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1 Introduction and summary

Viable theories of gravity almost inevitably require a spin-2 particle at their foundation.

It remains an open question whether or not this spin-2 particle is strictly massless as

in General Relativity (GR) or if it can be massive. Until recently, it was unknown if

fundamental, Lorentz-invariant massive spin-2 particles were even theoretically viable. In

2010, de Rham, Gabadadze and Tolley (dRGT) [1, 2] succeeded in constructing a low

energy, Lorentz-invariant theory of a massive spin-2 field that was free of the pathology

known as the Boulware-Deser ghost [3] (see, [4]). Since then there has been considerable

effort to understand the implications of this theory. (For reviews, see, [5, 6].) In particular,

black hole solutions provide an important test of both the theoretical and phenomenological

viability of dRGT massive gravity.

Static black hole solutions in dRGT massive gravity have been studied extensively in

the literature, with many central results given in [7–27]. Let us summarize some of the main

findings and refer to [27] for a recent review. Starting with a static, spherically symmetric

ansatz for the dynamical metric and taking the reference metric to be Minkowski, dRGT

massive gravity admits two branches of solutions:
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• On the first branch, the dynamical and reference metrics are not simultaneously

diagonal and exact solutions of the Schwarzschild or A/dS-Schwarzschild type can

be found. These solutions exhibit no Yukawa-type suppression at large distances

and, indeed, on this branch the graviton mass can be shown to vanish around flat

backgrounds. This indicates that this branch of solutions is infinitely strongly coupled

and is not smoothly connected to the usual physical massive gravity theory.

• On the second branch, the dynamical metric is simultaneously diagonal with the

reference metric. This branch is also problematic since it has been shown that, in

theories with two static, bi-diagonal metrics, if a Killing vector ∂t is null at some

radius r = rH with respect to one metric, then it must also be null at r = rH with

respect to the second metric in order to avoid coordinate-invariant singularities at

the horizon [28]. Since we take the reference metric of dRGT massive gravity to

be strictly Minkowski with no such horizon, the solutions on this branch inevitably

contain singularities at the horizon of the dynamical metric.

In this work, we investigate the possibility of new black hole solutions with both (i)

non-zero Fierz-Pauli mass [29] around flat spacetime and (ii) non-singular horizons. The

first criteria is significant because it puts us in the relevant region of parameter space.

I.e., we restrict our attention to theories in which the massive graviton propagates the ap-

propriate five degrees of freedom around flat spacetime. The second criteria is significant

because we wish to understand whether or not black holes in the massless limit of massive

gravity look arbitrarily close to black holes in General Relativity or if there is necessarily a

discontinuity. The possibility of a discontinuity between the massless limit of massive grav-

ity and GR was first pointed out by van Dam, Veltman and Zakharov (vDVZ) [30, 31] in

the context of the linear theories. However, it was pointed out by Vainshtein [32] that the

non-linearities in massive gravity could act to recover the predictions of General Relativity

at short distances. Indeed, dRGT massive gravity has such a mechanism for a wide range

of parameter space when considering general astrophysical sources, i.e., objects without a

horizon. However, the presence of coordinate-invariant singularities at the black hole hori-

zon for arbitrarily small graviton mass would indicate the reappearance of a discontinuity

for black hole solutions. In principle, this could make massive gravity phenomenologically

distinguishable from General Relativity, even at arbitrarily small graviton mass. This issue

is particularly timely, given upcoming experimental results from, e.g., LIGO or the Event

Horizon Telescope, which could potentially differentiate between these scenarios.

To go beyond the two known branches of solutions and search for black holes which

satisfy the criteria given above, we relax the assumption of a static ansatz and look instead

for time-dependent black hole solutions. That such an assumption could resolve the singu-

larities was first suggested in [17]. The time dependence is introduced by assuming that,

in the limit of zero graviton mass, the dynamical metric is exactly Schwarzschild while

the reference metric is a time-dependent coordinate transformation of Minkowski. With

this ansatz, the equations of motion can be satisfied (away from the so-called “minimal

model”). The equations of motion determine the form of the coordinate transformation.

We solve these equations perturbatively to find coordinates very similar to Kruskal-Szekeres
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coordinates. In the limit of zero graviton mass, this black hole is identical to that of GR.

At small finite mass, the black hole solutions become time-dependent. However, we will

show that the location of the apparent horizon is not time-dependent at leading order

in small graviton mass, indicating that these black holes are not necessarily accreting or

evaporating (classically).

This paper is organized as follows: in section 2 we briefly introduce dRGT massive

gravity. In section 3 we review and expand on black hole solutions in massive gravity for

a static, spherically symmetric ansatz. In particular, in section 3.2 we review the branch

of solutions that yields exact Schwarzschild black holes and demonstrate the vanishing

of the Fierz-Pauli mass. In section 3.3 we review the bi-diagonal branch of solutions.

We focus on the massless limit in order to understand the appearance or failure of the

Vainshtein mechanism. We treat the minimal, next-to-minimal and non-minimal models

separately. For the minimal model, we find an analytic solution in the massless limit

that explicity demonstrates the absence of a Vainshtein mechanism, as expected. For the

next-to-minimal and non-minimal models, Schwarzschild solutions can be found in the

strictly massless limit, naively indicating a functioning Vainshtein mechanism. However,

these solutions contain coordinate invariant singularities at the horizon for arbitrarily small

graviton mass. This indicates that the massless limit is discontinuous and that these black

holes can be distinguished from GR black holes for arbitrarily small mass.

In section 4 we again consider the next-to-minimal model. Here, however, we relax the

assumption of a static ansatz and we allow the reference metric to be a time-dependent

coordinate transformation of Minkowski. We solve the equations of motion perturbatively

and demonstrate that, to at least 5th order in our expansion, these solutions contain

no singularities at the horizon. We derive the finite mass corrections to the dynamical

metric and show that the black hole solution becomes explicitly time-dependent. We then

show that the location of the apparent horizon is independent of time, to leading order in

small mass.

2 Background

Our starting point is the dRGT Lagrangian for ghost-free massive gravity [2]:

L =
M2
Pl

2

√−g
[
R− 2m2

4∑
n=0

βnSn(
√
g−1f)

]
. (2.1)

This Lagrangian contains the usual Einstein-Hilbert kinetic term for the dynamical metric

gµν . In addition, there is a potential term containing no derivatives of the dynamical metric

but which depends explicitly on a non-dynamical reference metric fµν . The reference metric

breaks the diffeomorphism invariance of the m = 0 theory. However, if we take the reference

metric to be Minkowski fµν = ηµν then theory is Lorentz invariant. In this paper we will

consider this case.
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In the potential term, the Sn are the n-th elementary symmetric polynomials of the

eigenvalues of the matrix square root of gµλfλν . They are given by

S0(X) = 1 ,

S1(X) = [X] ,

S2(X) =
1

2
([X]2 − [X2]) , (2.2)

S3(X) =
1

6
([X]3 − 3[X][X2] + 2[X3]) ,

S4(X) =
1

24
([X]4 − 6[X]2[X2] + 3[X2]2 + 8[X][X3]− 6[X4]) .

The square brackets denote the trace of the enclosed matrix.

The βn are free coefficients. If we expand the dynamical metric around flat spacetime

gµν = ηµν + 2hµν/MPl then the requirement of no tadpoles gives a condition on the βn:

β0 + 3β1 + 3β2 + β3 = 0 . (2.3)

In other words, this condition sets to zero the cosmological constant term coming from the

potential. Assuming this condition, the correct normalization of the mass m2 means that

β1 + 2β2 + β3 = 1 . (2.4)

I.e., this condition guarantees that around flat space, at lowest order in the fields, the

Lagrangian (2.1) reduces to the linear Fierz-Pauli Lagrangian for the free massive graviton,

with mass term

m2

2
(hµνh

µν − hµµhνν) . (2.5)

In addition, β4 multiplies a non-dynamical term and can be set to zero, leaving two free

parameters among the βn. In what follows, we will often take equations (2.3) and (2.4) to

be the defining equations for β0 and β1 and we will take β2 and β3 to be free parameters.

3 Static solutions

3.1 Branches of solutions

Let us start by considering the linear Fierz-Pauli theory of massive gravity with mass

given by (2.5) in the presence of a point source of mass M . We adopt spherical coordinates

(τ, ρ, θ, φ) and a static, spherically symmetric ansatz for the dynamical metric gµν :

ds2
g = −A2

00(ρ)dτ2 + 2A01(ρ)dτdρ+A2
11(ρ)dρ2 + ρ2A2

22(ρ) dΩ2 ,

ds2
f = −dτ2 + dρ2 + ρ2 dΩ2 ,

(3.1)
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where dΩ2 is the metric of the unit 2-sphere, dΩ2 = dθ2 + sin2 θ dφ2. The solutions to the

equations of motion are given by (see, e.g., [5])

A2
00(ρ) = 1− 8GM

3

e−mρ

ρ
,

A01(ρ) = 0 ,

A2
11(ρ) = 1− 8GM

3

e−mρ

ρ

1 +mρ

m2ρ2
,

A2
22(ρ) = 1 +

4GM

3

e−mρ

ρ

1 +mρ+m2ρ2

m2ρ2
.

(3.2)

As expected, the existence of the mass term at the linear level gives rise to Yukawa sup-

pression of the potential at large ρ.

We now wish to find vacuum solutions to the full non-linear theory (2.1). Our expec-

tation is that these should agree with the linear solutions (3.2) at large distances from the

source. We start from the same generic, static and spherically symmetric ansatz (3.1). The

nonlinear equations of motion take the form:

Gµν +m2 Tµν = 0 . (3.3)

Here Tµν represents all the contributions to the equations of motion coming from the

potential term in (2.1). From the (0, 1) component of the equations of motion (3.3), it is

straightforward to see that there are two possible branches of solutions:

• Branch I:

β1A22(ρ)2 + 2β2A22(ρ) + β3 = 0 . (3.4)

On this branch exact solutions can be readily obtained (for early work, see, [7–9]).

However, this branch corresponds to setting the mass of quadratic fluctuations to zero

around flat space. Thus this theory is infinitely strongly coupled: i.e., it would appear

to propagate only two degrees of freedom around flat space but would propagate five

degrees of freedom around curved backgrounds. Correspondingly, it does not possess

the Yukawa type asymptotics (3.2) that we desire.

• Branch II:

A01(ρ) = 0 . (3.5)

On this branch of solutions the two metrics are required to be simultaneously diag-

onal. As discussed in the introduction, this generically leads to coordinate-invariant

singularities at the black hole horizon [28]. We will demonstrate this explicitly below.

In what follows we will review these two branches and their features. Then, in section 4

we will consider alternative solutions resulting from a time-dependent ansatz.
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3.2 Branch I: exact Schwarzschild solutions

We consider first the branch defined by equation (3.4):

β1A22(ρ)2 + 2β2A22(ρ) + β3 = 0 . (3.6)

On this branch, exact solutions can be readily obtained. For convenience, we transform

from the coordinates (τ, ρ) of (3.1) in which the reference metric is explicitly Minkowski

to new coordinates (t, r). The unique solutions are given by:

ds2
g = − V (r)dt2 +

1

V (r)
dr2 + r2 dΩ2 ,

ds2
f = − C2

0 dt
2 + C0

√
U(r) dtdr + (C2

1 − U(r)) dr2 + C2
1 r

2 dΩ2 .

(3.7)

Here C0 and C1 are constants. The functions V (r) and U(r) are given by

V (r) = 1− rg
r
− Λ

3
r2 , (3.8)

U(r) =

(
C2

0

V (r)2
− C2

1

V (r)

)
(1− V (r)) . (3.9)

The reference metric can be transformed back to Minkowski by the change of variables:

τ(t, r) = C0 t−
∫
dr
√
U(r) , ρ(t, r) = C1 r , (3.10)

⇒ ds2
f = − dτ2 + dρ2 + ρ2 dΩ2 . (3.11)

Thus, by considering equations (3.7) and (3.8) we see that these solutions describe exact

Schwarzschild and A/dS-Schwarzschild solutions with cosmological constant Λ. The refer-

ence metric is flat. Notably, these solutions lack the expected Yukawa suppression at large

distances (3.2).

To understand this, we note that the condition that defines this branch (3.6), translates

into the following relation

β1 + 2C1 β2 + C2
1 β3 = 0 , (3.12)

while Λ is defined by the relation

m2(β0 + 3C1 β1 + 3C2
1 β2 + C3

1 β3) = Λ . (3.13)

we see that C1 can be absorbed into the definition of the βn. Thus, the condition (3.12)

(or, equivalently (3.6)) appears to correspond to setting the quadratic Fierz-Pauli mass to

zero, as was first pointed out in [11].

Given the presence of C0, let us examine this statement closely. Let us take Λ = 0 and

consider the regime in which the dynamical metric is approximately flat gµν ' ηµν , i.e.,

when rg � r. In this regime the reference metric takes the following form:

ds2
f = −C2

0 dt
2 + C2

1 dr
2 + C2

1 r
2 dΩ2 . (3.14)

Let us revisit the mass normalization condition (2.4) for this reference metric. We consider

two cases:
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• Case 1: C0 = C1. In this case the reference metric is given by fµν = C1 ηµν . Ex-

panding the dynamical metic gµν around ηµν , the condition for no tadpoles becomes

β0 + 3C1β1 + 3C2
1β2 + C3

1β3 = 0 , (3.15)

while the mass normalization condition is given by

β1 + 2C1β2 + C2
1β3 = 1 . (3.16)

If we compare equation (3.16) with the defining condition for this branch of solu-

tions (3.12), we see that the solutions (3.7) correspond to having a zero Fierz-Pauli

mass for the metric fluctuation around flat space.

• Case 2: C0 6= C1. If we now expand the dynamical metric gµν around ηµν we find

the condition of no tadpoles requires both

β0 + 3C1β1 + 3C2
1β2 + C3

1β3 = 0 , and β1 + 2C1β2 + C2
1β3 = 0 . (3.17)

Assuming these conditions, the Fierz-Pauli structure of the mass is altered. At

quadratic level one finds a mass term for the spatial components of the metric alone:

∼ m2C1(C1 − C0)(β2 + C1β3)(hijh
ij − hiihjj) . (3.18)

Thus when C0 6= C1 the solutions (3.7) correspond to having a zero mass for the h00

component of the metric fluctuation.

Given these results, it makes sense that these solutions do not have the usual Yukawa

suppression at large distances.

Finally, we note that on these solutions all scalar quantities are finite:√
g−1f

µ

µ = C0 + 3C1 , m2 T µµ = Λ δµ µ , (3.19)

where T µν is defined as in (3.3). In other words, no coordinate-invariant singularities

exist at the horizon of these black holes. However, while these solutions are interesting in

their own right, they require a choice of parameters which results in a theory that does

not propagate a usual Fierz-Pauli massive graviton around flat space. On this branch of

solutions, at higher order in perturbations or, equivalently, around curved backgrounds,

the massive graviton would appear to propagate a different number of degrees of freedom

than around flat space, indicating that this theory is infinitely strongly coupled.

3.3 Branch II: bidiagonal solutions in the m → 0 limit

We next consider the bidiagonal branch of solutions, defined by A01(ρ) = 0:

ds2
g = −A2

00(ρ)dτ2 +A2
11(ρ)dρ2 + ρ2A2

22(ρ) dΩ2 ,

ds2
f = −dτ2 + dρ2 + ρ2 dΩ2 .

(3.20)
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The equations of motion simplify greatly in Schwarzschild-type coordinates [9]. We intro-

duce a new radial coordinate r(ρ) ≡ ρA22(ρ) and perform a coordinate transformation so

that our ansatz (3.20) becomes

ds2
g = −B2

0(r)dt2 +B2
1(r)dr2 + r2 dΩ2 ,

ds2
f = −dt2 + ρ′(r)2dr2 + ρ(r)2 dΩ2 ,

(3.21)

where

B0(r) ≡ A00[ρ(r)] ,

B1(r) ≡ ρ′(r)A11[ρ(r)] .
(3.22)

Here primes denote derivatives with respect to r. The anticipated asymptotic solutions (3.2)

become

B2
0(r)→ 1− 8GM

3

e−mr

r
,

B2
1(r)→ 1 +

4GM

3

e−mr

r
(1 +mr) ,

ρ(r)→ r

(
1− 2GM

3

e−mr

r

1 +mr +m2r2

m2r2

)
.

(3.23)

The equations of motion (3.3) give three independent equations for the three unknown

functions B0(r), B1(r) and ρ(r):

2rB′1(r) +
(
1−m2(β0r

2 + 2β1rρ(r) + β2ρ(r)2)
)
B1(r)3

−m2
(
β1r

2 + 2β2rρ(r) + β3ρ(r)2
)
ρ′(r)B1(r)2 −B1(r) = 0 ,

2rB′0(r) +
(
1−

(
1−m2(β0r

2 + 2β1rρ(r) + β2ρ(r)2)
)
B1(r)3

)
B0(r)

+m2
(
β1r

2 + 2β2rρ(r) + β3ρ(r)2
)
B1(r)2 = 0 ,(

β1r
2 + 2β2rρ(r) + β3ρ(r)2

)
B′0(r)

+ 2
(
β1rB0(r) + β2(r +B0(r)ρ(r)) + β3ρ(r)

)
(1−B1(r)) = 0 .

(3.24)

The first two equations are simply the equations of motion of General Relativity plus

m2 corrections due to the potential (2.2). The third equation is due to the covariant

conservation of the equations of motion on-shell, i.e., ∇µT µν = 0. This equation is not

present in General Relativity. It persists in the m→ 0 limit of massive gravity.

3.3.1 Minimal model: β2 = 0, β3 = 0

We attempt to solve the equations of motion (3.24) first in the simplest possible case, the

so-called “minimal model” [33]. In this model, the helicity-0 mode of the massive graviton

has no interactions in the decoupling limit and no Vainshtein mechanism is expected. It

corresponds to the choice of parameters c3 = 1/6, d5 = −1/48 of [1, 2] or, equivalently,

β0 + 3β1 + 3β2 + β3 = 0 , β1 + 2β2 + β3 = 1 , β2 = β3 = 0 . (3.25)
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With this choice the equations of motion greatly simplify. With some rearranging of (3.24),

one finds:

8r2B
′′
0 (r)

B0(r)
+ 3r3B

′
0(r)3

B0(r)3
+ 2r2B

′
0(r)2

B0(r)2
+ 16r

B′0(r)

B0(r)

−m2r2

(
1− 1

B0(r)

)(
rB′0(r)

B0(r)
+ 2

)3

= 0 ,

B1(r) = 1 +
rB′0(r)

2B0(r)
,

ρ(r) =
1

m2

B′0(r) (rB′0(r)− 4B0(r))

2 (rB′0(r) + 2B0(r))2 +
1

2
r

(
3− 1

B0(r)

)
.

(3.26)

Once the first equation is solved for B0(r), the second two equations give B1(r) and ρ(r)

respectively. The above equations are exact to all orders.

We solve the first equation in the m → 0 limit. A peculiar feature of the minimal

model is that the third equation in (3.24) becomes independent of ρ(r) when β2 = β3 = 0.

Thus this equation can be used to solve for B1(r) in term of B0(r) and B′0(r). But this

equation is absent in General Relativity as it arises from the constraint ∇µT µν = 0. Thus

the resulting solutions will be different from GR, even in the massless limit. In other words,

the fact that the minimal model solutions have no Vainshtein mechanism can be read off

from the equations of motion, as was observed in [24].

Setting m = 0 in the first equation of (3.26) and solving, we find:1

B0(r) =
K1

r4/3


3

1 + 2 cos

1
3 arctan

−2

√
K2
r

(
1−K2

r

)
1−2

K2
r

 − 1



−4/3

+O(m2) . (3.27)

where K1 and K2 are constants of integration. The solution is real for 0 < K2
r < 1.

Because this solution exhibits no Vainshtein mechanism, linearizing first and then taking

the m→ 0 limit gives the same result as first taking m→ 0 and then linearizing. Because

of this, we can match the large distance behavior of the solution (3.27) with Yukawa

asymptotics (3.23). This fixes the two integration constants

K1 =

(
GM

3

)4/3

, K2 =
9

4
GM . (3.28)

This solution can now be substituted into the remaining equations of motion (3.26) to find

B1(r) and ρ(r).

In figure 1 we compare −g00(r) = B0(r)2 with the Schwarzschild solution −g00(r) =

1− 2GM
r . The minimal massive gravity model is plotted in dark gray while the Schwarzschild

solution is in light gray. In the right hand plot we zoom in, close to r = 2GM . Both

1We are grateful to Riccardo Penco for suggestions in deriving this solution.
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Figure 1. Comparison of the g00(r) component of the metric for black holes in minimal massive

gravity (dark gray) and Schwarzschild black holes (light gray).

solutions asymptote to 1 for large r. The observable difference between the two solutions

at large r is a direct manifestation of the usual 4
3 factor of the vDVZ discontinuity. At

short r, the discrepancy is due to the absence of the Vainshtein mechanism.

While the g00 component of the Schwarzschild solution passes smoothly through zero

at r = 2GM , for the minimal model we have abrupt behavior: at distances shorter than

r = 9
4 GM , the solution becomes imaginary. At r = 9

4 GM , we have −g00(r) = 28

38
. In

addition, all the relevant scalars of this theory are finite at this point:

R = T µµ = 3
√
g−1f

µ

µ → −
32

27

1

(GM)2
. (3.29)

In other words, there are no singularities simply because this solution has no horizon.

Suggestively, the value of the radius r = 9
4 GM is the same as that for the Buchdahl

bound which gives the minimum radius of a star with finite pressure under other generic

assumptions. However, it’s unclear if these solutions are physically meaningful, given that

they cannot obviously be continued for r < 9
4 GM .

3.3.2 Next-to-minimal model: β2 6= 0, β3 = 0

We next consider nonlinear bi-diagonal solutions in the next-to-minimal model, character-

ized by parameters β2 6= 0, β3 = 0. This corresponds to c3 = −8d5 in the parametrization

of [1, 2]. In particular, we enforce

β0 + 3β1 + 3β2 + β3 = 0 , β1 + 2β2 + β3 = 1 , β3 = 0 , (3.30)

and parametrize all nonzero βn in terms of β2. The third equation of motion given in (3.24)

can now be solved explicitly for ρ(r) in terms of B0(r) and B1(r):

ρ(r) =
r

β2

((2β2 − 1)B0(r)− β2) + 1
2(2β2 − 1)rB′0(r)

B0(r)(1−B1(r)) + rB′0(r)
. (3.31)

We note the lack of explicit m dependence in this equation as compared to the equation for

ρ(r) in the minimal model (3.26). Because of this, in the next-to-minimal model, the equa-

tions of motion contain a Schwarzschild solution for B0(r) and B1(r) in the m → 0 limit.

In other words, the next-to-minimal model (naively) exhibits a Vainshtein mechanism.

– 10 –
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In particular, to leading order in small m, we find solutions of the form

B0(r) =

√
1− rg

r
+O(m2) ,

B1(r) =
1√

1− rg
r

+O(m2) ,

ρ(r) =
r

β2

(
r

rg

(
1 +

√
1− rg

r

)
+

3

2
(2β2 − 1)

)
+O(m2) .

(3.32)

As expected, in the next-to-minimal model, there are coordinate-invariant singularities at

the horizon. As r → rg, the relevant scalars become√
g−1f

µ

µ →
1√
r
rg
− 1

+O(m2) , T µµ →
2 (1 + 3β2)√

r
rg
− 1

+O(m2) . (3.33)

If we consider the full equations of motion (3.3) away from the massless limit, the singularity

in T µµ means that the curvature R will be singular at the horizon for arbitrarily small m

(assuming β2 6= −1
3). It’s possible that physical black holes in massive gravity may indeed

have coordinate invariant singularities at the horizon. However, this result indicates that

our small m expansion is faulty since the singularity appears at nonzero but arbitrarily

small m.

3.3.3 Non-minimal model: β2 6= 0, β3 6= 0

For completeness, we consider also the non-minimal model, when β2 6= 0, β3 6= 0. To solve

the equations of motion for arbitrary βn we take the third equation in (3.24) and write it

as a quadratic equation for ρ(r):

β3B
′
0(r)ρ(r)2 + 2

(
β2

(
rB′0(r) +B0(r)(1−B1(r))

)
+ β3(1−B1(r))

)
ρ(r)

+ 2β2r(1−B1(r)) + β1r
(
rB′0(r) + 2B0(r)(1−B1(r))

)
= 0 .

(3.34)

Then, in the massless limit, we have a solution of the form

B0(r) =
√

1− rg
r +O(m2) ,

B1(r) = 1√
1− rg

r

+O(m2) ,
(3.35)

with ρ(r) given by one of the two roots of equation (3.34). We see that the non-minimal

model also (naively) supports a Vainshtein mechanism in the strictly massless limit.

However, again there are coordinate invariant singularities at the horizon. As r → rg,

the relevant scalars become√
g−1f

µ

µ →
1√
r
rg
− 1

+O(m2) ,

T µµ →
4

β3

(
β3 − β2

2 + β2β3 − β2
3 ±

2β3
2 − 2β2β3 + 3β2

2β3 + β2
3 + 12β2β

2
3 − β3

3

2
√
β2

2 + 2β2β3 − β3 + 5β3
3

)
× 1√

r
rg
− 1

+O(m2) . (3.36)
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The two values for T µµ correspond to the two roots of equation (3.34). In the limit that

β3 → 0, this result recovers the the next-to-minimal model result (3.33) with the + solution

corresponding to β2 > 0 and the − solution corresponding to β2 < 0. Once again, these

results imply that the curvature R generically becomes singular at the horizon at finite m.

4 Time-dependent solutions

4.1 The massless limit

We wish to determine if it is possible to have black hole solutions in massive gravity which

have no singularities at the horizon and can still exhibit the expected Yukawa behavior at

large distances. To search for such solutions, we must generalize our ansatz (3.1) and relax

the requirement of time-independence. In particular, we will adopt an ansatz where, in the

massless limit, the dynamical metric is exactly Schwarzschild and the reference metric is a

time-dependent coordinate transformation of Minkowski. Focusing on the next-to-minimal

model, we demonstrate that this ansatz indeed solves the massive gravity equations of

motion and that the singularity at the horizon appears to be avoided.

The coordinates τ and ρ are the coordinates in which the reference metric is Minkowski.

We now conjecture that there is a different set of coordinates t and r in which the dynamical

metric is Schwarzschild in the massless limit. The original coordinates τ and ρ are then

functions of t and r: τ = τ(t, r) and ρ = ρ(t, r). In the t and r coordinates, in the massless

limit, the two metrics take the form:

ds2
g = −

(
1− rg

r

)
dt2 +

1

1− rg
r

dr2 + r2 dΩ2 ,

ds2
f = − [τ̇(t, r)2 − ρ̇(t, r)2]dt2 + 2[ρ̇(t, r)ρ′(t, r)− τ̇(t, r)τ ′(t, r)]dtdr

+ [ρ′(t, r)2 − τ ′(t, r)2]dr2 + ρ(t, r)2 dΩ2 .

(4.1)

Here, dots denote derivatives with respect to t and primes denote derivatives with re-

spect to r.

We take this ansatz and plug it into the equations of motion (3.3). For simplicity, we

consider the next-to-minimal model so that β3 = 0. Taking the massless limit, we find

that this is indeed a solution. The two functions τ(t, r) and ρ(t, r) are determined by two

mixed second-order partial differential equations. Here we present perturbative solutions

for these two functions. Also for simplicity, we will assume that β1 > 0 and β2 > 0. The

solutions then naturally organize into a perturbative expansion of the following form:

For r > rg : τ(t, r) =
√

3 rg
β1

β2

∞∑
n=1

x τ+
n (x) coshn

[
t

2rg

](
r

rg
− 1

)n/2
,

ρ(t, r) =
√

3 rg
β1

β2

∞∑
n=1

ρ+
n (x) coshn

[
t

2rg

](
r

rg
− 1

)n/2
,

For r < rg : τ(t, r) =
√

3 rg
β1

β2

∞∑
n=1

τ−n (x) coshn
[
t

2rg

](
1− r

rg

)n/2
,

ρ(t, r) =
√

3 rg
β1

β2

∞∑
n=1

x ρ−n (x) coshn
[
t

2rg

](
1− r

rg

)n/2
,

(4.2)
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where we have defined x ≡ tanh[t/2rg]. To order n = 5, we find the following solutions for

τ±n (x) and ρ±n (x):

τ+
1 (x) = F1 , τ−1 (x) = F1 ,

ρ+
1 (x) = G1 , ρ−1 (x) = G1 ,

τ+
2 (x) = F2 , τ−2 (x) = F2 x ,

ρ+
2 (x) = G2a +G2b x

2 , ρ−2 (x) = G2a x+G2b x
−1 ,

τ+
3 (x) = F3a + F3b x

2 , τ−3 (x) = F3a x
2 + F3b ,

ρ+
3 (x) = G3a +G3b x

2 , ρ−3 (x) = G3a x
2 +G3b ,

τ+
4 (x) = F4a + F4b x

2 , τ−4 (x) = F4a x
3 + F4b x ,

ρ+
4 (x) = G4a +G4b x

2 +G4c x
4 , ρ−4 (x) = G4a x

3 +G4b x+G4c x
−1 ,

τ+
5 (x) = F5a + F5b x

2 + F5c x
4 , τ−5 (x) = F5a x

4 + F5b x
2 + F5c ,

ρ+
5 (x) = G5a +G5b x

2 +G5c x
4 , ρ−5 (x) = G5a x

4 +G5b x
2 +G5c ,

(4.3)

where

F1 = 1 , F4a = − 8
20212216 + 10761615

√
3

3987555
,

G1 = 1 , F4b = − 4
86474551 + 52074576

√
3

3987555
,

G4a = − 13859147− 13307623
√

3

7975110
,

G4b = − 7
18003911 + 11074631

√
3

1329185
,

F2 = − 2

13
(19 + 5

√
3) , G4c = − 245168455 + 136955569

√
3

7975110
,

G2a = − 1

13
(5− 11

√
3) ,

G2b = − 3

13
(11 + 7

√
3) ,

F5a =
2358595986147 + 1341907450280

√
3

14514700200
,

F5b =
6207302851481 + 3597373424072

√
3

7257350100
,

F3a =
17367 + 7862

√
3

1690
, F5c =

791752137769 + 452552246456
√

3

4838233400
,

F3b =
27883 + 18662

√
3

5070
, G5a =

58623861651− 29657041376
√

3

14514700200
,

G3a =
14305− 3586

√
3

5070
, G5b =

32883045033 + 19373615360
√

3

59978100
,

G3b =
21893 + 15278

√
3

1690
, G5c =

830194303889 + 475959378368
√

3

1319518200
.

(4.4)

When solving, we have imposed two boundary conditions. First, we have imposed that

sending t → −t takes τ → −τ and ρ → ρ. Second, we have imposed that τ(t, r) = ρ(t, r)
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0 0.01
0

0.01

Ρ!t,r"

Τ!t,r" r
=
1

t =
+
1

⇢(t, r)

⌧
(t
,r
)

Figure 2. τ(t, r) and ρ(t, r) in units of rg. Lines of constant r are dark gray and lines of constant

t are light gray. The horizon is at τ(t, r) = ρ(t, r). β1/β2 is set to 1.

at the horizon, i.e., when r = rg and tanh[t/2rg] = 1. In other words, we are enforcing

that the horizon be a null surface in the (τ, ρ) coordinates of the reference metric. These

two conditions fix all integration constants at each order in n.

We plot the solution in figure 2. The dark gray lines are lines of constant r and the

light gray lines are lines of constant t. The horizon corresponds to τ = ρ. Outside the

horizon, t = 0 corresponds to τ = 0. However, we note that inside the horizon, t = 0

does not correspond to ρ = 0. Otherwise, these solutions share many similarities with

Kruskal-Szekeres coordinates. In particular, at lowest order in n, they are given by

For r > rg : τ(t, r) ' rg
β1

β2

√
3

(
r

rg
− 1

)1/2

sinh

[
t

2rg

]
,

ρ(t, r) ' rg
β1

β2

√
3

(
r

rg
− 1

)1/2

cosh

[
t

2rg

]
,

For r < rg : τ(t, r) ' rg
β1

β2

√
3

(
1− r

rg

)1/2

cosh

[
t

2rg

]
,

ρ(t, r) ' rg
β1

β2

√
3

(
1− r

rg

)1/2

sinh

[
t

2rg

]
.

(4.5)

4.2 Finiteness at the horizon

With this solution, we can check for the presence of coordinate-invariant singularities at

the horizon. In particular, we wish to verify that T µµ as defined in (3.3) is finite at the

horizon, indicating that there are no curvature singularities at the horizon at finite m. To

do so, we must use variables that are well-defined at the horizon. Thus, we switch from
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Schwarzschild coordinates (t, r) to Kruskal-Szekeres coordinates (T,R):

For r > rg : T (t, r) = er/2rg
(
r

rg
− 1

)1/2

sinh

[
t

2rg

]
,

R(t, r) = er/2rg
(
r

rg
− 1

)1/2

cosh

[
t

2rg

]
,

For r < rg : T (t, r) = er/2rg
(

1− r

rg

)1/2

cosh

[
t

2rg

]
,

R(t, r) = er/2rg
(

1− r

rg

)1/2

sinh

[
t

2rg

]
.

(4.6)

In these coordinates, the expansion parameter of our solutions (4.2) becomes

coshn
[
t

2rg

](
r

rg
− 1

)n/2
=

(
R√

R2 − T 2

)n
W

(
R2 − T 2

e

)n/2
, (4.7)

where W (x) is the Lambert-W function. At the horizon, i.e., in the limit that R→ T , the

expansion parameter (4.7) becomes Tn/en/2.

We calculate T µµ at each order and evaluate at the horizon R = T . Up to fifth

order for which we have solved, we find that T µµ is indeed finite, in contrast to the static

results (3.33), (3.36),

T µµ → 4β0 +
3

2
(1 + 2

√
3)
β2

1

β2
+

6

13
(29 + 22

√
3)
β2

1

β2

T

e1/2

+
18

845
(2129 + 251

√
3)
β2

1

β2

T 2

e
+ 4

379366904 + 215110657
√

3

1329185

β2
1

β2

T 3

e3/2

+ 2
2084180619478 + 1202578322999

√
3

604779175

β2
1

β2

T 4

e2
+O

(
T 5

e5/2

)
.

(4.8)

If the pattern of functions given in (4.3) continues as expected, T µµ will remain finite at

each order in Tn/en/2. Interestingly, the value of T µµ at the horizon depends explicitly on

the Kruskal-Szekeres time T . We will see below that this doesn’t necessarily indicated that

the apparent horizon of the black hole is changing as a function of T .

To summarize, we see that a time-dependent ansatz allows for black hole solutions in

massive gravity which smoothly approach Schwarzschild black holes in the massless limit

and which do not appear to exhibit coordinate-invariant singularities at the horizon.

4.3 Nonzero mass and apparent horizon

Let us now consider the leading order m2 corrections to the dynamical metric. Since the

quantity Tµν depends explicitly on the Schwarzschild time coordinate t, from the equations

of motion (3.3), we anticipate that the m2 corrections to the dynamical metric will be

time-dependent as well.

A generic time-dependent, spherically symmetric metric can be put in the form

ds2 = −e2Φ(t,r)
(
1− 2GM(t, r)

r

)
dt2 +

1

1− 2GM(t,r)
r

dr2 + r2dΩ2 , (4.9)
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defined by two functions, Φ(t, r) and M(t, r). The function M(t, r) is the Misner-Sharp

mass function which corresponds to the quasi-local mass contained within a sphere of radius

r at time t. We take expression (4.9) to be our ansatz for the dynamical metric gµν at

finite m2. Using the equations of motion (3.3) along with our solutions (4.2)–(4.4), we

can determine Φ(t, r) and M(t, r) to leading order in m2. For the physically interesting

quantity M(t, r), we find, to leading order in m2 and for r > rg:

2GM(t, r)

rg
' 1 +m2r2

g

β2
1

β2

[ ∞∑
n=3

cn(x) coshn
[
t

2rg

](
r

rg
− 1

)n/2
+
∞∑
n=1

Dn

(
r

rg
− 1

)n]
,

(4.10)

where again x ≡ tanh[t/2rg]. The first few terms are determined to be

c3(x) = C3a + C3b x
2 ,

c4(x) = C4a + C4b x
2 ,

c5(x) = C5a + C5b x
2 + C5c x

4 ,

c6(x) = C6a + C6b x
2 + C6c x

4 ,

(4.11)

with constants given by

C3a =
2

13
(24 + 7

√
3) , C4a = − 2

845
(4632 + 727

√
3) ,

C3b = − 2

13
(24 + 7

√
3) , C4b =

2

845
(4632 + 727

√
3) ,

C5a =
89961180− 5942257

√
3

3987555
, C6a =

1980193455 + 13177986034
√

3

362867505
,

C5b = 2
751378 + 13863771

√
3

1329185
, C6b = − 7679972382 + 5981929537

√
3

27912885
,

C5c = − 94469448 + 77240369
√

3

3987555
, C6c =

32619815837 + 21529032649
√

3

120955835
,

(4.12)

and

D1 =
β0β2

β2
1

+

√
3

2
,

D2 =
β0β2

β2
1

+ 3
13159 + 8602

√
3

3380
,

D3 =
β0β2

3β2
1

− 99529913559 + 49389993413
√

3

4354410060
.

(4.13)

The apparent horizon of the time-dependent black hole is given by the implicit condition

2GM(t, rH) = rH . However, in Schwarzschild coordinates, this condition is ill-defined

because t is not a good coordinate at the horizon. Thus, to determine the time dependence

of the horizon, it is necessary to switch to better behaved coordinates.

This can be done generically by adopting an Eddington-Finkelstein type of time coor-

dinate t→ v(t, r) so that the metric (4.9) becomes

ds2 = −F (v, r)2

(
1− 2GM(v, r)

r

)
dv2 + 2F (v, r)dvdr + r2dΩ2 . (4.14)
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The coordinate v is well-behaved at the horizon. Thus the condition 2GM(v, rH) = rH
can be used to determine the position of the apparent horizon as a function of v: rH(v).

However, given the nature of our solutions (4.10), finding M(v, r) is nontrivial so we will

take a simpler approach.

Let us assume that the position of the apparent horizon is, in fact, time-independent.

In other words, we assume that rH(t̃) = rg for some coordinate t̃ that is regular at the

horizon. To verify this, we should adopt a time coordinate that is well-behaved at r = rg.

In particular, we can adopt the Kruskal-Szekeres time coordinate T : t → T (t, r). Then,

the Misner-Sharp mass defined in (4.10) and evaluated at the horizon r = rg becomes

2GM(T, r = rg)

rg
= 1 +m2r2

g

β2
1

β2

∞∑
n=3

cn(x = 1)
Tn

en/2
+O(m4) . (4.15)

We see that our assumption is valid as long as cn(x = 1) = 0 at each order in n. Comparing

with our expressions (4.11) and (4.12) it is easily verified that this is indeed the case and

that and rH(T ) = rg. The position of the apparent horizon is time-independent at leading

order in m2. The implication is that, for this solution, the black hole is neither accreting

nor evaporating, despite the solution being explicitly time-dependent.

5 Discussion

We have demonstrated that time-dependent black hole solutions in massive gravity can

potentially evade the problem of coordinate-invariant singularities at the horizon and can

smoothly recover the black hole solutions of General Relativity in the massless limit. The

solutions that we have found are derived in the limit of small graviton mass and are thus

valid only well inside the Vainshtein radius. Thus, it remains to be seen if these solutions

can be matched to the expected Yukawa asymptotics at large r. Such a matching is

certainly allowed by the given parameter space. I.e., the Fierz-Pauli mass is not set to zero

on these solutions. It might appear unrealistic to expect that time-dependent solutions

could be matched to static asymptotics. However, given that the apparent horizon of

these solutions is, in fact, static at leading order in m2, it is physically intuitive that the

asymptotics might reflect a black hole that is neither accreting or evaporating.

Finally, we note that the solutions we have derived are not necessarily unique. It

is possible that other time-dependent solutions exists, perhaps with features even more

desirable than those found here. Ultimately, however, a physical black hole formed from

gravitational collapse will be described by a particular branch of solutions. While the time-

dependent solutions found here resolve the potentially problematic properties of the static

solutions, it remains undetermined what is the correct physical branch.
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