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1 Introduction

In conformal field theory (CFT), causality of four-point functions places nontrivial con-

straints on CFT three-point couplings. In particular, causality in the lightcone limit leads

to constraints [2–4] which are identical to the bounds obtained from the conformal col-

lider experiment [5]. Of course, this is not a coincidence. In fact, the proof of the av-

eraged null energy condition (ANEC)
∫
Tuudu ≥ 0 from causality [6] made it apparent

that for generic CFTs, the conformal collider set-up provides an efficient tool for deriving

causality constraints.

The conformal collider set-up is a simple yet powerful thought experiment that was

introduced by Hofman and Maldacena [5]. In this set-up, the CFT is prepared in an excited

state by creating a localized excitation which couples to some operator O (with or without

spin) of the CFT. This excitation propagates outwards and the response of the CFT

is measured by a distant calorimeter. The calorimeter effectively measures the averaged

null energy flux 〈
∫
Tuudu〉 far away from the region where the excitation was created and

hence the calorimeter readings should be non-negative. This gives rise to constraints on

the three-point function 〈OTO〉, where T is the stress tensor operator. Recently, the

conformal collider set-up was extended to study interference effects, leading to new bounds

on OPE coefficients [7, 8].1 All of these causality constraints are valid for every CFT in

d ≥ 3, however, additional assumptions about the CFT can lead to stronger constraints.

In particular, similar logic in certain class of CFTs can shed light on how gravity emerges

from CFT.

Holographic CFTs. The low energy behavior of gravitons, in any sensible theory of

quantum gravity, is described by the Einstein-Hilbert action plus higher derivative correc-

tion terms. However, these higher derivative terms can lead to causality-violating propa-

gation in nontrivial backgrounds [10–12]. Requiring the theory to be causal in shockwave

states, as shown by Camanho, Edelstein, Maldacena, and Zhiboedov [13] (CEMZ), does

impose strong constraints on gravitational three-point interactions. For example, causality

dictates that the graviton three-point coupling should be universal in quantum gravity [13]

— a claim consistent with constraints obtained from unitarity and analyticity [14]. Fur-

thermore, the AdS/CFT correspondence [15–17] immediately suggests that in any CFT

1Similar method was also used by [9] to constrain parity violating CFTs in d = 3.
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with a holographic dual description, certain three-point functions (for example 〈TTT 〉)
must also have specific structures.

Over the past several years, it has become clear that a large class of CFTs, with or

without supersymmetry, exhibits gravity-like behavior [18–43]. More recently, the CEMZ

causality constraints have been derived from the CFT side for dimension d ≥ 3 [1, 8, 44–46],

under the assumptions:

• The central charge cT is large:2 cT � 1

• A sparse spectrum: the lightest single trace operator with spin ` > 2 has dimension

∆gap � 1 .

All of these observations indicate that CFTs in this class, irrespective of their microscopic

details, admit a universal gravity-like holographic dual description at low energies. Fur-

thermore, this connection provides us with a powerful tool to constrain gravitational inter-

actions by studying CFTs with a large central charge and a sparse spectrum. In this paper,

we intend to adopt this point of view. First, for CFTs in this universality class (hence-

forth denoted holographic CFTs), we will derive general constraints on CFT three-point

functions from causality. In light of the AdS/CFT correspondence, these CFT causality

constraints translate into constraints on the low energy gravitational effective action from

UV consistency.

The CEMZ causality constraints for CFTs with large central charge and a sparse

spectrum were first derived in [44] from causality of the four-point function 〈ψψTαβTγδ〉
in the Regge limit, where ψ is a heavy scalar operator. The derivation heavily relied on

the fact that the stress tensor operators in the correlator were smeared in a specific way

that projected out [TT ] double trace contributions to the Regge correlator. The same

constraints were also derived in [45, 46] by imposing unitarity on a differently smeared

correlator 〈ψψTαβTγδ〉 in the Regge limit. Moreover, this approach was recently extended

to study a mixed system of four-point functions in the Regge limit yielding new bounds on

the OPE coefficients of low spin operators in holographic CFTs [8]. From the dual gravity

perspective, all of these set-ups are probing local high energy scattering deep in the bulk.

However, the actual CFT analysis involves computations of CFT four-point functions of

spinning operators using the conformal Regge theory [47], which is technically challenging

even in the large central charge limit. One might hope that in the Regge limit causality

of CFT four-point functions can be translated to some holographic energy condition which

is a generalization of the averaged null energy condition for holographic CFTs. Such an

energy condition was recently derived in [1]. In this paper, we will exploit this energy

condition to design a new experiment, similar to the conformal collider experiment of [5],

for holographic CFTs which will allow us to bypass the conformal Regge theory.

Holographic null energy condition. In the Regge limit, causality dictates that the

shockwave operator
∫
huudu must be non-negative for CFTs with large central charge and

2cT is the coefficient of the stress tensor two-point function (see equation (A.7)). For gauge theories,

the large cT limit is equivalent to the large-N limit.
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a sparse spectrum [1]. This immediately allows us to imagine an “AdS collider” where

the boundary CFT is again prepared in the Hofman-Maldacena state |HM〉. But now the

measuring device is in the bulk and measures 〈HM |
∫
huudu|HM〉 ≥ 0 (see figure 4). It

is obvious that this set-up will reproduce all of the causality constraints, however, both

technically and conceptually this is not very satisfying for several reasons. First, this

correlator should be computed using Witten diagrams which is difficult when the state

|HM〉 is prepared using spinning operators. Second, in the CFT language, this set-up is

not illuminating because the operator
∫
huudu has a complicated decomposition into CFT

operators which consists of the stress tensor and an infinite tower of double trace operators.

In this paper, we consider the stress tensor component of the shockwave operator [1]

Er(v) =

∫ +∞

−∞
du′
∫
~x2≤r2

dd−2~x

(
1− ~x2

r2

)
Tuu

(
u′, v, i~x

)
,

which we will refer to as the holographic null energy operator.3 Causality of CFT four-point

function in the Regge limit [1] implies that the expectation value of the holographic null en-

ergy operator is positive in a large subspace of the total Hilbert space of holographic CFTs.

Note that this operator is the averaged null energy operator smeared over a finite sphere

along the imaginary transverse directions. Of course, the positivity of the holographic null

energy operator is not implied by the ANEC because of the imaginary transverse directions.

In fact, this operator, in general, is not positive.

A key ingredient of the positivity argument is that there exists a class of states |Ψ〉
which projects out certain double trace contributions to

∫
huudu. This is an extension

of the observations made in [1].4 These states, as we will show, are equivalent to the

Hofman-Maldacena state |HM〉 which will allow us to introduce a new formalism to study

causality constraints. Our formalism can be interpreted as a new collider-type experiment

for holographic CFTs (see figure 1). Consider a CFT with large central charge and a sparse

spectrum in d-dimensions. The CFT is prepared in the excited state |HM〉 by inserting

a spinning operator O near the origin and an instrument measures the holographic null

energy far away from the excitation:

E(ρ) = lim
R→∞

R2〈HM |Er=√ρR(R)|HM〉 .

The holographic null energy condition implies that E(ρ) is a positive function for 0 < ρ < 1.

The parameter ρ is a measure of the angular size of our measuring device at the origin and

the parameter ρ can be tuned by changing the size of the device. In the gravity language,

ρ plays the role of the bulk direction. In particular, ρ → 0 represents the lightcone limit

(AdS boundary) and hence in this limit, this set-up is equivalent to the original conformal

collider experiment. On the other hand, we are interested in probing high energy scattering

deep in the bulk of the dual geometry which corresponds to the limit ρ→ 1.

3u and v are the null coordinates.
4We should note that in this paper we will not provide a general technical proof of the observation made

in [1] about double trace contributions. However, we will argue that the same statement about double trace

contributions is true in general.
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Our conformal collider set-up has several advantages over previous methods [1, 8, 44–

46]. First, we do not need to compute conformal Regge amplitudes. In our set-up, all of

the constraints are directly obtained from CFT three-point functions which are fixed by

conformal symmetry up to a few constant coefficients — a simplification which enables us

to derive constraints in a more systematic way. Finally, our approach connects causality

constraints in the Regge limit with the holographic null energy condition. This is remi-

niscent of the ANEC which relates causality in the lightcone limit with entanglement. So,

the appearance of the holographic null energy condition perhaps is an indication of some

deeper connection between boundary entanglement and bulk locality. Moreover, the recent

generalization of the ANEC to continuous spin [48] suggests that there might also be a

generalization of the holographic null energy condition to continuous spin.

Summary of results. The formalism that we developed in this paper efficiently com-

putes the expectation value of Er in states |Ψ〉, constructed by inserting spinning operators.5

This formalism involves performing certain integrals over CFT three-point functions which

are fixed up to OPE coefficients by symmetries. Furthermore, we decompose the results

into independent bounds corresponding to representations under spatial rotations. The

inequalities following from these bounds lead to surprising equalities among the various

OPE coefficients involving spinning operators and the stress-tensor.

The first set of constraints are obtained by considering expectation values in states

constructed from a single low spin operator (` ≤ 2). The second set of constraints follows

from the interference effects in our collider. In particular, positivity of the holographic null

energy operator in states created by superposition of smeared local operators O1 and O2

leads to a bound on the off-diagonal matrix elements of the operator E :

|EO1O2(ρ)|2 ≤ EO1O1(ρ)EO2O2(ρ) .

Let us now summarize the resulting constraints for all single trace low spin (` ≤ 2) operators

in a holographic CFT (in d ≥ 3).

• All three-point functions of the form 〈TOO〉 are completely fixed by the two-point

function 〈OO〉.

• All three-point functions 〈TO1O2〉, where O1 and O2 are different operators, are

suppressed by ∆gap.6

These constraints encompasses, and generalizes, all known causality constraints as obtained

in [1, 8, 44–46] by studying various four-point functions in holographic CFTs. Moreover,

after imposing these causality constraints, we find that the expectation value of the holo-

graphic null energy operator is universal and it is completely determined by the lightcone

limit result. This observation suggests the following conclusion about the operator product

expansions in holographic CFTs:

5This formalism can easily be adapted to computing the contribution of any conformal multiplet to the

Regge limit of four-point correlation functions.
6There is a caveat. Our argument does not necessarily hold if scaling dimensions of O1 and O2 coincide

with the scaling dimension of double-trace operators (at leading order in cT ). For more discussion see [7, 8].
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• The operator product expansion of any two smeared primary single trace operators

(with or without spin) in the Regge limit is given by a universal shockwave operator :

Ψ∗[O1]Ψ[O2] ≈ 〈Ψ∗[O1]Ψ[O2]〉 − 2iEO1O2

∫ ∞
0

dt t2hz+t z+t ,

where, EO1O2 is the matrix element of the total energy operator. The operators O1

and O2 are smeared in such a way that they can create states which belong to the

class |Ψ〉 (see section 3). On the right hand side, the spherical shockwave operator is

written as an integral of the metric perturbation over a null geodesic: z = t (where

z is the bulk direction and t is the Lorentzian time) in AdSd+1 for d ≥ 3.

In the gravity language, the above CFT constraints translate into the statement that

all higher derivative interactions in the low energy effective action must be suppressed by

the new physics scale. Furthermore, in agreement with the proposal made by Meltzer and

Perlmutter in [8], we find that in d ≥ 4 CFT dual of a bulk derivative is 1/∆gap. However,

we also notice that in d = 3 there is a logarithmic violation of this simple relationship

between the bulk derivative and ∆gap.

As a simple example of the above bounds, we derive “a ≈ c” type relations between

conformal trace anomalies in d = 6. In d = 6, there are four Weyl anomaly coefficients

a6, c1, c2, c3, however, three of them (c1, c2, c3) are determined by the stress tensor three-

point function 〈TTT 〉. Our bounds immediately imply that the anomaly coefficients must

satisfy c1 = 4c2 = −12c3. These relations between c1, c2, c3 are exactly what is expected

for (2, 0) supersymmetric theories, both holographic and non-holographic [49]. This is

reminiscent of the Ooguri-Vafa conjecture [50] which states that holographic duality with

low energy description in term of the Einstein gravity coupled to a finite number of matter

fields exists only for supersymmetric theories.

Finally, as a new application of the holographic null energy condition, we constrain

various inflationary observables such as the amplitude of chiral gravity waves, nongaussan-

ity of gravity waves and tensor-to-scalar ratio. Our argument parallels the argument made

by Cordova, Maldacena, and Turiaci in [7]. The bounds on higher curvature interactions

in AdS4 strongly suggests that these higher curvature terms should also be suppressed

by the scale of new physics in the effective action in de Sitter space. Hence, any effect

that arises from these higher curvature terms must be vanishingly small. For example, in

(3 + 1)−dimensional gravity all parity odd interactions appear in higher derivative order.

Therefore, all inflationary observables that violate parity including chiral gravity waves

and parity odd graviton nongaussanity, must be suppressed by the scale of new physics.

Furthermore, any detection of these effects in future experiments will imply the presence

of an infinite tower of new particles with spins ` > 2 and masses comparable to the Hubble

scale.

Outline. The rest of the paper is organized as follows. In section 2, we discuss the

conformal collider set-up for holographic CFTs and review the holographic null energy

condition. Then in section 3, we summarize our causality constraints as a statement about

Regge OPE of smeared operators. In this section, we also propose a relation that connects

– 5 –
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Figure 1. Conformal collider experiment: a localized excitation is created in a holographic CFT

and an instrument which is shown in blue, measures the holographic null energy Er far away from

the excitation.

the Regge limit with the lightcone limit for holographic CFTs. In section 4, we present

a systematic approach of calculating the expectation value of the holographic null energy

operators in states created by smeared operators. This section mainly contains technical

details, so it can be safely skipped by casual readers. In sections 5 and 6, we derive

explicit constraints on CFT three-point functions for d ≥ 4. The d = 3 case is more subtle

and hence we treat it separately in section 7. In section 8, we discuss the cosmological

implications of our CFT bounds. Finally, we end with concluding remarks in section 9.

2 Causality and conformal collider physics

In the lightcone limit, causality dictates that the averaged null energy operator
∫
Tuudu

should be non-negative [6].7 The ANEC immediately leads to positivity of all CFT three-

point functions which have the form: 〈O|
∫
Tuudu|O〉 ≥ 0. On the other hand, for CFTs

with large central charge and a sparse spectrum, causality of four-point functions in the

Regge limit leads to stronger constraints. However, all of these causality conditions involve

computations of CFT four-point functions of spinning operators using the conformal Regge

theory [47]. The causality of CFT four-point functions even in the Regge limit can be

translated to positivity of certain (holographic) energy operator [1]. In this section, with

the help of that positivity condition, we develop a new conformal collider set-up enabling

us to derive causality bounds directly from three-point functions.

2.1 A collider for holographic CFTs

We will use the following convention for points x ∈ R1,d−1:

x = (t, x1, ~x) ≡ (u, v, ~x) , where, u = t− x1 , v = t+ x1 . (2.1)

Let us now define the holographic null energy operator:

Er(v) =

∫ +∞

−∞
du′
∫
~x2≤r2

dd−2~x

(
1− ~x2

r2

)
Tuu

(
u′, v, i~x

)
. (2.2)

7The averaged null energy condition for interacting quantum field theories in Minkowski spacetime was

first derived in [51] from monotonicity of relative entropy.

– 6 –
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The holographic null energy operator is a generalization of the averaged null energy oper-

ator which was first introduced in [1].8 In particular, in the limit r → 0, this operator is

equivalent to the averaged null energy operator. The kernel in (2.2) is positive and hence

one might expect that the operator Er(v) should also be positive. However, this is not true

because the stress tensor is also integrated over imaginary transverse coordinates and in

general
∫
du′Tuu (u′, v, i~x) can have either sign.

Let us now carry out a collider physics thought experiment similar to [5] but with a

holographic CFT in d-dimensions where d ≥ 3 (see figure 1). We prepare the CFT in an

excited state by inserting a spinning operator O near the origin:9

|Ψ〉 =

∫
dy1dd−2~y ε.O(−iδ, y1, ~y)|0〉 , (2.3)

where, ε is the polarization of the operator O and δ > 0. Similarly,

〈Ψ| =
∫
dy1dd−2~y 〈0|ε∗.O(iδ, y1, ~y) . (2.4)

The state |Ψ〉 is equivalent to the Hofman-Maldacena state of the original conformal collider

experiment [5]. Now we imagine an instrument that measures the holographic null energy

Er(v) far away from the excitation:

E(ρ) = lim
B→∞

〈Ψ|E√ρB(B)|Ψ〉 , (2.5)

where, 0 < ρ < 1. The parameter ρ is a measure of the size of the measuring device which we

can tune. The measuring device is placed at a distance B away from the excitation and the

angular size of the device is roughly ρ
d−2

2 . A priori it is not obvious that the measured value

E(ρ) has to be positive. However, later in this section, by using the positivity conditions

of [1], we will show that for CFTs with large central charge and a sparse spectrum in d ≥ 3:

E(ρ) ≥ 0 , 0 < ρ < 1 (2.6)

for a class of states that has the form (2.3). This inequality will play an important role in

this paper and we will refer to this as holographic null energy condition. In the limit ρ→ 0,

the holographic null energy operator becomes
∫
du′Tuu(u′) and E(ρ) ≥ 0 is true for any

CFT. In this limit, the positivity of E(ρ) reproduces the conformal collider bounds of [5–9].

Note that the wavepacket of [5] is implemented here by the order of limits. We first perform

the u′-integral in (2.5) and then take the limit B →∞. The same trick was used in [6] to

derive conformal collider bounds directly from a Rindler reflection symmetric set-up.

This conformal collider set-up is equivalent to the set-up used in [1, 44], however, now

we do not need to compute a four-point function. For example, in d = 4, if we take O to

be the stress tensor and choose the polarization εµ = (−i,−i, iλ, λ), as we demonstrate in

8Also see [52, 53] for a connection between the holographic null energy operator and the modular

Hamiltonian.
9O is not necessarily a primary operator. In fact O can be a linear combination of various operators

with different spins. Also note that in equation (2.3), ε.O ≡ εµν...Oµν....
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Figure 2. In the Regge limit the leading correction to the   OPE is the graviton huu
integrated over the red line.

limit v ! 0 (with u fixed), the above OPE can be organized as an expansion in twist
⌧p = �p � `p (� is scaling dimension and ` is spin) which leads to a simple lightcone
OPE [6]. On the other hand, the Regge limit is obtained by taking (see figure 2)

v ! 0 , u ! 1 , uv = fixed . (2.10)

Unlike the lightcone limit, the Regge limit gets significant contributions from high spin
exchanges. Even when the central charge cT (defined in (A.7)) is large, complication
arises because an infinite tower of double trace operators become relevant in the Regge
limit. However, under the additional assumption that the spectrum of single trace
operators with ` > 2 is sparse, simplification emerges and the Regge OPE can be written
as [1]

 (u, v) (�u,�v)
h (u, v) (�u,�v)i

= 1�
� u

2

Z
1

�1

du0huu(u
0, v0 = 0, ~x0 = 0, z0 =

p
�uv)+ · · · , (2.11)

where, cT � � � 1 and dots are O(u0,�0

 , 1/c
2

T ) terms. huu in the above equation
is the bulk metric perturbation in AdSd+1 (where z is the bulk coordinate) which is
integrated over a null geodesic. In the gravity language, contributions of an infinite tower
of primary operators translate into a single term because the dominant contribution to
the four-point function comes from the Witten diagram with a single graviton exchange.
Hence, the right hand side of (2.11) should be thought of as a CFT operator written
in terms of the bulk metric. In particular,

R
duhuu contains the stress tensor Tµ⌫ as

well as all double trace operators [O1O2] built from the light operators in theory, e.g.,
[TT ] double trace operators. The stress tensor contribution of

R
duhuu can be computed

– 9 –

Figure 2. In the Regge limit the leading correction to the ψψ OPE is the graviton huu integrated

over the red line.

appendix D, each power of λ should individually satisfy (2.6). In particular, in the limit

ρ→ 1, we recover a = c from (2.6).

Before we proceed, let us rewrite (2.5) in a more familiar form. The Hofman-Maldacena

state of the original conformal collider experiment [5] is given by

|HM〉 =

∫
dtdy1dd−2~ye−(t2+(y1)

2
+~y2)/De−iωtεµν...Oµν...(t, y

1, ~y) , ωD � 1 . (2.7)

Then (2.6) immediately implies that

lim
R→∞

R2〈HM |Er=√ρR(R)|HM〉 ≥ 0 . (2.8)

2.2 Holographic null energy condition

It was shown in our previous paper [1] that causality of CFT four-point functions in the

Regge limit implies positivity of certain smeared CFT three-point functions. First, we

review and further explore that positivity condition. Then, we derive (2.6) as a simple

consequence.

2.2.1 Regge limit and OPE of heavy scalars

We start with a discussion on the Regge OPE of heavy operators in the holographic limit.

Let us consider a real scalar primary ψ in a d−dimensional CFT with ∆ψ � 1. In general,

one can replace any two nearby operators by their OPE. For example, ψ(u, v)ψ(−u,−v)

can be written as10

ψ(u, v)ψ(−u,−v) =
∑
p

Cp(u, v; ∂u, ∂v)Op(0, 0) , (2.9)

10Whenever we drop some spacetime coordinates, those coordinates are set to zero.

– 8 –
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where, the sum is over all primaries. In a generic CFT, the lightcone and the Regge limits

of a correlator are controlled by different sets of operators. In the standard lightcone limit

v → 0 (with u fixed), the above OPE can be organized as an expansion in twist τp = ∆p−`p
(∆ is scaling dimension and ` is spin) which leads to a simple lightcone OPE [6]. On the

other hand, the Regge limit is obtained by taking (see figure 2)

v → 0 , u→∞ , uv = fixed . (2.10)

Unlike the lightcone limit, the Regge limit gets significant contributions from high spin

exchanges. Even when the central charge cT (defined in (A.7)) is large, complication arises

because an infinite tower of double trace operators become relevant in the Regge limit.

However, under the additional assumption that the spectrum of single trace operators with

` > 2 is sparse, simplification emerges and the Regge OPE can be written as [1]

ψ(u, v)ψ(−u,−v)

〈ψ(u, v)ψ(−u,−v)〉
= 1−

∆ψu

2

∫ ∞
−∞

du′huu(u′, v′ = 0, ~x′ = 0, z′ =
√
−uv) + · · · , (2.11)

where, cT � ∆ψ � 1 and dots are O(u0,∆0
ψ, 1/c

2
T ) terms. huu in the above equation is the

bulk metric perturbation in AdSd+1 (where z is the bulk coordinate) which is integrated

over a null geodesic. In the gravity language, contributions of an infinite tower of primary

operators translate into a single term because the dominant contribution to the four-point

function comes from the Witten diagram with a single graviton exchange. Hence, the right

hand side of (2.11) should be thought of as a CFT operator written in terms of the bulk

metric. In particular,
∫
duhuu contains the stress tensor Tµν as well as all double trace

operators [O1O2] built from the light operators in theory, e.g., [TT ] double trace operators.

The stress tensor contribution of
∫
duhuu can be computed using the HKLL prescription

for huu [54].

Causality of the Regge correlator dictates that the operator
∫
duhuu has to be pos-

itive [1] and hence any three-point function which has the form 〈O|
∫
huudu|O〉 must be

positive as well. From the CFT perspective, this positivity condition both technically and

conceptually is not very useful. However, we will show that for specific states, only the

stress tensor contribution of
∫
duhuu is important which will lead us to the holographic

null energy condition. Before we proceed, let us note that the contribution of the single

trace stress tensor and its derivatives to the Regge OPE (2.11) can be written in terms of

the holographic null energy operator [1]

ψ(u, v)ψ(−u,−v)|T
〈ψ(u, v)ψ(−u,−v)〉

= −
∆ψ2dπ

1
2−dΓ(d+2

2 )Γ(d+3
2 )u

cT (d− 1)
Er=√−uv(0) , (2.12)

where, Er(v) is defined in (2.2).

2.2.2 Positivity

Consider a Rindler reflection symmetric four-point function

G =
〈ε.O(B)ψ(u, v)ψ(−u,−v)ε.O(B)〉
〈ε.O(B)ε.O(B)〉〈ψ(u, v)ψ(−u,−v)〉

, (2.13)
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vu

R
O

R
O

 (u, v)

 (�u,�v)

Figure 3. Kinematics for the derivation of the holographic null energy condition. Operators
Os are smeared over some regions in a Rindler reflection symmetric way.

using the HKLL prescription for huu[54].

Causality of the Regge correlator dictates that the operator
R
duhuu has to be posi-

tive [1] and hence any three-point function which has the form hO|
R
huudu|Oi must be

positive as well. From the CFT perspective, this positivity condition both technically
and conceptually is not very useful. However, we will show that for specific states, only
the stress tensor contribution of

R
duhuu is important which will lead us to the holo-

graphic null energy condition. Before we proceed, let us note that the contribution of
the single trace stress tensor and its derivatives to the Regge OPE (2.11) can be written
in terms of the holographic null energy operator [1]

 (u, v) (�u,�v)|T
h (u, v) (�u,�v)i

= �
� 2d⇡

1

2
�d�(d+2

2
)�(d+3

2
)u

cT (d� 1)
Er=

p
�uv(0) , (2.12)

where, Er(v) is defined in (2.2).

2.2.2 Positivity

Consider a Rindler reflection symmetric four-point function

G =
h".O(B) (u, v) (�u,�v)".O(B)i

h".O(B)".O(B)ih (u, v) (�u,�v)i
, (2.13)

– 10 –

Figure 3. Kinematics for the derivation of the holographic null energy condition. Operators Os

are smeared over some regions in a Rindler reflection symmetric way.

in the regime (2.10), as shown in figure 3. ε.O(B) is an arbitrary operator with or without

spin (not necessarily a primary operator) smeared over some region:

ε.O(B) =

∫
dτdd−2~y ε.O(t = i(B + τ), y1 = δ, ~y) , (2.14)

where, δ > 0 and ε is the polarization (when O is a spinning operator). Operator ε.O is

the Rindler reflection of the operator O (see [6] for a detailed discussion):

ε.O(B) =

∫
dτdd−2~y ε.O†(t = i(B + τ), y1 = −δ, ~y) , (2.15)

where, the Hermitian conjugate on the right-hand side does not act on the coordinates. ε

is the Rindler reflection of the polarization ε:

εµν··· ≡ (−1)P (εµν···)∗ (2.16)

where P is the number of t-indices plus y1-indices.

Following [44], let us define

u =
1

σ
, v = −σB2ρ (2.17)

with B > 0, σ > 0 and 0 < ρ < 1. The Regge limit is obtained by taking σ → 0 with ρ,B

fixed. Now using the OPE (2.11), we obatin

G ≡ 1 + δG = 1−
∆ψ

2σN
〈ε.O(B)

∫
du′huu(u′, z = B

√
ρ) ε.O(B)〉 (2.18)
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[57].

".O(B)

".O(B)

h↵�R
1

�1
huu(u0, z)du0

Figure 4. The Witten diagram for the correlator h".O(B)
R
du0huu(u0, z = B

p
⇢) ".O(B)i.

The three-point function (2.20) can be computed using the Witten diagram 4, how-
ever, we want a three-point function that can be computed directly in CFT. It was also
shown in [1] that in the limit B ! 1, the smearing projects out [OO] double-trace
contributions in the correlator (2.13) when O is a scalar operator or a spin-1 conserved
current or the stress tensor T . There are plenty of evidences which suggest that the
same statement is true for any operator O. We will not attempt to prove this statement,
instead we conjecture that the smearing projects out [OO] double-trace contributions
for any operator O. The intuition comes from gravity. In the Witten diagram 4, the
smearing puts the field dual to the operator O onto a geodesic, converting the Witten
diagram 4 into a geodesic Witten diagram which receives contribution only from the
stress tensor exchange [39]. As an immediate consequence, we can replace

R
du0huu in

(2.20) by the single trace stress tensor contribution (2.12), yielding

� i lim
B!1

h".O(B) Er=p
⇢B(0) ".O(B)i � 0 . (2.21)

This is a statement about CFT three-point function which allows us to circumvent the
computation of four-point functions.11 Let us note that our conjecture about the double
trace operator is simply a technical fact about the smearing that we performed. Later in
the paper, we will justify our conjecture about double trace operators by demonstrating
that the inequality (2.21) reproduces all known causality constraints for holographic
CFTs. This is a non-trivial check of the conjecture, however, one can perform a more
direct check by utilizing the conformal Regge theory. It is not di�cult to show case by
case that �G as obtained from (2.13) receives contribution only from the stress tensor
exchange. But we admit that it will be nice to have a more general technical proof.

Let us make few comments regarding the regime of validity for the inequality (2.21).

11Let us note that if there are non-conserved spin-2 single trace primaries in the theory, they can also
contribute to the four-point function in the Regge limit and hence equation (2.21) will not be true. For
now, we assume that if they are present, they do not contribute as an exchange operator. However, as
will discuss in section 6, this assumption is not entirely necessary.

– 12 –

Figure 4. The Witten diagram for the correlator 〈ε.O(B)
∫
du′huu(u′, z = B

√
ρ) ε.O(B)〉.

with N = 〈ε.O(B)ε.O(B)〉 > 0. The null line integral in the above expression is computed

by choosing appropriate contour. We can now repeat the arguments of [6, 44] which tells

us that the boundary CFT will be causal if and only if

Im(δG) ≤ 0 , (2.19)

which is precisely the chaos bound of [55]. Since, δG as obtained from (2.18) is purely

imaginary, therefore the last inequality is equivalent to

i〈ε.O(B)

∫
du′huu(u′, z = B

√
ρ) ε.O(B)〉 ≥ 0 (2.20)

for any operator O. After we perform a rotation by π/2 in the Euclidean τ − x1 plane,

this is precisely the statement that the shockwave operator
∫
duhuu is positive [1]. This

is a CFT version of the a bulk causality condition proposed by Engelhardt and Fischetti

in [56]. They showed that asymptotically AdS spacetimes satisfy boundary causality if and

only if metric perturbations satisfy
∫
duhuu ≥ 0. This requirement is weaker than the bulk

null energy condition which was the starting point of the Gao-Wald theorem [57].

The three-point function (2.20) can be computed using the Witten diagram 4, however,

we want a three-point function that can be computed directly in CFT. It was also shown

in [1] that in the limit B →∞, the smearing projects out [OO] double-trace contributions

in the correlator (2.13) when O is a scalar operator or a spin-1 conserved current or the

stress tensor T . There are plenty of evidences which suggest that the same statement is

true for any operator O. We will not attempt to prove this statement, instead we conjecture

that the smearing projects out [OO] double-trace contributions for any operator O. The

intuition comes from gravity. In the Witten diagram 4, the smearing puts the field dual to

the operator O onto a geodesic, converting the Witten diagram 4 into a geodesic Witten

diagram which receives contribution only from the stress tensor exchange [39]. As an

immediate consequence, we can replace
∫
du′huu in (2.20) by the single trace stress tensor

contribution (2.12), yielding

− i lim
B→∞

〈ε.O(B) Er=√ρB(0) ε.O(B)〉 ≥ 0 . (2.21)
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This is a statement about CFT three-point function which allows us to circumvent the

computation of four-point functions.11 Let us note that our conjecture about the double

trace operator is simply a technical fact about the smearing that we performed. Later in

the paper, we will justify our conjecture about double trace operators by demonstrating

that the inequality (2.21) reproduces all known causality constraints for holographic CFTs.

This is a non-trivial check of the conjecture, however, one can perform a more direct check

by utilizing the conformal Regge theory. It is not difficult to show case by case that δG as

obtained from (2.13) receives contribution only from the stress tensor exchange. But we

admit that it will be nice to have a more general technical proof.

Let us make few comments regarding the regime of validity for the inequality (2.21).

• The inequality is true for any 0 < ρ < 1 for CFTs in d ≥ 3 with large central charge

and a sparse spectrum. In particular, in the limit ρ→ 1, (2.21) probes scattering at

a point deep in the interior of AdS, similar to [1, 13].

• The limit ρ→ 0 corresponds to the lightcone limit and in this limit, the inequality is

true for any interacting CFT in d ≥ 3. Furthermore, in this limit, the inequality (2.21)

is equivalent to the conformal collider set-up of [5] and hence it yields optimal bounds.

We will use (2.21) to derive constraints for holographic CFTs. So, let us rewrite (2.21)

in a more explicit form that we will use in later sections:

−i
∫
dτdd−2~y lim

B→∞
〈ε.O†(iB,−δ,~0) Er=√ρB(0) ε.O(i(B + τ), δ, ~y)〉 ≥ 0 . (2.22)

We want to stress that in the above expression, order of limits is important. We perform

the u′ integral first and then take the large B limit. Also note that we are only smearing

one of the operators because the other smearing integral will only give an overall volume

factor. This is a consequence of the large B limit and this volume factor is the same factor

that appears in the smeared two-point function.

The inequality (2.22) is not yet an expectation value of the holographic null energy

operator in a state which has the form (2.3). However we can rewrite the inequality (2.22)

as an expectation value. First, we perform a rotation R in (2.22) that rotates by π/2 in the

Euclidean τ−x1 plane where τ = it (see appendix A of [6]). Then we perform a translation

along x1-direction by B. This procedure converts (2.22) into an expectation value:12

lim
B→∞

〈Ψ|E√ρB(B)|Ψ〉 ≥ 0 , (2.24)

11Let us note that if there are non-conserved spin-2 single trace primaries in the theory, they can also

contribute to the four-point function in the Regge limit and hence equation (2.21) will not be true. For

now, we assume that if they are present, they do not contribute as an exchange operator. However, as will

discuss in section 6, this assumption is not entirely necessary.
12We should also transform the polarization tensor accordingly (see [6]). In particular, polarizations

εµν... (as used in equation (2.3)) and εµν... (which has been used throughout the paper whenever we have

a Rindler reflection symmetric set-up) are related in the following way:

εµν... =
(
ΛµαΛνβ . . .

)
εαβ... , Λµα =


0 −i 0

−i 0 0

0 0 1

 . (2.23)

Note that if ε1 = ε2, then ε†1 = ε2.
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where, |Ψ〉 is a class of states which has the form (2.3). This concludes the proof of the

holographic null energy condition.

2.3 Corrections from higher spin operators

The holographic null energy condition is exact strictly in the ∆gap →∞ limit. Therefore,

all of the constraints obtained from the holographic null energy condition in the limit ρ→ 1

will receive corrections from higher spin operators above the gap. A finite number of such

operators will violate causality/chaos bound and hence this scenario is ruled out. However,

it is expected that an infinite tower of new higher spin operators with ∆ > ∆gap starts

contributing as we approach the limit ρ → 1. Let us now estimate the correction to the

causality constraints if we include these higher spin operators with ∆ > ∆gap, where,

√
cT � ∆gap � 1 . (2.25)

We consider a single higher spin operator with spin ` and dimension ∆ = ∆gap and gen-

eralize the argument of our previous paper [44]. Contribution of this operator to (2.13) in

the limit ρ→ 1 is given by [44]

δG ∼ i

σ`−1

e−s∆gap/2

sa
, s = 1− ρ , (2.26)

where, a is a positive number and we have assumed that ∆gap � `. Therefore, these

higher spin operators becomes relevant in the strict limit of s → 0. On the other hand,

we can safely ignore these operators when s & 1/∆gap.13 So, we can trust the causality

condition (2.21) as well as the collider bound (2.6) only in the regime 1/∆gap . s < 1 and

the strongest constraints can be obtained by setting s ∼ 1/∆gap.

Let us now schematically write

Im lim
B→∞

〈ε.O(B) Er=√ρB(0) ε.O(B)〉 ∼
∑
n

(±)
tn

(1− ρ)n
+

c0

(1− ρ)d−3
+ · · · , (2.27)

where, the sum is over terms which change sign for different polarizations and hence in

the absence of the higher spin operators causality condition leads to tn = 0. On the other

hand, we will show in the rest of the paper that after imposing the causality constraints

the leading non-vanishing term in the limit ρ→ 1 goes as c0
(1−ρ)d−3 , where c0 is positive.14

Now, setting ρ ∼ 1− 1/∆gap, from the causality/chaos bound (2.21), we obtain∣∣∣ tn
c0

∣∣∣ . 1

∆n−d+3
gap

. (2.29)

13We should note that δG has large numerical factors. Here, similar to [44], we are making an additional

assumption that OPE coefficients which appear in δG are small enough to cancel these large numerical

factors.
14In d = 3, the leading nonzero term goes as −c0 ln(1− ρ) and hence the ∆gap-correction is given by∣∣∣ tn

c0

∣∣∣ . ln ∆gap

∆n
gap

. (2.28)
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3 Universality of the smeared Regge OPE

In the rest of the paper, we will derive constraints using the conformal collider for the

holographic null energy operator. In this section, we summarize the results as a statement

about the Regge OPE of smeared single trace operators with low spin. Causality of the

Regge correlators suggests that the operator product expansion of any two smeared primary

operators (with or without spin) of CFTs with large central charge and a sparse spectrum

should approach a universal form in the Regge limit.

Let us consider two arbitrary primary single trace low spin operators O1 and O2 (` ≤ 2).

We now smear the operators following (2.3):

Ψ∗[O1] =

∫
dy1dd−2~y ε∗1.O1(iδ, y1, ~y) , (3.1)

Ψ[O2] =

∫
dy1dd−2~y ε2.O2(−iδ, y1, ~y) , (3.2)

where, ε1 and ε2 are polarizations of operators O1 and O2, respectively (when they have

spins). We then perform the rescaling δ = σδ, y1 = σy1, and ~y = σ~y and take the limit

σ → 0. In this limit, we claim that chaos/causality bounds guarantee that the OPE of

Ψ∗[O1] and Ψ[O2] (up to order 1/cT ) is given by a universal operator H:

Ψ∗[O1]Ψ[O2] = 〈Ψ∗[O1]Ψ[O2]〉+ 〈Ψ∗[O1]Elc Ψ[O2]〉H + · · · , (3.3)

where, dots represent terms which are suppressed by either the large gap limit or the large

cT limit or the Regge limit. And Elc is the lightcone limit of the operator (2.2):

Elc ≡
∫
du′Tuu(u′, v = 1) ∼ lim

r→0

Er(v = 1)

rd−2
. (3.4)

This OPE holds if all other operator insertions are finite distance away. In general, H

is a complicated operator which contains the stress tensor and an infinite set of double

trace operators. However, the important point is that the same operator H appears in the

OPE of all operators and does not depend on the polarizations. Only the coefficient of H

depends on O1 and O2. This coefficient can be chosen to be the contribution in a regular

conformal collider experiment which is determined by the lightcone limit. Also note that

when O1 and O2 are different operators the first term in (3.3) vanishes, however, the second

term can still be nonzero.

When O1 and O2 are scalar operators, (3.3) is a simple consequence of the smeared

Regge OPE of [1]. Moreover, we are also claiming that the OPE (3.3) holds in the Regge

limit even when O1 and O2 are spinning operators. However, for spinning operators, the

OPE (3.3) is true only after we first impose chaos/causality constraints that we obtained

from the holographic null energy condition

lim
B→∞

〈(c∗1Ψ∗[O1] + c∗2Ψ∗[O2])E√ρB(B)(c1Ψ[O1] + c2Ψ[O2])〉 ≥ 0 (3.5)

for arbitrary c1 and c2. For scalar operators, the Regge correlator is trivially causal. Since

the same operator H appears in the OPE (3.3) of all operators, it is obvious that the
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equation (3.3) is a sufficient condition that makes all of the Regge correlators causal. In

this paper, we will not explicitly prove that (3.3) is a necessary condition. Rather, in the

rest of the paper, we will show that (3.3) is true for various spinning operators. Note that

a hint of this property of the Regge OPE was present even in our previous paper [1].

For heavy scalar operators, the smearing integrals in (3.3) can be ignored because they

only produce overall volume factors. Hence, for a heavy scalar OH , with 1� ∆H �
√
cT

the OPE (3.3) is very simple. Therefore, the Regge OPE of any two smeared primary

operators is determined by the OPE of two heavy scalar operators, in particular

H =
OH(iδ)OH(−iδ)− 〈OH(iδ)OH(−iδ)〉

〈OH(iδ)ElcOH(−iδ)〉
. (3.6)

Let us now consider correlator of the holographic null energy operator with two arbi-

trary smeared operators Ψ∗[O1] and Ψ[O2]. The equation (3.3) predicts that after imposing

all of the causality conditions the correlator 〈Ψ∗[O1]Er(v)Ψ[O2]〉 can be written as a prod-

uct of the lightcone answer and a correlator of the holographic null energy operator with

heavy scalars. In particular, if we define

fO1O2(ρ) ≡ lim
B→∞

〈Ψ∗[O1]E√ρB(B)Ψ[O2]〉 (3.7)

then it can be easily shown that equations (3.3) and (3.6) imply

fO1O2(ρ) =
fO1O2(ρ→ 0)fOHOH (ρ)

fOHOH (ρ→ 0)
+ · · · , (3.8)

where, dots represent terms suppressed by ∆gap. We can further simplify by computing

the scalar part of the above equation, yielding

fO1O2(ρ) = lim
ρ0→0

fO1O2(ρ0)

(
ρ

ρ0

) d−2
2

2F1

(
d− 2

2
, d− 1;

d+ 2

2
; ρ

)
+ · · · . (3.9)

Broadly speaking, this equation relates UV (Regge limit) with IR (lightcone limit). It is

rather remarkable that for holographic CFTs the Regge limit is completely determined by

the lightcone limit. In the following sections, we will check the OPE (3.3) by demonstrating

that the above relation holds for various operators with or without spin.

3.1 Gravity interpretation

The Regge OPE (3.3) has a nice gravity interpretation. The operator H is a complicated

CFT operator, however, when written in terms of the bulk metric it has a simple expression.

In particular, in the gravity language the Regge OPE (3.3) can be rewritten as15

Ψ∗[O1]Ψ[O2] = 〈Ψ∗[O1]Ψ[O2]〉 − 2iEO1O2

∫ ∞
0

t2hz+t z+t(z = t, t)dt , (3.10)

where, EO1O2 is the matrix element of the total energy operator 〈Ψ∗[O1]EΨ[O2]〉. On the

right hand side the operator H is now written as the bulk metric perturbation integrated

15hz+t z+t is defined in the usual way: hz+t z+t = 1
4
(htt + 2htz + hzz).
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over a null geodesic z = t, y1 = 0, ~y = ~0 in AdSd+1. Therefore, H is a shockwave operator

that creates a spherical shockwave in AdS.

The OPE (3.10) has been derived by starting from the planar shockwave operator

of [1]. In the gravity language, the OPE of heavy scalars OH(iδ)OH(−iδ) can be obtained

from the Regge OPE of [1] by performing the following change of coordinates:

u→ z2
0

u
, v → −v +

~y2

u
+
z2

u
, ~y → z0~y

u
, z → zz0

u
, (3.11)

where, z0 is the position of the planar shockwave operator in [1]. On the boundary this

change of coordinates acts as a conformal transformation. On the other hand, in the

bulk this change of coordinate converts the planar shockwave operator into the spherical

shockwave operator. Now the universality of the Regge OPE immediately implies that the

same spherical shockwave operator will also appear in (3.10).

It is important to note that it is not surprising that the smeared Regge OPE can be

expressed as an integral over a geodesic. After all, this has already been shown in [1] for

light scalar operators. Moreover, our conjecture about double trace contributions implies

the same for any primary single trace operator. However, the non-trivial consequence of

the HNEC is the appearance of the same spherical shockwave operator in the OPE (3.10)

for all single trace operators. This universality of the Regge OPE can be interpreted as

the CFT version of the equivalence principle in the bulk.

The form of the OPE (3.10) is fixed by the conformal symmetry and causality of the

boundary CFT and in the dual gravity language, it has an interesting consequence. First,

consider a single light operator O1 with spin ` ≤ 2. The OPE (3.10) implies that one

can create a spherical shockwave in the bulk by inserting the smeared operator Ψ[O1].

The resulting shockwave has an energy ∼ EO1O1 and the bulk metric is identical to the

shockwave geometry obtained from an infinitely boosted AdS-Schwarzschild black hole [58].

Furthermore, the form of the OPE (3.10) also dictates that this process of creating bulk

shockwaves obeys a simple superposition principle. Consider an operator O which is a

linear combination of several low spin operators

O = c1O1 + c2O2 + c3O3 + · · · . (3.12)

The smeared operator Ψ[O] again creates a spherical shockwave in the bulk but now with

an energy ∼ EOO. Therefore, causality of four-point functions of the boundary CFT

translates into a shockwave superposition principle in the bulk.

4 Nitty-gritty of doing the integrals

The aim of the rest of the paper is to derive constraints by evaluating (2.21) for various spin-

ning operators. So, in this section we present a systematic approach of calculating (2.21).

As an example, we will explicitly show the computation of (2.21) for scalars which can

be easily generalized for spinning operators. Then, we briefly sketch the calculation for

the spinning case. This section consists of technical details, so casual readers can skip

this section.
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Let us now introduce the notation:

EO1O2(ρ) ≡ −i lim
B→∞

〈ε1.O1(B) Er=√ρB(0) ε2.O2(B)〉 , (4.1)

where, ε.O(B) and ε.O(B) are defined in (2.14) and (2.15) respectively. EO1O2(ρ) is a

positive function when O1 and O2 are the same operators and ε1 = ε2. This positivity is

equivalent to the holographic null energy condition (2.6):

EOO(ρ) = E(ρ) ≥ 0 . (4.2)

The function EO1O2(ρ) is also closely related to fO1O2(ρ) as defined in (3.7). However,

there is a key difference: EO1O2(ρ) = fO1O2(ρ) only after we impose causality constraints

on EO1O2(ρ).

Let us now evaluate EO1O2(ρ):

EO1O2(ρ) = − iB
d−2

ρ
lim
B→∞

∫ ∞
−∞

dũ

∫
~x2

3≤ρ
dd−2~x3

∫
dτdd−2~y (ρ− ~x2

3)

× 〈ε1.O1(iB,−δ, 0)Tuu(ũ, 0, iB~x3)ε2.O2(i(B + τ), δ, ~y)〉 , (4.3)

where, we have rescaled ~x3 to B~x3 so that the bounds of integration becomes ~x2
3 ≤ ρ.16

Note that we are only smearing one of the operators because the other smearing integral

will only give an overall volume factor. So, the computation of EO1O2(ρ) is reduced to

performing certain integrals over a CFT 3-point function whose form is fixed by conformal

invariance up to constant OPE coefficients.

Order of limits: the expression (4.3) is evaluated by first performing the ũ-integral

using an appropriate contour. Then we take the B →∞ limit, yielding a relatively simple

expression. To perform the smearing integrals, it is convenient to package τ and ~y together

in a (d − 1)-dimensional vector ~k. The resulting expression can be written covariantly

by decomposing the d-dimensional vectors xi and polarization vectors εi into scalars and

(d − 1)-vectors under rotations in (τ -~y)-space that is Rd−1. The smearing integrals can

then be performed in a covariant way using familiar techniques used in Feynman diagram

computations. Finally we perform the (d− 2)-dimensional integral over ~x3. Note that we

have exchanged the order in which we perform integrations.

The advantage of this method is that the spin and scaling dimension of the external and

exchanged operators as well as the space-time dimensions are simply constant parameters in

the integrand and the integrals can in principle be performed for arbitrary values resulting

in general expressions as functions of these parameters.

4.1 Scalar operators

As a demonstration of the formalism in action we will now compute (4.3) for scalar op-

erators. The three point function of interest in this case is entirely fixed by conformal

16For the sake of clarity let us again note that positions of operators O1 and O2 in (4.3) are labelled by

(t, x1, ~x). Whereas, position of the stress tensor operator in (4.3) is labelled by (u, v, ~x).
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invariance [61]

〈O(x1)O(x2)Tµν(x3)〉 =
COOT Iµν

xd−2
23 x2∆O+2−d

12 xd−2
13

, (4.4)

where,

xIJ = |xI − xJ | , Iµν =

(
xµ13

x2
13

− xµ23

x2
23

)(
xν13

x2
13

− xν23

x2
23

)
− x2

12

x2
13x

2
23

ηµν

d
. (4.5)

The OPE coefficient COOT is fixed by the Ward identity

COOT = −∆O
Γ(d/2)d

2πd/2(d− 1)
. (4.6)

We therefore wish to compute

EOO(ρ) = − iCOOTB
d−2

ρ

∫ ∞
−∞

dũ

∫
~x2

3≤ρ
dd−2~x3

∫
dτdd−2~y

(ρ− ~x2
3)Iuu

xd−2
23 x2∆O+2−d

12 xd−2
13

(4.7)

in the large B limit, where points x1, x2 and x3 are given by (4.3).

Performing the ũ-integral: in our coordinates, we find that the factors in the denom-

inator have the form

x2
13 = c1ũ+ c2, x2

23 = c3ũ+ c4 , (4.8)

where ci’s are ũ-independent complex constants and the numerator will in general be a finite

degree polynomial P (ũ) in ũ. If we perform the ũ-integral with the usual iε-prescription,

then the ũ-contour does not enclose any poles (or branch cuts) and the integral vanishes.

Instead, we need to follow a prescription similar to the prescription of [1] to obtain the

operator ordering of (4.3). Whenever the holographic null energy operator appears inside

a correlator, we define the ũ-integral with the ũ-contour such that the ũ-integral in (4.3) is

determined by the residue at the pole due to the operator O1 (in the presence of branch cuts

the integral is determined by the integral of the discontinuity across the branch cut due to

the operator O1). This contour can be motivated in many different ways. In equation (4.3),

both the stress tensor and the operator O2 are smeared over some region. To give a physical

interpretation of the contour, consider centers of these smeared operators:∫ ∞
−∞

dũ〈ε1.O1(iB,−δ)Tuu(ũ, 0)ε2.O2(iB, δ)〉 . (4.9)

In general this ũ-integral has branch cut singularities at u = iB±δ. And the above contour

is equivalent to the prescription of analytic continuation of [1]. Another way to understand

this choice of contour is to perform a π/2 rotation in the Euclidean τ − x1 plane and start

with (2.5) instead of (4.3). Now if we consider the centers of the smeared operators, the

choice of contour for ũ-integral is obvious.
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To summarize, effectively the ũ-integral in (4.3) is given by the contour:

O1O2

u˜

(4.10)

Let us now use this contour to perform integrals of the form:∫ +∞

−∞
dũ

P (ũ)

(c1ũ+ c2)a1(c3ũ+ c4)a2
≡
∫
γ
dũ

P (ũ)

(c1ũ+ c2)a1(c3ũ+ c4)a2
, (4.11)

where P (u) is a polynomial in u. These integrals can be easily evaluated by using

the identity ∫
γ
dũ

1

(ũ+ c2)p1(c4 − ũ)p2
=

2πi

(c4 + c2)p1+p2−1

Γ(p1 + p2 − 1)

Γ(p1)Γ(p2)
, (4.12)

where, p1 and p2 are positive numbers with p1 + p2 > 1. So, now performing the ũ-integral

and taking the large-B limit we find,17

EOO(ρ) =
π22d−3Γ(d+ 1)COOT

ρΓ
(
d
2 + 1

)2 ∫
~x2

3≤ρ
dd−2~x3

∫
dd−1~p

(~x3 · ~x3 − ρ)(1− ~x3 · ~x3)1−d

(~p2 + ~p · ~L)1−d/2+∆O(~p · ~L)d−1
,

(4.13)

where we have made a change of variables from (τ, ~y) to ~p and defined the following (d−1)-

dimensional vectors running over time and d− 2 transverse coordinates (τ, ~y)

~k = (τ, ~y) ,

~p = ~k−
~L

2
,

~L =
8δ~x3 + 4iδ(~x3 · ~x3 + 1)~T

~x3 · ~x3 − 1
,

~T = (1,~0) ,

~x3 = (0, ~x3) . (4.14)

Before we proceed, let us note that if one starts with (2.5) instead of (4.3), the ũ-integral

should be performed in a similar way. After taking the large-B limit, one ends up with

exactly (4.13) and hence the rest of the calculation is identical.

17Naively it seems that ~p integral is divergent near ~p→ 0. However ~p is a complex valued vector and the

integration region is shifted in the imaginary direction. In practice this means that the integration must be

performed by analytic continuation using appropriate choice of contours to ensure convergence as described

in appendix C.
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Performing the ~p-integral: it turns out that even in the most general correlation

function, the smearing integrals reduce to the form∫
dd−1~p

∏
i ~p.~vi

(~p2 + ~p · ~L)p1(~p · ~L)p2
, (4.15)

where ~vi are constant vectors. These integrals have closed form expressions in the most

general case and the relevant results are summarized in appendix C. In this example,

performing the smearing integrals yields18

EOO(ρ) =
πd/2Γ

(
d+1

2

)
22(d−∆O− 3

2)Γ
(
−d

2 + ∆O + 3
2

)
COOT

ρΓ
(
d
2 + 1

)
Γ (∆O + 1)

∫
~x2

3≤ρ
dd−2~x3

~x3 · ~x3 − ρ
(1− ~x3 · ~x3)d−1

.

(4.16)

Performing the ~x3 integral: the most general integrals of the kind that appeared in

our last expression, after going to the radial coordinate, can be done using∫ √ρ
0

dx
(
1− x2

)a
xb
(
x2 − ρ

)c
=
ρ
b+1

2 Γ
(
b+1

2

)
(−ρ)cΓ(c+ 1) 2F1

(
−a, b+1

2 ; b+3
2 + c; ρ

)
2Γ
(
b+3

2 + c
) ,

(4.17)

where, b, c > −1 and 0 < ρ < 1. Using this identity we finally obtain

EOO(ρ) = −
πd−1ρ

d
2
−1COOTΓ

(
d+1

2

)
2F1

(
d
2 − 1, d− 1; d2 + 1; ρ

)
4d−∆O− 3

2 Γ
(
−d

2 + ∆O + 3
2

)
Γ
(
d
2 + 1

)2
Γ (∆O + 1)

.

(4.18)

For scalars, the causality condition EOO(ρ) ≥ 0 is already satisfied because of the Ward

identity. Note that EOO(ρ) satisfies the relation (3.9) which is the first check of the UV/IR

connection.19 As described in the previous section the lightcone limit is obtained by tak-

ing ρ→ 0:

EOO(ρ) = −
πd−1ρ

d
2
−1Γ

(
d+1

2

)
4d−∆O− 3

2COOTΓ
(
−d

2 + ∆O + 3
2

)
Γ
(
d
2 + 1

)2
Γ (∆O + 1)

+O(ρd/2). (4.19)

The “bulk-point” limit20 is obtained by taking the limit ρ→ 1 and in d ≥ 4, we obtain:

EOO(ρ) = −
dπd−1Γ

(
d+1

2

)
4d−∆O− 5

2COOTΓ
(
−d

2 + ∆O + 3
2

)
(d− 3)Γ

(
d
2 + 1

)2
Γ (∆O + 1) (1− ρ)d−3

+O(1− ρ)4−d. (4.20)

In d = 3, there is a logarithmic divergence in the limit ρ→ 1

EOO(ρ) =
4

5
2
−∆OπCOOT

3∆O
ln(1− ρ) +O(1) . (4.21)

18From now on we set δ = 1 for simplicity. In the final expression one can restore δ back by dimensional

analysis.
19Let us recall that for scalars EOO(ρ) = fOO(ρ).
20This bulk point limit is similar to the bulk point limit studied in [59], however, it is not exactly the

same. Our bulk point limit is in fact the limit discussed in [44] in the context of causality.
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4.2 Spinning operators

It was shown in [60, 61] that the most general 3-point functions of symmetric trace-

less spinning operators in a CFT can be written as a sum over certain elementary

spinning structures:

〈Φ1Φ2Φ3〉 =
∑

{n23,n13,n12}

CΦ1Φ2Φ3
n23,n13,n12

V `1−n12−n13
1,23 V `2−n12−n23

2,13 V `3−n13−n23
3,12 Hn12

12 Hn13
13 Hn23

23

(x2
12)

1
2

(h1+h2−h3)(x2
13)

1
2

(h1+h3−h2)(x2
23)

1
2

(h2+h3−h1)
,

(4.22)

where CΦ1Φ2Φ3
n23,n13,n12

are constant coefficients and hi ≡ ∆i + `i. The structures are given by

Hij ≡ x2
ijεi · εj − 2(xij · εi)(xij · εj), Vi,jk ≡

x2
ijxik · εi − x2

ikxij · εi
x2
jk

, (4.23)

where, xµij = (xi−xj)µ and εi is a null polarization vector contracted with spinning indices

of Φi in the following way:

(εµεν · · · ) Φµν··· ≡ ε.Φ . (4.24)

For a traceless symmetric tensor, one can easily convert the null polarization εµεν · · · into

an arbitrary polarization tensor εµν··· by using projection operators [60].

The sum in (4.22) is over all triplets of non-negative integers {n12, n13, n23} satisfying

`1 − n12 − n13 ≥ 0 , `2 − n12 − n23 ≥ 0 , `3 − n13 − n23 ≥ 0 . (4.25)

For a general correlation function, the coefficients CΦ1Φ2Φ3
n23,n13,n12

are all independent param-

eters, however imposing conservation equations or Ward identities will impose relations

amongst these coefficients.

From equation (4.22), we see that the most general integrals in EO1O2(ρ) are of the form∫
dũ

∫
~x2

3≤ρ
dd−2~x3

∫
dτdd−2~y

(ρ− ~x2
3)V a1

1,23V
a2

2,13V
a3

3,12H
b1
12H

b2
13H

b3
23

(x2
12)

1
2

(h1+h2−h3)(x2
13)

1
2

(h1+h3−h2)(x2
23)

1
2

(h2+h3−h1)
, (4.26)

where the exponents in the numerator, ai and bi, are positive integers. Polarizations are

given by (in d ≥ 4)21

εµ1 = (1, ξ1, ~ε1,⊥) , εµ2 = (1, ξ2, ~ε2,⊥) , εµ3 =
1

2
(1,−1,~0) , (4.27)

with ξ1,2 = ±1 and ~ε1,⊥
2 = ~ε2,⊥

2 = 0.

Angular integrals: in the case where the external operators are non-scalars, similar

to (4.14) we also need to introduce (d−1)-dimensional vectors made out of the polarization

vectors εµ1 , εµ2 :

~ε1,⊥ = (0, ~ε1,⊥), ~ε2,⊥ = (0, ~ε2,⊥). (4.28)

21We will treat the d = 3 case separately.
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Now after ~p-integrals, we will have to perform angular integrals for ~x3 which is of the form∫
Sd−3

dΩ̂(~ε1,⊥ · ~x3)n(~ε2,⊥ · ~x3)m =
π
d−2

2 21−n|~x3|2nΓ(n+ 1)(~ε1,⊥ · ~ε2,⊥)nδm,n

Γ
(
d−2

2 + n
) , (4.29)

where dΩ̂ is the standard measure on Sd−3 and we have used the fact that ~ε2,⊥
2 = ~ε1,⊥

2 = 0.

Rest of the computation is identical to the scalar case and can be efficiently automated in

Mathematica.

5 Bounds on 〈TTT 〉, 〈JJT 〉, and 〈O`=1,2O`=1,2T 〉

In this section, we will use the methods described above to derive constraints in d ≥ 4.

These constraints encompasses, and generalizes, the constraints obtained in [1, 8, 44–46]

by studying various four-point functions in holographic CFTs. Note that the d = 3 case is

more subtle which we will discuss in a separate section.

5.1 〈JJT 〉

We start with EJJ where J is a spin-1 conserved current. The 〈JJT 〉 three-point function

is given in appendix A.1. Following our formalism, the leading term in the limit ρ → 1 is

given by

EJJ(ρ) ∼
−2−d−2πd−

1
2

(
d− 2

(
λ2 + 1

))
Γ
(
d−1

2

)
(4nf − ns)

Γ
(
(d2 + 1

)2
Γ
(
d
2

)
(1− ρ)d−1

+O
(

1

(1− ρ)2−d

)
(5.1)

up to some positive overall coefficient. Our choice of polarizations is given in equation (4.27)

with εµ2 = εµ1 and

λ2 =
1

2
~ε2,⊥ · ~ε2,⊥ ≥ 0 . (5.2)

As shown in the appendix D, given our choice of polarization, different powers of λ2 corre-

spond to independent spinning structures and decomposition of SO(d−1, 1) to representa-

tions under SO(d− 2). Therefore positivity of EJJ implies that coefficients of each powers

of λ2 must be positive. Hence, from equation (5.1) we obtain

ns = 4nf +O
(

cJ
∆2

gap

)
=

d(d− 2)

Sd(d− 1)
cJ +O

(
cJ

∆2
gap

)
, (5.3)

where, in the last equation we have used the Ward identity (A.6). The ∆gap correction in

the above equation is computed following (2.29). All subleading contributions to (5.1) are

proportional to ns
(
2λ2 + 1

)
, a manifestly positive quantity. Therefore, subleading terms

of EJJ(ρ) do not lead to new constraints. Furthermore, it is obvious from (5.3) that the

three-point function 〈JJT 〉 is completely determined by the 〈JJ〉 two-point function. In

fact, this is a general feature of CFTs with a large central charge and a large gap.

After imposing the constraint (5.2), we can compute fJJ(ρ):

fε1·J ε2·J(ρ) =
2−dπd−

1
2 Γ
(
d+1

2

)
Γ
(
d
2 + 1

)2
Γ
(
d
2

)ns (1 + ~ε1,⊥ · ~ε2,⊥) ρ
d
2
−1

2F1

(
d

2
− 1, d− 1;

d

2
+ 1; ρ

)
(5.4)

which is consistent with the equation (3.9).
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In dual gravity language, the three-point function 〈JJT 〉 arises from the following

action of a massless gauge field∫
dd+1x

√
−g

[
−FµνFµν + αAAhWµναβF

µνFαβ
]
, (5.5)

where, W is the Weyl tensor.22 The coefficient αAAh can be written in terms of ns and nf :

αAAh ∼
ns − 4nf

ns + 4(d− 2)nf
∼ 1

∆2
gap

. (5.6)

Hence, αAAh should be suppressed by the scale of new physics. The power dependence of

the suppression αAAh ∼ 1
∆2

gap
agrees with the result obtained from causality of the effective

field theory in the bulk [13].23

5.2 〈TTT 〉

Let us now consider ETT (ρ) where 〈TTT 〉 three-point function is given in appendix A.2.

Following our formalism, the leading term in the limit ρ→ 1 is given by

ETT (ρ) ∼
(−1)d41−dπdΓ(d)

(
−8dλ2 + (d− 2)d+ 8λ4

)
(d− 2)Γ

(
d
2 + 1

)2
Γ
(
d
2 + 2

)
Γ
(
d
2

)
(1− ρ)d+1

×
(
(d− 2)d2(4ñf − ñs)− 64(d− 3)ñv

)
+O

(
1

(1− ρ)d

)
(5.7)

up to some overall positive coefficient. Polarizations are given by equation (4.27) with

εµ2 = εµ1 and λ is defined in equation (5.2). Positivity of ETT for all powers of λ demands

that we must have

ñv =
(d− 2)d2(4ñf − ñs)

64(d− 3)
+O

(
cT

∆4
gap

)
. (5.8)

After imposing this condition, the next leading term becomes

ETT (ρ) ∼
(−1)d−121−d(d+ 1)πd−

1
2 Γ
(
d−3

2

)
(d− 1)Γ

(
d
2 + 1

)
Γ
(
d
2

)2
(1− ρ)d−1

(
d2−4(d−1)λ4 + 2(d−3)(d−1)λ2 − 5d+6

)
× (2(d− 1)ñf − (d− 2)ñs) +O

(
1

(1− ρ)d

)
. (5.9)

Positivity then implies

ñf =
(d− 2)ñs
2(d− 1)

+O
(

cT
∆2

gap

)
,

ñv =
(d− 2)d2ñs
64(d− 1)

+O
(

cT
∆2

gap

)
,

ñs =
cT (d− 1)

32(d− 2)(d+ 1)Sd
+O

(
cT

∆2
gap

)
, (5.10)

22The Weyl tensor is given by Wµνρσ = Rµνρσ− 1
D−2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+ 1

(D−1)(D−2)
Rgµ[ρgσ]ν , where

D = d+ 1.
23Here we are assuming RAdS = 1.
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where, we have also used the Ward identity (A.14) to derive the last equation. After impos-

ing these constraints, the positivity of ñs guarantees that the rest of the terms are always

positive and hence no new constraints are obtained from subleading terms. Note that

the three-point function 〈TTT 〉 is completely determined by the 〈TT 〉 two-point function.

Furthermore, we can now compute our fε1·T ε2·T (ρ) function

fε1·T ε2·T (ρ) =

(
(d− 1)(~ε1,⊥ · ~ε2,⊥)2 + 2(d− 1)~ε1,⊥ · ~ε2,⊥ + d− 2

)
(d− 1)2Γ

(
d
2 − 1

)
Γ
(
d
2 + 1

)
Γ
(
d
2

)
× ñsπ

d−1/225−dΓ

(
d+ 3

2

)
ρ
d
2
−1

2F1

(
d

2
− 1, d− 1;

d

2
+ 1; ρ

)
(5.11)

which is in agreement with the relation (3.9) indicating that the Regge OPE of smeared

operators is indeed universal.

On the gravity side, this constrains higher derivative correction terms in the pure grav-

ity action that contribute to three point interactions of gravitons. These higher derivative

correction terms can be parametrized as

S = Md−1
Pl

∫
dd+1x

√
g
[
R− 2Λ + α2WµναβW

µναβ + α4WµναβW
µνρσWρσ

αβ
]
. (5.12)

Note that in case of vacuum AdS, Weyl tensor vanishes. Other terms are encoding the

most general form of three-point interaction for gravitons. Coupling constants α2 and α4

are related to the coefficients ñs, ñf and ñv. In particular, constraints (5.10) translate into

α2 . 1
∆2

gap
, α4 . 1

∆4
gap

(for d ≥ 4) which is in agreement with the expectation from bulk

causality [13].

Conformal trace anomaly in 6d. In d = 4, the causality constraints (5.10) can be

rewritten as a statement about central charges: |a−c|c . 1/∆2
gap. There is a similar relation

between trace anomaly coefficients in d = 6. In particular, the conformal trace anomaly in

d = 6 can be written as [70–73]

〈Tµµ 〉 = 2a6E6 + c1I1 + c2I2 + c3I3 (5.13)

up to total derivative terms which can be removed by adding finite and covariant counter-

terms in the effective action. In equation (5.13), a6, c1, c2, c3 are 6d central charges and

I1 = WγαβδW
αµνβW γδ

µ ν ,

I2 = W γδ
αβ W µν

γδ W αβ
µν ,

I3 = Wαγδµ

(
∇2δαβ + 4Rαβ −

6

5
Rδαβ

)
W βγδµ ,

E6 =
1

384(2π)3
δµ1µ2µ3µ4µ5µ6
ν1ν2ν3ν4ν5ν6

Rν1ν2
µ1µ2

Rν3ν4
µ3µ4

Rν5ν6
µ5µ6

. (5.14)

The a6 coefficient can be determined only from the stress tensor four-point function and

hence (5.10) does not constrain a6. However, c1, c2, c3 are related to the stress tensor three-

point function and hence constraints (5.10) can be translated into constraints on central
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charges. In particular, using the result of [74] for Einstein gravity, we can easily show that

c1

c3
= −12 +O

(
1

∆2
gap

)
,

c2

c3
= −3 +O

(
1

∆2
gap

)
. (5.15)

Note that the relations between c1, c2, c3 are exactly what is expected for (2, 0) super-

symmetric theories. For these theories, invariants I1, I2, I3 can be combined into a single

super-invariant [75–77] which leads to the relation: c1 = 4c2 = −12c3 [49]. This rela-

tion between c1, c2, c3 was first derived in [72] for the free (2, 0) tensor multiplet. On the

other hand, the same relation also holds for strongly coupled theories with a supergravity

dual [78].

5.3 〈O`=1O`=1T 〉

Now we derive bounds on non-conserved spin-1 operators. The three point function

〈O`=1O`=1T 〉 has five OPE constants {C0,0,0, C0,0,1, C0,1,0, C1,0,0, C1,1,0}. Imposing per-

mutation symmetry and conservation equation reduces this number to three independent

coefficients. The leading contribution in the limit ρ→ 1 is

EOO(ρ) ∼ −
πd−1(1− ρ)1−d(d− ~ε⊥ · ~̄ε⊥ − 2)Γ

(
d+1

2

)
22d−2∆O−3Γ

(
−d

2 + ∆O + 3
2

)
(d− 1)dσΓ

(
d
2

)2
(d− 2 (∆O + 1)) Γ (∆O + 2)

×
(
C1,1,0

(
d2 + d (2∆O (∆O + 1)− 1)− 2 (∆O (∆O + 3) + 1)

)
−2(d− 1)C0,0,1 + C0,1,0 (4∆O + 2)) , (5.16)

where we have used the polarizations ε = (1, ξ, ~ε⊥) and ε̄ = (−1,−ξ, ~̄ε⊥) with ξ = ±1.

Imposing positivity on the coefficients of powers of ~ε⊥ · ~̄ε⊥ we find

C1,1,0 =
2(d− 1)C0,0,1 − 2C0,1,0 (2∆O + 1)

d2 + d (2∆O (∆O + 1)− 1)− 2 (∆O (∆O + 3) + 1)
+O

(
1

∆2
gap

)
. (5.17)

After imposing this condition the next leading term is

EOO(ρ) ∼
πd−14d−∆O−1ξ

(
2C0,0,1 ((d− 1)∆O − 1) + C0,1,0

(
d− 2∆2

O

))
dΓ
(
d
2

)2
(d2 + d (2∆O (∆O + 1)− 1)− 2 (∆O (∆O + 3) + 1)) Γ (∆O + 1)

× 1

(1− ρ)d−2
Γ

(
d+ 1

2

)
Γ

(
−d

2
+ ∆O +

3

2

)
. (5.18)

As described previously, the above expression must be positive for ξ = ±1 resulting in

C0,1,0 =
2C0,0,1 (d∆O −∆O − 1)

2∆2
O − d

+O
(

1

∆gap

)
. (5.19)

After imposing the condition, the resulting expression

−
dπd−1C0,0,1Γ

(
d+1

2

)
22d−2∆O−5Γ

(
−d

2 + ∆O + 3
2

) (
d−∆O(~ε⊥ · ~̄ε⊥ + 2) + ~ε⊥ · ~̄ε⊥

)
(1− ρ)d−3(d− 3)Γ

(
d
2 + 1

)2 (
d− 2∆2

O

)
Γ (∆O)

+O
(

1

(1− ρ)d−4

)
(5.20)

has only one independent coefficient C0,0,1 and is positive if and only if C0,0,1 < 0.
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Finally, imposing causality constraints and conservation equation result in the follow-

ing relations

C0,0,1 =
C0,0,0

(
d− 2∆2

O

)
d2 − 4d∆O + 4∆O

+O
(

1

∆gap

)
,

C0,1,0 = C1,0,0 = −2C0,0,0 (d∆O −∆O − 1)

d2 − 4d∆O + 4∆O
+O

(
1

∆gap

)
,

C1,1,0 =
2C0,0,0

d2 − 4d∆O + 4∆O
+O

(
1

∆gap

)
(5.21)

and hence there is only one independent coefficient which is related to the two-point func-

tion 〈O`=1O`=1〉 by the Ward identity. Similarly, we can show that after imposing the

causality constraints

fε1·O ε2·O(ρ) = − Γ
(
d+1

2

)
22d−2∆O−2C0,0,1Γ

(
−d

2 + ∆O + 3
2

)
(−d+ 2∆O + (∆O − 1) ~ε1,⊥ · ~ε2,⊥)

Γ
(
d
2 + 1

)2 (
2∆2
O − d

)
Γ (∆O)

× πd−1ρ
d
2
−1

2F1

(
d

2
− 1, d− 1;

d

2
+ 1; ρ

)
(5.22)

which is consistent with the equation (3.9).

In the gravity side, the causality constraints imply that the action for a massive spin-1

field in the bulk must have the form∫
dd+1x

√
−g

[
−FµνFµν +m2AµA

µ + · · ·
]
, (5.23)

where dots represent higher derivative terms (for example WµναβF
µνFαβ , AµAνR

µν) which

must be suppressed by scale of new physics in the gravity side.

5.4 〈O`=2O`=2T 〉

Similarly, we can find bounds for non-conserved spin-2 operator O`=2. For simplicity we

quote the results in 4 dimensions but it can be easily generalized in general d. We assume

that the three-point function 〈O`=2TT 〉 vanishes so that it does not appear as an exchange

operator in the Regge four-point function. But the three-point function 〈O`=2O`=2T 〉 is

non-vanishing and to begin with it has 11 coupling constants. Permutation symmetry and

conservation equation ensure that only 6 of these coefficients are independent. Furthermore,

causality demands that only one of these coefficient can be independent. In particular, the

leading contribution in the limit ρ→ 1 is given by

EOO(ρ) ∼ − π423−4∆O (∆O + 1) (∆O + 2) Γ (2∆O − 2) ((~ε⊥ · ~̄ε⊥ − 8)~ε⊥ · ~̄ε⊥ + 4)

(1− ρ)5Γ (∆O + 3) 2

× (2C0,1,0 (2∆O + 3) (∆O (∆O + 3) + 6)− 24C0,1,1 (2∆O + 3) + 72C0,0,2

+ 36 (2C0,2,0 + C1,1,0 − 6C1,1,1) + ∆O (−2C0,2,0 (∆O + 1) (∆O (3∆O + 19) + 18)

+ C1,1,0 (∆O (∆O (3∆O + 14) + 43) + 60)− 24C1,1,1 (3∆O + 7))) . (5.24)
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Following the same procedure as for spin 1 and including conservation conditions

we find

C0,0,1 =
C0,0,0

(
3∆3
O − 2∆2

O − 15∆O + 18
)

4
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
,

C0,0,2 =
C0,0,0

(
∆4
O − 5∆2

O + 8
)

16
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
,

C0,1,0 = C1,0,0 =
C0,0,0

(
6∆2
O − 9∆O − 1

)
2
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
,

C0,1,1 = C1,0,1 =
C0,0,0∆O

(
3∆2
O + 4∆O − 15

)
8
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
,

C0,2,0 = C2,0,0 =
C0,0,0

(
3∆2
O − 2

)
4
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
,

C1,1,0 =
C0,0,0

(
3∆2
O + 1

)
2
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
,

C1,1,1 =
C0,0,0∆2

O
2
(
3∆2
O − 9∆O + 7

) +O
(

1

∆gap

)
. (5.25)

Imposing these conditions we find that the subleading term

EOO(ρ) ∼ − 3π44−2∆O−1 (∆O − 1) Γ (2∆O − 1)C0,0,0

(1− ρ) (3 (∆O − 3) ∆O + 7) Γ (∆O) 2

×
(
4 (∆O − 3) (∆O − 2) + (∆O − 1) ~ε⊥ · ~̄ε⊥

(
∆O(~ε⊥ · ~̄ε⊥ + 4)− 8

))
, (5.26)

is determined up to one independent coefficient C0,0,0 < 0. This coefficient is related to

the coefficient that appears in the two-point function 〈O`=2O`=2〉 by the Ward identity.

Furthermore, after imposing all of the constraints we find that

fε1·O ε2·O(ρ) = − 3π44−2∆O− 1
2 (∆O − 1) Γ (2∆O − 1) ρ

(3 (∆O − 3) ∆O + 7) Γ (∆O) 2(1− ρ)
C0,0,0

× (4(∆O − 3)(∆O − 2) + (∆O − 1)~ε1,⊥ · ~ε2,⊥(4∆O + ∆O~ε1,⊥ · ~ε2,⊥ − 8))

(5.27)

which is consistent with the universality of the Regge OPE of smeared operators.

In the gravity dual description, there are also 6 possible types of vertices appearing in

the on-shell three-point function of 2 massive spin-2 particles with a single graviton. The

CFT result shows that the final answer is fixed up to a constant which is in agreement with

the gravity result. Furthermore, requiring causality in the bulk [13, 64] dictates that the

three-point function is determined up to a constant corresponding to the minimal coupling

between massive spin 2 fields and a graviton. The vertex has the following form

((ε2 · ε3)(ε1 · p2) + (ε1 · ε3)(ε2 · p3) + (ε1 · ε2)(ε3 · p1))2 , (5.28)

where the momenta are denoted by p1, p2, p3, satisfying conservation and on-shell condi-

tions: pµ1 + pµ2 + pµ3 = 0, p2
1 = −m2, p2

2 = −m2, p2
3 = 0 and εi denote polarization tensors.

For a more complete analysis of vertices and bulk dual, see [63, 64].
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6 Bounds from interference effect

In this section, we will leverage the holographic null energy condition to derive bounds

on the off-diagonal matrix elements of the operator Er. To this end we will consider

superposition states created by smeared local operators:

−i lim
B→∞

〈(ε1.O1(B) + ε2.O2(B))Er=√ρB(ε1.O1(B) + ε2.O2(B))〉 ≥ 0 (6.1)

where O1 and O2 are arbitrary operators with or without spin (`1, `2 ≤ 2). This inequality

can be expressed as semi-definiteness of the following matrix(
EO1O1(ρ) EO1O2(ρ)

EO1O2(ρ)∗ EO2O2(ρ)

)
� 0 , (6.2)

where, we are using the notation (4.1). The above condition can also be restated in the

following form

|EO1O2(ρ)|2 ≤ EO1O1(ρ)EO2O2(ρ) , 0 < ρ < 1 . (6.3)

This is very similar to the interference effects in conformal collider experiment as studied

in [7]. In particular, in the limit ρ→ 0, the above relation is equivalent to the interference

effects of [7]. However, we are interested in the limit ρ→ 1 in which the above inequality

imposes stronger constraints on three-point functions 〈O1O2T 〉. These interference bounds

are exactly the same as the bounds obtained in [8] by studying mixed system of four-point

functions in the Regge limit in holographic CFTs.

As shown in the previous section, in d ≥ 4 after imposing positivity of EO1O1(ρ) we have

EO1O1(ρ) ∼ O(1− ρ)3−d . (6.4)

Similarly,

EO2O2(ρ) ∼ O(1− ρ)3−d . (6.5)

Therefore, EO1O2(ρ) can not grow faster than O(1 − ρ)3−d in the limit ρ → 1, or else

causality will be violated. However, just from dimensional argument one can show that, in

general

EO1O2(ρ) ∼ 1

(1− ρ)−3+d+`1+`2

∑
n=0,1,···

cn(1− ρ)n (6.6)

and hence

cn = O

(
1

∆`1+`2−n
gap

)
, n = 0, 1, · · · , `1 + `2 − 1 . (6.7)

Whereas, c`1+`2 is constrained by (6.3).

The causality conditions (6.7) are too constraining. In fact, from simple counting, one

can argue that constraints (6.7) require all three-point functions of the form 〈TO1O2〉 to

vanish. Constraints (6.7) lead to at least `1 + `2 linear algebraic equations among the OPE
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coefficients of 〈TO1O2〉. However, for low spin operators (` ≤ 2), the number of independent

OPE coefficients of 〈TO1O2〉 is always less than `1 + `2. This immediately suggests

〈TO1O2〉 = 0 , (6.8)

when O1 and O2 are different operators. Explicit computations, as we will show next,

confirm that this is indeed true when O1, O2 are single trace primary operators. All our

results are consistent with the interference bounds obtained in [8] by using the conformal

Regge theory.

Bound on 〈TTψ〉. As an example, we will obtain bounds on the OPE coefficient CTTψ
of 〈TTψ〉 in d ≥ 4 where ψ is a light scalar operator. The polarization of T is still given

by (1, ξ, ~ε⊥). Now, from (6.2) we have(
O(1− ρ)3−d c0(1− ρ)1−d +O(1− ρ)2−d

c0(1− ρ)1−d +O(1− ρ)2−d O(1− ρ)3−d

)
� 0. (6.9)

Positivity of the eigenvalues of this matrix implies

c0 ∼
πd−1Γ

(
d
2 −

1
2

)
2d−∆ψ−5e−

1
2
iπ(d+∆ψ)Γ

(
∆ψ

2 + 3
2

)
(1− ρ)d−1Γ

(
∆ψ

2 + 2
)

Γ
(
d− ∆ψ

2

)
Γ
(
d
2 +

∆ψ

2 + 1
)CTTψ

∼ O
(

1

∆2
gap

)
(6.10)

and hence

〈TTψ〉 . O
(√

cT
∆2

gap

)
(6.11)

for all values of ∆ψ for which the coefficient in front of CTTψ does not vanish. Note that

the coefficient in front of CTTψ vanishes when ∆ψ = 2d + 2n which is consistent with the

fact that there are double trace stress tensor operators [TT ]`=0,n which have spin 0. This

agrees with the result obtained in [8].

In the dual gravity picture, 〈TTψ〉 vanishes for a minimally coupled scalar field in AdS.

However, in the bulk we can write higher derivative interactions between a scalar and two

gravitons which give rise to 〈TTψ〉 three-point function. In particular, let us consider the

bulk action

S =
Md−1

Pl

2

∫
dd+1x

√
g
[
(∇Ψ)2 −m2Ψ2

]
+Md−1

Pl αΨhh

∫
dd+1x

√
gΨW 2 . (6.12)

In d ≥ 4, the scalar-graviton-graviton vertex of the above action represents the most general

bulk interaction which gives rise to the OPE coefficient CTTψ [7]:

CTTψ√
cT

= αΨhh
8πd/2(d− 1)

√
2d√

d+ 1 Γ(d/2)
√
f(∆ψ)

(6.13)
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where, the function f(∆) is given in [7]. Hence, αΨhh should be suppressed by the scale of

new physics. In particular, the causality constraint (6.11) translates into αΨhh . 1
∆2

gap
.24

Of course, this is stronger than the constraint obtained in [7]. In [7], constraints were

obtained by considering interference effects in general CFTs. However, as shown in (6.7),

interference effects from the holographic null energy condition lead to stronger constraints.

Bound on 〈TTO`=2〉. Let us now obtain bounds on the three-point function 〈TTO`=2〉.
This case is more subtle because a nonzero 〈TTO`=2〉 implies that the operator O`=2 will

contribute to a four-point function in the Regge limit as an exchange operator. So, if

〈TTO`=2〉 6= 0, the holographic null energy condition is no longer true. However, simpli-

fication emerges if we assume that there is at least one heavy scalar in the theory ψH for

which 〈ψHψHO`=2〉 = 0. In this case, we can start with the operator ψH in (2.13) and

derive the holographic null energy condition even in the presence of O`=2. So, with this ad-

ditional assumption, we can calculate ETO`=2
(ρ) which is a straight forward generalization

of the scalar case. Furthermore, the interference condition (6.7) again leads to

〈TTO`=2〉 . O
(√

cT
∆gap

)
. (6.14)

Let us note that the above bound is not applicable when the dimension of O`=2 satisfies:

∆O`=2
= 2d + 2 + 2n. This is consistent with the fact that there are double trace stress

tensor operators [TT ]`=2,n with spin 2. With this caveat, we conclude that the presence

of a single heavy scalar operator ψH guarantees that the three-point function 〈TTO`=2〉
is suppressed by the gap for all single trace O`=2. An immediate consequence is that the

operator O`=2 can not contribute as an exchange operator to four-point functions 〈TTOO〉
in the Regge limit for any O.

Before we proceed, let us also note that we expect that the same conclusion is true

even without the presence of ψH . We believe causality of the four-point function 〈TTTT 〉,
requires that 〈TTO`=2〉 must be suppressed by the gap for all single trace O`=2. However,

a detailed analysis requires the computation of 〈TTTT 〉 using the conformal Regge theory

which we will not attempt in this paper.

7 Constraints on CFTs in d = 3

In this section, we will use the holographic null energy condition in (2 + 1)-dimensions to

constrain various three-point functions of (2 + 1)-dimensional CFTs. Three-dimensional

CFTs are special because of the presence of various parity odd structures. However, we

again show that CFTs in d = 3 with large central charge and a large gap exhibit universal,

gravity-like behavior. Furthermore, holography enables us to translate the CFT bounds in

to constraints on (3 + 1)-dimensional gravitational interactions. This, as we will discuss in

the next section, has important consequences in cosmology.

24Note that Γ
(
d− ∆ψ

2

)
in equation (6.10) is canceled by

√
f(∆ψ) and hence the constraint αΨhh . 1

∆2
gap

is valid for any mass of the scalar field Ψ.
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There is another aspect of d = 3 which is different from the higher dimensional case.

For d ≥ 4, we have seen that holographic dual of a bulk derivative is 1/∆gap. This

observation is consistent with the proposal of [8]. However, we will show that in d = 3,

this simple relationship between bulk derivative and ∆gap has a logarithmic violation.

7.1 〈TTT 〉

In (2 + 1) dimensions, 〈TTT 〉 has three tensor structures: two parity even structures with

coefficients ñs and ñf , and one parity odd structure with coefficient ñodd (see appendix B).

We start with the holographic null energy condition (2.21) with O being the stress-tensor

T . In the limit ρ→ 1, the leading contribution to ETT (ρ) goes as 1
(1−ρ)4 , the coefficient of

which should always be positive. In particular,

ETT (ρ)|Even ∼
32π (4ñf − ñs)

5(1− ρ)4

(
e2

0

(
ē2

0 + ē2
2

)
− 4e2e0ē0ē2 + e2

2

(
ē2

0 + ē2
2

))
,

ETT (ρ)|Odd ∼
8π2iñodd

(
e2

0ē0ē2 − e2e0

(
ē2

0 + ē2
2

)
+ e2

2ē0ē2

)
15(1− ρ)4

, (7.1)

where we have defined

ε = (e0, e1, e2) , ε̄ = (ē0, ē1, ē2). (7.2)

The total expression can be conveniently written as

ETT (ρ) ∼
8π
(
−iπñoddAB + 12 (4ñf − ñs)

(
A2 +B2

))
15(1− ρ)4

, (7.3)

where

A ≡ |e0|2 − |e2|2 , B ≡ e2e
∗
0 − e0e

∗
2 . (7.4)

To find constraints on the coefficients, we first choose

ε = (i,
√
−2, 1)⇒ (4ñf − ñs) ≥ 0,

ε = (0, i, 1)⇒ (4ñf − ñs) ≤ 0, (7.5)

implying that ñs = 4ñf . Imposing this condition we find constraints on the parity odd

structure by considering

ε = (1 + i,
√
−1 + 2i, 1)⇒ ñodd ≥ 0,

ε = (−1 + i,
√
−1− 2i,−1)⇒ ñodd ≤ 0, (7.6)

implying that we must have ñodd = 0 to satisfy positivity. Furthermore, after imposing

these constraints, one can check that fε0·T ε1·T (ρ) is still given by the equation (5.11)

with d = 3.

Let us now estimate the size of the corrections to the above constrains if we include

higher spin operators with large scaling dimensions, but not large enough to compete with

the cT expansion. We can repeat the argument of section 2.3 for d = 3, yielding

|ñs − 4ñf |
cT

.
ln ∆gap

∆4
gap

,
|ñodd|
cT

.
ln ∆gap

∆4
gap

. (7.7)
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On the gravity side, similar to the higher dimensional case, this constrains higher

derivative correction terms in the pure gravity action that contribute to three point in-

teractions of gravitons. However, in (3 + 1)−dimensional gravity there are certain cru-

cial differences. First, the four-derivative terms do not contribute to 〈TTT 〉. Second, in

(3 + 1)−dimensional gravity, there is a parity odd higher derivative term which gives rise

to ñodd. In particular, the higher derivative correction terms can be parametrized as

S = M2
Pl

∫
d4x
√
g
[
R− 2Λ + α4WµναβW

µνρσWρσ
αβ + α̃4W̃µναβW

µνρσWρσ
αβ
]
, (7.8)

where, W̃µναβ = 1
2εµνρσW

ρσ
αβ . Coupling constants α4 and α̃4 are related to the co-

efficients ñs − 4ñf and ñodd respectively.25 Hence, causality constraints translate into

α4 ∼ ln ∆gap

∆4
gap

, α̃4 ∼ ln ∆gap

∆4
gap

. It was proposed in [8] that holographic dual of a bulk derivative

is 1/∆gap. However, as we see here, for (3 + 1)−dimensional gravity, there is a logarithmic

violation.

7.2 〈JJT 〉

Similarly, in (2+1) dimensions 〈JJT 〉 has parity even and odd structures (see appendix B)

with the leading terms in the limit ρ→ 1 given by

EJJ(ρ)|Even ∼ −
π (e0ē0 − e2ē2) (4nf − ns)

9(1− ρ)2
,

EJJ(ρ)|Odd ∼
2iπ2nodd (e2ē0 − e0ē2)

3(1− ρ)2
. (7.9)

Positivity of EJJ(ρ) implies the following conditions on the coefficients

|ns − 4nf |
cJ

.
ln ∆gap

∆2
gap

,
|nodd|
cJ

.
ln ∆gap

∆2
gap

. (7.10)

After imposing these constraints, one can easily check that our conjectured relation (3.9)

is satisfied.

The three-point function 〈JJT 〉, in dual gravity language, arises from the following

4d-action∫
d4x
√
−g

[
−FµνFµν + αAAhWµναβF

µνFαβ + α̃AAhW̃µναβF
µνFαβ

]
, (7.11)

where, coefficients αAAh and α̃AAh can be written in terms of ns, nf and nodd:

αAAh ∼
ns − 4nf
ns + 4nf

∼ ln ∆gap

∆2
gap

, α̃AAh ∼
nodd

ns + 4nf
∼ ln ∆gap

∆2
gap

. (7.12)

Appearance of ln ∆gap again indicates that the simple relationship between bulk derivative

and ∆gap has a logarithmic violation in 3d CFT.

25In (3 + 1)−dimensional gravity, one can also have another parity violating term in the four-derivative

level:
∫
d4x
√
gW̃W which is a total derivative. However, this term contributes a non-trivial parity violating

contact term to the two-point function 〈TT 〉 [79, 80].
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7.3 〈TTψ〉

Let us now discuss the three-point function 〈TTψ〉 in d = 3. The analysis is identical to the

derivation of causality constraints for 〈TTψ〉 in higher dimension using interference effects.

So, we will not show the full calculation, instead we only point out the key differences. In

d = 3, conformal invariance also allows for a parity odd structure and the full correlator

consists of two structures

〈TTψ〉 = 〈TTψ〉Even + 〈TTψ〉Odd (7.13)

with OPE coefficients CEven
TTψ and COdd

TTψ respectively [7]. First, we derive causality con-

straints on the three-point function 〈TTT 〉 which leads to (7.7). After imposing these

constraints, in the limit ρ→ 1, ETT (ρ) ∼ ln(1− ρ). On the other hand, in the limit ρ→ 1,

for both even and odd structures ETψ(ρ) ∼ 1
(1−ρ)2 . Hence, the interference bound (6.3)

dictates that both CEven
TTψ and COdd

TTψ should be suppressed by ∆gap:

CEven
TTψ√
cT

.
ln ∆gap

∆2
gap

,
COdd
TTψ√
cT

.
ln ∆gap

∆2
gap

. (7.14)

Similarly, in the bulk there are two possible vertices between a scalar and two gravitons,

one parity even and one parity odd. These interactions can be parametrized as

S = M2
PlαΨhh

∫
d4x
√
gΨW 2 +M2

Plα̃Ψhh

∫
d4x
√
gΨW̃W . (7.15)

These interactions were first constrained by Cordova, Maldacena, and Turiaci in [7]. Using

the averaged null energy condition they showed that in generic CFTs in d = 3, interference

effects impose constraints on the OPE coefficients CEven
TTψ and COdd

TTψ. These general bounds

can be translated into bounds on gravitational interactions [7]√
α2

Ψhh + α̃2
Ψhh ≤

1

12
√

2
. (7.16)

However, it is expected that the holographic null energy condition leads to stronger con-

straints on αΨhh, α̃Ψhh. In particular, bounds (7.14) are equivalent to

αΨhh .
ln ∆gap

∆2
gap

, α̃Ψhh .
ln ∆gap

∆2
gap

. (7.17)

In the following section, we will use these constraints to impose bounds on inflationary

observables.

8 Constraining inflationary observables

In the last section, we showed that (2 + 1)−dimensional CFTs with large central charge

and a sparse spectrum, irrespective of their microscopic details, admit universal holographic

dual description at low energies. This connection provides us with a tool to constrain gravi-

tational interactions in (3+1)−dimensions. This has an immediate application in inflation.
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The period of inflation is an exponential expansion of the universe that powered the epoch

of the big bang. On one hand, inflation naturally explains why our universe is flat and

homogeneous on the large scale. On the other hand, quantum fluctuations produced during

inflation are responsible for the temperature fluctuations of cosmic microwave background

(CMB) and the large-scale structures of the universe.

The simplest model of inflation consists of a real scalar field minimally coupled to Ein-

stein gravity. In general, there can be higher derivative interactions which can contribute

to various inflationary observables. Therefore, constraints obtained in the previous section

can impose bounds on such observables (for example chiral gravity waves, tensor-to-scalar

ratio etc.). However, there is a caveat. All of the constraints on gravitational interac-

tions obtained in this paper, strictly speaking, are valid in AdS. Following the philosophy

of [7, 13], we simply assume that the same constraints are also valid in de Sitter after we

make the substitution RAdS → 1/H, where H is the Hubble scale associated with inflation.

This is a reasonable assumption but it would be important to have a robust derivation of

these de Sitter constraints.

8.1 Chiral gravity waves

Chiral gravity waves [81, 82] can be produced during inflation from a parity odd higher

derivative interaction in the action

M2
Pl

∫
d4x
√
g fo(Ψ)W̃W , Ψ =

φ

MPl
, (8.1)

where φ is the inflaton field. In the presence of this term in the action, two-point functions

of tensor modes with left handed and right handed circular polarizations are not the same.

The asymmetry A measures the difference between left and right handed polarizations and

it is determined by the above parity odd interaction [7]

A ≡ 〈hLhL〉 − 〈hRhR〉
〈hLhL〉+ 〈hRhR〉

= ±4π
√

2ε α̃ΨhhH
2 , (8.2)

where, ε is one of the slow-roll parameters of inflation. In the above expression, we have

used the fact α̃Ψhh = ∂fo(Ψ)
∂Ψ . So, constraint (7.17) strongly suggests that the asymmetry

parameter A must be suppressed by the scale of new physics M :26

|A| . 4π
√

2ε

(
H2

M2

)
ln

(
M

H

)
. (8.3)

First of all, note that this is stronger than the bound obtained in [7]. Secondly, if the

asymmetry parameter A is measured (or in other words it is found to be at least a few

percent), then the new physics scale must be M ∼ H. This scenario necessarily requires the

presence of an infinite tower of new particles with spins ` > 2 and masses ∼ H. Therefore,

any detection of this parameter in future experiments will serve as an evidence in favor of

string theory (or something very similar) with the string scale comparable to the Hubble

scale and a very small coupling.

26We have identified ∆gap = M/H.
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8.2 Tensor-to-scalar ratio

Similarly, one can obtain a bound on the ratio r of the amplitudes of tensor fluctuations

and scalar fluctuations. In a single-field inflation without any higher derivative couplings,

the tensor-to-scalar ratio r obeys a consistency condition [83]: r = −8nt, where nt is the

tensor spectral index. In the presence of the higher derivative interaction

M2
Pl

∫
d4x
√
g fe(Ψ)W 2 , (8.4)

the consistency condition is violated [84]. In particular, one can show that [7]

− nt
r

=
1

8
± H2

√
2ε
αΨhh , αΨhh =

∂fe(Ψ)

∂Ψ
. (8.5)

In the above expression we have assumed that the inflaton field has only a canonical kinetic

term with two-derivatives.27 So far, this is exactly the same as the discussion of [7]. But we

now derive a stronger bound by using constraint (7.17) which suggests that the violation

of the consistency relation must be suppressed by M∣∣∣nt
r

+
1

8

∣∣∣ . 1√
2ε

(
H2

M2

)
ln

(
M

H

)
. (8.6)

8.3 Graviton non-gaussanity

Let us now consider non-gaussanity of primordial gravitational waves produced during

inflation. In Einstein gravity, the three-point function of tensor perturbation goes as

〈hhh〉E ∼
H4

M4
Pl

. (8.7)

The graviton three-point function (parity preserving part) can also get contributions from

W 3 term in the gravity action (7.8). As shown in [13], the contribution from this interaction

must be suppressed by the scale of new physics:

〈hhh〉W 3

〈hhh〉E
∼ α4H

4 ∼
(
H4

M4

)
ln

(
M

H

)
. (8.8)

Hence, any significant deviation from the Einstein gravity result requires the presence of

an infinite tower of new particles with spins ` > 2 and masses ∼ H [13].

The advantage of studying any parity violating effects during inflation is that these

contributions are exactly zero for Einstein gravity. Hence, any detection of parity violation

will be a signature of new physics at the Hubble scale. The gravity action in general can

have a parity odd term W̃W 2 which is also controlled by the same scale M . This term

contributes to the parity odd part of graviton three-point function [85–87]. In particular,

〈hLhLhL〉 − 〈hRhRhR〉 ∼ ε
(
H4

M4
Pl

)
α̃4H

4 . (8.9)

27In other words, the speed of sound for the inflaton field is 1.
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Therefore, causality requires that

〈hLhLhL〉 − 〈hRhRhR〉
〈hhh〉

∼ ε
(
H4

M4

)
ln

(
M

H

)
. (8.10)

This parity violating graviton non-gaussanity will have signatures in the CMB. For example,

CMB three-points correlators 〈TEB〉, 〈EEB〉, 〈TTB〉 become nonzero in the presence of

the parity violating graviton non-gaussanity. However, one disadvantage of studying the

parity violating graviton non-gaussanity is that this contribution is exactly zero in pure

de Sitter [85, 86]. Hence, for slow-roll inflation this effect is suppressed by the slow-roll

parameter ε.

We should also note that terms like fe(φ)W 2 or fo(φ)W̃W in the effective action

can also contribute to the graviton three-point function. Both these contributions depend

on the details of the inflationary scenario and they can dominate over the contributions

from W 3 and W̃W 2 [85, 88]. However, contributions of fe(φ)W 2 and fo(φ)W̃W to the

graviton three-point function are proportional to
√
εf ′e(φ) and

√
εf ′o(φ) respectively which

are bounded by causality as well. So, if these terms are present in the effective action,

their contributions to the non-gaussanity of primordial gravitational waves should also be

suppressed by M but with a different power

〈hhh〉fe(φ)W 2, fo(φ)W̃W

〈hhh〉E
∼
√
ε

(
H2

M2

)
ln

(
M

H

)
. (8.11)

9 Discussion

In this paper, we analyzed the implications of causality of correlation functions on CFT

data in theories with large cT and sparse higher spin spectrum. This was accomplished by

developing a new formalism that can be interpreted as a collider type experiment in the

CFT, set up in such a way to probe scattering processes deep in the bulk interior of the

corresponding holographic dual theory. In doing so we consider the holographic null energy

operator, Er which is a positive operator in a certain subspace of the total CFT Hilbert

space. This subspace is spanned by states constructed by acting local operators, smeared

with Gaussian wave-packets, on the CFT vacuum. Positivity of this operator was then

used to impose bounds on the CFT data.

Other representations. It is worth mentioning that the formalism presented here can

easily be adopted to compute the contribution of the holographic null-energy operator to

the four-point function of external operators in arbitrary representation including spinors

or non-symmetric traceless representations. The only modification required is to com-

pute three-point functions of these operators with the stress-tensor whose form is fixed by

conformal symmetry.

Furthermore with slight modification one may compute the contribution of single-trace

exchanged operators other than the stress-tensor. More specifically in [1] it was shown that

in the Regge limit (v → 0 with uv held fixed) the contribution of a spinning operator X
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(with spin ` and dimension ∆X) to the OPE can be written as

ψ(u, v)ψ(−u,−v)|X
〈ψ(u, v)ψ(−u,−v)〉

= π
1−d

2 2∆X
Γ(∆X+`+1

2 )

Γ(∆X+`
2 )

Γ(∆X − d/2 + 1)

Γ(∆X − d+ 2)

CψψX
CX

(−uv)
d−`−∆X

2

u1−`

×
∫ +∞

−∞
dũ

∫
~x2≤−uv

dd−2~x(−uv − ~x2)∆X−d+1Xuu···u(ũ, 0, i~x)

.

(9.1)

This OPE is valid as long as it is evaluated in a correlation function where all other operator

insertions are held fixed as we take the Regge limit. However, the chaos bound suggests that

this contribution does not necessarily dominate in the Regge limit in holographic CFTs.

Non-conserved spin-2 exchange. As previously mentioned, one caveat to our compu-

tation is the possibility of competition between the contributions of non-conserved spin-2

operators with the stress-tensor in the Regge limit. However, using the OPE described

above it is possible to explicitly compute the contribution of such an operator to the Regge

OPE. Including the contribution of a single non-conserved spin-2 exchange, we find bounds

on the OPE coefficients of the stress-tensor as well as the non-conserved spin-2 operator.

We expect that some version of the experiment described above, should reproduce the con-

straints found in [63] which resulted from performing a scattering experiment in the bulk.

We leave explicit confirmation of this claim to future explorations.

Regge OPE of single trace operators. The operator product expansion of smeared

primary operators in the Regge limit, as discussed in section 3, is universal. When O1

and O2 are different operators, the identity piece in the OPE (3.10) does not contribute.

Moreover, if O1 and O2 are single trace operators, then interference effects imply that

〈TO1O2〉 = 0. So, for these operators, even the coefficient of the shockwave operator

in (3.10) vanishes. Hence, for non-identical single trace primary operators the OPE

Ψ∗[O1]Ψ[O2] = 0 + · · · , (9.2)

where, dots represent terms which are suppressed by either the large gap limit or the large

cT limit or the Regge limit.

Higher spin ANEC. Although not pursued in detail here, by taking the lightcone limit

of (9.1), the same formalism developed here can be used to compute the contribution of

the ANEC operator to correlation functions. Furthermore, this formalism can be easily

extended to study the higher spin ANEC [6] which says∫
duXuu···u ≥ 0 , (9.3)

where, X is the lowest dimension operator with even spin (` ≥ 2). Positivity of these

operators holds in the more general class of theories including non-holographic CFTs. A

systematic exploration of bounds derived from the positivity of these operators is left to

future work.
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OPE of spinning operators. It would be interesting to derive the stress tensor contri-

bution to the OPE of spinning operators both in the Regge and the lightcone limits. Using

this OPE, an argument similar to the ones used in this paper would lead to new positive

spinning null energy conditions. These positivity conditions both conceptually as well as

technically, will have important implications. For instance, this will allow us to derive

new constraints in a more systematic way. Moreover, based on the analogous constraints

obtained in the bulk [13], we expect these positive operators to play an important role in

closing the gap in ruling out non-conserved spin-2 exchanges.
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A Three-point functions of conserved currents

In this appendix we summarize conventions used through out the paper in describing

the OPE coefficients appearing in the correlation functions of conserved currents. Cor-

relation functions of conserved currents in CFT are derived in [61] (see also [65]) using

conformal symmetry. Expression written here can be compared with similar ones written

in [60, 62, 66–69].

A.1 〈JJT 〉

Two point function of spin-1 currents is given by

〈ε1.J(x1)ε2.J(x2)〉 = cJ
H12

x2d
12

, (A.1)

where, H12 is defined in (4.23). The three-point function 〈JJT 〉 is given by

〈J(x1)J(x2)T (x3)〉 =
α1V1V2V

2
3 + α2H12V

2
3 + α3(H23V1V3 +H13V2V3) + α5H13H23

xd−2
12 xd−2

13 xd+2
23

(A.2)

with

V1 = V1,23, V2 = V2,31, V3 = V3,12, (A.3)
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In the free field basis, this can also be written as

〈JJT 〉 = ns〈JJT 〉scalar + nf 〈JJT 〉fermion (A.4)

where the coefficients are related by [3]

α1 = ns
d− 2

2(d− 1)
− 8nf , α2 = −4nf −

ns
2(d− 1)

α3 = −4nf −
ns
d− 1

, α5 =
ns

(d− 1)(d− 2)
.

(A.5)

The Ward identity relates one combination of ns and nf to the two-point function:

cJ =
Sd
d

(
4nf +

ns
d− 2

)
, (A.6)

where, Sd = 2πd/2

Γ(d/2) .

A.2 〈TTT 〉

The central charge cT is defined as

〈ε1.T (x1)ε2.T (x2)〉 = cT
H2

12

x
2(d+2)
12

, (A.7)

where, H12 is given by equation (4.23).

Three point function 〈T (x1)T (x2)T (x3)〉 is fixed by conformal invariance and permu-

tation symmetry

〈T (x1)T (x2)T (x3)〉 =

∑5
i=1 αiSi

x2+d
12 x2+d

13 x2+d
23

(A.8)

where

S1 = V 2
1 V

2
2 V

2
3 , (A.9)

S2 = V1V2V3 (H23V1 +H13V2 +H12V3) (A.10)

S3 = (H12H23V1V3 +H13V2 (H23V1 +H12V3)) , (A.11)

S4 = H12H13H23

S5 = H2
23V

2
1 +H2

13V
2

2 +H2
12V

2
3 .

This three-point function can be translated to the free-field basis

〈TTT 〉 = ñs〈TTT 〉scalar + ñf 〈TTT 〉fermion + ñv〈TTT 〉vector (A.12)

using [3]

α1 = 128d2ñf −
8d2(d− 2)3

(d− 1)3
ñs − 8192ñv (A.13)

α2 = 64d(d− 2)ñf +
32(d− 2)2d2

(d− 1)3
ñs − 8192ñv
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α3 = −128dñf −
64d2(d− 2)

(d− 1)3
ñs − 4096ñv

α4 =
64d2

(d− 1)3
ñs −

4096

d− 2
ñv

α5 = −64dñf −
16d(d− 2)2

(d− 1)3
ñs − 2048ñv .

Ward identity relates ñs, ñf , and ñv to the central charge in the following way

cT = 128Sd

(
ñf +

1

2(d− 1)
ñs +

16(d− 3)

d(d− 2)
ñv

)
. (A.14)

B Three-point functions in d = 3

B.1 〈JJT 〉

The parity odd part of the correlation functions is given by [69]

〈J(x3)J(x4)T (x5)〉 = nodd
Q2

3S
2
3 + 2P5S

2
4 + 2P4S

2
5

|x34||x35||x45|
, (B.1)

where,

Q3 =
2ε3 · x35

x2
35

− 2ε3 · x34

x2
34

,

Q4 =
2ε4 · x43

x2
43

− 2ε4 · x45

x2
45

,

Q5 =
2ε5 · x54

x2
54

− 2ε5 · x53

x2
53

,

P3 =
4x34 · ε3x34 · ε4

(x34 · x34) 2
− 2ε3 · ε4

x34 · x34

P4 =
4x45 · ε4x45 · ε5

(x45 · x45) 2
− 2ε4 · ε5

x45 · x45

P5 =
4x53 · ε3x53 · ε5

(x53 · x53) 2
− 2ε5 · ε3

x53 · x53

S2
3 = −

2
(
x2

34ε (x53, ε3, ε4) + x2
53ε (x34, ε3, ε4)− 2ε (x34, x53, ε3) ε4 · x34

)
|x34|3|x45||x53|

S2
4 =

2
(
x2

34ε (x45, ε4, ε5) + x2
45ε (x34, ε4, ε5)− 2ε (x45, x34, ε4) ε5 · x45

)
|x34||x45|3|x53|

S2
5 = −

2
(
x2

45ε (x53, ε5, ε3) + x2
53ε (x45, ε5, ε3)− 2ε (x53, x45, ε5) ε3 · x53

)
|x34||x45||x53|3

, (B.2)

where ε (a, b, c) ≡ εµναaµbνcα, with εµνα denoting the Levi-Civita symbol. The parity even

part is given by (A.2) with d = 3.
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B.2 〈TTT 〉

The parity odd part of the correlation functions is given by [69]

〈T (x3)T (x4)T (x5)〉 = nodd
P5Q

2
5S

2
5 + P3

(
Q2

3S
2
3 − 5P5S

2
4

)
+ P4

(
5P5S

2
3 + 5P3S

2
5 −Q2

4S
2
4

)
|x34||x45||x53|

,

(B.3)

where the structures are defined in the previous subsection. The parity even part is given

by (A.8) with d = 3 and ñv = 0.

C d-dimensional smearing integrals

We are interested in evaluating integrals of the form∫
dd−1~p

∏
i ~p.~vi

(~p2 + ~p · ~L)p1(~p · ~L)p2
. (C.1)

Let us first define28

Ip1,p2(~L) ≡
∫
dd−1~p

1

(~p2 + ~p · ~L)p1(~p · ~L)p2
. (C.2)

Using Feynman parametrization we can rewrite this as

Ip1,p2(~L) =
Γ(p1 + p2)

Γ(p1)Γ(p2)

∫ 1

0
dα

∫
dd−1~p

αp1−1(1− α)p2−1

(~p · ~L + α~p · ~p)p1+p2
. (C.3)

The idea is to use derivatives with respect to ~L to obtain an expression with powers of ~p

in the numerator. To this end, let us first define

Kp(~L) ≡
∫
dd−1~p(~p · ~L + α~p · ~p)−p

=
id−1π

d−1
2 (−1)p2−d+2p+1α−d+p+1Γ

(
1−d

2 + p
)

(~L · ~L)
d−1

2
−p

Γ(p)
. (C.4)

Furthermore let us notice that

(−1)−nΓ(p− n)

Γ(p)

n∏
i

∂

∂Lµi
(~p · ~L + α~p · ~p)n−p = (~p · L+ α~p · ~p)−p

n∏
i

pµi . (C.5)

Finally we define

F (n)
p1,p2

(~L) ≡ Γ(p1 + p2 − n)(−1)−n

Γ(p1)Γ(p2)

∫ 1

0
dααp1−1(1− α)p2−1Kp1+p2−n(~L)

=
id−1π

d−1
2 Γ

(
−d

2− n+p1+p2+ 1
2

)
Γ(−d−n+2p1+p2+1)(L · L)

d−1
2

+n−p1−p2

(−1)2n−p1−p22d−2(−n+p1+p2)−1Γ(p1)Γ(−d− n+ 2(p1 + p2) + 1)
.

(C.6)

Using this, we now have a simple way of evaluating integrals:∫
dd−1~p

∏n
i ~p.~vi

(~p2 + ~p · ~L)p1(~p · ~L)p2
=

n∏
i

(~vi · ~∂)F (n)
p1,p2

(~L), (C.7)

where ~∂ signifies differentiation with respect to ~L.

28note that p1, p2 > 0 in all expression appearing in this paper.
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D Polarization vectors

Throughout this paper, we used a particular null vector 4.27, to construct the polarization

tensors corresponding to the external smeared states. The same null vector was used

in [44] for obtaining a = c bounds in d = 4. In this appendix we will describe how this

choice simplifies the task of extracting positivity conditions from spinning correlators with

conserved operator insertions. For the case of non-conserved operators, this is not the most

general choice of polarizations and does not necessarily lead to the most optimum bounds.

However the bounds obtained using this vector are sufficiently stringent for our purposes.

Conserved operators. Defining holographic operator Er(v) requires choosing a null

direction u, similar to the conformal collider setup in [5]. Let us call this d-dimensional

vector û = (−1, n̂) = (−1, 1,~0) and denote nµ = (0, 1,~0). For most of the following

discussion d ≥ 4 and d = 3 is considered separately in the paper.

We are interested in computing smeared spinning external states,

ε1
?
α1α2···αs1

〈O1(ω)α1α2···αsEr(ν)O2(ω)β1β2···βs2 〉ε2β1β2···βs2 , (D.1)

where ? denotes complex conjugation. By smearing external operators, we are preparing

states with definite momenta, ωµ = ωtµ along the time direction with t2 = −1. Primary

operators considered here are in the symmetric traceless representations, so polarization

tensors can be chosen to be symmetric and traceless. Conservation equation implies

ωµ1〈O1(ω)µ1µ2···µs1 · · · 〉 = 0. (D.2)

Therefore we are free to choose ε with vanishing time-like components so that we have

ε = εi1···is1 .

As a first example let us choose external state created by wave-packets of the stress

tensor. The expectation value of holographic null energy operator has the following de-

composition under SO(d− 1) corresponding to spatial rotations:

〈Er(v)〉 = 〈0|ε?ijTij(ω)Er(v)εlkTlk(ω)|0〉 = t̃0ε
?
ijεij + t̃2ε

?
ijεiln̂jn̂l + t̃4|εijn̂in̂j |2. (D.3)

Using the positivity of this expectation value for any εij , we look for the optimal bounds

on coefficients. Following [5], we further decompose this expression in terms of irreducible

representations, i.e. spin 0, 1, 2 under SO(d− 2), corresponding to rotations that leave the

spatial part of the null direction n̂i invariant. More explicitly, let us parametrize a purely

spatial polarization tensor as29

εij = eij + b(in̂j) + α

(
n̂in̂j −

δij
d− 1

)
, (D.4)

where eij and bi satisfy bin̂i = 0, eijn̂
j = 0, eii = 0 and α is an arbitrary complex number.

Substituting this expression in (D.3) we find

〈Er〉 = |α|2
(
t̃0
d− 2

d− 1
+ t̃2

(d− 2)2

(d− 1)2
+ t̃4

(d− 2)2

(d− 1)2

)
+
bib

?i

2

(
t̃0 +

t̃2
2

)
+ t̃0eije

?ij , (D.5)

29Note that in writing this parametrization, we have chosen d ≥ 4 as can be seen by the fact that if d ≤ 3,

then eij = 0 for a traceless tensor.
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where each term in this expression corresponds to an irreducible representation. Since

these terms do not mix under SO(d−2) rotations, positivity of the holographic null energy

operator implies the positivity of each term separately.

We will now show that the powers of λ2 in (5.1) and (5.7) are in one to one corre-

spondence with these irreducible representations. To demonstrate this let us consider the

following polarization vector,

εµ = v̂µ + εµ⊥ , ε⊥ = (0, 0, iλ, λ, 0, · · · , 0︸ ︷︷ ︸
d−4

),

v̂ = (1, 1, 0, · · · , 0︸ ︷︷ ︸
d−2

), (D.6)

where λ is an arbitrary real number. Contracting this null vector with external operator,

Tµνε
µεν we find

〈Er〉 = g0 + g2λ
2 + g4λ

4. (D.7)

Note that εµεν is not a purely spatial polarization tensor. Since only the spatial components

contribute, we will use the symmetric traceless projector30 Qαβµν to convert εµεν into a purely

spatial traceless polarization tensor Eµν :

Pµν = ηµν + tµtν

Qαβµν =
1

2

(
PαµPβν + Pαν Pβµ

)
− 1

d− 1
PµνPαβ Qµµ

αβ = 0

Eαβ ≡ Qαβµν εµεν = ε
(α
⊥ ε

β)
⊥ + ε

(α
⊥ v̂

β) + (v̂ · t)ε(α⊥ t
β)

+ (v̂α + (v̂ · t)tα)
(
v̂β + (v̂ · t)tβ

)
− (v̂ · t)2

d− 1
(δαβ + tαtβ)

⇒ E ij = ε
(i
⊥ε

j)
⊥ + ε

(i
⊥n̂

j) +

(
n̂in̂j − δij

d− 1

)
, (D.8)

which has the form of the decomposition in D.4. Furthermore, ε
(i
⊥ε

j)
⊥ , ε

(i
⊥n̂

j) satisfy the

same conditions as eij and b(inj). In addition, any expression involving ε⊥ is multiplied

with a power of λ. Therefore ε
(i
⊥n̂

j) and ε
(i
⊥ε

j)
⊥ are multiplied with λ and λ2 respectively.

This implies that each powers of λ2 are in one-to-one correspondence with irreducible

representations under SO(d− 2) rotations and g0, g2, g4 should be positive independently.

This construction is easily generalized to the case of conserved higher spin operators.

To do so, one finds a symmetric traceless projection operator and acts on a polarization

tensor of the form εµ1εµ2 · · · εµs with

Qν1ν2···νs
µ1µ2···µs ∼

1

s!

(
P(ν1
µ1
Pν2
µ2
· · · Pνs)µs − traces

)
,

Pν1
µ1
εµ1

⊥ = ε⊥
ν1 ,

Pν1
µ1
v̂µ1 = nν1 ,

30Note that the expectation values in states created by smearing conserved operators are unchanged

under the action of Q due to conservation.
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Qν1ν2···νs
µ1µ2···µsε

µ1εµ2 · · · εµs ∼ ε(ν1

⊥ · · · ε
νs)
⊥ + n(ν1εν2

⊥ · · · ε
νs)
⊥ ,

+ · · ·+ (nν1nν2 · · ·nνs − traces) , (D.9)

corresponding to spin 0, 1, · · · , s − 1, s representations under SO(d − 2). Each term has a

different number of ε⊥, therefore the coefficients associated to powers of λ are independent

and should satisfy positivity constraints separately.

In summary, for conserved operators, polarization vectors defined in 4.27 result in the

most general possible bounds in the holographic collider setup described here.

Non-conserved operators. For non-conserved operators, the use of longitudinal polar-

izations will result in more general constraints. The bounds in this paper were obtained

using εµ = (1,−1,~0) as the longitudinal polarization tensor. It would interesting to find

polarization tensors that result in the most optimal bounds. A more systematic approach

would be useful in obtaining bounds in the light-cone limit to ensure the most stringent

possible constraints.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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