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1 Introduction

The origin of the baryon asymmetry is a long-standing puzzle in the Standard Model and

the Standard Cosmology. The successful generation of the baryon asymmetry requires the

deviation from the thermal equilibrium [1]. In the standard inflationary cosmology with the

Standard Model particles, there are two processes away from equilibrium: the electroweak

phase transition and thermalization. The first process is related to the scenario of the

electroweak baryogenesis [2] although some extension of the model is necessary to explain

the amount of asymmetry. The thermalization era is also an ideal circumstance for the

baryogenesis since by definition the Universe is not in the thermal equilibrium. In general,

after the inflation the Universe has experienced a thermalization era called reheating. The

baryogenesis at this stage is investigated recently [3–6]. (See also refs. [7, 8] for related

recent works.) There are also possibilities of having new particles in addition to the ones

in the Standard Model, and CP-violating non-equilibrium decays of such particles generate

baryon asymmetry such as in the scenario of thermal leptogenesis [9].
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The flavor oscillation during the reheating era plays the important role for baryogenesis.

The flavor oscillation of the leptons can happen in the early Universe when the high energy

leptons from the decays of the inflatons go through the medium. If the inflaton directly

produces the left-handed leptons via its decay, the initial quantum state is some vector in

the flavor space, that is generally not an eigenstate of the Hamiltonian in the medium. The

lepton flavors will later be “observed” by some interactions. It has been discussed that the

CP violation in the quantum oscillation phenomena during this process can explain the

baryon asymmetry of the Universe [6].

In this paper, we describe the thermalization process with taking into account the

quantum effects of the flavor oscillation. To this end, we should employ the formulation

in terms of density matrices rather than the classical Boltzmann equation. By solving

the kinetic equation, we show that the baryon asymmetry of the Universe can be created

within the Standard Model with the Majorana neutrino mass term, llHH, which explains

the neutrino oscillation experiments. (For recent results, see refs. [10–14].) The baryon

asymmetry is generated after a quite non-trivial evolution of the density matrices. The

shape of the matrices changes during the travel in the medium and eventually settle into

the diagonal form in the flavor basis by the lepton Yukawa interactions at later time. The

CP-violating interactions in the neutrino sector create the difference between the lepton

and anti-lepton density matrices during this evolution.

We investigate scenarios where the leptons, l, are generated by the direct decays of

inflaton, φ, or through the scattering of the Higgs bosons, H. We find that enough amount

of asymmetry can be produced when the reheating temperature of the Universe is be-

yond 108 GeV (lepton) or 1011–12 GeV (Higgs). In particular, in the case where the in-

flaton mainly decays into the Higgs boson (for example, through φ|H|2 interactions, see

appendix A.), the CP phase stems from the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [15, 16] and thus the scenario can be tested in principle by future measurements.

The leptons produced by the scattering through the llHH operator undergo the flavor

oscillations in the medium, and the flavor dependent lepton asymmetry can be generated

by the CP violation in the oscillation. The flavor dependent asymmetries are converted to

the net asymmetry via the llHH interactions. The llHH interactions are in fact more im-

portant than the gauge interactions at temperatures higher than 1014 GeV. For such high

reheating temperatures, the first thermal bath is formed by the llHH interactions, and

many of Standard Model particles are out of thermal equilibrium. As temperature drops,

the gauge and Yukawa interactions get gradually important. The evolution of the lepton

density matrices during this thermalization era experiences flavor oscillations and multiple

scattering processes before they settle into flavor diagonal forms. The CP-violating effects

in the evolution explain the baryon asymmetry. In this high-temperature regime, the fi-

nal baryon asymmetry does not depend on the detail of the inflaton properties, such as

mass, branching ratio or the reheating temperature, as they are generated by the history

of the medium. The excess of the baryons above anti-baryons indicates that a combination

of Dirac and Majorana phases is constrained to be in a certain range depending on the

neutrino mass hierarchy and the range of reheating temperature. Interestingly, there exist

implications on the effective Majorana neutrino mass, mνee, which determines the rate of

the neutrino-less double beta decay.
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This paper is organized as follows. In section 2, we briefly summarize the quantum

equation describing the flavor oscillation. The setup of our scenario is described in section 3.

Our kinetic equation describing the time evolution of the density matrix is presented in

section 4, and it is solved numerically in section 5. The explanation of the behavior of the

solution based on the analytic calculation is given in section 6. The last section is devoted

to conclusions.

2 Quantum equation for lepton flavor

The lepton oscillation and its effect on the lepton asymmetry can be described by the time

evolution of the density matrix in the flavor space [17]. By using the free Hamiltonian of

the left-handed leptons, li,

H0 =

∫
d3p

(2π)3

(
a†i (p, t)Ωij(p)aj(p, t) + b†j(p, t)Ωij(p)bi(p, t)

)
, (2.1)

the evolution of the density matrices of li and its anti-particle defined by

ρij(p, t) = 〈a†j(p, t)ai(p, t)〉/V, ρ̄ij(p, t) = 〈b†i (p, t)bj(p, t)〉/V, (2.2)

are given by

ρ̇(p, t) = −i [Ω(p), ρ(p, t)] , ˙̄ρ(p, t) = i [Ω(p), ρ̄(p, t)] . (2.3)

Here V is the volume of the system, V = (2π)3δ3(0). The expectation values in eq. (2.2)

are taken by the state to describe the Universe. The flavor indices, i and j, are ordered

differently for particles and anti-particles in eq. (2.2). In this definition, ρ and ρ̄ transform,

respectively, as UρU † and Uρ̄U † under a unitary rotation of flavors. The density matrix

of the lepton asymmetry is naturally defined by

∆ij(p) = ρij(p)− ρ̄ij(p). (2.4)

Due to the notation in eq. (2.2), CP invariance indicates ρij = ρ̄ji. Even if CP is conserved,

the off-diagonal components of ∆ij can be nonzero while the diagonal entries should vanish.

The trace of the matrix, ∆, describes the total asymmetry for left-handed leptons

(right-handed lepton should be added to get total one) which is independent of the basis.

Note that ρ and ρ̄ evolve differently as in eq. (2.3). The difference serves as the “strong

phase” in the CP violation in the flavor oscillation. The asymmetry evolves as

∆̇(p) = −i [Ω(p), ρ(p) + ρ̄(p)] . (2.5)

Even if ∆(p) = 0 at some time, the non-trivial matrix can be generated at a later time if

ρ+ ρ̄ does not commute with the Hamiltonian, while the trace is kept vanishing.

The effects of the interaction term in the Hamiltonian, Hint, have been discussed in

ref. [17]. By using the perturbative expansion and the approximation of the instantaneous
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collisions, the evolution at a time t = 0 is given by

ρ̇(p) = −i [Ω(p), ρ(p)] + i
〈 [
H0

int(0), a†j(p)ai(p)/V
] 〉

− 1

2

∫ ∞
−∞

dt
〈 [
H0

int(t),
[
H0

int(0), a†j(p)ai(p)/V
]] 〉

, (2.6)

where H0
int(t) is the interaction Hamiltonian in the interaction picture, eiH

0tHint(t = 0)

e−iH
0t. One can use this equation for any time t by treating each collision independently.

We use the above formulation for the discussion of the flavor oscillation of the leptons

from the inflaton decay.

3 Basic scenario

As the simplest example for the mechanism, we consider the Standard Model with the

Majorana masses for neutrinos:

L = LSM −
κij
2

(l̄ciPLlj)HH + h.c. (3.1)

The indices of SU(2)L gauge interaction are implicit. One can obtain the model, for

example, by integrating out right-handed neutrinos [18–22]. We assume that right-handed

neutrinos (or any other alternative) are sufficiently heavy, and do not show up in the

history of the Universe. The Lagrangian of the Standard Model (LSM) contains the Yukawa

interaction of the leptons:

LYukawa = −yi l̄iHPRei + h.c., (3.2)

where we take the basis where yi is real and positive. In this basis, the symmetric matrix

κ is given by

κ〈H〉2 = U∗PMNSmνU
†
PMNS, (3.3)

where mν = diag (mν1,mν2,mν3) is the real, non-negative and diagonal matrix of the

neutrino masses and 〈H〉 ' 174 GeV. There are three CP phases in the PMNS matrix [23]:

a Dirac phase δ, and two Majorana phases αM = α21 and αM2 = α31. If the lightest

neutrino is massless, we will take the redundant parameter αM2 = 0. Throughout this

paper, we use the indices (i, j, . . .) for the flavor basis while the indices (α, β, . . .) for the

mass basis. Namely, i, j = e, µ, τ and α, β = 1, 2, 3.

Let us mention the validity of the effective theory in terms of the llHH interaction.

The perturbative expansion makes sense when the typical energy, E, of the scattering

process, e.g. the temperature, satisfies

max [mν ]

16π2 〈H〉2
E . 1. (3.4)

When there are new particles, such as the right-handed neutrinos, our treatment based on

the effective theory is not accurate when the reheating temperature goes beyond the mass
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scale of such particles. Although we do not study those scenarios, the same mechanism we

describe below may still work even in such cases.

We assume that, after the inflation, the decay of inflaton reheats the Universe and the

left-handed leptons are produced as daughter particles. For example, if the production is

directly from the inflaton decay, the lepton state is parametrized as

|lφ〉 = Vi|li〉. (3.5)

The coefficient Vi is a normalized vector. In this setup, the inflaton sector is characterized

by the reheating temperature TR, the vector Vi and the branching fraction to left-handed

leptons B. Even if the inflaton does not directly decay into leptons but decays into Higgs

bosons, the leptons are, in turn, generated by the scattering of the high-energy Higgs bosons

with the medium through the Yukawa or llHH interactions, and hence the parameterization

above is still useful. Note that from the constraint on the tensor-to-scalar ratio in the curva-

ture fluctuations, r < rmax ' 0.12 [24], the reheating temperature is bounded from above:

TR . 1016 GeV ×
(
g∗(TR)

100

)−1/4 (rmax

0.12

)1/4
. (3.6)

We also assume that the time scale for the thermalization is much faster than the decay

rate of the inflaton, Γφ. In that case, Γφ ∼ T 2
R/MP. (This assumption will be justified

later.) The thermalized component of the radiation with temperature TR is quickly pro-

duced during the reheating era. Under this assumption, we follow the time evolution of

the density matrices while the thermal plasma with temperature TR already exists as the

initial condition.

By the interaction with the thermal plasma, the leptons quickly lose their energies by

scattering processes, and eventually they are annihilated by hitting their anti-particles. In

the course of this non-equilibrium process, the leptons undergo the flavor oscillation since

the thermal masses of the leptons are flavor dependent. Working in the “mass” basis, where

the neutrino mass matrix is diagonal in the vacuum, the generation (in the mass basis)

dependent lepton numbers are produced via the CP violation in the oscillation, while net

asymmetry is not created. These flavor dependent lepton asymmetries are partially washed

out by the scattering via llHH terms. Since the rate of this process is generation depen-

dent, the net asymmetry is produced. Depending on the decay modes and the reheating

temperatures, there are other scenarios which generate flavor or chirality dependent lepton

asymmetries. We will discuss each scenario in detail in section 6.

The ingredients of this baryogenesis are the Yukawa interactions and the llHH inter-

actions, both of which are measurable at low energy. If both of them are in the thermal

equilibrium, one cannot obtain the baryon asymmetry. Rather, any baryon or lepton asym-

metry would be erased. The important fact is that when llHH interaction is effective at

high temperatures, the Yukawa interaction is ineffective due to the cosmic expansion. The

opposite is true at low temperatures. Therefore, as we will see later, baryon asymmetry

can be generated in a wide range of reheating temperatures.

– 5 –
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4 Kinetic equation

We perform a numerical computation of the lepton asymmetry by solving the kinetic equa-

tions for the density matrices of leptons and anti-leptons. The oscillation, decoherence

by scattering, annihilation, creation and the lepton number generation are described by

the equations.

Following the formalism in section 2, the kinetic equation used in this paper is presented

below. The starting point is the master equation obtained from eq. (2.6). The kinetic

equation is summarized in the form of

i
dρ(p)

dt
= [Ω(p), ρ(p)]− i

2
{Γdp, ρ(p)}+

i

2
{Γpp, 1− ρ(p)}, (4.1)

where flavor indices are implicit [17]. The first term describes the oscillation while the sec-

ond and third terms correspond to the destruction and production processes, respectively.

The Hamiltonian Ω(p) can be parametrized as

Ωij(p) = |p|δij + δΩij(p), (4.2)

where the thermal correction δΩ(p) can be written as

δΩij(p) ' y2
i T

2

16|p|
δij + 0.046(κ∗κ)ij

T 4

|p|
, for |p| & T . (4.3)

Here we do not include terms which are proportional to the unit matrix since they do not

contribute to the kinetic equation. The coefficients are evaluated under the assumption

that the left-handed leptons, right-handed leptons and the Higgs bosons are all thermalized.

The second term is evaluated by calculating the two loop thermal diagram with llHH

interaction. At a high temperature where the Yukawa interactions are not effective, the

right-handed leptons are not in the thermal bath and the coefficient of the first term is

modified. For simplicity, we do not consider the effects of the change of the coefficient in

the numerical analyses.

We focus on the following two components of the density matrices:

(ρk)ij =

∫
|p|∼|k|

d3p

(2π)3

ρij(p, t)

s
, (4.4)

(δρT )ij =

∫
|p|∼T

d3p

(2π)3

(
ρij(p)

s
−
ρeq
ij (p)

s

)
, (4.5)

and those for anti-leptons. Here s is the entropy density. The first component, ρk, repre-

sents the high energy leptons produced by the inflaton decay with initial typical momentum,

|k| = mφ

(
tR
t

)1/2

, (4.6)

where

tR =

(
g∗π

2

30
·
T 4
R

3M2
P

)−1/2

, (4.7)
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is the time at the inflaton decay. g∗ is the effective degree of freedom for the thermal

plasma. The high energy leptons lose their energies by redshift and scattering processes.

The second component, δρT , represents leptons with the typical momentum |p| ∼ T , with

the temperature T ∼ TR(tR/t)
1/2. Here ρeq

ij = δij/(e
|p|/T + 1) represents the density matrix

in the thermal equilibrium.

In terms of ρk and δρT , the kinetic equation becomes

i
dρk
dt

= [Ωk, ρk]− i

2
{Γdk, ρk}, (4.8)

i
dδρT
dt

= [ΩT , δρT ]− i

2
{ΓdT , δρT }+ iδΓpT , (4.9)

where Ωk = Ω(|p| = |k|) and ΩT = Ω(|p| = T ). The destruction and production rates for

leptons are given by(
Γdk

)
ij
'Cα2

2T

√
T

|k|
δij+

9y2
t

64π3|k|
T 2
(
δiτδτjy

2
τ+δiµδµjy

2
µ

)
+

21ζ(3)

32π3
(κ∗ ·κ)ijT

3, (4.10)

(
ΓdT

)
ij
'C ′α2

2Tδij+
9y2
t

64π3
T
(
δiτδτjy

2
τ+δiµδµjy

2
µ

)
+

21ζ(3)

32π3
(κ∗ ·κ)ijT

3, (4.11)

(
δΓpT

)
ij
'Cα2

2T

√
T

|k|
(ρk)ij−C

′α2
2T (δρT )ij

+
3ζ(3)

8π3

(
κ∗ ·(ρk−3/4ρk)t ·κ

)
ij
T 3+

3ζ(3)

8π3

(
κ∗ ·(δρT−3/4δρT )t ·κ

)
ij
T 3. (4.12)

Here the superscript t denotes the transpose of the matrix. The equations for the anti-

leptons can be obtained by exchanging ρ by ρ̄ everywhere while changing the sign of Ω’s.

The solution of the equations at t → ∞ is ρk = ρ̄k = δρT = δρ̄T = 0 when we ignore the

expansion of the Universe as is always the case. The expansion of the Universe makes the

llHH interaction ineffective at later time, leaving non-vanishing lepton asymmetry as we

discuss below.

In the above equations, we have used the densities of the Higgs boson and the right-

handed leptons as the one in the thermal equilibrium. In the actual numerical computa-

tion, the kinetic equations of right-handed leptons are taken into account (cf. ref. [25] and

appendix B). The effects of the U(1)Y gauge interactions are also included.

The first terms in eqs. (4.10) and (4.12) denote the thermalization process through the

SU(2)L gauge interactions where the Landau-Pomeranchuk-Migdal (LPM) effects [26, 27]

are taken into account. The coefficient C = O(1) represents the theoretical uncertainties in

the rates and also in the energy distributions of the inflaton decay product. This term con-

verts the high energy leptons into low energy ones while the matrix structure is untouched.

The second terms in eqs. (4.10) and (4.11) describes the scattering via the Yukawa

interactions. These terms, if strong, bring the density matrices into the diagonal form in

the flavor basis and thus prevent the oscillation phenomena. (Similar formula can be found

in refs. [25, 28, 29].)1

1The 2 to 2 scattering with gauge boson process and 1 to 2 (inverse) decay process with LPM effect

may contribute to the Yukawa interaction rate and effectively alter the overall factor. (cf. refs. [30, 31].)

However, this would not change our result significantly.
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The terms with the coefficient C ′ in eqs. (4.11) and (4.12) represent the pair annihila-

tion and creation of leptons, respectively. This process is important for low energy leptons

(p ∼ T ). For high-energy leptons, the rates are suppressed by the Boltzmann factor or

T/mφ. A precise estimation of the rate requires the inclusions of the infrared regularization

as well as the LPM effects [32]. We put a parameter C ′ = O(1) which represents the the-

oretical uncertainty. This term brings the total density matrix ρ+ ρ̄ to a one proportional

to the unit matrix. By eq. (2.5), the flavor oscillation stops when this interaction becomes

important as expected.

Finally, the terms with κ are the effects of the scattering via llHH interactions. These

terms become unimportant at low temperatures. This interaction brings the density ma-

trices into the diagonal form in the mass basis and lets the asymmetries flow towards zero.

Before ending this section, let us give the kinetic equations for the trace of the asym-

metry matrices,

∆̃k = ρk − ρ̄k, ∆̃T = δρT − δρ̄T , (4.13)

for later convenience. That is

d

dt
Tr[∆̃k+∆̃T ] =− 21ζ(3)T 3

16π3〈H〉4
Tr
[
(∆̃k+∆̃T )m2

ν

]
− 9y2

t T
2

64π3|k|

(
y2
τ (∆̃k)ττ+y2

µ(∆̃k)µµ

)
− 9y2

t T

64π3

(
y2
τ (∆̃T )ττ+y2

µ(∆̃T )µµ

)
+· · · .

(4.14)

The terms in the first and second lows are essentially different. The first term, i.e. the

wash-out term, decreases or increases the asymmetry for the left-handed leptons, while

the terms in the second row transfer the asymmetry into the right-handed leptons without

changing the net lepton asymmetry.

5 Numerical results

The kinetic equations in eqs. (4.8) and (4.9) are solved numerically by setting initial condi-

tions which describe the inflaton decay. For the case where the inflaton decays into a single

linear combination of the flavor eigenstates as in eq. (3.5), the initial density matrices are

given by

ρk|t=tR = ρk|t=tR = NViV ∗j , δρT |t=tR = δρ̄T |t=tR = 0. (5.1)

The normalization factor N is given by

N =
3

4

TR
mφ

B, (5.2)

where B is the branching fraction of the inflaton into high-energy leptons. For the case of

direct decays into leptons, the initial distributions depend on the unspecified main decay

mode. Taking the thermal distribution as the initial condition provides a conservative

– 8 –
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estimate of the baryon asymmetry as we will see later. In general, the decay product can

be a weighted sum of different states, i.e., a mixed states, such as
∑

aNa(V a
i )∗V a

j . An

interesting possibility is that the inflaton mainly decays into the Higgs bosons. The high

energy Higgs bosons, in turn, hit the leptons or Higgs bosons in the medium and produce

the high energy leptons through the llHH interactions. In that case, the density matrices

are given by

(ρk)ij = (ρ̄k)ij =N ·
21ζ(3)
32π3 (κ∗κ)ijT

3
R

Cα2
2TR

√
TR
mφ

∼ 7×10−2 ·N
( mφ

1015 GeV

)1/2
(

TR
1013 GeV

)3/2

. (5.3)

Here N is the same as the previous definition, but B ∼ O(1) is the branching ratio

of the inflaton decays to Higgs boson. See appendix C for the parameters used in the

calculation. The factor can be thought of as the branching fraction of the Higgs boson into

leptons in the medium. The denominator represents the inverse of the lifetime of the high

energy Higgs boson in the medium. The contributions from the Yukawa interactions are

always negligible in the temperature range of our interest although they are included in the

numerical calculations. For a very high reheating temperature where the llHH interaction

is stronger than the gauge interactions, the denominator should be replaced by the trace

of the numerator.

Only for the cases of the inflatons decay into the Higgs bosons, the medium leptons

are set to be zero initially, rather than assuming the thermal distributions in eq. (5.1):

δρT |t=tR = δρ̄T |t=tR = −0.004

(
100

g∗s(TR)

)
δij . (5.4)

This deviation from the thermal distributions plays the relevant role for high reheating

temperatures, where the rates of the gauge interactions are slower than the expansion

rate of the Universe and thus the thermalization process can be flavor dependent. By

the strongest interactions in each temperature regime, the thermal components are created

within the time scale tR. The effects of taking eq. (5.4) as initial condition are not important

for TR . 1013 GeV. The temperature dependences of g∗ and g∗s are not included in the

calculation. They depend on the detail of the thermalization histories. In the numerical

calculation, we take g∗s = g∗ = 100.

The kinetic equations are solved numerically and
nL
s

= Tr
(

∆̃k + ∆̃T + ∆̃R

)
, (5.5)

is evaluated at a low enough temperature, where nL/s is already frozen to a constant.

Here ∆̃R is the asymmetry transferred into the right-handed leptons through the Yukawa

interaction.

The baryon asymmetry of the Universe is measured to be [24]
nB
s

= (8.67± 0.05)× 10−11. (5.6)

By assuming that the asymmetry is created above the electroweak scale, the chemical

equilibrium of the sphaleron process [2, 33] tells us

nL
s
' −79

28

nB
s

= −(2.45± 0.01)× 10−10. (5.7)
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Figure 1. The dependence of lepton asymmetry on the reheating temperature with αM = 0.3π,

δ = −π/2, V = 1√
3
(1, 1, 1) with the normal (inverted) mass hierarchy with one massless neutrino,

mνlightest = 0 eV, in the left (right) panel. The red and orange bounds represent mφ/T = 1 and

100, respectively. Each band corresponds to the variance of C = C ′ between 1/3 and 3. The purple

line represents the required lepton asymmetry. The shaded region may be invalid as the effective

theory calculation.
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Figure 2. The dependence of lepton asymmetry on the reheating temperature with degenerate

neutrino mass, mνlightest = 0.07 eV. We take αM2 = 0. The neutrino masses are in normal

(inverted) ordering in the left (right) panel. The other parameters are the same as figure 1.

We show in figure 1 the absolute value of the lepton asymmetry by varying TR while

fixing the ratio mφ/TR = 1 (red) or 100 (orange) with δ = −π/2, αM = 0.3π. The vector

V is set to be V ∝ (1, 1, 1). The left and right panels, respectively, correspond to the

normal and inverted hierarchies of neutrino masses. The lightest neutrino mass, mνlightest,

is set to be zero for both cases. The bands represent the uncertainties from the C and C ′

factors in eqs. (4.10), (4.11), and (4.12). We took C = C ′ and varied the value from 1/3 to

3. The same figures for degenerate neutrino cases are shown in figure 2 where the lightest

neutrino mass is taken to be mνlightest = 0.07 eV, and αM2 = 0. We note that from the

condition (3.4) by taking E .
√
mφTR, which is the typical energy of scattering between
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Figure 3. The dependence of lepton asymmetry on the reheating temperature when the inflation

main decay channel is Higgs boson with several αM with δ = −π/2. The normal and inverted mass

hierarchies for neutrinos are shown in left and right panels, respectively. mφ/TR = 100, B = 1

and mνlightest = 0 eV are fixed. The shaded regions denote the uncertainty for δ = −π/2, αM = 0

for comparison. The solid and dashed lines denote the sign of the asymmetry is minus and plus,

respectively (the required asymmetry is minus). The lines are obtained by taking C = C ′ = 1.

the high-energy leptons and the ambient thermal plasma, we get

TR . 1016 GeV

√
100

mφ/TR

(
0.05 eV

max [mν ]

)
. (5.8)

This is around the bound of eq. (3.6).

One can see that the baryon asymmetry can be explained for TR & 108 GeV.2 We stress

that the contribution discussed here always exists in any models to explain the neutrino

masses by the effective llHH terms. Notice that we have assumed the perturbative decay

of the inflaton and thus the reheating temperature is taken to be below the mass of the

inflaton. However, a non-perturbative reheating allows the temperature to be much higher

than the inflaton mass, which may further enhance the asymmetry. (See cf. refs. [36, 37]

for enhancing efficiency for the conversion of the inflaton energy.) We leave the analysis of

lepton asymmetry in this case for the future study.

The amounts of the lepton asymmetry in the cases where the inflaton decays into the

Higgs bosons are shown in figure 3 for the hierarchical neutrino mass cases. The degenerate

cases are shown in figure 4. One can see that the large enough lepton asymmetry is

generated for TR & 1011–12 GeV. In this scenario, the sign of the asymmetry is determined

by the parameters in the PMNS matrix. In the figures, the solid lines represent the good

sign (minus), whereas we draw the dashed lines for the opposite sign. Different lines

correspond to different values of αM as indicated and αM2 = 0. For other values, the

dependence can be found in section 6. We take C = C ′ = 1 for those lines. The bands

represent the uncertainties from C and C ′ for a reference point δ = −π/2 and αM = 0

2For such low reheating temperatures the Hubble parameter during inflation can be as low as Hinf =

O(10) MeV. Recently, it was shown that with such a low-scale inflation the QCD axion with decay constant

around GUT or string scale can be the dark matter [34, 35].
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Figure 4. Same as figure 3 but the lightest neutrino mass is mνlightest = 0.07 eV, and the uncer-

tainty is shown for δ = −π/2, αM = π/2 in the gray bands. We take αM2 = 0.

(αM = π/2) for figures 5 and 7 (figures 6 and 8). We took the same windows of the

uncertainties as before.

As we will discuss in section 6, the mechanisms of the leptogenesis are qualitatively

different for TR . 1013 GeV and TR & 1014 GeV. The dependences on the phases in the

PMNS matrices are shown in figures 5 (hierarchical) and 6 (degenerate) for TR ∼ 1012 GeV,

and those for TR ∼ 1015–16 GeV are shown in figures 7 (hierarchical) and 8 (degenerate).

Since these phases are the parameters in the low energy Lagrangian, one can check if the

predicted sign or amount is consistent with nB once the phases are measured in neutrino

experiments. For example, the sign and amount of the measured nB constrain the allowed

region of the effective neutrino mass mνee for the neutrino-less double beta decay. An

example is shown in the left panel of figure 9, where we require that correct sign of the

baryon asymmetry is generated with TR . 1013 GeV with a fixed value of δ = −3π/4. The

requirement reduces the allowed region to the shaded one between solid lines. The case for

TR & 1015 GeV and δ = −π/2 is shown in the right panel. As will be discussed in section 6,

the baryon asymmetry in this case has little dependence on the inflation models, and thus

it is more predictive. We require the asymmetry to be within the 1/2− 2 of the measured

one, by taking C = C ′ = 1.

6 Underlying mechanisms for leptogenesis

In this section, we discuss how the lepton asymmetries are generated in each domain of the

reheating temperatures and decay modes. We discuss the following situations separately:

• inflatons decay into leptons directly and low TR,

• inflatons decay into Higgs bosons and low TR,

• inflatons decay into leptons directly and high TR, and

• inflatons decay into Higgs bosons and high TR,

– 12 –
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Figure 5. Lepton asymmetry dependence on δ for inflaton decay dominantly to Higgs boson. The

uncertainty for αM = 0 case is shown in the gray bands.

where the separation of high and low TR is around 1013−14 GeV as will be explained later.

The mechanisms are qualitatively different in those four cases. In section 6.1, we clarify the

necessary conditions for leptogenesis and how the lepton asymmetry depends on parame-

ters in the Lagrangian from the symmetry perspective. In sections 6.2, 6.3, 6.4, and 6.5,

we discuss each scenario and provide qualitative and quantitative understandings of the

numerical results.

6.1 Symmetry argument for CP violation

In order for enough lepton asymmetry to be generated, CP symmetry must be broken

physically, i.e., the CP phase should not be rotated away in the interactions that are

relevant in the process. Analogous to the case of the CP violation in the K-meson system,

this discussion allows one to find the most relevant parameters for the asymmetry.
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Figure 6. Same as figure 5, but mνlightest = 0.07 eV is taken with αM2 = 0. The uncertainty for

αM = π/2 case is shown in the gray bands.

We have possible sources for CP violation: Yukawa interaction, llHH interaction, and

the initial condition. The initial condition is regarded as the density matrix of inflaton

decay product, and the medium around the reheating temperature.

First, let us consider TR . 1014 GeV where the medium is almost flavor blind since

the gauge interactions are more important than the lepton Yukawa and llHH interactions.

Suppose the limit of two vanishing neutrino masses. The Yukawa interaction has U(1)3

symmetry while the llHH interaction has U(2) symmetry. In this limit, one can see that

all the CP phases of the PMNS matrix can be rotated away. Thus, it implies that either

• a CP-odd parameter in the inflaton decay product (in the rotated away basis) or

• the perturbation of the mass of a lighter neutrino

is needed to generate the lepton asymmetry. The lower temperature region of figures 1 and 2

correspond to the former case and the lower temperature region of figure 3 corresponds
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Figure 7. Lepton asymmetry dependence on δ with TR = mφ = 1015 GeV, B = 1, for inflaton

decay dominantly to Higgs boson. The uncertainty for αM = 0 case is shown in the gray bands.

to the latter case. In the latter case, y2
τmν2m

∗
ν3 (y2

τmν1m
∗
ν2) should appear in the lepton

asymmetry for normal (inverted) mass ordering at the leading order, which comes from

the last two terms of eq. (4.12). Thus the asymmetry is suppressed if mν2 (mν1) is small.

Also, we can understand that the Majorana phase is important in this case.

For T � 1014 GeV, the gauge interactions decouple, and the medium is not necessarily

blind under lepton flavor. The strong llHH interactions at high temperatures quickly bring

the initial density matrix in the diagonal form in the mass basis. In the limit of vanishing

yµ, ye and the lighter two neutrino masses while keeping the initial density matrices fixed,

the CP phases of the PMNS matrix can be rotated away by the rephasing of li by U(1)3

in the mass basis together with the U(2) rotation in the flavor basis without changing the

initial density matrices. This implies the final asymmetry should be proportional to either

• y2
τy

2
µ, or

• y2
τmν2m

∗
ν3 (y2

τmν1m
∗
ν2) for normal (inverted) mass ordering.

These two effects both contribute in the region of high reheating temperatures of figures 1

and 3. Possible CP phases in the inflaton decay sector do not contribute since the initial

condition is set by the strong llHH interactions.
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Figure 8. Same as figure 7, but mνlightest = 0.07 eV is taken with αM2 = 0. The uncertainty for

αM = π/2 case is shown in the gray bands.
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Figure 9. The value of effective neutrino Majorana mass, mνee, compatible with our scenario. The

inflaton decays into Higgs boson. TR . 1013 GeV, δ = −3π/4 and TR & 1015 GeV, δ = −π/2 are

assumed for the left panel and right panel, respectively. The region between upper and lower black

(brown) lines is the general possibility for normal (inverted) hierarchy while the shaded regions are

our prediction.

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
8

When the neutrino masses are degenerate, the llHH interaction preserves an SO(3)

symmetry. This plays a relevant role as will be seen in sections 6.4 and 6.5.

In the following, we discuss two kinds of scenarios depending on whether the initial

condition is in a general matrix (section 6.2 and latter case of section 6.4) or in the diag-

onal matrix (sections 6.3, 6.5 and former case of section 6.4) in the mass basis. In both

cases, the flavor dependent asymmetries are first generated and converted into net lepton

asymmetry through the lepton-number-violating llHH interactions. We will see that CP

and lepton number violations are connected through the “observation” by the medium.

Since “observation” in quantum mechanics is a one-way process, it provides the departure

from the thermal equilibrium, and hence the Sakharov conditions [1] are satisfied.

6.2 Inflatons decay into leptons and TR . 1013–14 GeV

For TR . 1013−14 GeV, the time scale for the thermalization process,

tth = Γ−1
th ∼

(
α2

2TR

√
TR
mφ

)−1

, (6.1)

is faster than the expansion rate of the Universe, H(TR) ' 1/tR. Therefore, the high energy

component of leptons is continuously produced by the inflaton decay over the time scale tR,

but each lepton loses the energy very quickly by the time scale tth (� tR). The scattering

processes via gauge interactions do not destroy the structure of the density matrices. After

losing their energies, the pair annihilation and pair creation processes become important.

The mean free time of the low energy lepton is

tpair = Γ−1
pair ∼

(
α2

2TR
)−1

, (6.2)

which is even shorter than tth. Therefore, almost instantaneously after the inflaton decay,

the combination of the density matrix ρT + ρ̄T flows to ρT + ρ̄T ∝ 1 since (δρT + δρT ) ∼
e−t/tpair(δρT + δρT ) from eqs. (4.9) and (4.11). By eq. (2.5), the oscillation is cut-off by

the time scale of tth + tpair ∼ tth.

We follow the density matrices of the δρT component. Even though tth > tpair so that

the decoherence is faster for low energy leptons, the oscillation of δρT is more important

than that of ρk since δΩ is larger for low energy leptons as in eq. (4.3). Since the time

scale of the Hubble expansion, tR, is longer than tpair or tth, one can ignore the redshift

of the momentum in the following discussion. The density matrices in the mass basis of

neutrinos, α = 1, 2, 3, evolve as

(δρmass
T )αβ = U †PMNS(δρflavor

T )ijUPMNS

= N U †PMNSe
−iδΩ(|p|∼T )t(V V ∗)eiδΩ(|p|∼T )tUPMNS, (6.3)

and

(δρ̄mass
T )αβ = U †PMNS(δρ̄flavor

T )ijUPMNS

= N U †PMNSe
iδΩ(|p|∼T )t(V V ∗)e−iδΩ(|p|∼T )tUPMNS. (6.4)
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The thermal corrections δΩ in eq. (4.3) are dominated by the ones from the Yukawa in-

teractions in the temperature range TR . 1013–14 GeV. In this case, the differences in

the diagonal components appear if there is a phase in UPMNS and/or V . By ignoring the

electron Yukawa interaction, one finds

∆̃mass
αβ := (δρmass

T −δρ̄mass
T )αβ

= 2iN
[
{(UPMNS)∗eα(UPMNS)τβVeV

∗
τ −(UPMNS)∗τα(UPMNS)eβV

∗
e Vτ}sinδΩττ t

+{(UPMNS)∗µα(UPMNS)τβVµV
∗
τ −(UPMNS)∗τα(UPMNS)µβV

∗
µ Vτ}sin(δΩττ−δΩµµ)t

+{(UPMNS)∗eα(UPMNS)µβVeV
∗
µ −(UPMNS)∗µα(UPMNS)eβV

∗
e Vµ}sinδΩµµt

]
. (6.5)

For α = β = 3 and δΩµµ = 0, we obtain

∆̃mass
33 = 2N

(
cos θ23 sin 2θ13Im

[
e−iδVτV

∗
e

]
+ cos2 θ13 sin 2θ23Im

[
VτV

∗
µ

])
sin δΩττ t

= 2N
(

0.2 · Im
[
e−iδVτV

∗
e

]
+ 1.0 · Im

[
VτV

∗
µ

])
sin δΩττ t

=: N ξCP sin δΩττ t. (6.6)

At this stage, the asymmetry ∆̃mass
33 is not physical since it depends on the basis. The trace

indeed vanishes. Nonetheless, in the mass basis, the lepton asymmetry is stored in each

neutrino-mass eigenstate although the net asymmetry is not created.

The finite amount of asymmetry is obtained when we include the effects of the llHH

interaction term. Due to the scattering by this term, the “observation” of the neutrino

mass basis happens. The 2 to 2 scatterings by this interaction term reduce or increase the

lepton number by two. The effects of the llHH interaction can be seen by eq. (4.14). The

neutrino mass differences imply that the right-hand side is non-vanishing even if the trace

of ∆̃mass vanishes.

The time scale that is important for this ∆L = 2 process is either tR or

tYukawa =

(
9y2
t TR

64π3
y2
τ

)−1

. (6.7)

The former is the time scale where the temperature is kept O(TR), there the dimension

five operators are the most effective, and the latter is the one for the scattering with the

top or bottom quarks through the tau (yτ ) and the top (yt) Yukawa interactions. For

TR & 1011 GeV, tYukawa & tR. Beyond tYukawa, the density matrices get diagonal in the

flavor basis by the second term in eq. (4.11), which means ∆̃ gets vanishing up to the

asymmetry already created. Therefore, the creation of the net lepton asymmetry happens

with the efficiency of

ξllHH ∼
21ζ(3)T 3

R∆m2
23

16π3〈H〉4
×min [tR, tYukawa] , (6.8)

for the normal mass ordering. Here, ∆m2
αβ := m2

να − m2
νβ is the neutrino mass square

difference. For inverted, ∆m2
23 is replaced by ∆m2

12. Notice that only the difference of
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the wash-out effects, and thus the neutrino masses, contributes to the net asymmetry

(see eq. (4.14)). The main contribution is, therefore, from the mass difference for the

atmospheric neutrino oscillations, ∆m2
atm ∼ (0.05 eV)2.

The amount of the asymmetry is now estimated as

nL
s

= Tr(∆̃) ∼ TR
mφ
·B · ξCP sin δΩττ tpair · ξllHH . (6.9)

Putting altogether, we find

nL
s
∼ −2× 10−6 · ξCP ·B ·

(
TR

1011 GeV

)2 ( mφ

1013 GeV

)−1
, (TR & 1011 GeV), (6.10)

and

nL
s
∼ −2× 10−6 · ξCP ·B ·

(
TR

1011 GeV

)3 ( mφ

1013 GeV

)−1
, (TR . 1011 GeV), (6.11)

for normal mass hierarchy. These well fit the numerical results in figure 1. For other

neutrino mass hierarchies, the results are numerically similar as we can see in figures 1 and 2.

6.3 Inflatons decay into Higgs bosons and TR . 1013−14 GeV

Even if the initial lepton density matrices are diagonal in the flavor basis or in the mass

basis, the off-diagonal components of ∆ are generated through the flavor oscillations (cf.

eq. (6.5)). The off-diagonal elements can become physical later due to multiple scatterings.

Depending on the basis, the off-diagonal components are actually parts of diagonal compo-

nents. One interaction tends to eliminate the off-diagonal components in one basis, which

may lead to the transferring of the off-diagonal components in the basis into diagonal ones

in another basis. Therefore, enough times of scatterings to pick up CP violation can make

the off-diagonal component of ∆ made by oscillation physical. This transfer of the matrix

elements by multiple scattering or observation generally takes place. The off-diagonal ele-

ments in mass basis can be generated through the Hamiltonian with the Yukawa interaction

and could be identified as diagonal components in the flavor basis. If the llHH interaction

is too weak to dump all of the off-diagonal elements, some of the off-diagonal elements in

the mass basis would later be observed by the Yukawa interaction as the diagonal elements.

As a result, if there exists physical CP violation, the flavor-dependent lepton asymmetry

is generated through the multiple-observation.

Now consider TR . 1013 GeV. After the inflaton decay, the off-diagonal components,

∆̃mass
α 6=β are generated through eqs. (2.5) and (5.3). The flowchart for the dominant multiple-

observation process with TR . 1013 GeV is as follows:

∆̃mass
α 6=β

last term of eq. (4.12)−−−−−−−−−−−−−−−−−−−−→ ΓYukawa−−−−−→ ∆mass
α=β

ΓllHH−−−−→ nL
s
. (6.12)

Notice that the last term of eq. (4.12) should enter, as one can see from the symmetry

discussion for physical CP violation. It is important that all of the time scales of the

interaction are slower than the expansion. As a result, each observation is not enough to
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remove all the quantum coherence, and the CP violation becomes physical when enough

times of the scattering takes place.

Let us see the above mechanism by explicit calculation. The kinetic equation is given by

i
d

dt
∆̃mass ' [Ωmass, ρmass + ρ̄mass] + P (t) · ∆̃mass, (6.13)

where we have defined

ΓYukawa :=
9y2
t TR

64π3
U †PMNS diag (0, y2

µ, y
2
τ )UPMNS,

ΓllHH := diag (ΓllHH,1,ΓllHH,2,ΓllHH,3), ΓllHH,α :=
21ζ(3)

32π3

m2
ν,αT

3

〈H〉4
,

P (t) · ∆̃mass := − i
2

{
ΓYukawa + ΓllHH , ∆̃

mass
}
− i21ζ(3)

32π3
(κmass)∗ ·

(
∆̃mass

)t
· κmass T 3,

(6.14)

and have neglected several terms which are not important for the discussion below. Since

we start from the initial condition ∆̃mass = 0 at t = tini, the right-hand side vanishes

except for the first term at the early stage. The nonzero value of ∆̃mass is generated by

the first term. When the pair production/annihilation by the gauge interaction becomes

effective, ρmass + ρ̄mass gets close to the one proportional to the unit matrix and the first

term vanishes. After that, the second term becomes effective. From this observation, the

equation we should solve is written as

i
d

dt
∆̃mass ' [Ωmass, ρmass + ρ̄mass] + P (t) · ∆̃mass, (tini . t . tcut), (6.15)

i
d

dt
∆̃mass ' P (t) · ∆̃mass, (tcut . t . tend), (6.16)

where tcut is the time the oscillation stops, and given by tcut = tini + tpair for this case.

Eq. (6.15) is easily solved by neglecting the second term, and one gets

∆̃(0) ' −i [Ωmass, ρmass + ρ̄mass] tpair, (6.17)

where

∆̃(0) := ∆̃mass|t=tcut . (6.18)

Note that we can regard Ωmass and ρmass + ρ̄mass as constants for tini . t . tini + tpair, and

that only the off-diagonal components are generated here. Up to this stage, no CP violation

was necessary. As we discussed before, the off-diagonal component of ∆̃mass is not a CP-odd

quantity. The CP phase in the PMNS matrix can bring this off-diagonal component into

the diagonal entries through the Yukawa and llHH interactions. The symmetry argument

tells us that the CP phase can be physical when y2
τmν2m

∗
ν3 appears as a perturbation.

The solution of the eq. (6.16) is

∆̃mass(tend) = T
(
e
−i

∫ tend
tini+tpair

dt′P (t′)
)

∆̃(0), (6.19)
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where T is the time ordered product. The lepton asymmetry can be obtained by taking

the trace of the solution. In the case of the inflaton decay into Higgs bosons and low TR,

from eq. (6.19), the lepton asymmetry is

Tr
(

∆̃
)
' −21ζ(3)

16π3

∫ tend

tini+tpair

dt1

∫ t1

tini+tpair

dt2

∫ t2

tini+tpair

dt3

× Tr

[
ΓllHH(t1)<

{
ΓYukawa(t2) (κmass)∗

(
∆̃(0)

)t
κmass

}]
(T (t3))3 . (6.20)

Here tini corresponds to tini = min(tR, tYukawa), and κmass := (UPMNS)tκUPMNS. One can

check thatO(P 2) andO(P ) contributions vanish as indicated from the symmetry argument.

By observing that ΓllHH ∝ T 3 and ΓYukawa ∝ T , the integration is dominated by the earlier

time, and then one gets

Tr
(

∆̃
)
∼ −21ζ(3)

16π3
t3T 3Tr

[
ΓllHH<

{
ΓYukawa (κmass)∗

(
∆̃(0)

)t
κmass

}] ∣∣∣∣∣
t=tini

. (6.21)

For normal mass hierarchy, ∆̃(0) is given by

∆̃
(0)
13 =

(
∆̃

(0)
31

)∗
∼ −i δΩ

mass
13

Γpair
(ρmass + ρ̄mass)33 ,

∆̃
(0)
23 =

(
∆̃

(0)
32

)∗
∼ −i δΩ

mass
23

Γpair
(ρmass + ρ̄mass)33 , (6.22)

and other components are almost zero, see eq. (5.3). The resultant lepton asymmetry is

calculated as

nL
s
∼ 4× 10−9B · ξCP

(
TR/mφ

0.01

)1/2( TR
1013 GeV

)3

, (TR & 1011 GeV), (6.23)

and

nL
s
∼ 1× 10−20B · ξCP

(
TR/mφ

0.01

)1/2( TR
1010 GeV

)6

, (TR . 1011 GeV), (6.24)

where

ξCP ∼ (sinαM + 0.2 sin(αM + δ)) (normal hierarchy). (6.25)

The calculations for inverted and degenerate cases are straightforward, and the results are

given by eqs. (6.23) and (6.24) except for the replacement of ξCP:

ξCP∼ 0.01sinαM cosδ−0.04cosαM sinδ−0.05sinαM , (inverted hierarchy),

ξCP∼
(
mpole
ν

0.07eV

)4

(22sin(αM−αM2)−10sin(αM2)+4.4sin(αM−αM2+δ) +4.5sin(αM2−δ)) ,

(degenerate case with normal ordering),

ξCP∼−
(
mpole
ν

0.07eV

)4

(22sin(αM−αM2)−9.7sin(αM2)+4.5sin(αM−αM2+δ) +4.3sin(αM2−δ)) ,

(degenerate case with inverted ordering). (6.26)
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Here mpole
ν means the average of the measured neutrino mass. Here and hereafter the

superscript “pole” is put in order to distinguish mpole
ν from the neutrino mass param-

eter at the high energy scale, see appendix C. These fit the numerical results well in

figures 3, 4, 5, and 6.

Unlike eq. (6.8), the lepton number is not proportional to the mass differences of the

neutrinos. Even with the equal neutrino masses, asymmetry is generated through the

CP violation in the PMNS matrix as one can see in eq. (6.20). The CP-violating llHH

interactions together with the lepton Yukawa interactions distribute the lepton number

into left and right-handed leptons while net asymmetry vanishing. The asymmetry stored

in the left-handed leptons are partially washed out by the first term in eq. (4.14), and the

net asymmetry is generated.

6.4 Inflatons decay into leptons and high TR

At a high-temperature range, the lepton asymmetry is generated through multiple “obser-

vations” of leptons in the medium as in the previous subsection. Contrary to the previous

subsection, the leptons are observed at different temperatures and thus in different basis.

As a result, non-observable off-diagonal components in one basis can later be observed as

diagonal components in another basis.

Case with hierarchical neutrino masses. Here we consider the high-temperature

regime where TR & 1015 GeV for the normal and inverted hierarchy with one massless

neutrino.3 In this region, the numerical calculation shows an interesting feature that the

asymmetry gets almost independent of the reheating temperature.

For simplicity, we consider |k| ∼ T , in which case tth ∼ tpair. It is useful to define the

following density matrix,

(ρmass
T )αβ ≡

∫
|p|∼T,|k|

d3p

(2π)3

ρmass
αβ (p, t)

s
. (6.27)

At TR & 1015 GeV, the time scale of tpair, tth and tYukawa are slower than the expansion

rate TR, while the llHH interactions are faster than tR, and these are the interactions

to bring the momentum distribution to the thermal one. The discussion is, therefore,

qualitatively different from the case with lower reheating temperatures. The density matrix

is diagonal in the mass basis due to the fast llHH interactions.

Because of the hierarchy, the thermalization is effective only for two of the neutrino

generations. The density matrices for the leptons has the following form for T & 1015 GeV:

ρmass
T ∼ diag (ρ1(T ), ρ2(T ), ρ3(T )), (6.28)

where ρ1 6= ρ2 ∼ ρ3 for the normal hierarchy and ρ1 ∼ ρ2 6= ρ3 for the inverted one. The

off-diagonal components are highly suppressed due to the decoherence effect via the llHH

3Although eq. (3.4) is satisfied in the effective theory at TR . 1016 GeV, the UV physics might contribute

to the following mechanism. As we will see, these contributions do not change our prediction much, if we

assume that the lepton number for the massless neutrino is not violated in the UV physics at the vanishing

limit of the Yukawa couplings.
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interaction (see eqs. (4.8) and (4.9)). The density matrices are kept in this form until

the llHH interaction for the second heaviest neutrino gets ineffective at Tini∼1015 GeV

(1013 GeV) for the normal (inverted) hierarchy. Here Tini is the temperature ΓllHH,2 =H(T )

(ΓllHH,1 = H(T )) for normal (inverted) mass hierarchy.

Below the temperature, Tini, the off-diagonal components are started to be generated

by flavor oscillation (see eq. (2.5)). The differences among ρ1, ρ2, and ρ3 are important for

this to happen. Since the llHH interaction for the heaviest neutrino is still effective, the

oscillation can only generate the ∆̃mass
12 (∆̃mass

13 ) component for the normal (inverted) mass

hierarchy. The oscillation continues until the time scale that the pair annihilation by the

gauge interactions becomes as fast as the expansion rate. Even after the gauge interaction

rate becomes faster than the expansion rate, the generated off-diagonal element is kept

unerased in the medium due to the flavor blindness of the gauge interactions. Finally,

when the Yukawa interaction becomes effective, t̃Yukawa ∼ MP/3T
2
τ with Tτ ∼ 1011 GeV

which is the time
9y2t y

2
τ

64π3 Tτ = H(Tτ ), the density matrix gets diagonal in the flavor basis.

The generation of the asymmetry stops at this time.

For normal mass hierarchy case, there exist the contributions which depend on y2
τy

2
µ

and y2
τmν2m

∗
ν3, respectively. Flowcharts to describe the dominant processes for leptogenesis

can be drawn as

∆̃mass
12

ΓYukawa−−−−−→ ΓYukawa−−−−−−→ ∆̃mass
33

ΓllHH−−−−→ nL
s
, (6.29)

for y2
τy

2
µ contribution, and

∆̃mass
12

ΓYukawa−−−−−−→ last term of eq. (4.12)−−−−−−−−−−−−−−−−−−−−→ ΓYukawa−−−−−−→ ∆̃mass
33

ΓllHH−−−−→ nL
s
, (6.30)

for y2
τmν2m

∗
ν3 contribution.

From the above discussion, we can take tini ∼MP/3T
2
ini, tcut = t̃pair and tend = t̃Yukawa,

where t̃pair is the time scale at which the gauge interactions are imporant, α2
2T ' H(T ).

The form of the density matrix at t = tini is

ρmass
T = ρ̄mass

T = diag (ρ1, ρ2, ρ3), ρ1 6= ρ2 = ρ3, (6.31)

for the normal mass hierarchy. Since the strong llHH interactions bring the densities to

the thermal ones except for ρ1,

ρ2 = ρ3 ' 0.004

(
100

g∗s(TR)

)
δij , (6.32)

ρ1 − ρ2 ∼
3

4
B |Vi (U∗PMNS)i1|

2 . (6.33)

Then, we obtain by solving eq. (6.15)

∆̃
(0)
12 =

(
∆̃

(0)
21

)∗
= 2i(ρ1 − ρ2)

Ωmass
12

Γpair
, (6.34)

and vanishing other components at t = t̃pair. Here ∆̃
(0)
13 = (∆̃

(0)
31 )∗, and ∆̃

(0)
23 = (∆̃

(0)
32 )∗

are negligible because the fast decoherence at the rate 1
2ΓllHH,3. ∆̃mass

12 = (∆̃mass
21 )∗ ' ∆̃

(0)
12
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does not change much until t = t̃Yukawa. From eq. (6.19), the lepton asymmetry is

Tr
(

∆̃
) ∣∣∣∣

y2τy
2
µ

' −
∫ tend

tini+tpair

dt1

∫ t1

tini+tpair

dt2

∫ t2

tini+tpair

dt3

× Tr
[
ΓllHH(t1)<

{
ΓYukawa(t2)∆̃(0)ΓYukawa(t3)

}
+ . . .

]
,

(6.35)

for y2
τy

2
µ contribution, and is

Tr
(

∆̃
) ∣∣∣∣

y2τmν2m
∗
ν3

' 21ζ(3)

16π3

∫ tend

tini+tpair

dt1

∫ t1

tini+tpair

dt2

∫ t2

tini+tpair

dt3

∫ t3

tini+tpair

dt4 (6.36)

× Tr

[
ΓllHH(t1)<

{
ΓYukawa(t2) (κmass)∗

(
ΓYukawa(t4)∆̃(0)

)t
κmass

}
+ . . .

]
(T (t3))3 ,

for y2
τmν2m

∗
ν3 contribution. . . . are the subdominant terms for the normal mass hierarchy

from the anti-commutation in P . One can see that eq. (6.35) is dominated by the large

t region while all range of t equally contributes to the integral in eq. (6.36). As a result,

we obtain

nL
s

∣∣∣∣
y2τy

2
µ

∼ − ΓllHH,3 ×<[ΓYukawa
31 ∆̃

(0)
12 ΓYukawa

23 ]t3
∣∣∣
t=t̃Yukawa

∼ − 6× 10−8 sin δ ×
(

Tτ
1011 GeV

)2

× (ρ1 − ρ2) , (6.37)

for y2
τy

2
µ contribution, and

nL
s

∣∣∣∣
y2τmν2m

∗
ν3

∼ ΓllHH,3 ×
21ζ(3)

16π3

mν2mν3

〈H〉4
T 3 ×<[ΓYukawa

31 ∆̃
(0)
12 ΓYukawa

32 ]t4
∣∣∣∣
t=t̃Yukawa

∼ −4× 10−9 (sinαM + 0.2 cos (δ + αM )) (1− 0.4 cos δ)× (ρ1 − ρ2) , (6.38)

for y2
τm
∗
ν2mν3 contribution. These formulas well fit the numerical results in the left panel

of figure 1.

Now let us comment on the cases for this mechanism with inverted mass hierarchy.

The same discussion applies by making exchanges between the indices α, β = 1, 2, 3 and

α, β = 3, 1, 2 in the previous discussion. However, since two of the llHH interactions are

strong, ∆̃0
31 = (∆̃0

13)∗ is soon destroyed by the llHH interaction, and the final asymmetry

is suppressed. On the other hand, we will see soon that if the reheating temperature is

slightly smaller than 1015 GeV, an approximate symmetry preserves ∆̃0
12 and a sufficient

amount of the lepton asymmetry can be generated.

One of the essences of this region is the fact, ρT + ρT is not proportional to the unit

matrix and does not commute with ΩT at T > Tth. The mechanism here works in general:

e.g. the thermal decoupling of right-handed neutrinos at T > Tth would lead to ρT + ρT
not proportional to 1.
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Case with degenerate neutrino masses. Let us consider the degenerate case, m2
να ∼

m2
ν �

∣∣∣∆m2
αβ

∣∣∣, and the time scales of the llHH interaction are faster than tR. Naively,

it is expected that the lepton number generated is soon washed out. However, one finds

that the imaginary part of the ∆̃mass is not affected during the scattering via the llHH

interaction in eqs. (4.11) and (4.12). This can be understood from an approximate SO(3)

lepton flavor symmetry in the llHH interaction. The generators are iεαβγ(a†αaβ + b†αbβ).

Thus the combination of the density matrices,

=[∆̃mass
αβ ] = −i

〈
a†βaα − b

†
αbβ − a†αaβ + b†βbα

〉
/2V, (6.39)

conserves. Since the llHH interaction rate is faster than the expansion rate, a non-

vanishing ∆̃mass quickly flows to the following form

∆̃mass
αβ ' i=[∆̃mass

αβ ]. (6.40)

Notice that this symmetry property would be missed in the ordinary Boltzmann equation.

The finite mass differences break the SO(3) symmetry, and from eq. (6.16) the deco-

herence of the imaginary part happens at a rate

d

dt
=[∆̃

mass

αβ ] ∼ −21ζ(3)

64π3

(mνα −mνβ)2

〈H〉4
T 3=[∆̃

mass

αβ ]. (6.41)

When the coefficient in the r.h.s. becomes faster than the cosmic expansion, the imaginary

part becomes almost zero.

Now, for simplicity let us consider the normal mass ordering with mν ∼ O(0.1) eV

and 1013 GeV � TR � 1016 GeV as an example. In this case, ∆̃mass
31 , ∆̃mass

32 and <[∆̃mass
31 ]

quickly go to zero while the SO(2) symmetry preserves =[∆̃mass
12 ]. The high energy leptons

from the inflaton decays are scattered into medium and go on oscillating at a time scale

tllHH =
(
m2
ν

〈H〉4
21ζ(3)T 3

R
32π3

)−1
. The oscillation stops at tllHH because the llHH interaction

with degenerate neutrino masses also brings ρT +ρT to be proportional to the unit matrix.

The relevant component from the oscillation is given by

∆̃mass
12 ∼ i TR

mφ
·B · ξ12(δΩmass

22 (TR)− δΩmass
11 (TR)) (tllHH) ∼ 2i

(
TR
mφ

)
·B · ξ12

(
∆m2

21

m2
ν

)
,

(6.42)

with

ξ12 := (U∗PMNS)i1(UPMNS)j2ViV
∗
j . (6.43)

Notice that we have used the oscillation term at |p| ' TR which is dominant as in eq. (4.3).

The off-diagonal element is produced with a strong phase but the real part quickly ap-

proaches to zero due to the decoherence, which results

∆̃
(0)
12 = (∆̃

(0)
21 )∗ = i=[∆̃mass

12 ], (6.44)

and almost vanishing other components in ∆̃(0). ∆̃mass
12 = (∆̃mass

21 )∗ is almost frozen until

t = t̃Yukawa due to the symmetry protection.
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As noted, although ∆̃(0) has vanishing diagonal components in the mass basis, diagonal

components in the flavor basis can be non-zero. This implies ∆̃(0) is distributed by Yukawa

interaction into the left-handed and right-handed leptons from eq. (4.14):

Tr(∆̃T )→ Tr(∆̃T )− Tr(δ∆̃), Tr(∆̃R)→ Tr(∆̃R) + Tr(δ∆̃) (6.45)

where

Tr(δ∆̃) = 2dt=
[
∆̃

(0)
12

]
=[(ΓYukawa(t))12] (6.46)

for a very short time range dt. However, −Tr(δ∆̃) = −<[δ∆̃] in the left-handed leptons is

quickly washed out, while the one in the right-handed leptons remains:

Tr(∆̃T )→ Tr(∆̃T ), Tr(∆̃R)→ Tr(∆̃R) + Tr(δ∆̃). (6.47)

Therefore the net asymmetry is generated and stored in the right-handed leptons. The net

asymmetry can be obtained from the integration,

nL
s
'
∫ tend

tllHH

dt2=
[
∆̃

(0)
12

]
=[(ΓYukawa(t))12], (6.48)

where tend = t̃llHH is the time ΓllHH,1 ' ΓllHH,2 ' H(T ), up to when the net asymmetry

is efficiently produced due to the wash-out effect. We obtain

nL
s
∼ 2=

[
∆̃

(0)
12

]
=[(ΓYukawa)12]t

∣∣∣
t=t̃llHH

∼ −5× 10−6
(

sin
αM
2

+ 0.3 cos
αM
2

sin δ
)
B<[ξ12]

(
TR/mφ

0.01

)((
∆m2

21

)pole

(0.009 eV)2

)
. (6.49)

The result does not depend much on mν . A same discussion can be applied to the inverted

ordering case at the same range of reheating temperature. In particular, the approximate

SO(2) symmetry even works with the lightest neutrino massless. The behavior can be

found in figure 2 and the right panel of figure 1.

6.5 Inflatons decay into Higgs bosons and TR & 1014 GeV

When TR & 1014 GeV, the gauge interaction decouples and the scattering and thermaliza-

tion are made by some/all of the llHH interactions. One can see the asymmetry approaches

to UV insensitive values for all the cases. Two kinds of mechanisms are operating for these

UV insensitive values depending on the neutrino mass hierarchies. The dominant asymme-

try is not from ρk and ρk in the kinetic equation. This is because the dominant oscillation

frequency is ∝ TR, but it is cutoff by llHH interactions whose time scales are proportional

to T−3
R . In total, together with the yield of the high energy leptons, ∝ BTR/mφ, the gen-

erated asymmetry is proportional to T−1
R , and thus it is suppressed at large TR. Therefore

the dominant asymmetry comes from the thermalization process in the medium.
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Normal mass hierarchy. For the normal mass hierarchy with one massless neutrino, at

TR � 1015 GeV the asymmetry becomes UV insensitive as in section 6.4. Since the leptons

in the medium are thermalized through the llHH interaction, the lepton density of the

medium has the form

ρmass
T (TR) ∼ diag

(
0, 0.04

(
11

g∗s(TR)

)
, 0.04

(
11

g∗s(TR)

))
. (6.50)

Notice that at this reheating temperature, only Higgs boson and two of the left-handed

leptons are thermalized. From eq. (6.37), one obtains the dominant asymmetry

nL
s
∼2× 10−9

(
11

g∗s(TR)

)
sin δ

(
Tτ

1011 GeV

)2

. (6.51)

The observed asymmetry favors δ < 0. This formula fits well the results of normal ordering

cases in figure 3 and 7. Notice that in the numerical calculation we have conservatively

taken g∗s = 100. More realistic treatment of g∗ and g∗s may give larger asymmetry than

the numerical one.

Inverted mass hierarchy and degenerate masses. At TR & 1014 GeV for the de-

generate cases or the inverted mass hierarchy case, the UV insensitivity also appears. The

key fact is the departure from the thermal equilibrium of the right-handed leptons with

T & 1014 GeV, where the pair creation rate of U(1)Y is smaller than the expansion rate of

the Universe. Just above T ' 1014 GeV, there are three (two) generations of left-handed

leptons, the Higgs bosons and tops are thermalized for degenerate (inverted mass hierar-

chy) case due to the llHH and top Yukawa interactions.4 The Yukawa interaction, whose

rate is much slower than the expansion rate of the Universe, tends to thermalize the right-

handed leptons through, for example, lτ -top scattering into right-handed tau lepton and

top. However, the inverse-process is suppressed due to the absence of thermalized right-

handed leptons. In total, the amount of the left-handed leptons are decreased from the

thermal equilibrium due to the scattering. This implies that at t < tini + t̃Y (t̃Y is the time

at α2
Y T = H(T )), the deviation from thermal equilibrium, δρmass + δρmass, is produced at

a rate (see also eq. (4.9) and appendix B):

d

dt
(δρmass + δρ̄mass) ∼ −2ρthΓYukawa (6.52)

where

ρth = 0.01

(
30.25

g∗s

)
× 1 (6.53)

is the yield of the thermalized left-handed leptons. However, the deviation, δρmass +δρ̄mass,

approaches to zero at the time scale ∆tllHH(t) ' Γ−1
llHH,1(t) ' Γ−1

llHH,2(t). Thus the amount

of deviation at time t < tini + t̃Y can be estimated by the integration of eq. (6.52) over the

time scale ∆tllHH ,

δρmass(t) + δρ̄mass(t) ∼ −
∫ t

t−∆tllHH

dt12ρthΓYukawa(t1). (6.54)

4Depending on the uncertainty of the gauge interaction rates, there could also be other particles.
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Taking tini = tR, tcut = tini + t̃Y and substituting (6.54), one can solve eq. (6.15) and

obtains

∆̃
(0)
12 =

(
∆̃

(0)
21

)∗
∼ i=

(
i

∫ tcut

tini

dt1

∫ t1+∆tllHH

t1

dt2[Ωmass
T (t1), 2ΓYukawa(t2)]ρth

)
12

, (6.55)

while other components of ∆̃(0) are nearly zero due to the wash-out effect. Here we have

used the fact that only the imaginary part of ∆̃
(0)
12 = (∆̃

(0)
21 )∗ conserves due to the approx-

imate SO(2) symmetry. Since the second term in eq. (4.3) is important for Ωmass
T in the

commutation relation, the t1 integration dominates at around t1 ∼ tcut. For the normal

mass ordering, one obtains

∆̃
(0)
12 ∼ −2i∆m2

21<[(ΓYukawa)12]ρth∆tllHHt
∣∣
t=tini+t̃Y

(6.56)

∼ 4× 10−8i cos
αM
2

(
(∆m2

21)pole

(0.009 eV)2

)(
(0.1 eV)2

(m2
ν)pole

)
·
(

30.25

g∗s

)
. (6.57)

By employing eq. (6.49), the net asymmetry is obtained as

nL
s
∼
(
−2× 10−10 sinαM + 10−10 sin (αM − δ) + 4× 10−11 sin (αM + δ)

)
×
(

(∆m2
21)pole

(0.009 eV)2

)
·
(

30.25

g∗s

)
. (6.58)

As indicated from the parameter dependence, the formula can also apply to the inverted

mass ordering with mν = O(0−0.1) eV. This can be seen from the fact that it fits well with

the numerical results in figures 4, 8, and the inverted mass hierarchy cases in figures 3 and 7.

In fact, ∆̃mass
13 and ∆̃mass

23 produced at t ∼ t̃Y would not be destroyed with mν >

O(0.1) eV (see eq. (6.41)).5 The corresponding asymmetry can be calculated from the

same procedure and we do not discuss this further.

Notice that with high reheating temperature, the asymmetry is dominantly generated

from the departure of the thermal equilibrium of the left or right-handed leptons, which

results from the decoupling of the gauge interactions. This does not depend much on

the precise information for the inflaton decay products. In particular, the amount of

the asymmetry is independent of the B, mφ and TR. The UV insensitive amount is,

interestingly, around the order of the observed one for O(1) CP phases in the PMNS matrix.

This indicates, by taking into account the quantum mechanics, a general thermalization

process can lead to a good opportunity for baryogenesis.

7 Summary

The neutrino oscillation has been understood as the macroscopic quantum interference phe-

nomena. The neutrinos traveling in the sun, atmosphere and also terrestrial baselines are

superpositions of the waves with different frequencies and thus the probability of observing

some flavor becomes dependent on the travel distances.

5Although, it is disfavored from the Planck data and baryon acoustic oscillation measurement [24].

– 28 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
8

In the early Universe, the whole Universe can be thought of as a high-temperature

medium. The neutrinos (and also charged leptons) traveling through the medium undergo

the flavor oscillation of the cosmic size. Even though the neutrino masses are tiny enough

to be ignored in the high-temperature medium, the Universe is in fact opaque and the

matter effects are important for leptons/neutrinos due to various interactions such as the

gauge interactions, the lepton Yukawa interactions as well as the lepton number violating

llHH interaction if the neutrinos are Majorana particles.

At the very first stage of the Universe, the leptons are produced through the decays of

inflatons. The quantum states of these leptons can be described by density matrices. The

scattering with the medium reduces the matrix into a diagonal form in some basis. For

example, the pair annihilation process brings the sum of the density matrices of the leptons

and anti-leptons into the one proportional to the unit matrix, which stops the oscillation

effects. Also, the scatterings through the lepton Yukawa and the llHH interactions bring

the density matrices into diagonal forms in the flavor and the mass basis, respectively. One

can think of these scattering processes as “observations.” Through these observations,

the density matrices evolve non-trivially and settle into a form deviated from the thermal

equilibrium due to the cosmic expansion.

We find through the numerical analyses the lepton number is indeed generated by these

quantum effects. In particular, if the inflaton decays into the Higgs boson dominantly, the

high energy leptons are generated as secondary products via the scattering through the

llHH interactions. In this case, the leptons are in the neutrino “mass” eigenstates. Since

the effective Hamiltonian is “flavor” diagonal due to the thermal masses from Yukawa

interactions, the oscillation takes place. The net lepton asymmetry is produced by the

subsequent scattering processes. The source of the CP violation is the Dirac and Majorana

phases in the PMNS matrix, and enough amount of asymmetry can be produced for high

enough reheating temperatures.

There is always a contribution to the baryon asymmetry of the Universe from the flavor

oscillations of the leptons in the inflationary scenario. Our numerical results have shown

that the successful baryogenesis is possible in any models to explain the neutrino masses

by the llHH terms at low energy. At least, it works if the UV scale to generate the llHH

terms is higher than 108 GeV.
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A Inflaton decay

If the inflaton φ is gauge singlet, the decay is described by

Ldecay = ymφφH
†H +

(c1

Λ
φL̄HE + h.c.

)
+
c2

Λ
φFµνF

µν +
c3

Λ
φFµνF̃

µν + . . . , (A.1)

where . . . represents other decay channel which is not relevant in the following discussion.

Unless the first term is small, the main decay channel is Higgs boson, and the reheating

temperature is given by

TR,dim4 ' 3× 1013 GeV
( y

10−2

)( mφ

1014 GeV

)
. (A.2)

On the other hand, if the dimension 4 term is somehow suppressed, the decay to the gauge

bosons is important, and the decay to leptons is suppressed due to the three body decay.

The reheating temperature and branching fraction to the leptons are

TR,dim5 ' 2× 1012 GeV
( mφ

1014 GeV

)3/2
(

1017 GeV

Λ

)
, B ∼ 10−2, (A.3)

assuming that c1,2,3 = O(1).

If the φ has the gauge charge same as Standard Model Higgs boson, we can write the

dimension 4 coupling

L ∼ y′L̄φE + h.c. (A.4)

In this case, the reheating temperature is same as eq. (A.2) except for the replacement

y → y′.

Therefore, we can obtain the reheating temperature and branching fraction which

realize the successful baryogenesis.

B Kinetic equation for right-handed leptons

For completeness, here the kinetic equation including the right-handed leptons is presented

although the numerical impacr is small. The right-handed neutrino gives rise the addition

term to
(
δΓpT

)
ij

, which is given by

3y2
t T

32π3
yi
(
− (δρR)t + 2δρR

)
ij
yj (B.1)

The kinetic equation for the leptons is

i
dδρR
dt

= [ΩR, δρR]− i
2

{
ΓdR, δρR

}
+iΓpR+iΓpair

R , (B.2)

(ΩR)ij =
y2
i

8
Tδij ,

(
ΓpR
)
ij

=
3y2
t

64π3

T

|k|

[
2yi

(
δρT
|k|
T

+ρk

)
ij

yj−yi
(
δρT
|k|
T

+ρk

)
ji

yj

]
,

(B.3)(
ΓdR

)
ij

=
9y2
t

32π3
Ty2

i δij ,
(

Γpair
R

)
ij

=−CY
2
α2
Y (δρR+δρR)ij . (B.4)
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where CY represents the uncertainty where we have taken to be CY = C in the numerical

calculation. In the inflaton decay to lepton case,

δρT |t=tR = δρ̄T |t=tR = 0, (B.5)

is added to eq. (5.1) as an initial condition. When the inflaton dominantly decays to Higgs

bosons, the initial condition is changed to be

δρT |t=tR = δρ̄T |t=tR = −0.002

(
100

g∗s(TR)

)
. (B.6)

C Couplings used in numerical calculation

We have used the SM couplings evolved to the scale 1012 GeV–1013 GeV [38–40]:

gY = 0.42, g2 = 0.55, yt = 0.47, yµ = 5.8× 10−4, yτ = 9.8× 10−3. (C.1)

The llHH interaction has an overall factor [41]

mνα = 1.27mpole
να , (C.2)

where the right hand side is the experimental value given in [23].

Open Access. This article is distributed under the terms of the Creative Commons
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