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toy constraint in the late time universe, with the new parameterization of the Friedmann

equation. We also comment on the possible connection with Verlinde’s emergent gravity,
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can be derived.
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1 Introduction

The origin of the dark matter and the dark energy is one of the most important issues

in current high energy physics and cosmology. From observations, only 5% of the energy

components of the current universe is visible to us. At different scales, ranging from the

galactic scale to the cosmic microwave background (CMB) scale, there are many observed

phenomena to test for various models of dark matter and dark energy [1]. The cold dark

matter model which treats the dark matter as collisionless particles is successful at CMB

and large scales, but at the galactic scale, some discrepancies were proposed [2, 3]. More-

over, the particle dark matter remains elusive from the direct detection so far [4]. One

of the alternatives to the cold dark matter is the modified Newtonian dynamics or mod-

ified gravity [1–3], which focuses on the small scale crisis that cold dark matter cannot

explain. Although those modified gravity theories seem to be less successful in producing

the universe evolution scenario consistent with CMB and large scale structure data, they

can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [5],

Renzo’s Rule [6], etc.

Recently, E. Verlinde proposed an emergent modified gravity scenario from volume con-

tribution of entanglement entropy in the de Sitter spacetime [7], which leads to the apparent

dark matter. It is also related to the idea that Einstein gravity can be an emergent phe-

nomenon as the entropy force with area law [8, 9]. Although the Verlinde’s derivation in [7]
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received some doubts on the consistency in the literature [10], we find several Verlinde’s

key ideas rather inspiring. One is the possibility that our macroscopic notions of spacetime

and gravity emerge from an underlying microscopic description, encouraged by the recent

development of entanglement entropy and quantum information. Another one is viewing

the dark matter as merely a gravitational response of the baryonic matter on the spacetime,

so as to derive the dark matter distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which

can be considered as a (3+1) dimensional holographic screen embedded into a higher di-

mensional flat spacetime. We identify the holographic stress-energy tensor as that of the

total dark components including the dark energy and dark matter. We first construct a toy

model, which provides a constraint relation among the densities of dark matter, dark en-

ergy, and baryonic matter, in the case of considering the Lambda cold dark matter (ΛCDM)

parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-

Robertson-Walker (FRW) universe in a flat bulk and propose a new parameterization from

the holographic model. The effective dark matter and dark energy are emergent and are

identified with the Brown-York stress-energy tensor [11]. We also compare our approach

to the well studied Dvali-Gabadadze-Porrati (DGP) braneworld model [12–14].

To produce the galaxy rotational curves, we further sketch a holographic elastic model

with a de Sitter boundary and fix an inconsistency in the Verlinde’s paper proposed in [10].

We recover the Tully-Fisher relation from the first law of thermodynamics and elasticity of

the “de Sitter medium”. The elasticity can also be realized in blackfold approaches [15–21]

or some holographic models [22–24]. Notice here that we adopt the novel idea of elasticity

of dark matter in the Verlinde’s paper. Because the elasticity seems to capture the nature

that the apparent dark matter is only the response of the presence of the baryonic matter.

In the end, we also comment on the relation of the current construction in this paper with

different scenarios such as some braneworld models and holographic models of the universe

in the literature.

In section 2, we firstly introduce the toy de-Sitter model in a flat bulk, which leads to

the relation between dark matter component and baryonic matter component of the current

universe. In section 3, we generalize our toy model to the holographic FRW universe in a

flat bulk and compare it with the DGP braneworld scenario. In section 4, we reproduce

the Tully-Fisher relation, with the help of holographic elasticity model and Verlinde’s

assumptions. We briefly compare and discuss the connection between our toy model and

other scenarios, such as other braneworld models, holographic gravity, emergent gravity

and summarize our results in section 5.

2 Embedding de-Sitter universe in a flat bulk

We consider a 3+1 dimensional time-like hypersurface with induced metric gµν and extrinsic

curvature Kµν , which is embedded into a 4+1 dimensional flat bulk spacetime. After adding

the stress-energy tensor Tµν of the baryonic matter and radiation, which is localized on the

hypersurface, we assume that the induced Einstein field equations on the hypersurface are
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modified as

Rµν −
1

2
Rgµν −

1

L
(Kµν −Kgµν) = κ4Tµν . (2.1)

The length scale L is related to the positive cosmological constant Λ = 3/L2. The Einstein

constant κ4 = 8πG/c4, G is the Newton gravitational constant and c is the speed of light.

Equivalently, we can rewrite the above modified Einstein field equations in (2.1) as

Rµν −
1

2
Rgµν = κ4Tµν + κ4〈T 〉µν , (2.2)

〈T 〉µν ≡
1

κ4L
(Kµν −Kgµν) . (2.3)

They are expected to govern the late time evolution of our universe. 〈T 〉µν will turn out to

be the Brown-York stress-energy tensor [11] induced from higher dimensional space time.

We will see L is related to the higher dimensional coupling constant κ5 through L = κ5/κ4.

At the cosmological scale, we assume that Tµν only includes the stress-energy tensor of

baryonic matter and radiation. While 〈T 〉µν in (2.3) represents the total dark components

in our universe, such as the dark energy and dark matter.

We are going to consider the parameterization in ΛCDM model describing the evolution

of the late time universe. In detail, we take the FRW metric in 3 + 1 dimensions, which

assumes that our universe is uniform and isotropic at large scale, with scale factor a(t),

ds2
4 = gµνdxµdxν = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
. (2.4)

In the spatial flat ΛCDM model with k = 0, it contains a positive cosmological constant Λ,

which contributes to the dark energy with density parameter ΩΛ, cold dark matter density

parameter ΩD, and baryon density parameter ΩB. The Friedmann equation is given by

H(t)2

H2
0

= ΩΛ +
ΩD

a(t)3
+

ΩB

a(t)3
+

ΩR

a(t)4
. (2.5)

H(t) is the Hubble parameter and H0 ≡ H(t0) is the Hubble constant today at t = t0.

H(t) ≡ ȧ(t)

a(t)
, H2

0 =
κ4c

4

3
ρc ⇒ ρc =

3

κ4

H2
0

c4
. (2.6)

ȧ(t) is the derivative with respect to the time t and ρc is the critical energy density of the

universe. If requiring a(t0) = 1, from (2.5) we have 1 = ΩΛ + ΩB + ΩD + ΩR. Since the

radiation density parameter ΩR ∼ 10−4 is very small, in the late time universe we will

simply take ΩD + ΩB + ΩΛ ' 1. After neglecting the radiation component ΩR in (2.5), the

Friedmann equation of the late time spatial flat ΛCDM universe can be written as

H(t)2

H2
0

= ΩΛ +
ΩD

a(t)3
+

ΩB

a(t)3
≡ Ω̃Λ + Ω̃D + Ω̃B. (2.7)

We have introduced the time dependent notations with tilde, which satisify

ΩΛ = Ω̃Λ|t=t0 , ΩD = Ω̃D|t=t0 , ΩB = Ω̃B|t=t0 . (2.8)
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Based on the modified Einstein field equations (2.1) and the Hamiltonian constraint

from the consistent embedding in higher dimensional flat bulk, we are going to show an

interesting constraint relation between these parameters,

CSZ: Ω2
D =

1

2
ΩΛ(ΩD − ΩB). (2.9)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [7],

Verlinde: Ω2
D =

4

3
ΩB. (2.10)

In the current universe both of these two relations (2.9) and (2.10) are remarkably well

obeyed. Taking the observation values within the ΛCDM model [25, 26], with a bit priori

choice of the parameters as

ΩΛ ' 0.685, ΩD ' 0.265, ΩB ' 0.050, (2.11)

we can calculate the following differences,

δCSZ ≡ Ω2
D −

1

2
ΩΛ(ΩD − ΩB) ' −0.003 , (2.12)

δV ≡ Ω2
D −

4

3
ΩB ' 0.004 . (2.13)

Thus, our relation (2.9) holds as well as the Verlinde’s (2.10) with minor difference in

approximation. We will show how to derive this constraint equation (2.9) in the following

sections.

2.1 Hamiltonian constraint from hypersurface embedding

Similar to the formula (2.2), let us write down the Einstein equation in d dimensional

spacetime as

Rµν −
1

2
Rgµν = κd [Tµν + 〈T 〉µν ] , (2.14)

with µ, ν = 0, 1, . . . , (d− 1), and κd = 8πGd/c
4. Tµν is the stress-energy tensor of baryonic

matter and radiation, and 〈T 〉µν is the effective dark components of our universe, which

can include both of the dark energy and dark matter. The trace of above equations yields

the Ricci scalar

R = − 2κd
d− 2

[T + 〈T 〉] . (2.15)

Now we assume that the geometry with metric gµν can be embedded into one higher di-

mensional spacetime, as a hypersurface with the normal vector NA, and the indices A,B =

0, 1, . . . , d. We can define the induced metric on the hypersurface gAB = g̃AB − NANB
as well as the extrinsic curvature Kµν ≡ g A

µ g B
ν ∇̃(ANB), with µ, ν are the indices on the

hypersurface, which depend on the coordinate choices. ∇̃ is the covariant derivative as-

sociated with the bulk metric g̃AB. Even though there exists matter in the late time
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universe, we require them to be localized on the hypersurface, such that we still have

G(d+1)
AB NANB = T (d+1)

AB NANB = 0. Thus, considering the Gauss equations, the Hamilto-

nian constraint equation of the hypersurface leads to

0 = 2G(d+1)
AB NANB ≡ K2 −KµνKµν −R. (2.16)

On the other hand, the momentum constraint equations G(d+1)
AB NAgNν =T (d+1)

AB NAgNν =0

lead to

0 = G(d+1)
AB NAgNν = ∇µ (Kµν −Kgµν) = 0. (2.17)

∇ is the covariant derivative associated with the metric gµν on the hypersurface.

Next we assume that the stress-energy tensor of the dark components in (2.14) can be

given by the Brown-York stress-energy tensor associated with the hypersurface [11],

〈T 〉µν =
1

κd+1
(Kµν −Kgµν) , (2.18)

and κd+1 is the Einstein’s constant in d+1 dimensions. Replacing the extrinsic curvature by

the Brown-York stress-energy tensor, the Hamiltonian constraint relation (2.16) becomes

〈T 〉2

d− 1
− 〈T 〉µν〈T 〉µν =

R

(κd+1)2
. (2.19)

Then by plugging (2.15) into (2.19), we have

〈T 〉2

d− 1
− 〈T 〉µν〈T 〉µν = − κd

(κd+1)2

2

d− 2
(T + 〈T 〉) . (2.20)

While the momentum constraint equations (2.17) lead to ∇µ〈T 〉µν = 0.

2.2 Holographic de-Sitter screen in a flat bulk

Firstly we set that the stress-energy tensor of the baryonic matter and radiation in the Ein-

stein field equations (2.14) vanish, Tµν=0. As a warm up, let us consider the hypersurface

as the d dimensional de Sitter spacetime,

ds2
d = gµνdxµdxν = −c2dt2 + e2(ct/L)

[
dr2 + r2dΩd−2

]
, (2.21)

which can be embedded into the d+ 1 dimensional flat spacetime

ds2
d+1 = ηABdxAdxB = −dX2

0 + dX2
i , (2.22)

with i = 1, 2, . . . , d. The vacuum Einstein field equations associated with the (d+1)-

dimensional flat bulk metric (2.22) turn out to be G(d+1)
AB = 0. Let us study the embedding

of de Sitter hypersurface (2.21) in more details. It is a hyperbolic spacetime with radius L,

L2 = −T 2 +X2
i , NA =

1

L
(X0, Xi), (2.23)
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where NA is the normal vector of the hypersurface pointing outwards. The cosmological

constant Λd = (d−1)(d−2)
2L2 will play the role of the dark energy. Notice that to balance the

Einstein field equations (2.14) with the induced de Sitter metric gµν in (2.21), one requires

either the cosmological constant or the apparent dark energy term.

Interestingly, for the pure de Sitter spacetime (2.21), after considering normal vec-

tor (2.23) which leads to the extrinsic curvature Kµν = 1
Lg

µν , the Brown-York stress-

energy tensor (2.18) turns out to be 〈T 〉µν = 〈T 〉µνΛ = − 1
κd+1

d−1
L gµν . Then we arrive at

the stress-energy tensor of apparent dark energy,

〈T 〉µνΛ = −Λd
κd
gµν , when

κd+1

κd
=

2L

d− 2
. (2.24)

One can see that the Einstein field equations in (2.14) with the de Sitter metric (2.21) are

naturally satisfied

Rµν −
1

2
Rgµν = κd〈T 〉Λµν . (2.25)

From (2.24) we read out the dark energy density formula

ρ̃Λ =
uµuν
c4
〈T 〉µνΛ =

Λd
κdc2

. (2.26)

After considering (2.20) with T = 0, we have the identity

〈T 〉2Λ
d− 1

− 〈T 〉Λµν〈T 〉
µν
Λ = − ρ̃Λc

2

d− 1
〈T 〉Λ. (2.27)

Thus, assuming 〈T 〉µν = 〈T 〉µνΛ ≡ − Λ
κd
gµν in the constraint equation (2.19), the pure de

Sitter spacetime satisfies the above identity automatically. Notice here that the Brown-

York stress-energy tensor plays the role of dark energy and there is no baryonic matter or

dark matter yet in the set-up.

2.3 Emergent dark matter on holographic screen

Next, we consider to add a small amount of baryonic matter and radiation in with the uni-

form and isotropic distribution. Considering (2.24)(2.26), our assumption for the constraint

relation (2.20) becomes

〈T 〉2

d− 1
− 〈T 〉µν〈T 〉µν = − ρ̃Λc

2

d− 1

[
T + 〈T 〉

]
. (2.28)

This is the main constraint relation in this section. Since in Einstein field equations (2.14),

Tµν is the stress-energy tensors of baryonic matter and radiation,

Tµν = TµνB + TµνR , TµνB = (ρB)uµuν , TµνR = (ρR)uµuν + pRh
µν , (2.29)

where ρB is the mass density baryonic matter, hµν = gµν + uµuν and uµ is the velocity

in d dimensions. The dark energy and dark matter are all assumed to be related to the

extrinsic curvature of the hypersurface embedded in the higher dimensional flat bulk. We

– 6 –
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take the Brown-York stress-energy tensor 〈T 〉µν , which is playing the role of dark energy

and dark matter,

〈T 〉µν = 〈T 〉µνΛ + 〈T 〉µνD , 〈T 〉µνΛ = −(ρΛc
2)gµν , 〈T 〉µνD = (ρD)uµuν + pDh

µν . (2.30)

Putting them back into the constraint equation (2.28), we have

(ρΛ + ρD)

[
dρΛ − (d− 2)ρD − 2(d− 1)

pD
c2

]
= ρ̃Λ

{
dρΛ + ρB +

[
ρD − (d− 1)

pD
c2

]
+

[
ρR − (d− 1)

pR
c2

]}
. (2.31)

If setting ρ̃Λ = ρΛ and with equation (2.27), we arrive at

ρ2
D =

ρΛ

d− 2

[
ρD − ρB − ρR + (d− 1)

pR
c2

]
− d− 1

d− 2

pD
c2

(2ρD + ρΛ) . (2.32)

When d = 4, the stress-energy tensor of radiation is traceless −ρRc2+3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

ρ2
D =

ρΛ

2(1 + 3w̃D)

[
ρD(1− 3w̃D)− ρB

]
, w̃D ≡

pD
ρDc2

. (2.33)

w̃D denotes the effective state equation of the emergent dark matter, which can be time

dependent in general. Dividing both sides of (2.33) by the squire of the critical energy

density ρ2
c in (2.6), we obtain the generalized constraint relation

Ω̃2
D =

Ω̃Λ

2(1 + 3w̃D)

[
Ω̃D(1− 3w̃D)− Ω̃B

]
. (2.34)

The components have been identified as

Ω̃Λ ≡ ρΛ/ρc, Ω̃D ≡ ρD/ρc, Ω̃B ≡ ρB/ρc, (2.35)

which can be time dependent in general case.

We will take the assumption that the evolution of the late time universe is governed by

the ΛCDM parameterization, and the total dark components are identified as the Brown-

York stress-energy tensor in (2.3). We also assume the emergent dark matter is pressureless

at t = t0 for now and discuss the otherwise later in this paper. Through setting w̃D = 0

in (2.34), and considering (2.8), we can obtain our main toy constraint in (2.9),

Ω2
D =

1

2
ΩΛ(ΩD − ΩB). (2.36)

If we further use ΩΛ + ΩD + ΩB ' 1 in the late time universe, then

Ω2
D =

1

3
(ΩD − ΩB + Ω2

B). (2.37)

Considering ΩD ' 5ΩB from (2.11), as well as ΩB ' 0.05 � 1, we can also arrive at the

Verlinde’s Ω2
D '

4
3ΩB in (2.10). On the other hand, since ΩB+ΩD . ΩΛ, despite being not

– 7 –
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so precise, the de Sitter background is still a good approximation. However, if we consider

the dark matter in smaller scales around the galaxies and compare with galactic rotational

curves, we need to consider the effects of back-reaction of baryonic matter. This is the

same situation in the earlier universe when matter or radiation dominates in the energy of

the universe and can not be treated as perturbations on the background anymore. In such

cases, this toy model turns out to be not enough, we will resort to the more complicated

model in the next section.

3 Holographic FRW universe and emergent dark matter

In this section, we consider a more consistent embedding of the FRW metric into one higher

dimensional flat spacetime [27]. We assume that the stress-energy tensor of the total dark

components, including dark matter and dark energy, is provided by the holographic stress-

energy tensor on the FRW hypersurface. In section 3.1, we firstly review the consistent

embedding of the FRW hypersurface in a flat bulk. In section 3.2, we review the usual

parameterization in DGP braneworld model with the Z2 symmetry along the hypersurface.

In section 3.3, we further develop our viewpoint on the holographic FRW universe in a flat

bulk, using a different boundary condition from 3.2. We also discuss its connection to the

well studied DGP braneworld model. In particular, we show that under special parameter

choice, the constraint relation (2.9) in our toy model can be recovered in late time universe.

3.1 Embedding FRW universe in a flat bulk

Consider a 4 + 1 dimensional flat bulk M with action S5 and metric g̃AB, along with the

3 + 1 dimensional time like hypersurface ∂M with action S4 and induced metric gµν . The

total action is given by S5 + S4, where

S5 =
1

2κ5

∫
M

d5x
√
−g̃R+

1

κ5

∫
∂M

d4x
√
−gK, (3.1)

S4 =
1

2κ4

∫
∂M

d4x
√
−g R+

∫
∂M

d4x
√
−gLM . (3.2)

K is the trace of extrinsic curvature of the hypersurface ∂M, and LM is the Lagrange

density of matter localized on the hypersurface. If choose the Gaussian normal coordinates

of the bulk metric g̃AB, we have

ds2
5 = g̃ABdxAdxB = dy2 + g̃µνdxµdxν . (3.3)

We assume the hypersurface ∂M located at y = 0, which is the shared boundary of the

half bulk M+ for the region y > 0 and the half bulk M− for the region y < 0.

The bulk equations of motion are given by the variation of the total action S5 + S4

with the bulk metric g̃AB,

1

κ5

(
RAB −

1

2
Rg̃AB

)
+

1

κ4

(
Rµν −

1

2
Rgµν

)
g̃µAg̃

ν
Bδ(y) = TMµν g̃

µ
Ag̃

ν
Bδ(y) . (3.4)
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With the matching junction condition at the hypersurface y = 0,

〈T 〉+µν − 〈T 〉−µν +
1

κ4
Gµν = TMµν , (3.5)

where Gµν ≡ Rµν − 1
2Rgµν . The effective stress-energy tensor from extrinsic curvature is

〈T 〉±µν ≡
1

κ5

(
K±µν −K±gµν

)
. (3.6)

We include the baryonic matter, radiation and other effective terms in the Lagrangian LM ,

which leads to the stress-energy tensor

TMµν = − 2√
−g

δ

δgµν

(∫
∂M

d4x
√
−gLM

)
. (3.7)

The extrinsic curvature is K±µν ≡ g̃Aµ g̃Bν ∇̃(AN±B)|∂M, and N± is chosen as the normal vector

of ∂M along the ±y directions, respectively.

We consider that our universe is uniform and isotropic at large scale, and take the

spatially flat FRW metric in d = 4 dimensions,

ds2
4 =− c2dt2 + a(t)2

[
dr2 + r2dΩ2

]
. (3.8)

The consistent embedding in higher dimensional flat spacetime has been discussed in [28],

where the bulk metric (3.3) in Gaussian normal coordinates is

ds2
5 = g̃ABdxAdxB = dy2 − n(y, t)2 c2dt2 + a(y, t)2

[
dr2 + r2dΩ2

]
. (3.9)

The consistent embedding metric functions are solved as [29–31],

a(y, t)2 = a(t)2 + y2 ȧ(t)2

c2
± 2y

√
a(t)2

ȧ(t)2

c2
+ I, (3.10)

n(y, t) =
∂ta(y, t)

ȧ(t)
. (3.11)

Here I is the integration constant, with dimension of [L]−2.

In the following section 3.2, we will choose the Z2 symmetry along the brane similar

as the usual DGP model, where the parameter I is neglected. In section 3.3, we will

consider the FRW brane as a cutoff hypersurface in the flat bulk and present an alternative

interpretation as the holographic FRW(hFRW) universe, with a non-zero parameter I.

3.2 Braneworld scenario: DGP model with Z2 symmetry

In the usual DGP model [12–14], the Z2 symmetry along the brane in the bulk has been

imposed, which leads to the boundary condition 〈T 〉+µν = −〈T 〉−µν , as well as the modified

Einstein field equations on the brane

1

κ4
Gµν = TMµν + 〈T 〉Kµν , 〈T 〉Kµν ≡ 〈T 〉−µν − 〈T 〉+µν =

2

κ5

(
K−µν −K−gµν

)
. (3.12)
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In the self accelerating branch of the DGP model (sDGP), TMµν includes the baryonic matter

and dark matter, while 〈T 〉Kµν provides the effective dark energy. In the normal branch of

the DGP model (nDGP), depending on the parameterization, a cosmological constant needs

to be supplemented. In the usual setup, I = 0 in (3.10) was chosen, then the metric (3.9)

becomes more simple,

ds2
5 = dy2 −

[
1± |y|

c

ä(t)

ȧ(t)

]2

c2dt2 +

[
1± |y|

c

ȧ(t)

a(t)

]2

a(t)2
(
dr2 + r2dΩ2

)
. (3.13)

The above two equations will lead to the modified Friedmann equation on the brane,

H(t)2 =
κ4c

4

3
[ρM (t) + ρK(t)] , (3.14)

as well as the acceleration equation

Ḣ(t) +H(t)2 = −κ4c
4

6

[
ρM (t) + ρK(t) + 3

pM (t) + pK(t)

c2

]
. (3.15)

The energy conservation equations for each component are

ρ̇ı(t) = −3H(t)
[
ρı(t) + pı(t)/c

2
]
, ı = M, K . (3.16)

Plugging the metric (3.13) into the stress-energy tensor 〈T 〉Kµν in (3.12), we can read out

the effective energy density and pressure

ρK(t) = ± 2

κ5c3
3H(t), (3.17)

pK(t) = ∓ 2

κ5c

[
3H(t) +

Ḣ(t)

H(t)

]
. (3.18)

The positive ρK and negative pK correspond to the sDGP branch. The negative ρK and

positive pK correspond the nDGP branch, and the extra effective cosmological constant is

required in equation (3.14). Since 〈T 〉Kµν in (3.12) is proportional to the Brown-York stress-

energy tensor, it is natural to see that the Hamiltonian constraint equation on the brane

in the bulk (2.16) is satisfied and leads to

〈T 〉2K
3
− 〈T 〉Kµν〈T 〉

µν
K = − κ4

(κ5/2)2
[TM + 〈T 〉K] . (3.19)

Compared with the constraint relation in our toy model (2.20), the coupling constant κ5 is

replaced by κ5/2 in (3.19). It is due to the double copies of the Brown-York stress-energy

tensor in 〈T 〉Kµν at (3.12) in the DGP model.

Here we pay attention to the sDGP branch, where the modified Friedmann equa-

tion (3.14) is summarized as

H(t)2

H2
0

=
ΩM

a(t)3
+
√

Ω`
H(t)

H0
, Ω` =

c2

`2H2
0

, ` ≡ (κ5/2)

κ4
. (3.20)
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If considering a(t0) = 1 and H(t0) = H0 in (3.20), we have 1 = ΩM +
√

Ω`. Compared

with (2.24) in our toy model, ` = L/2 is due to the Z2 symmetry of the sDGP brane, which

includes the double copies of the Brown-York stress-energy tensor. Equivalently,

H(t)2

H2
0

=
Ω`

2
+

ΩM

a(t)3
+

[
Ω2
`

4
+

Ω`ΩM

a(t)3

]1/2

, ΩM = 1−
√

Ω`. (3.21)

Notice that to make the presentation more clear, we did not include the contribution from

spatial curvature ΩK and radiation ΩR. It is easy to see that if setting ΩM = 0 in (3.21),

we will have the Friedmann equation of the de-Sitter Universe. In the self accelerating

branch of the DGP model, ΩM = ΩB + ΩD, including both of the components of baryonic

matter and dark matter, while Ω` is the component of the effective dark energy. More

detailed study of the phenomenology of the DGP model can be found in [32–35].

In order to recover the constraint relation (2.34) in the toy model, we need to give a

different interpretation of these parameters in the sDGP model,

Ω̃Λ = Ω`, Ω̃D = ΩK(t)− Ω`, Ω̃B ≡
ΩM

a(t)3
=
H(t)2

H2
0

− ΩK(t) , (3.22)

w̃D = −1− 1

3H(t)

Ω̇K(t)

ΩK(t)− Ω`
, ΩK(t) ≡ ρK

ρc
=
√

Ω`
H(t)

H0
. (3.23)

In particular, taking the derivative of (3.20) and eliminating ΩM with (3.20) again will

lead to the identical relation of Ḣ(t), as well as w̃D from (3.23),

Ḣ(t) = −3H(t)2

H(t)
H0
−
√

Ω`

2H(t)
H0
−
√

Ω`

, (3.24)

w̃D = −
H(t)
H0
−
√

Ω`

2H(t)
H0
−
√

Ω`

. (3.25)

One can check that the general constraint relation (2.34) is satisfied after putting back the

expressions (3.22) and (3.25), at any cosmological time t.

From (3.20) and (3.25), it is clear to see that only in the very late time universe that

H(t)→ H0

√
Ω`, we can have w̃D(t)→ 0, which is a bit different with the ΛCDM model. If

setting ΩM = ΩB, equating the right hand side of (3.21) with that in the late time ΛCDM

model (2.7) at a(t0) = 1, we arrive at Ω2
D = ΩΛ (ΩB − ΩD). It is quite different from our

toy constraint relation (2.9), because it requires ΩB > ΩD, which does not match with the

observed parameters in (2.11). Thus, if taking the sDGP model with Friedmann equation

in (3.21) and setting ΩM = ΩB, it can not recover our toy constraint relation (2.9).

In the next section, we will give an alternative interpretation of the embedding scenario

as the holographic FRW universe. In particular, we will turn on the parameter I, which is

usually set to be zero in the previous studies of the DGP models [32]. It will become clear

that only if keeping this parameter I in the embedding function (3.10), we can recover the

constraint relation (2.9) in our toy model.
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3.3 Holographic scenario: holographic FRW universe

In the previous subsection, we have studied the dynamics of a FRW hypersurface, which is

embedded into the higher dimensional flat spacetime. The physical picture is related to the

traditional braneworld models [36–41], or the blackfold approaches with higher dimensional

embedding [15–21]. In this subsection, we will give a new physical interpretation of the

FRW hypersurface in a flat bulk with the embedding metric (3.3). It can be reduced to our

toy model with a de-Sitter hypersurface in the flat bulk. From the viewpoint of the cutoff

holography in the flat spacetime [42, 43], we can drop the manifold M− in the flat bulk,

such that the hypersurface ∂M at y = 0 plays the role of the holographic boundary of the

manifold M+. Or from the viewpoint of membrane paradigm [44], the manifold M+ can

be replaced by the quasi-local Brown-York stress-energy tensor on the hypersurface ∂M.

It is also equivalent to set 〈T 〉+µν = 0 in the junction condition (3.5), and the Einstein field

equation becomes

1

κ4
Gµν = TMµν + 〈T 〉Hµν , (3.26)

where the Brown-York stress-energy tensor on ∂M is

〈T 〉Hµν = − 2√
−g

δ(S5)

δgµν
= 〈T 〉−µν =

1

κ5

(
K−µν −K−gµν

)
. (3.27)

Again the Hamiltonian constraint equation (2.20) is automatically satisfied

〈T 〉2H
3
− 〈T 〉Hµν〈T 〉

µν
H = − κ4

(κ5)2

[
TM + 〈T 〉H

]
. (3.28)

We will choose the negative branch in (3.10), such that the energy density and pressure

in 〈T 〉Hµν are given by

(κ5c
2)ρH=−3∂ya(y,t)

a(y,t)

∣∣∣
y=0

= 3

[
H(t)2

c2
+

I

a(t)4

]1/2

, (3.29)

(κ5)pH=

[
2∂ya(y,t)

a(y,t)
+
∂yȧ(y,t)

ȧ(y,t)

]∣∣∣
y=0

=−

[
Ḣ(t)+3H(t)2

c2
+

I

a(t)4

]/[
H(t)2

c2
+

I

a(t)4

]1/2

.

(3.30)

The modified Friedmann equation is,

H(t)2 =
κ4c

4

3
[ρM (t) + ρH(t)] , H2

0 =
κ4c

4

3
ρc . (3.31)

And the energy conservation equation remains

ρ̇ı(t) = −3H(t)
[
ρı(t) + pı(t)/c

2
]
, ı = M, H . (3.32)

Again we use the same setting in (2.24), considering that ρc = 3
κ4

H2
0
c4

, we have

ΩΛ =
ρΛ

ρc
=

c2

L2H2
0

, ρΛ =
3

κ4

1

c2L2
, L =

κ5

κ4
. (3.33)
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Putting (3.29) into (3.31), the modified Friedmann equation is summarized as

H(t)2

H2
0

=
ΩM

a(t)3
+ Ω

1/2
Λ

[
H(t)2

H2
0

+
ΩI

a(t)4

]1/2

, ΩI ≡
Ic2

H2
0

. (3.34)

Or equivalently,

H(t)2

H2
0

=
ΩΛ

2
+

ΩM

a(t)3
+

[
Ω2

Λ

4
+

ΩΛΩM

a(t)3
+

ΩΛΩI

a(t)4

]1/2

. (3.35)

We named this Scenario as the holographic FRW(hFRW) model. Instead of using the

ΛCDM parameterization in (2.7), we has a different set of parameters in the hFRW model.

Notice here that by setting ΩM = ΩB+ΩD and ΩI = 0, we can recover the usual Friedmann

equation (3.21) of the sDGP model. While if setting ΩM = ΩB and turning the parameter

ΩI , it can be shown that one is able to recover our toy constraint relation (2.9).

Firstly, we need to match these parameters in hFRW model with that in the constraint

relation (2.34),

Ω̃Λ = ΩΛ, Ω̃D = ΩH(t)− ΩΛ, Ω̃B ≡
ΩM

a(t)3
=
H(t)2

H2
0

− ΩH(t), (3.36)

w̃D = −1− 1

3H(t)

Ω̇H(t)

ΩH(t)− ΩΛ
, ΩH(t) ≡ ρH

ρc
= Ω

1/2
Λ

[
H(t)2

H2
0

+
ΩI

a(t)4

]1/2

. (3.37)

In particular, taking the derivative of (3.34) and eliminating ΩM with (3.34) again will

lead to the identical relation of Ḣ(t), as well as w̃D(t) from (3.37),

Ḣ(t) = −3H(t)2

[√
H(t)2

H2
0

+ ΩI
a(t)4 −

√
ΩΛ

]
− 1

3
ΩI
a(t)4

/H(t)2

H2
0

2
√

H(t)2

H2
0

+ ΩI
a(t)4 −

√
ΩΛ

, (3.38)

w̃D = −

[√
H(t)2

H2
0

+ ΩI
a(t)4 −

√
ΩΛ

]
− 1

3
ΩI
a(t)4

/ [√H(t)2

H2
0

+ ΩI
a(t)4 −

√
ΩΛ

]
2
√

H(t)2

H2
0

+ ΩI
a(t)4 −

√
ΩΛ

. (3.39)

One can check that the general constraint relation (2.34) is satisfied automatically after

plugging in above quantities (3.36) and (3.39), at any cosmological time t.

Now let us compare it with the late time evolution of ΛCDM model with Friedmann

equation (2.7). If only setting ΩM = ΩB, and equalizing the right hand side of (3.35)

and (2.7) at a(t0) = 1, we arrive at

Ω2
D = ΩΛΩI − ΩΛ (ΩD − ΩB) . (3.40)

Thus, once taking

ΩI =
3

2
(ΩD − ΩB) , (3.41)
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we can recover our toy constraint relation in (2.9). Plugging the ΛCDM parameteriza-

tion (2.7) into the effective energy density (3.29) and pressure (3.30) from the Brown-York

stress-energy tensor, and considering (3.40), we have

ρH ' ρc(ΩΛ + ΩD), pH ' −(ρcc
2)ΩΛ. (3.42)

Thus, it is consistent with the ansatz in our toy model (2.30) with ρD = ρcΩD and pD = 0,

as well as ρΛ = ρcΩΛ = −pΛ

c2
.

Finally, we summarize the normalized Hubble parameters H(z)/H0 in terms of the

redshift z in various models. The redshift z is related to the scale factor via a(t)/a(t0) =

1/(1 + z). Considering (2.7)(3.21)(3.35) and setting a(t0) = 1, we have

ΛCDM :
H(z)

H0
=

√
ΩΛ +

ΩD + ΩB

(1 + z)3
, (3.43)

sDGP :
H(z)

H0
=

√
Ω`

2
+

ΩM

(1 + z)3
+

[
Ω2
`

4
+

Ω`ΩM

(1 + z)3

]1/2

, (3.44)

hFRW :
H(z)

H0
=

√
ΩΛ

2
+

ΩB

(1 + z)3
+

[
Ω2

Λ

4
+

ΩΛΩB

(1 + z)3
+

ΩΛΩI

(1 + z)4

]1/2

. (3.45)

Taking (3.25) and (3.39), the associated state equations w̃D(z) for various models are

ΛCDM : w̃D(z) = 0 , (3.46)

sDGP : w̃D(z) =−
H(z)
H0
−
√

Ω`

2H(z)
H0
−
√

Ω`

, (3.47)

hFRW : w̃D(z) =−

[√
H(z)2

H2
0

+ ΩI
(1+z)4−

√
ΩΛ

]
− 1

3
ΩI

(1+z)4

/[√
H(z)2

H2
0

+ ΩI
(1+z)4−

√
ΩΛ

]
2
√

H(z)2

H2
0

+ ΩI
(1+z)4−

√
ΩΛ

. (3.48)

Again in order to make the presentation simpler, we here neglected the contribution of

radiation ΩR and spatial curvature ΩK , which can be easily included in the equations

above. Here including ΩI in (3.48) turns the value of w̃D(z) from negative to positive in

the late time universe, and thus effectively contributes to the emergent dark matter.

In figure 1, we plot the reduced Hubble parameters H(z)/H0 and the state equations

w̃D(z) of the emergent dark matter in terms of the redshift z in various models. The Fried-

mann equation of spatial flat ΛCDM model is in (2.7), with the parameters in (2.11). The

Friedmann equation of sDGP model is in (3.21), with the fitting parameter ΩM = 0.21 [31].

The Friedmann equation of our hFRW model is in (3.35), with a special choice of the pa-

rameters ΩM = ΩB,ΩI = 3
2(ΩD − ΩB), along with the values in (2.11). More detailed

studies of this non-zero ΩI and fitting parameters in the hFRW model will appear in our

future work.
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Figure 1. Left: the reduced Hubble parameters H(z)/H0 in terms of the redshift z in various

models. Right: the evolution of state equations w̃D(z) in terms of the redshift z in various models.

ΛCDM: the plotting functions are in (3.43) and (3.48), with the parameters in (2.11); sDGP: the

plotting functions are in (3.44) and (3.47), with the fitting parameter ΩM = 0.21 in [32]; hFRW:

the plotting functions are in (3.45) and (3.48), with a special choice of the parameters ΩM = ΩB ,

ΩI = 3
2 (ΩD − ΩB), along with the values in (2.11).

4 Towards holographic de Sitter brane with elasticity

In the above section 2, inspired by the emergent gravity by Verlinde in [7], we have proposed

the emergent dark matter on the de-Sitter hypersurface in a flat bulk, which gives rise to the

similar mechanism as in [7]. In section 3, we have generalized the holographic de-Sitter sce-

nario to the time evolution case with a FRW hypersurface in a flat bulk. However, the above

setups still lack of the elasticity in the Verlinde’s emergent gravity [7]. In the holographic

models, the elastic property can usually be realized in the blackfold approaches [15–21],

or by including the effective mass terms in the bulk of holographic models [22–24]. In this

section, we will consider the embedding of a de Sitter hypersurface in the flat bulk with

effective massive gravity terms, where the holographic elasticity is implemented.

On the other hand, in both section 2 and section 3, we considered the uniform and

isotropic metric at the cosmological scale. While in this section, aiming at a comparison

with Verlinde’s derivation on the Tully-Fisher relation, we focus on the response at galactic

scales of the de-Sitter brane. Instead of the uniform baryonic matter, we need to add the

spherically symmetric baryonic matter. We are also trying to reconcile the inconsistency

in Verlinde’s emergent gravity pointed out by [10]. We present a consistent derivation of

Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the

original Verlinde’s story.

4.1 Holographic stress tensor and Verlinde’s apparent dark matter

In order to embed the d-dimensional Verlinde’s emergent gravity with elasticity into a

higher dimensional bulk spacetime, we sketch the more general total action as Sd+1 + Sd,
where

Sd+1 =
1

2κd+1

∫
M

dd+1x
√
−g̃ [Rd+1 − 2Λd+1 + Lφ] +

1

κd+1

∫
∂M

ddx
√
−gK, (4.1)

Sd =
1

2κd

∫
∂M

ddx
√
−g (Rd − 2Λd) +

∫
∂M

ddx
√
−gLM . (4.2)
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In the bulk manifoldM with metric g̃AB, the Lagrangian density Lφ represents the effective

term which can provide the holographic elasticity. On the boundary ∂M with induced

metric gµν , the trace of the extrinsic curvature is K. Like in our toy model in section 2, we

can set Λd+1 = 0 in the bulk, and study the holographic elastic response of the screen after

putting in the baryonic matter. One may also add Λd in the boundary action Sd, which

can contribute to the total cosmological constant on the boundary theory, or the tension

of the boundary brane.

The viscous or elastic response of the boundary theory in the holographic description

is encoded in the transverse-traceless tensor mode of the metric perturbations in the bulk.

In the toy model in section 2, we embed the d-dimensional de Sitter spacetime as the hyper-

surface in the (d+1)-dimensional flat bulk in Einstein gravity. The usual holographic solid

model is on the flat boundary in AdSd+1 spacetime in massive gravity [22–24]. However,

one may embed the dS-sliced coordinates into the AdSd+1 spacetime and obtain dSd as the

boundary hypersurface. It is foreseeable that the elastic solid model can be generalized into

the case with the de Sitter boundary with the tension term [45–58]. Although the detailed

construction is still left to be done and we leave it to a future work, for now, we assume

the above action can capture the feature of the elastic theory. In any case, the discussion

for the rest of this section is actually independent of the holographic construction and it

only uses the theory that describes the elastic solid with different modulus values in a de

Sitter background.

For the d-dimensional de Sitter hypersurface embedded in the higher dimensional flat

bulk spacetime, instead of the expanding coordinate in (2.21), we now consider the static

coordinate patch described by the metric

ds2
d = gµνdxµdxν = −f(r)dt2 + ĥijdx

idxj , f(r) = 1− r2

L2
, (4.3)

ds2
d−1 = ĥijdx

idxj =
1

f(r)
dr2 + r2dΩ2

d−2, i, j = 1, 2, . . . d− 1. (4.4)

Here ĥij is the induced metric on the spacial slice. One can also define the projection tensor

hµν ≡ gµν + uµuν , along with the d velocity uµ. The Brown-York stress-energy tensor on

the boundary of the bulk with the action (4.1) is given by

〈T 〉µν = − 2√
−g

δ(Sd+1)

δgµν
≡ ρ̃Duµuν + 〈σ〉µν , (4.5)

where ρ̃D is the effective holographic energy density induced from higher dimension, and

we introduced the covariant stress tensor 〈σ〉µν which satisfies 〈σ〉µνuµ = 0. The stress

tensor 〈σ〉ij and strain tensor εij are given by

〈σ〉ij ≡ hµi h
ν
j 〈σ〉µν , εij = hµi h

ν
j εµν , εµν ≡ ∇(µñν), (4.6)

and ñµ is the shift vector associated with the deformation.

Now we take a detour to the Verlinde’s derivation, where the displacement ñi is caused

by the presence of the baryonic matter, and the metric solution in (4.3) becomes

f(r) = 1− r2

L2
+ 2ΦB, ΦB ≡ −

8πGd
(d− 2)Ωd−2

MB

rd−3
. (4.7)
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We consider the simple case that MB =
∫ rB

0 ρD(r′)A(r′)dr′ is the constant total mass of

baryonic matter in the galaxy, with the characteristic scale rB. In the deep-MOND regime

we are looking at in this section, rB < r � L [2, 3], such that f(r) ≈ 1+ 2ΦB will be taken

in the following derivations [7].

One issue in the Verlinde’s derivation raised by [10], is that the displacement ñi = ΦB
a0
ni

is identified, with a0 = cH0. When choosing d = 4 in (4.7), the baryonic matter induces a

Newtonian potential ΦB ∼ −GMB
r , then the apparent dark matter surface density ΣD ∼ εij

scales as 1/r2 at the large r. However, to produce the Tully-Fisher relation or flat rotational

curves in galaxies, ΣD ∼ εij has to scale as 1/r at the large r. Thus, this is the inconsistency

in the Verlinde’s original story [10]. In the following, we try to circumvent this issue and

see whether this assumption of the displacement can be abandoned. This displacement

ñi = ΦB
a0
ni is important in [7], where the ADM mass definition of the de Sitter spacetime is

related to the strain tensor through M = 1
a0

∮
S∞ σijnjdAi. The problem with this argument

is for a pure de Sitter space with the positive cosmological constant in Einstein gravity, it

can not have the elastic property on its own. The elaborated derivation [7] avoids the facts

that one needs to go beyond the theory of Einstein gravity to have the correct elastic dark

matter. One way out is to embed the de Sitter hypersurface in higher dimensional bulk,

such that the elasticity will emerge from the holographic brane, and the effective Einstein

field equations will be modified. In the following, we propose a way to resolve this issue

by employing a model of holography with the bulk action (4.1) and reproduce the elastic

dark matter response formula as the baryonic Tully-fisher relation in [7].

4.2 Emergent Tully-Fisher relation from holographic elasticity

Considering the fact that δεij = −δĥij/2 in [22–24] and (4.5), the spacial components are

〈σ〉ij =
1√
−g

δ(
√
−gF)

δεij
=
−2√
−g

δ(Sd+1)

δĥij
= 2µεij + λδij(ε

k
k), (4.8)

with shear elastic modulus µ and bulk modulus λ + 2µ/(d − 1). By tuning the effective

Lagrangian Lφ in the bulk (4.1), we expect the designed values of µ coming out of the

holographic engineering with only the traceless stress tensor [22–24], such that the bulk

modulus vanishes λ+ 2µ/(d− 1) = 0. We can define the traceless part ε′ij as below,

〈σ〉ij = 2µ ε′ij , ε′ij = εij −
1

d− 1
δij(ε

k
k). (4.9)

This describes only the shear deformation, without changing the volume of the body.

The stress tensor 〈σ〉ij and strain tensor εij then only have the traceless part ε′ij . We can

diagonalize the elastic strain tensor εij and stress tensor 〈σ〉ij simultaneously, since they are

symmetric and linearly related. Their eigenvalues are called the principal strain and stress

values.We define ε(r) as the largest eigenvalue of the traceless part of the strain tensor,

ε(r) ≡ ε′ijninj . (4.10)
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We adopt the volume formula of the entropy change ∆S(r) of the de Sitter spacetime by

the total baryonic matter within a radius r in [7],

∆S(r) = −2πMBr

~
, TdS =

~a0

2π
, (4.11)

where TdS is the Gibbons-Hawking temperature of de Sitter spacetime. Notice that this

relation is somewhat ad-hoc here since it assumes that holographic elastic de Sitter brane

has the same entropy formula as the pure de Sitter space. We can put forth a naive ar-

gument that nevertheless, it can still have ∆S(r) ∝ MBr. The change of the free energy

then follows the volume law of the thermodynamics of the “de Sitter medium” with

∆F (r) = −TdS∆S(r) = a0MBr. (4.12)

Now slightly different from assuming the displacement ñi in Verlinde’s [7], we start

from the variation of the holographic free energy density F in (4.8). Similarly, we will only

consider the leading order contribution in terms of MB with a fixed background metric

in (4.7), where the effects of r2/L2 will also be neglected. If we only consider the shear

modes in (4.9) and do not consider the variation of background metric, the free energy

density formula becomes

δ(
√
−gF) =

√
−g〈σ〉ijδεij = µ δ(

√
−gε′ijε′ij). (4.13)

The change of total free energy F =
∫
Vd−1
F within a radius r is approximately

∆F (r) = µ

∫ r

0
dr′A(r′)

(
ε′ijε

′ij) & µ
d− 1

d− 2

∫ r

0
dr′A(r′)ε(r′)2. (4.14)

Here the area is A(r) = Ωd−2r
d−2. We will take the last equal sign to be approximately

true by defining ε(r) as the largest eigenvalue of the traceless part of εij and assuming the

other principal strains are equal and summed to −ε. This step is similar to the Verlinde’s

derivation. After differentiating both equations (4.12) and (4.14) with respect to r, we

arrive at

µ
d− 1

d− 2
A(r)ε(r)2 = a0MB . (4.15)

One notices here that if we identify MD(r) =
∫ r

0 ρD(r′)A(r′)dr′ as the total apparent dark

matter mass enclosed inside radius r, and assume the surface density of the apparent dark

matter ΣD and baryonic matter ΣB as

ΣD(r) ≡ MD(r)

A(r)
=

µ

a0
ε(r), ΣB(r) ≡ MB

A(r)
, (4.16)

then from (4.15) we can arrive at the response relation as below,

ΣD(r)2 =
µ

a0

d− 2

d− 1
ΣB(r), µ =

a2
0

16πG
. (4.17)
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The value of shear elastic modulus µ has been chosen to be the same as in Verlinde’s [7],

although we take a different ansatz for the pre-factor in ΣD(r).

When d = 4, and considering gD(r) = GMD(r)/r2, gB(r) = GMB/r
2, the equa-

tion (4.17) leads to the same relation in Verlinde’s [7],

gD(r)2 =
a0

6
gB(r). (4.18)

In the deep-MOND regime that gD(r)� gB(r), the above conclusion leads to the baryonic

Tully-Fisher relation that,

v4
f =

a0

6
GMB, gD(r) =

v2
f

r
, (4.19)

where vf is the asymptotic velocity of the flattened galaxy rotation curve.

Notice here that we haven’t explicitly constructed the theory with baryonic mass MB

on top of the elastic background. To do so requires more ingredients in the theory and it

can become complicated, for such examples, see e.g. [59–61]. We may compare the dark

matter density here as in the toy model in section 2. The strain tensor εµν in (4.6) is

related to the extrinsic curvature Kµν . The stress tensor 〈σ〉µν in (4.9) contributes to the

total Brown-York stress-energy tensor 〈T 〉µν . For the toy model in section 2, we employ

the hypersurface displacement in extrinsic curvature as the elastic displacement tensor,

whereas in the holographic model in this section, the extra fields with Lφ in the bulk is

introduced. The boundary term in action (4.1) is also related to the Brown-York stress-

energy tensor in the modified Einstein equations (2.1) in the toy model. This leads to the

questions in the previous section that whether we can realize this response in a model with

braneworld, although the answer is not clear at this moment.

5 Discussion and conclusion

In this final section, we will further discuss the difference and connections between our

approach and some well-studied scenarios, especially the braneworld and the holographic

universe. Following the Verlinde’s model for the apparent dark matter, there seem to be

three crucial conditions for his construction so far. First, there is the background entropy,

which distributes evenly in the volume. Second, the positive cosmological constant, pro-

vides the thermal bath with the Gibbons-Hawking temperature TdS = ~a0/2π. The last,

the apparent dark matter is only the response to the presence of the baryonic matter.

The braneworld scenario may offer something similar to above-mentioned conditions and

becomes a natural playground for the Verlinde’s emergent gravity. The elastic medium full

of entropy can be explained from higher dimensions though additional brane dynamics, by

treating our (3+1) dimensional spacetime as the boundary of the bulk spacetime. Cosmo-

logical constant and the standard model can be easily implemented with braneworld in the

literature [62, 63]. Most interestingly, the branes with tensions and dynamics, may react

to the matter fields we put in, with extra terms introduced. Especially the extrinsic cur-

vature, a concept valid only from higher dimensional spacetime, may describe the “elastic

response” nature of the apparent dark matter from the Verlinde’s theory.
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We comment on the possible constraints from gravitational wave observations. Re-

cently it is argued that two relativistic models of modified Newtonian dynamics seem

inconsistent with observations [64]. Modified gravity models are constrained from two as-

pects. One is the constraint of the energy loss rate from ultra high energy cosmic rays,

which indicates that gravitational waves should propagate at the speed of light. The other

is the observed gravitational waveforms from LIGO, which are consistent with Einstein’s

gravity and suggest that the gravitational wave should satisfy linear equations of motion in

the weak-field limit. Although Verlinde suggested similar modifications of Newtonian dy-

namics as in MOND theory [7], which emerges with a different underlining physical origin,

there are no covariant equations of motion for the gravitational waves. For our toy model

in the previous sections, the induced dark components can be viewed as dark energy and

dark matter stress-energy tensor and they behave the same as the particle dark matter in

the ΛCDM models at the leading order, so it can pass the above-mentioned constraints [64].

To be more specific, the extra apparent dark sector as the extra term in Einstein equation

fills the space as dark medium and interacts with propagating photons in it. In our induced

gravity, gravitational field equations are modified as

Rµν −
1

2
gµνR = κ4

[
Tµν + 〈T 〉µν

]
. (5.1)

The Bianchi identity leads to 0 ≡ ∇µGµν = κ4∇µTµν + κ4∇µ〈T 〉µν . If we did not put

additional sources in the bulk, the Brown-York stress-energy tensor (2.3) itself is conserved

∇µ〈T 〉µν = 0. Thus it is similar to the effects of real dark matter, and it does not conflict

with the observations from LIGO so far [65].

Let us further compare our toy model to the other well studied braneworld models [36–

41] other than DGP. Except for the constraint equations, we also have the dynamical Ein-

stein equations in higher dimensions. For example, in BDL (Binetruy-Deffayet-Langlois)

model [28], the FRW metric is also embedded into one higher dimensional flat spacetime.

After including the baryonic matter Tµν on the brane, in principle we can also define the

effective stress-energy tensor from the braneworld model

〈T 〉Bµν ≡ Wµν + (Kgµσ −Kµσ)Kσν −
1

2

(
K2 −KρσKρσ

)
gµν + . . . , (5.2)

which includes the description of the hypersurface evolution, and Wµν is associated with

the bulk Weyl tensor. It might be interesting to derive the Tully-Fisher relation based on

this formula. One thing we notice is that in most of the braneworld models [27], the gravity

leaks to the extra dimension at large scale, so the gravitational force scales like 1/rd−2,

comparing to the Newtonian force 1/r2. To have the observed flat galaxy rotational curves,

the gravitational force has to scale like 1/r. Naively this does not work. While one may try

to extend the DBI action of the branes with more fields to capture the elastic behaviors of

the dark matter response theory, see for example [66, 67]. One not only needs to add tension

term to the D-brane action as the cosmological constant, the extra scalar/vector fields and

its response with baryonic matter are also needed, see for example [68, 69]. The extra

dimensions in the braneworld setups may also have some extra effects on the gravitational

waves production and propagation. If we indeed take a higher dimensional point of view,
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we expect one extra breezing mode on top of two polarized propagating modes [70, 71]. The

extra breezing mode is constrained by the current experiments. There are also multiple

massive Kaluza-Klein gravitational modes associated with the extra dimensions. Although

those massive modes decay fast and may not reach the gravitational waves detector, they

are constrained as well by the gravitational waves signal templates from the binary black

hole signals. Our model does not necessarily have observable effects from extra dimensions.

It is still quite interesting to ask whether we can probe extra dimensions, although there is

no evidence from experiments so far. One recent study may come from gravitational waves

physics in [71], in addition to the long searching constraints from colliders and precision

measurements of gravity.

In the traditional holographic theories for our 3+1 dimensional universe [72–75], grav-

ity in the bulk is encoded into the field theory on the boundary. For the models which

consider the universe as the boundary of 4+1 dimensional AdS [52–58], there is an ef-

fective contribution from the holographic stress-energy tensor, which can be identified as

the stress-energy tensor of dark energy and/or dark matter. In our construction, the holo-

graphic screen is embedded into one higher dimensional flat spacetime, which is inspired by

the holographic hydrodynamics in Rindler spacetime [42, 43, 76–82]. It is named as Rindler

fluid, which is described by the Brown-York stress-energy tensor on the accelerating cutoff

hypersurface in a flat bulk. The dynamics is governed by the Hamiltonian and momentum

constraint equation on the hypersurface. What is more, it will be interesting to see how the

entanglement can happen in our toy model with the de Sitter boundary [83]. The entangle-

ment between two cosmological horizons may have an impact on the gravity as suggested

by Verlinde [7]. It is shown in [84–87], that the entangled pair in 3+1 dimensions can be

described by the wormhole in 4+1 dimensional bulk spacetime. Thus, it is more clear to

see the entanglement through the embeddings of wormholes into a higher dimensional bulk.

In summary, we construct a model for the dark components of our universe, where

the dark sector originates from the induced stress-energy tensor of higher dimensional

spacetime. In this holographic picture, there is only baryonic matter and radiation in the

late time universe and dark matter is considered as the response of baryonic matter from

the geometric effects. In our approach, the toy model and the more developed hFRW

model are partly borrowed from the Verlinde’s emergent gravity in a subtle way. We

choose to start from a holographic de Sitter screen in higher dimensional flat spacetime,

with the known covariant relativistic formulas. The toy model produces one additional

constraint of the late time universe components from ΛCDM parameterization. We then

relate our toy model to the DGP braneworld with the new interpretation of the dark

matter. Moreover, we suggest a new holographic scenario with a set of parameters for

the late time universe evolution. Although it has been pointed out that there are some

inconsistencies in the Verlinde’s emergent gravity [10, 88], the idea that considers the dark

matter as the response of baryonic matter is still quite interesting [89]. In section 4 we

fix an inconsistency of Verlinde’s story and re-derived the Tully-Fisher relation. In the

future, it is interesting to relate our holographic model to the other well-motivated dark

matter models (see for example [90–93]), as well as the emergent cosmology from quantum

entanglement or thermodynamical laws (see for example [94–97]).
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