new solutions to
the BPS equations. Firstly, there could be non-trivial smooth solutions to the contact-
instanton-like equations. Secondly, there may be more solutions to the localization equa-
tions (potentially an infinite number) if we switch on all the auxiliary fields. More solutions
to the localization equations would imply that the localization approach to quantum en-
tropy of 5d black holes is much more complicated than the corresponding 4d story. While
this conclusion is a technical possibility — after all, the equations of 5d localization are
more complicated because they involve a fifth direction in which all the fields fluctuate —
it seems a bit at odds with the fact that the near-horizon configurations of the 4d and 5d
black holes are very closely related by the 4d/5d lift. It also seems to be at odds with
the fact that the microscopic ensembles, as well as the expressions for the microscopic
degeneracies, are almost the same [26-28].

These considerations led us to revisit this problem of finding the localization manifold
in the vector multiplet sector for 5d black holes including all the 5d fluctuations of all the
auxiliary fields in the theory. The approach we take is to directly analyze the 5d off-shell
BPS equations instead of going through the 4d/5d lift. We find that the solution manifold
depends strongly on the Euclidean continuation that is used. We explore different choices
that could each be termed natural from certain points of view. We find that one choice
(that we call A1) leads to a finite-dimensional manifold which is precisely the lift of the
4d localization manifold found in [4, 9] with no extra solutions.? This choice is precisely
the one that reduces to the analytic continuation of the 4d theory used in [4, 9]. We also
present the results for other choices of analytic continuation (called A2, B, C), including
one which preserves 5d covariance, partly because these solutions could be relevant for
some other physical problem.

While our main results concern the vector multiplet localization locus for the black hole
quantum entropy problem, we also begin a treatment of the Weyl mutliplet for arbitrary

2We emphasize that smoothness of the solutions is an essential criterion in reaching this conclusion. This
leaves open the possibility of instanton-like (or orbifold) solutions, which are known to play an important
role [6, 29, 30].



backgrounds. We use the method of fermion bilinears [31-33] to reduce the off-shell problem
to a system of coupled PDEs among bosonic quantities, and find the most general (local)
solution. We do this both in the Weyl and vector multiplets. The next step, which is to
impose the attractor boundary conditions and perform a careful Euclidean continuation,?
can be considerably difficult in the Weyl multiplet because of the mixing of many fields
of varying spins (see e.g. [9]). We postpone the full analysis of this interesting problem to
future work.

The plan of the paper is as follows. In section 2 we review the formalism of 5d
N = 2 off-shell supergravity, the supersymmetric spinning black hole solutions, and the
off-shell 4d/5d connection. In section 3 we review the method of fermion bilinears and
present the most general local solution in the Weyl multiplet sector. In section 4 we find
the most general local solution in the vector multiplet sector. We then apply boundary
conditions and discuss different Euclidean continuations and find the most general solution
with attractor boundary conditions. In section 5 we discuss how our results fit into the
quantum entropy program in string theory as well as the future directions to be attacked.
In two appendices we summarize our conventions and present the Killing spinors used in
the main text.

2 5d N = 2 supergravity and spinning black holes

In this section we briefly review some relevant aspects of N' = 2 off-shell supergravity
coupled to vector multiplets in 5 dimensions, following the construction based on the su-
perconformal formalism [18-22]. We then review the spinning supersymmetric black hole
solutions in this theory. Finally we briefly review the off-shell 4d/5d connection of [24].

2.1 Off-shell 5d N = 2 supergravity coupled to vector multiplets

In five space time dimensions the independent fields in the Weyl multiplet are
W = (edvr, ¥, bar, Vari?s Tag, X', D) - (2.1)

Here the indices {A, B}, {M, N}, and {i,j} are five dimensional flat space, curved space,
and SU(2)g indices, respectively. The fields are the fiinfbein eﬁ, the gravitini WM» dilata-
tion gauge field bys, SU(2)r gauge fields Viy/, as well as the auxiliary fields which are
the anti-symmetric tensor T4p, the spinor x’, and the scalar D. In addition the Weyl
multiplet also includes the fields wps A8, far?, éas%, which are gauge fields corresponding
to Lorentz transformations, special conformal transformations, and special supersymme-
try transformations, respectively. These fields are determined in terms of the independent
fields of the multiplet (2.1) through conventional constraints, and are termed composite.

3A Euclidean continuation is required because our eventual goal is to compute functional integrals.
Ideally we should begin with a Euclidean formulation of our theory, but unfortunately we do not know of
a suitable Euclidean supergravity formulation. In the 4d case a similar route was followed at first in [4, 5],
and a Euclidean formalism was later developed in [34], which confirmed the solutions found by Euclidean
continuation.



The supersymmetry variation of the gravitini is given by
oY = 2D e’ + §TA3(3’7AB’YM —y*P)e — iy’ (2.2)

where ¢ and 7' parameterize the supersymmetry (@) and conformal supersymmetry (S)
respectively. The operator Dj; is the covariant derivative with respect to all supercon-
formal transformations except the special conformal transformations, and it acts on the
supersymmetry parameter as

; 1 1 | o
'DMEZ = ((9]\/[ — ZCUMAB’}/AB + 2bM) €' + 5‘/}\43‘16J . (2.3)

The five-dimensional vector multiplet is
V = (0,0, Wy, Y). (2.4)

The components of this multiplet are the gauge field W)y, the real scalar o, the gaugini €,
which is a doublet under SU(2)g, and auxiliary field Y% which is a triplet under SU(2)g.
The supersymmetry variation of the gaugini is

. 1 ~ S . ; .
5O = —§(FAB — thjTAB)’yABeZ —ilpoe" — 25jkY”€k +on'. (2.5)
The anticommutator of supersymmetry transformations close on to the algebra gener-
ated by the general coordinate transformations, Lorentz transformation and gauge trans-
formations.
The action of the Weyl multiplet coupled to n, vector multiplets is

1 1 .
872L = 3Cy k0! §'DMU‘]DMJK + ZFWJJF’M ~ Y, YR — 367 FWKT’“’}
2.6
i —1_pvporyysl J K 1 39 2 ( )
—§C]JK€ ghvp W“F,,p FUT —C(O‘) gR—llD—?T .

Here Crjk is the symmetric tensor of N' = 2 supergravity, and the function C(o) are
defined as
C(o) = Crygolo’ ok, (2.7)

2.2 Supersymmetric black holes in 5d

The action (2.6) admits charged, rotating black hole solutions. This action is essentially
an HFinstein-Maxwell theory, with an additional Chern Simons interaction for the gauge
fields W A F' A F, which has the same dimensions as the Maxwell terms. The presence
of the Chern Simons term does not affect static solutions, but it does affect stationary
solutions.

We consider asymptotically flat black holes characterized by mass M, charge () and
two angular momenta J; and Js. The existence of the horizon covering the singularity
requires that the mass and charge of the black hole satisfy the following inequality, for any
value of the angular momenta [35]

m= L. (238)



When this inequality is saturated one linear combination Jp of J; and J vanishes, and
the black hole solution admits a Killing spinor. Thus, a 5d supersymmetric black hole is
characterized by the charge () and one angular momentu .Jz, [16, 36].

Supersymmetry implies that the near horizon geometry of such a supersymmetric black
hole (charged and rotating) is completely fixed by the charges of the black hole, which is
the statement of the attractor mechanism. This geometry consists of the product of AdSs
and S? of equal radii, and a circle which is non trivially fibered over AdSsx S2. This metric
can be written as follows [22],

1 dr?
2 _ 47,2 2 w2 2 2 2
ds —W(—rdt +4r—2+d9 + sin «9d¢>+eg(d¢+3) ) (2.9)
where 1 is the periodic coordinate of the circle and
1
B= _Fe—g(T%r? dt — Ty cos 0 do) . (2.10)
v

Here, g and the tensor field T4p are constants which determines the size of the circle and
its fibration over the base space, respectively. The value of Th3 determines the angular
momentum of the black hole. The parameter v is a constant that determines the size
of AdSyx S%. Using the dilatation symmetry of N = 2 supergravity we set v = %. The
conditions for supersymmetry then constraint T,; to obey

1
(T01)2 + (T23)2 = ’U2 = E (2.11)
For later convenience we will parametrize the background value of Ty g as
1 1
To1 = 1 cos B, Thy = i sin 3. (2.12)

In the case Tos = 0, the metric (2.9) reduces to that of the charged static black hole with
near-horizon geometry AdSsxS3, whereas in the case of Ty; = 0 the metric reduces to that
of the black string with near-horizon geometry AdSsxS?. Arbitrary values of Ty corre-
spond to spinning black holes with near-horizon geometry AdS,xS? x S', and interpolates
between these two limits.

The entropy of this black hole is given by the area of the 3-dimensional compact space
at r =0 [22],

Spu = 4me’. (2.13)

For the vector multiplet fields the near horizon supersymmetry requires that the value of
the scalar field is constant i.e.,

ol =of, I=1,...,n,, (2.14)

with the constants o are determined in terms of the charges using the fact that the gauge
field strength is given in terms of T, as

Fl=40lTy,  Fj, =40l Tossing. (2.15)

The near horizon field configurations given by the metric (2.9) and scalar fields (2.15)
preserves 8 real supercharges. The explicit form of the Killing spinors in the Euclidean
version of this theory is given in appendix B.



2.3 Off-shell 4d/5d connection

It is well known that upon dimensional reduction from 5d to 4d, the equations of motions of
the 5d theory reduce to the equations of motion of the 4d theory. A slightly less known fact
is that a similar statement is also true for the off-shell dimensional reduction: off-shell BPS
equations in 5d reduce to off-shell BPS equations in 4d [24]. Therefore BPS configurations
in 4d can be lifted to BPS configurations in 5d, and conversely, 5d BPS configurations
which are independent of the fifth direction reduce to 4d BPS configurations.

In our context, the conformal 5d supergravity coupled to n, vector multiplets that was
discussed above reduces to the off-shell conformal 4d supergravity coupled to n, + 1 number
of vector multiplets discussed in [37]. Upon dimension reduction the 5d Weyl multiplet
reduces to the Weyl multiplet and a Kaluza Klein vector multiplet in 4d, a 5d vector
multiplet reduces to a 4d vector multiplet. In particular, taking the standard Kaluza-Klein
ansatz for dimensional reduction along a circle, the 5d and 4d vielbeins are related as

A eu” By M et —el” By
eM ( 0 ¢_1 ) €A 0 ¢ ( 6)

Here {a,b,---} and {u,v,---} are 4 dimensional flat-space and curved-space indices, re-
spectively. In the above ansatz, B,, represents a non trivial fibration of the circle with the
size ¢! over the 4d base space. The auxiliary T field reduces as follows,

Tab
Tup = . (2.17)
<—éAa>

In the dimension reduction of a vector multiplet, the 5d vector field reduces to a 4d
vector field and a real scalar. The extra scalar combines with the scalar of the 5d vector
multiplet to yield the complex scalar of the 4d vector multiplet. More explicitly, the 4d
vector multiplet fields, (X, A;, A, y*), in terms of 5d vector multiplet fields are given by,
with W = W5,

1 .
x! = _Ei(al —i—ingI)@iw, A{L = Wl{’ I=1,...,ny. (2.18)

The I = 0 vector multiplet is built out of fields of the Weyl multiplet as follows,

L
X0:—§¢)e ¢, A) =B,. (2.19)

Here ¢ is a scalar field which transforms inhomogeneously under 4 dimensions chiral U(1)
gauge transformation for which the gauge field is A,. This field is introduced so that
the 4d fields have right chiral charges. Comparing these results with the usual on-shell
dimensional reduction we have the on-shell relation
1
X' = 5(o—f +ioW!) = o= —n/2. (2.20)
The 5d supersymmetry transformation upon dimension reduction reduces to a lin-
ear combination of 4d supersymmetry transformation, S-supersymmetry transformation,
SU(2)-R symmetry transformation, and chiral U(1) transformation. as

00 () "1 = 60(e)|ap® + 85(7)|ap® + Ssu(2) (M) [ap® + duy (A)|ap®,  (2:21)



where the parameters 7, /NX, A% are non-linear combinations of the various supergravity
fields [24]. The equation (2.21) relates supersymmetric configurations in 5d to supersym-
metric configurations in 4d. In bosonic backgrounds, we see that the parameters A and A°
vanish, and thus the dg variation in 5d reduces to a combination of 6g and dg in 4d. Upon
demanding the left-hand side of (2.21) vanishes on the 5d gravitino field ®, we obtain, from
the the right-hand side, precisely the condition for vanishing of the 4d gravitino, as well as
a condition on the KK vector multiplet.

In our case of interest discussed in section 2.2, the 5d spinning supersymmetric black
hole reduces precisely to the 4d supersymmetric black hole with electric and magnetic flux
in the KK multiplet. The electric flux is proportional to the angular momentum in 5d,
while the magnetic flux is the Taub-NUT charge in 5d. The 5d black hole sits at the
center of the Taub-NUT space. This is simply a restatement, in the off-shell theory, of the
4d/5d connection [17]. The advantage of the off-shell formalism is that we can also analyze
the off-shell fluctuations relevant for localization. For vector multiplet fluctuations around
the black hole background, we can check that the parameter 7 also vanishes, and the d¢
variations in 5d map to the g variations in 4d. For Weyl multiplet fluctuations, this is not
the case and the 5d to 4d reduction necessarily involves the conformal Killing spinor 7.

However, an important caveat to all these considerations is that these off-shell 5d/4d
reductions of [24] are written in Lorentzian space. For the purpose of localization calcu-
lations of the functional integral, we are interested in Euclidean configurations, for which
there may be subtleties in the choice of analytic continuation. For this reason we choose
a different route and directly analyze the 5d supersymmetry vanishing conditions and ex-
plore the choices of Euclidean continuation. As we will see in the following sections, these
subtleties indeed play an important role.

3 Off-shell Weyl multiplet analysis

In this section we analyze the off-shell BPS equations in the Weyl multiplet sector described
in section 2.1. We perform our analysis using the spinor bilinear method which yields
a set of coupled first order differential equations for bosonic quantities. We follow the
references [31-33, 38, 39]. We then present the most general solution to these equations
with some of the auxiliary fields set to zero.

The idea of the spinor bilinear method to find all supersymmetric solutions of a given
system is as follows. We obtain supersymmetric solutions by setting the supersymmetry
variations of all the fields to zero. Assuming that there are no fermionic backgrounds,
we have to set all fermion variations to zero, which leads to matrix equations in spinorial
variables. Instead of working with these matrix equations, one begins by assuming the
existence of a Killing spinor and forms various bilinears of this spinor. The original BPS
equations then lead to a set of coupled first order equations for these bosonic quantities.
These quantities are then interpreted as describing the bosonic background in which one
is interested. For example, one finds that the vector bilinear obeys the Killing vector
equation, and we interpret this to mean that the background must have a Killing vector.



Carrying on in this manner one finds other constraints on the bosonic fields, which we then
put together to construct the solution space.

This method has been applied successfully to classify all supersymmetric solutions of
various systems. Two references that we follow closely in terms of conventions are the
classification of on-shell BPS solutions of 5d N = 2 supergravity [40], and the classification
of off-shell BPS solutions of 4d N = 2 supergravity [9]. From now on we will consider Eu-
clidean configurations. In appendix A we present the conventions that we use for Euclidean
spinors and gamma matrices.

3.1 Killing spinor and its bilinears

Upon setting the gravitini variations in (2.2) to zero, we obtain the BPS equations:
2Dyre" + §TAB (SPyAB'yM — *yM*yAB) € —iyyn' =0 (3.1)

for the Killing spinor € and a similar one for its conjugate €. In our analysis below
we set the dilatation gauge field bys, the SU(2)r gauge field Viy;?, and the conformal
supersymmetry parameter 7' to zero. We make these assumptions in order to simplify the
problem, and they need to be revisited in order to have a complete analysis. With these
assumptions the Killing spinor equations take the following form,

Ve == Tap 3y Py — v P) €,
Z, (3.2)
VueE = +1 TAB€ (37M7AB - VAB’YM) .

Here V), is the covariant derivative Dj; with the above simplifications, and takes the form

: 1 :
Ve = (8M - 4wMAB’YAB> €. (3-3)

Now we start building the spinor bilinears. The products of spinor bilinears in 5
dimensions obey the following conditions [40]

E€EVMI1.. M, = —NYM,...M; €- (3.4)

In particular, this implies that the product of two Killing spinors, €€/, is antisymmetric in
the symplectic indices, 7, j, and therefore the only non-trivial scalar bilinear is

1 oo
f = igijEZ e . (35)

One can check using the reality properties of the spinors that f is a real scalar.
Using the BPS equations (3.2) for the Killing spinor and its conjugate, we see that

i .
Vaf = geiy® T (3vav8c — vBCYA — 3VBCYA + YaVBCO)€E
A (36)

=0 TBCe’:‘ij & (SA[B’)/C} e ,



where, in going to the second line we have used the gamma matrix identity (A.2). Now
using the antisymmetry of 7', we can rewrite this as

df = —di g T. (3.7)

where KB = %qui'yB ¢/, and y/ is the interior derivative along V. Similarly we construct
the vector bilinears €v%¢/. Like above, using equation (3.4), we see that this is anti-
symmetric in 4, j, and therefore the vector K defined above is the only non-trivial vector
bilinear. Using the reality properties of the spinors described in appendix A, we see that
this is a real vector.

Using the BPS equations, we compute the covariant derivative of K,

1 P . p .

VaKp = 55,']' (VAGZ)’yBej + €i;€74 (VBEJ)

— i *xTapcKC + 4ifTup.

(3.8)

Since the right hand side of the above equation is antisymmetric in A, B, we see that K is
a Killing vector,
VaKp+VpK4 =0, (3.9)

and that the exterior derivative of the Killing vector K is
dK = 4divgg xT + 8iTf . (3.10)

We now construct two form bilinears AY 5 = €y4pel. Using equation (3.4), we see
that these are symmetric in i, j. The two forms A'' and A%? are complex conjugates and
A2 is purely imaginary. We can describe these complex two forms by the three real two
forms X;, i = 1,2, 3, given by

A =X +iXy, AR =X —iXy, A% =-iX;3. (3.11)
Using the Killing spinor equation, the covariant derivative of these two forms can be ex-

pressed as

VO ap = J@TPF (39“yppvan — Y0EY Va8 — 3745707 + 1487 YDE) € |

; (3.12)

= fi (8TCD{7D7’YAB} +2TpE [VDEC, vap))€ .
Denoting C' = xA and using gamma matrix identities, we can simplify this to

VOAY g = MTOPCY b pp+20Ta CY pop+2iTpCY pac+iTPE (CH L 56 ac—C padBC) -

(3.13)
One can check that VicAsp) = 0 so that A is closed, i.e. dA = 0. Similarly, the covariant
derivative of C' is

VPCU ype = 24iTP |4 AV ey + 18iTppoPP g AT ). (3.14)
Noting that V[DcijABc] = 18iT[DAABC]7 we get

dxA=18TNA. (3.15)

,10,



Type Definition Derivative
Scalar [ =eijee df = —ditgT
Vector KA = EijEi’yAej VaKp) =0,
dK = 2itg xT + 8iTf.
Two Forms AZB = Eyape dA =0,
dxA=18T N A.

Table 1. Summary of the differential relations between Killing Spinor Bilinears.

To summarize, we have a real scalar f, a Killing vector K, and the closed two-forms A%
that obey the differential relations presented in table 1. In fact these fields are not all
algebraically independent. We can use the Fierz identities for the products of spinors to
get algebraic relations between them [40].

KAK, = f?, (3.16)
XiNXj = =20, f « K, (3.17)
g X; =0, ( )
i x X = —fX; (3.19)
XX = 6;5(f*1 - K.KT) + feuX™, (3.20)
KAfyAei = fé, ( )
A yABk = gfeklich) (3:22)

3.2 Resulting conditions on the Weyl multiplet fields

In the previous subsection, we saw that off-shell supersymmetric metrics in five dimensions
possess at least one Killing vector K. Since f is real, equation (3.16) implies that this
Killing vector is either timelike, if f? > 0, or null, if f = 0. In this paper we will focus on
the timelike case which contains the supersymmetric spinning black holes. The null case
also appears as an extremal spinning limit of these solutions (which is in fact AdS3 x S2)
as shown in [40], and we leave the analysis of this for future work.

Following the method outlined in [40], we define a coordinate 7 by K = 9,, so that f2 =
grr- Expressing the remaining coordinates as x*, p = {1,2,3,4}, the metric takes the
general form

ds® = f? (dT + w)2 + f_lhw,d:v“dw” \ (3.23)

where w = w,dz” is a one form with w; = 0, and fflh,w is the projection of the full
metric perpendicular to the orbits of K. Furthermore, since K is the Killing vector, the
components of the metric are independent of the coordinate 7, i.e.

O-f(x) =0, Orwu(z)=0, Orhu(x)=0. (3.24)

We view this as a fibration of the 7 coordinate over the base-space ™. As we now explain,
the relations obtained in the previous subsection imply that the tensor 7', and therefore
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the full field configuration, is determined in terms of the parameters f, w, and h,,,, and,
further, h,,, is constrained to be hyper-Kéahler. This is exactly as in the on-shell analysis,
with the auxiliary tensor 7" in the off-shell theory playing the role of the graviphoton field
strength F' in the on-shell theory.

We begin by writing K = fe', where e! = f (dT + w). Its exterior derivative obeys

dK =d(fe') = 2df Ae + fdw. (3.25)

We denote the self-dual and anti-self-dual components of fdw with respect to the base
metric h by GT and G~. Comparing the two expressions for the exterior derivative of K
in equations (3.25) and (3.10), we obtain

1 .
T+§f*%K*T:—%(—2f*2KAdf+G++G*). (3.26)
We can now solve for T'. It is useful to write the above equation in component form:

1 (A _
Tap + Z51ABCDTCD = g(2f *KiaVpf—Glg—Gap)- (3.27)
The mixed components between the base space and fibre, i.e. A = 1,B = b of equa-
tion (3.27) is .
T _

Ty, = g(2f 'Wof — G, — Gy) - (3.28)
The fact that fdw = G +G~ lives on the base space implies that its projection Gﬂ+Gfb =
0, and therefore

i .
Ty = f 'V f. (3.29)
The A = a, B = b components of equation (3.27), using K, = 0, is
1 i _
Tab + Jabed T = -3 (GHL+G), (3.30)
where €4pcq 18 the 4d Levi Civita tensor. Multiplying the above equation with gabed - ye

obtain its 4d Hodge dual. Putting these two together we obtain
i

Tab = _ﬁ(

GH+3G,). (3.31)
Thus we have obtained all the components of T', which can be summarized as
Tty lar, (3.32)
4 6

We now look for conditions on the two forms and the spatial metric h,,,. Equa-
tion (3.18) implies
KXg, = X, =0, (3.33)

and therefore the only non-zero components of the two forms X’ are on the base space.
Now equation (3.19) implies that the two forms are anti-self dual on the base space, i.e.,

*y XP= X" (3.34)
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If we consider the two forms to live on the space with Ay, rather than f~'h,,,, we must
shift them by X* — — fX*, where the negative sign is added for convenience. The algebraic
relation given by equation (3.20) simplifies to

Xpp XV = =858, + e X" (3.35)
This shows that the two forms satisfy a quaternionic algebra over the base space. The
fact that the two forms X’ are closed then implies that the metric Ay, is integrable and
hyper-Kéhler.

To summarize, we have shown that the most general solution for the metric is

ds? = f2(dr +w)’ + f " hyppdz™dz" (3.36)

where w = w,,,dz™ is a one form in the spatial direction, and h is a hyper-Kéhler four
dimensional manifold. The coordinate 7 is defined by the vector K = %5ijei’yej = O;.
The scalar f = %Eijeiej satisfies f2 = K!K,. As K is a Killing vector, f,w and h are

independent of 7. The T field is given by
T=_tael 4 ot (3.37)
4 6

where e! = f (d7'+w) and G7 are the self dual and anti-self dual parts of fdw with respect
to the spatial metric.

In section 2.2 we have seen that the near-horizon configuration of rotating supersym-
metric black holes in 5d N = 2 supergravity are a maximally supersymmetric solution.
Therefore, in particular, it should belong to the set of general backgrounds described
by (3.36) and (3.37). We now proceed to verify this assertion. The near-horizon limit of
our rotating black holes is the AdSy x % x S! metric (2.9). We analytically continue this
metric to Euclidean space by taking § — i« with real «, as in [23]. We will sometimes
refer to the parameter « as the rotation parameter of the black hole. We also set the
constant e9 = cosh a, so that the Euclidean metric is

ds® = rt*dr? 4+ 4r72dr? + dyp® + sin® dg? + (cosh a(dp + cos 1pdep) — sinh ar2d7)2 . (3.38)

The auxiliary tensor T', given by (2.12), is now analytically continued by taking To; — iT}2,
so that we have

Ty = —i cosha, Ty = i sinhar. (3.39)
This metric can be rewritten as
1
ds? = rtcosh? a(dr — r2tanha(d dp)) + ———h 40
s* = r*cosh® a(dr — r~* tanh a(dp + cos 1pde)) + gl (3.40)
where
h— cosha(4dr2 + 12 (dy? + sin dg? + (dp + cos ¢d¢)2)) . (3.41)

Thus we can identify the near-horizon rotating black hole metric with (3.36) with

f=r%cosha, w = —r2tanh a(dp + cos wdgb) . (3.42)
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With these identifications, the self dual part of fdw with respect to the base-space metric h
is given by G = ?)sinhoz(2e2 ANed+ed A 64). Equation (3.37) then yields the value of T
for the metric given by (3.40)

T= —%de1 + %GJF = —%el Ae?+ isinhae?’ Aet, (3.43)
where, as before, e! = f (dT + w). From a simple change of coordinates one sees that the
base space given by (3.41) is R?*, exactly as in [40], which is hyper-Kihler.

The complete localization analysis involves finding all solutions in the Weyl multiplet
sector with boundary conditions set by the above fully supersymmetric near-horizon con-
figuration. As mentioned in the introduction this is a difficult problem that we postpone
to future work.? In the following section we will fix the Weyl multiplet to be this near-
horizon black hole configuration, and calculate the most general supersymmetric off-shell
fluctuation of the vector multiplet around this background.

4 Off-shell vector multiplet analysis

In this section we classify the complete set of off-shell BPS solutions in the vector multiplet
sector. We begin with an algebraic analysis of the vector multiplet fluctuations around
a general background, and then apply this analysis to our case of interest, namely the
supersymmetric black hole solution discussed in section 2.2. We pay close attention to the
analytic continuation of the Euclidean fields and discuss different choices.

We analyze the BPS vector multiplet fluctuations around a given Weyl multiplet BPS
background with Killing spinor €’. We have to analyze the vanishing of the supersymmetry
variations of the gaugini given in equation (2.5). Putting the fermionic backgrounds to
vanish, we obtain

(FAP — 40T4P)yape + 2i0p 0™ e + 4ejp Y b = 0, (4.1)

where Fap = 204Wp). We recall that we have set the superconformal transformation
parameter 7' to zero as discussed in the section (3.1). In section 2.2 we presented the
attractor near-horizon solution for the spinning black hole. The fluctuations of the fields
of a given vector multiplet are defined as an expansion around their attractor values (2.15)

FAB — pAB L gAB s — 5 43, (4.2)
The attractor value for the auxiliary Y% is zero, and we shall continue to denote its

fluctuation by the same name. Our task now is to find all solutions to equation (4.1) for
all vector multiplet field fluctuations with vanishing asymptotic values.

4The analogous problem in the on-shell theory with asymptotically flat boundary conditions has been
solved in [41]. It would be interesting if these methods can be generalized to the off-shell case.
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4.1 Algebraic analysis

We start with equation (4.1) that our chosen Killing spinor satisfies, and multiply it by the
conjugate Killing spinor. The equations now contain the spinor bilinears that we defined
in section 3, namely the scalar f, the Killing vector K, and the two-forms A%. Multiplying

2

the BPS equation (4.1) for i = 1,2, by the conjugate spinors €2, €', respectively, we obtain

four equations involving these bilinears and the fluctuations of the bosonic fields. After
some rearrangement these four equations can be expressed as follows,
KMoy =0,
(fAP —asTAP) Al + Y2 f =0,
(JAB —4STAB) Xy —2(Y 4+ V22) f =0,
(fA8 —42T4B)ixip +2i(Y - Y®2)f =0.

(4.3)

Similarly, upon multiplying the BPS equation (4.1) for ¢ = 1,2, by the conjugate spinors
e~C, €'Y, respectively, for C = 1,...,5, and after some rearrangement, we obtain the
following equations

(fop — ATepX)kP +i0cXf =0, c=1,...,5. (4.4)

One of these five equations is actually implied by (4.3) so that we only have four inde-
pendent equations. We recall from section 3 that the bilinears f and K are real, and the
auxiliary field 7' is imaginary. Taking the fluctuations ¥ and fop to be real, we obtain

KBfop=0 (4.5)

Thus we reach the equations (4.3), (4.4), which hold for any background which admits a
Killing spinor €. In addition to these eight equations we also impose the Bianchi identities
as usual. Given a Weyl multiplet background, the analysis reduces to computing the Killing
spinor bilinears defined in section 3, and finding the most general solutions to the above
eight equations and the Bianchi identities.

The analysis so far has been quite general and may be useful to analyze vector mul-
tiplet fluctuations in a wide variety of circumstances in the context of theories with eight
supercharges. Now we move to our case of interest, namely the near-horizon region of the
5d black hole, which is given in (3.38). It is convenient to use a different set of coordinates,
as in [23], in which the near-horizon region has the following form,

ds® = sinh? nd6? + dn? + dip? + sin? dp? + cosh? a(dp + B)2 )

(4.6)
B = + cosyd¢ — tanh a(coshn — 1)db .

This configuration admits eight Killing spinors which we present in appendix B. For the
localization computation we need one Killing spinor which we choose to be

_n .
e 2 cos % (e” sinh § + cosh %)

.o_n . .
e 2 sm% (e” smh% — cosh %)

. _n .
—1ie” 2 cos % (e” cosh % + sinh %)

_n . .
e 2 sm% (e" cosh% — sinh %)

el = e3(0+9) (4.7)
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Static black hole: Killing spinor Bilinears
f f = —4coshn
KA K' =4sinhn, K?*= —4sinvy, K5°= —4cos1),
Al AL = —2i, A3} =2isin¢sinhy, A3l = 2icosysinhy,
A2l = 2icostpcoshn, A3l = —2isint coshn,
AlL =2e700F9) AL = 270+ 9) cosep, AL = —2ie?0F9) ginqp,

Al | AL = —2ie?%+®) coshn, AL} = 2e"9F9) costpcoshn,  AdL = —2¢9+) gin ) cosh,

ALl = 2610 sinypsinhy, ALl = —2e'9F9) cosypsinhy,  AjL = —2ie’®T9) sinh 1y,

Table 2. Independent non-zero spinor bilinears for the Killing spinor, eﬁr 4 of AdS? x Ss.

We will begin with the case of the static black hole (o = 0) which is simpler, and then
move on to the case of the spinning black hole.

4.2 Vector multiplet fluctuations around AdS; x S3 (static black hole)

The bilinears corresponding to our Killing spinor (4.7) with @ = 0 are summarized in
table 2.

We now write the eight basic BPS equations (4.3), (4.4) in this context. The equa-
tions (4.3) are

1 . 19 coshn
(2]€3 COShT] — Z)Z = m (f@n fn¢ sinh 77) + Sin’l][) (pr f”l/)(f) COS 1/)) , (48)
1 . 19 coshn
ki coshn = S (fgw fesinh 7]) o (fnp fne cos 1/}) , (4.9)
. sinhn
ik_ coshn = f,y coshn + m(ﬂ;p — fogcosv) + f@m , (4.10)

and the equations (4.4) become the following five equations for M = (0,n,v, ¢, p),

—i0p (E cosh 77) = fom + fM¢ . (4.11)

Here we have set Y12 = k3, Y1 = 11 0+0) Y22 — fyei(049) and ky = %(k‘l + ko).> This
is a choice of reality condition, which is the same choice made in [4, 9] for the corresponding
4d problem. As noted there, the condition changes as a function of the spacetime point,
and is set up so that the auxiliary fields Y'!, Y22 have the same phase as the Killing spinor
bilinears A and 4?2 = (A)* presented in table 2.

Reality conditions. Now we turn to an important topic, namely the reality conditions.
In the above analysis we already made some choices of reality conditions consistent with
the 4d analysis of [4, 9]. In our current 5d problem we also have to decide the reality
properties of the fifth component of the gauge field. As we explained in the introduction,
we will make some choices which look reasonable, and explore their consequences. For a
given choice each of the equations (4.10)-(4.11) will split into real and imaginary parts,

®We note that the fields Y'' and Y* are set to zero by hand in the corresponding treatment in [23].
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and we analyze these two parts separately. As we shall see, the solution set depends on this
split quite strongly. Further the static and spinning cases seem to differ at this point —
this is not surprising given that spinning black hole metrics continued to Fuclidean space
naturally introduce complex metrics.

As we briefly discussed in section 2.3, the fifth component of the gauge field W, = ¢Wj5
plays a special role in that it combines with the scalar o to form the scalars X, X in 4d
upon dimensional reduction. In particular, the dictionary (2.18), (2.20) between 4d and
5d vector multiplets for the attractor configuration implies that

1 — 1
X:§(U+in), X = i(U_in)' (4.12)
In the 4d problem, the fluctuations of X, X around their respective attractor values X,
X, was split, in the Euclidean theory, as

X-X,=H+J, X-X.,=H-1. (4.13)

In the 4d Lorentzian theory the scalars X and X are complex conjugate and therefore the
corresponding fluctuations are H + iJ, H —iJ. The choice (4.13) was made in [4, 9] in
order to obtain sensible localization solutions, this was later justified in [34] by a more
formal treatment of 4d Euclidean supergravity.

Lifting this to 5d naturally leads us to W, being purely imaginary, instead of purely
real as in the 5d Lorentzian theory. We shall call this choice Al. In fact we have to
be a little more precise. In addition to equation (4.12) that relates W, to the scalars
in four dimensions, the dimensional reduction formula relates the rest of the gauge field
components in five and four dimensions as follows,

W,u :AM+BﬂWp7 /L:eanad}aqs? (414)

In the choice of analytic continuation, we also have to specify the reality conditions for
these gauge field components. The choice Al is completely specified by demanding that
W, is imaginary and that the 4d gauge fields A, are real.

The choice Al is consistent with the reduction to four dimensions. Another analytic
continuation would be to chose W, imaginary and W, real. We call this A2. A third choice
would be to simply take all fields to be real, this could be called natural from a purely
five-dimensional perspective. We call this choice B. A fourth choice is to look at only
the field equations, in this case the supersymmetry equations instead of the fundamental
variables in the functional integral. This would mean prescribing reality conditions for the
field strengths of all thes gauge fields. We explore the condition f,, imaginary which is
related to Al in that it singles out the direction p. We call this choice C.

We now present the results for all the reality conditions. We have to solve for field
variables fu, k+, k%, and . In all four cases we find that ¥ = C'sechn, ks = (C'/2) sech?7,
and k_ = 0. When reduced to 4d, these are precisely the solutions found in [4, 9]. The
other fields depend on the analytic continuation. For choices A1, A2, and C, we find that in
fact all the other field fluctuations vanish. This degeneracy among the choices is specific to
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Al A2 B C
W, Im, A, Real | W, Im, W, Real W, Real fup Im
by C sechn C sechn C sechn C sechn
w, 0 0 Solutions to (4.15) 0
Fows bt 0, 0 0, 0 Solutions to (4.15) 0,0
k_ 0 0 0 0
ks (C'/2) sech?n (C'/2) sech?n (C/2) sech®n (C/2) sech?n

Table 3. The complete set of off-shell BPS solutions for vector multiplet fluctuations around the
near-horizon static black hole for different reality conditions. Here fa;n is the fluctuation of the
field strength of Wy, ]?W, is the fluctuation of the field strength of A,, ¥ is the fluctuation of the
scalar o, and k4, k® are the fluctuations of the auxiliary fields Y. For condition B, some explicit
solutions to equations (4.15) are presented in [11].

the static black hole and, as we will see in the next section, it will be lifted in the spinning
black hole. For choice B, i.e. when W, is real, we are left with the following constraint that
relates the field strengths to k.,
1 3 »

fun — §€MNRSTfRSKT = ky f'Re(e 9 AL y) . (4.15)
The solution for all the fields in the vector multiplet for all our choices of analytic contin-
uations are summarised in table 3.

Now we present the details in each of the cases.

Reality condition Al. The reality condition Al is that W, is purely imaginary, the
4d gauge fields A, are real, and the remaining fields 3, k4, k3 are real. We recall that the
boundary conditions of our problem impose that all the field fluctuations should vanish
asympotitcally as n — oo. We decompose the gauge fields according to (4.14) and use the
value (4.6) for the background fields, with o = 0, B = cos ) d¢, so that

Wy=A49, W,=A4,, Wy=A4y, Wys=As+cosyW,. (4.16)
The imaginary parts of the second set of complex equations (4.11) now reduce to
Y coshn —iW,cosy = C', (4.17)
where C' is a constant. From the imaginary part of (4.9), we get
(cothn 0y + cotp 9y —1)W, =0. (4.18)

This equation was analyzed in [9] in the context of 4d theories with AdSy x S? boundary
conditions, and it was shown that there are no smooth non-zero solutions to this equa-
tion that respect the boundary conditions, as we now briefly recall. The structure of the
differential operator on the left-hand side of (4.18) implies that any solution has the form

h
W= 100,00\ coss) (4.19)
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where f is an arbitrary function and v = coshncosvy. Writing this as a power series in
the variable v, we see that the boundary conditions imply that we only have negative
powers of coshn cos ¢, which is then singular at the points where cos ) vanishes. Thus the
boundary conditions and smoothness conditions imply that

W, =0, (4.20)
and, by (4.17),
Y= ¢ . (4.21)
coshn
From the imaginary parts of (4.10) and (4.8), we get k— = 0 and
C
= 4.22
> 2cosh? i ( )

The condition W, = 0 implies that W, = A,. The real parts of the basic equa-
tions (4.8)—(4.11) lead to the following constraints on the field strengths and k.,

(l@r siny — aan) sinh? 7 sin 2¢) — 0,W,, sinh 27 sin®

Jon = Jon = (cos 21 — cosh 277) sin '
(k4 sinty — 9,W,,) sinh 2n sin® ¢ + 9, W, sinh®  sin 2¢)
Jou = Jou = = (COS 21 — cosh 277) sin v ' (4.23)
fos =0, '
8PW9
fop = tanhnsng’
0,Wy = 0,Wy.

The first thing we note about these equations is that they have a symmetry in 6 < ¢,
which implies that the various fields are actually functions of 6 + ¢ only. Now we make a
gauge choice. For a periodic variable such as 6 it is not possible to bring a #-independent
configuration of Wy to zero by a gauge transformation that respects the periodicity. There-
fore we choose the gauge condition W, = 0 (recall that ¢» € [0, 7] is not a periodic variable).5

Next we use the Bianchi identity

o fops + Oy fuo + Oy for = 0. (4.24)
This equation together with the BPS equations (4.23) can be rearranged to obtain:
1
—————— 090,Wy + 0,0, Wy + tanh t 1 0pyWy) =0. 4.25
tanh s 0 0, Wo + 0,0, Wy + tan 7781;,(00 ) Oy 9) 0 ( )

We now show that this equation has no smooth solution for Wy. In order to do so, we
write the field W)y in Fourier components

oo

Wo(0,6,n,0.0) = > ePOeiar oy p), (4.26)
P,g=—00

where we have used the symmetry 6 <> ¢ mentioned above.

A similar analysis can be done in the gauge W, = 0 which also leads to the same final conclusion of no
non-trivial smooth solutions to the system of equations (4.23).
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The ¢ = 0 mode for each field, i.e. the modes independent of p reduce to the equivalent
equations in 4d. This 4d problem was analyzed in [9], using the method that we discussed
above (4.18), and the conclusion is that there are no non-zero smooth solutions which
respect the boundary conditions. (We review this again while discussing Condition C.)
Thus we set ¢ # 0 in the following. The equation (4.26) now reads

__PT ya) (Pq) L (P.q) _
tanh 7 sin ¢ WPV (0, 4) + 00y W (n,4) + tanhn dy (cot v 8y, W,"" (n,4)) = 0.
(4.27)

After clearing denominators we have
(—pq sin v + tanh 7 sin? )0y 0y + tanh?n (sirnb coS @b@?p — 8w))W0(p’q) (n,v) =0. (4.28)
First we consider the p = 0 mode, for which this equation simplifies to
coth 1 0,04, Wy = —0y(cot 1 0y, Wp) . (4.29)

We can solve this equation by separation of variables, 9, Wy = f(n)g(1), to obtain

;cothnﬁnf = —;81/,(9 coty) =C, (4.30)

where C'is independent of n,1. Solving this

f(n) = A(cosh 77)07 g(v) = Bsin)(cos w)cfl , (4.31)

where A, B are independent of 7,7. When C = 0 we see that g(¢) (and therefore Wp) is
singular at ¢ = m/2. For C # 0 we can solve 9,Wy = f(n)g(¢) for Wy, in order to obtain

AB
Wy = —7<COSh77 cos )¢ + const . (4.32)

Now, the boundary condition at 7 — oo implies that C' < 0, but this leads to singularities
at 1) = 7/2. Thus we find that there is no smooth solution for the p = 0 mode of Wj.
Now we turn to the p # 0 modes. In this case we could not easily solve the equa-
tion (4.28) before imposing boundary conditions and smoothness. However, we can still
show that there are no smooth solutions. To see this we expand the field We(p D in a power

series expansion near 1 = 0. Imposing smoothness at 7 = 0,7

WD () = 0?3 0" an (). (4.33)

n>0

"Near 1 = 0, the AdSs part of the metric reduces to dsids,z = dn? + n%d0® = dz dz where z = ne'’. By
smoothness at n = 0, we mean that the fields should be real analytic functions of z and Z so that all the
derivatives of fields exist at z =z = 0. For example, smoothness of a scalar field ¢ at the origin implies that
its leading behavior is ¢(z,z) = 22" for some non-negative integers a, b. In the 7, 0 coordinates this means
that ¢(n) = nitteila=t0 — plpl+reird where p = q—b and r = 2 min(a, b) > 0. Similarly the smoothness at
1 = 0 of the gauge field (which are differential 1-forms) requires that W, ~ n'PI=1 and Wy ~ n'?! with p # 0.
This condition has been used in a similar context in [42].
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Using this expansion in equation (4.28), we obtain coupled differential equations for the
modes an (1), ¢). The equation for ag is (we use the notation ’ = 9y, below),

ag q
—- = — 4.34
ag  sinty’ (4.34)
which can be solved easily to obtain
ap = Cy (tan(v/2))4. (4.35)

Since this function is singular in the domain v € [0, 7], we conclude that the only smooth
solution has Cy = 0. With this solution we find that the next coefficient satisfies

ai  pg 1

a; |p| + 1 sine

(4.36)

with the solution, as above,
a1 = C) (tan(tp/2))pe/(PI+1) (4.37)

which, once again, implies that the only smooth solution is a; = 0. Continuing in this
manner we show in appendix C that if the coefficients ag = 0, ...,as_1 = 0, the ¢*" term

satisfies the equation
a _ pg 1
ar |p|+siney
As above, the only solution is a; = Cy (tan(¢)/2))P%/(PI*0)  from which we conclude that a,

should also vanish if it is smooth.

(4.38)

Now that we have Wy = 0 as the only smooth solution, we can show that the other
fields also vanish. In order to see that we substitute Wy = 0 into the first and fourth
equation of (4.23) to obtain

OpWy =0, kysiny =0,W,. (4.39)

From this equation we see that ky = 0 is the only smooth solution, and that W) is
independent of all the coordinates except n. This implies that that

f,uz/ = Oa k+ = 07 (4.40)
and we can do a gauge transformation only depending on 7 in order to set W, = 0.
Reality condition A2. We now work under reality condition A2, W, is purely imaginary

and the 5d gauge fields W, are real. The remaining fields, 3, k4, k3 are also taken to be real.
The imaginary part of (4.9) is 0,W, = 0. As all fields must vanish as n — oo, we have

W, =0. (4.41)

Substituting this into the imaginary part of (4.11) fixes ¥ as in (4.21). The imaginary
terms in the remainder of the complex equations, (4.8) and (4.10), give k— = 0 and k3 is
determined by (4.22).

For the real parts of the field strengths, we get the same constraint equations as (4.23).
These equations do not have non-trivial smooth solutions as shown and therefore we get

f,uzl = k+ =0. (4.42)
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Reality condition B. We now consider the analytic continuation where all the fields,
Whar, 2, k4, ks, are real.
The field strengths f,, in the four-dimensional part of the metric can now be expressed

in terms of k£ and f,, as follows

(k:+ sin ) + fnp) sinh? i sin 2¢ + fupsinh 2n sin? ¢

Jon = (cos 21) — cosh 217) sin v ’
Fou = — (k+ siny + fﬂp) sinh 27 sin® ¢ — fup sinh? 7 sin 2¢
o (cos 2¢) — cosh 2) sin 1) ’ (4.43)
Jop =0,
frp = o Jeo
m tanhnsinty

As all fields are real, the real part of the set of equations (4.4) give (4.5). For our Killing
vector, the only non-zero components are K% = K¢ = 1 and so we obtain

fvo = fug - (4.44)

The equations (4.43), (4.44) can be summarised by

1 —i -
fun — §5MNRSTfRSKT — e )k 1 (4.45)

These equations have non-trivial smooth solutions which were discussed in [11].

From the imaginary part of (4.11) we can see that ¥ is given by (4.21). From the imag-
inary parts of (4.8) and (4.10) we get k— = 0 and ¥ = 2kz coshn. Thus we obtain (4.22)
as the solution for k3 once again.

Reality condition C. We now work under the analytical continuation where f,, is
purely imaginary and all other fields, f,,,, X, k4, k3, are real. The real terms of the complex
equations, (4.8)—(4.11), can be rearranged to yield the following equations for the real parts
of the field strengths

For = —fr = k. sinh? 7 sin 2¢
fn = 7% ™ 08 24h — cosh 2n’
B kg sinh2n sin? 1)
Jow = ~Fos = cos 21) — cosh 2n’ (4.46)
f9¢ = 07
Jfow =0.

This set of equations is precisely the equations of the 4d problem, and we can use the same

method as in [9] to evaluate fp, and fg,,. We define a new variable K through
k. sinh nsiny

K= . 4.4
cos 21p — cosh 27 (447)

The Bianchi identity in the n directions gives

(cot 0y, + cothndy) K = 0. (4.48)
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This implies that
K = K (coshncos, 6, ¢, p) . (4.49)

As before we write this as a power series in the first variable we see that the boundary
conditions imply that we only have negative powers of cosh 7 cos 1, which is then singular at
the points where cos v vanishes. Thus the boundary conditions and smoothness conditions
imply that K =k, = 0. From (4.46) we see that fg, = 0 and fgy, = 0 and thus all f,, = 0.

The imaginary part of the basic equation (4.9) gives f,, = 0. The Bianchi identies in
the p,n, p directions therefore reduce to

Opfup =0. (4.50)

Applying the boundary conditions that f,, — 0 as n — oo, we get f,, = 0 everywhere. The
remainder of the equations, (4.8), (4.10) and (4.11), again yield the solutions (4.21), (4.22),
and k_ = 0.

4.3 Vector multiplet fluctuations around AdS; x S? x S' (spinning black hole)

The bilinears corresponding to our Killing spinor (4.7) for the generic spinning black hole
are summarized in table 4. Our first set of basic equations (4.3), in the spinning black hole
context, are the following,

01X sinhn — 043 sin ) — 053 (sinh a coshn + cosh « cos w) =0,
% cosh? o + i sinh a(E sinh o + i f34 — 2k3 cos w)
= sinh n(flg sinh avsin ¢ + fa5 cos w) — coshn (f12 sinh awcos ¢ + f35sin ¢)
— cosh a(f12 — fag sinhnsiny + cosh 77(2@'2 sinh avcos ¢ — f3qcosp — 2ik3)) )

ki (cosh a cosh 1) + sinh « cos ¢) — ¢X sinh 2acsinh 7 sin ¥
= fogsinh o — f35sinh 7 cosy + cosh a(f13 + foq coshncost — faq sinhnsin w)
+ fig sinh asinh nsin @) + coshn (f13 sinh avcos ¥ — fo5 8in ¢) ,

tk_ (cosh a cosh 1 + sinh « cos w)

= fissinvy + f45sinhn + cosh a(f23 coshn — fi4cos w) + sinh a(f23 cos ) — f14 cosh 7)) .
(4.51)

Our second set of basic equations (4.4), in the spinning black hole context can be summa-
rized as follows,

—10n (Z cosh 1 cosh a + ¥ cos 1 sinh a) = fom + farg + tanh o fag, . (4.52)

Now we impose the various reality conditions. The analysis is similar to the static
case, and therefore we will not present all the details and focus on the new points. The
results are summarised in table 5.

Note that for reality condition Al, we can summarise the solutions as

C
coshn’ (4.53)
Ysinha —iW, =0,

Y cosha —iW,tanh o =

which is simply a rotation in field space of ¥ and W, of the static black hole solution.
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Spinning black hole: Killing spinor Bilinears
f f= —2(coshacosh77 + sinh «a cos 1/1)
K4 K' =4sinhn, K*= —4sint, K5:—4(sinhacosh77+coshacos¢)

A2l = —Qi(cosh a + cos 1 cosh nysinh a) . A% =2isinhasinhnsin ,
ALz, A2} = 2icoshasinhnsinty, A3 = 2icossinhn,
A3 = —2i (sinh « + cos 1 cosh 1) cosh a) , A2l = —2isintcoshy.
Al = 2¢'9F? sinh asinhsiny, AR = 2109 (sinh acoshncosp + 2 cosh a) ,
AlL = 24¢'(0+%) (sinh a coshn + cosh a cos w) . Al = 2410t gin P,
Al | ALY = —24ei(0F9) (cosh « coshn + sinh « cos w) . AL =210+ (cosh a coshn cos ) + sinh a) ,
AL = =279 9) gin o) cosh n, A= —26"9+9) gin ¢ sinh ncosha,

ALl = —2¢i(0+9) cosysinhny, Al = —2iei(0+¢) sinh 7.

Table 4. Independent non-zero spinor bilinears for the Killing spinor €} , of AdS? x S x 5.

Al A2 B C
W, Im, A, Real W, Im, W, Real W, Real fup Im
by C cosh acsechn 0 0
W, —1C cosh a sinh a sechn 0 Solutions to (4.15)
Fows bt 0, 0 0, 0 Solutions to (4.15) | 0,0
k_ 0 0 0
ks (C'/2) sech®n 0 0

Table 5. The complete set of off-shell BPS solutions for vector multiplet fluctuations around the
near-horizon spinning BH for different reality conditions A and B. As before, fy;n is the fluctuation
of the field strength of Wy, f,w is the fluctuation of the field strength of A,, 3 is the fluctuation
of the scalar o, and k4, k? are the fluctuations of the auxiliary fields Y%. For condition B, some
explicit solutions to equations (4.15) are presented in [11].

Reality condition Al. Here we have that W, = W5 cosh « is purely imaginary, the 4d
gauge fields A,, are real, and the remaining fields are real. We start by decomposing the
gauge fields in 5d in terms of the 4d gauge fields A as done in (4.6) for the spinning black
hole. In particular we have

B = cos 1d¢ — tanh a(coshn — 1)df ,
Wy = Ay — tanha(coshn — 1)Wp, W, =4,, Wy=A4,, Wy=A4+cosypW,. (4.54)

The imaginary part of M = 2, M = 3 equations in (4.52) now give
(X cosha — iW, tanh o) coshn + (X sinha — W) cosyp = C(6, ¢, p) , (4.55)
From the imaginary part of the M = 1 equation in (4.51) we obtain

2% sinh avcosh? @ = —i(cothn 8, + cot 1y — cosh 2a) W, . (4.56)
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Combining these equations, we get
(cothn Oy + cot 1) Oy — 1)J cosha = (cothnd, + cot ) Oy + 1)H sinh (4.57)

where

H = Y cosha —iW,tanh a, J = Ysinha —iW,. (4.58)

From (4.55), we also have
H coshn+ Jcosyp = C. (4.59)

In order to solve these equations, we assume that the fields H,.J, and the constant C
are smooth and admit a Taylor expansion around o = 0 for any value of the spacetime
coordinates, i.e.,

H:iHna”, J:iJna”, C:i(}’na". (4.60)
n=0 n=0 n=0

At zeroth order in « this reduces to the non-spinning case for which we conclude

Hy = . Jy=0. (4.61)

At first order in « equation (4.57) leads to
(cothn 0y +cotep 9y —1)J1 =0, (4.62)

which is the same equation as that obeyed by the non-spinning variable Jy. Thus we can
use the same analysis to obtain J; = 0. Substituting this into (4.59) we get the following
equation for the first-order terms,

O
H, = . 4.63
'™ cosh n ( )
Iteratively we can see that at the n'" order,
Cn
J, =0 H, = . 4.64
" ’ " coshn (4.64)

Thus we conclude that J = 0 and so H = C'sechn. This leads to

_ C cosh o W, — _Z,Csinhacosha . (4.65)

by
coshn

coshn

Substituting these into the remaining equations we obtain C' to be a constant and

C
k=0, 3=——5 - (4.66)
2 cosh”n
The real parts of equations (4.52) lead to
J?M) = _ﬁu + 0p Ay tanh o, 0pAp = 0,40, (4.67)
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where f';“, = 0,A, — 0,A,. Substituting these into the real part of (4.51) lead to the
following three equations,

~ ~ 0p Ay
<f9,7 cothn + fgy cottp — Sin > cothn

cos [~ ~ 0pAy, 0,4, 0pAy
tanha | —— th t — — cosh
+tanha <sinh n <f0n cothn + foy coty sin 4 COSTT Cosh n+1 + sinh 7 tan ¢

0,A d,A
—t h2 PN pLY — 4.
an acosw(coshn +1 + sinh 7 tan ¢ 0, (4.68)

~ ~ 0,A
_ hn— 2221 h
(k+ + fon cot i) — fgy cothn o ¢> coshn

_ _ A 0, A 1—coshn)o,A
R e e O ) R G T

0,A sinhnd,A
— tanh? pn Py 4
an acos¢<tan¢ coshy + 1 0, (4.69)
and 0,A 0,A
ra p<10 p<10
= ———— +tanha | ————— | . 4.
S sin) tanhn Tranha (tarnbsinhn) (4.70)

We can solve these three equations perturbatively in o as we did above for the fields H
and J, by expanding the fields A, and ki in a series around o = 0. Exactly as in
the analysis below (4.59), at each order n in this expansion, the fields satisfy the equa-
tions (4.68)—(4.70) with «« = 0. These equations are simply the equations for the non-
spinning case (4.23), for which we have already seen that there are no non-trivial smooth
solutions. The final conclusion is that k = A, = 0 are the only solutions.

Reality conditions A2, B and C. For the reality condition A2, W, is purely imaginary,
the 5d gauge fields W, are real, and the remaining fields 3, k4, k3 are real. Using a similar
analysis as above we find that W, = ¥ = k_ = k3 = 0. The remaining equations and
reality conditions are the same as in the case Al, for which we already concluded that
there are no non-trivial solutions. Therefore all fields vanish for the choice A2.
For Condition B, i.e. all fields real, the imaginary part of the third equation in (4.51)
yields
Y sinh 2asinsinhn = 0. (4.71)

One solution is when a = 0 for which we get back the static case. The other set of solutions
is ¥ = 0. By the imaginary part of the second equation and the fourth equations in (4.51),
we get k3 = k_ = 0. The remainder of the equations are equivalent to the constraints (4.15)
as in the static case. We conclude that X = ks = k_ = 0. We also find that fy;ny and k4
obey the contact-instanton like equations (4.15). These equations have non-trivial smooth
solutions which were discussed in [11].

Condition C is that f,, imaginary and all other fields, f,.,%, k4, k3, are real. We
can solve the real parts of the equations to obtain the same equations as those obtained
for the analytic continuation f,, imaginary in the static case, i.e. equations (4.46). By
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the same analysis of the real terms in the Bianchi Identity in the 4d directions, we obtain
fuw = ky = 0. Solving the imaginary parts of the equations, we obtain fa5 = f35 = 0.
The second equation in (4.51) now gives ¥ = 0. Substituting these values into the other
equations leads to ky = ks = fi5 = fi5 = 0. Thus all field fluctuations vanish in this case.

5 Discussion

Our focus in this paper was spinning black holes in five-dimensional asymptotically flat
space, defined as solutions to five-dimensional ' = 2 supergravity. Upon reduction to four
dimensions, one gets a supersymmetric non-spinning black hole in four-dimensional N' =
2 supergravity with non-zero electromagnetic flux in the Kaluza-Klein vector multiplet.
The 4d/5d lift shows that the 4d black hole is the same as the 5d black hole at the center
of Taub-NUT space. Thus the near-horizon limit of the 4d and 5d black holes are the
same. Since the quantum entropy is defined purely in the near-horizon configuration, the
expectation is that the quantum entropies of the 4d and the 5d black holes are equal.

Our main results in this paper concern the localization manifold for the functional
integral for the quantum entropy of the 5d black hole. The paper [23] initiated this analysis
by using the off-shell 4d/5d lift [24] to lift the off-shell solutions in the near-horizon of the
4d black hole to the near-horizon region of the 5d black hole. However, in order to actually
derive the quantum entropy we need to show that there are no other solutions to the
5d off-shell equations. This is what we have done in the present paper — we show that
the complete set of off-shell 5d vector multiplets BPS solutions is precisely the lift of the
corresponding 4d set in a particular choice of analytic continuation. This conclusion is a
priori not obvious — indeed we have the same number of equations in 4d and 5d, and all
the fields could have a non-trivial dependence on the fifth direction. In a similar problem
with differing details, e.g. with different boundary conditions, one would generally expect
that there are new 5d solutions without a detailed analysis of the sort we have done here.
In solving this problem we have also developed systematic methods that we hope are useful
to attack other such problems.

The next step in the quantum entropy program for 5d spinning black holes is clear, we
need to calculate the action and one-loop determinant and assemble all the pieces in the
localization formula. This should give the quantum entropy of the 5d BH at all orders in
perturbation theory — a 5d analog of the OSV formula — perhaps along the lines of [43].
These investigations are being pursued, and we hope to report on this soon.
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A Conventions and useful identities for spinor algebra

Our five-dimensional Euclidean gamma matrices are as follows.

100 0 0010
fo10 0 ~foo001
= loo-10 | 2= 1000
000 —1 0100
000 00 01
0 00 00 —10
73 0 —i00 y V4 0-10 0 ) ( )
~i 000 10 00
00i0
000—i
BTS00 0
0i00

These matrices are Hermitian and satisfy the following properties

YMNPQR = LeMNPQR -

(A.2)
[Yas Vo) = 40apVe -
The charge conjugation matrix is
0-10 0
1000
C= 00 0-1]" (A.3)
0010
and obeys the following properties,
ol = -C, ct=c1, vi = Cy,C1. (A.4)
We define symplectic Majorana spinors, €, i = 1,2, by
€ = eyl (A.5)

where ¢;; is antisymmetric with €12 = 1. The conjugate of a spinor is defined by € = et
so that

=& =¢l, (A6)
€g = el =& '
The symplectic Majorana condition is
C el =6 (A.7)
Explicitly, the spinors and their conjugates are related by
er=ec!, @& =—dct, =0l & =-Cc. (A.8)
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B Killing spinors
The Killing spinor equation can be rewritten as

)
Ve = _ZTPN (37" Nyar — vy e,
(B.1)

i
= 2iTyny e — §TPN'YMPN€-
In the spinning case, the near-horizon configuration is given by the metric

ds? = sinh? nd6? + dn* + di* + sin® 1d¢? + cosh? a(dp + cosdg — tanh a(coshn — 1)d9)2 ,
(B.2)
and the only non-zero components of auxiliary field T'

Toy = —i sinhncosha, Tyy = ﬁsinwsinha. (B.3)

Solving the Killing spinor equation (B.1), with these values of gy/n and T', we get that the
Killing spinors must be

B a n 0 (0 o
e=exp| o Jexp| —om)exp( 5y ) exp( 55 | exp | 5734 |€o, (B4)

where €j is a constant spinor. We label the components of the constant spinor as below,
= (a1 , (2 ,a3,a4)T
Choosing the constants to be
(al,ag,ag,a4) = (1,0,[, O), (al,ag,ag,a4) = (0,1,0,]),
(al,ag,ag,a4) = (0,1,0, —I), ((11,(12,(13,&4) = (1,0, -1, 0),
respectively, we find four linearly independent Killing spinors

ccos %(cosh(%) — sinh
1 _6_%'(9_(75) isin ¥ (cosh(232)
(

S8

—~

1 COS
—sin
¢t sin

1 _ +5(6-9) cos % (

oSt I

(B.5)
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C Proof of equation (4.38)

We would like to prove that when we expand Wy as in (4.33) then the ¢'" term satisfies
the equation (4.38) if ap =0,...,as_1 = 0.
We begin by substituting (4.33) into (4.28) and multiply across by cosh?7 to obtain

oo
: 1 : 1.
Z ((pq sin 1) an)7]|p‘+" + 5 ((|p| +n) sin? ) a’n)n‘p""” Lsinh 2n
n=0 (C.1)
+(sintp costp aj, — pgsintp a, — a;)nlpH'" sinh? n) =0.
Using the following series expansions,
2 o 271 o o~ 22
sinh® x = Z 20! x sinh 2z = Z 2kt x , (C.2)
k=1 k=0
and multiplying across by n~P|, we obtain
o0 o0
. 2k+
Z:()((—pqsmwan)nn-i-((m-i-n sin 7,/;(1 Z Qk—i—l "
n=
e 22k 1 (03)
+(sin¢ cosval, — pgsint a, — al,) Z:l ol 2k+n> =0.
At order / in 71, we have
2k ,
. /
—pgsiny ag + Z 2k £ 1)1 ((\p[ + 0 — 2k) sin® ¥) aj_gy,
(C4)

O022k1

20

smﬂ) COS Y ay_op — pqsing ap_op — GZ—Qk) =0.

Using the fact that all coefficients up to a; vanish, we see that the third term in (C.4)
vanishes and the second term is zero except for kK = 0 and so a, satisfies

ay Pq
G _ a_ C5
ae ~ (p[+ O)siny (©5)

which is precisely equation (4.38).
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