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Abstract:We construct a new class of metastable de Sitter vacua of flux compactifications

of type IIB string theory. These solutions provide a natural extension of the ‘Large Volume

Scenario’ anti-de Sitter vacua, and can analogously be realised at parametrically large

volume and weak string coupling, using standard N = 1 supergravity. For these new

vacua, a positive vacuum energy is achieved from the inclusion of a small amount of flux-

induced supersymmetry breaking in the complex structure and axio-dilaton sector, and

no additional ‘uplift’ contribution (e.g. from anti-branes) is required. We show that the

approximate no-scale structure of the effective theory strongly influences the spectrum of

the stabilised moduli: one complex structure modulus remains significantly lighter than the

supersymmetry breaking scale, and metastability requires only modest amounts of tuning.

After discussing these general results, we provide a recipe for constructing de Sitter vacua

on a given compactification manifold, and give an explicit example of a de Sitter vacuum

for the compactification on the Calabi-Yau orientifold realised in CP
4
11169. Finally, we

note that these solutions have intriguing implications for phenomenology, predicting no

superpartners in the spectrum below ∼50TeV, and no WIMP dark matter.
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1 Introduction

There are apparently many different possibilities to compactify string theory to four dimen-

sions. Most notably, generalised electromagnetic fluxes (e.g. F3 and H3 for type IIB com-

pactifications) can thread non-trivial cycles of the compactification geometry in a myriad

of ways. For each viable compactification manifold, this results in a set of ‘flux compactifi-

cations’, each with a distinct low-energy limit (for some reviews see [1–3]). The number of

effective theories in this set grows exponentially with certain topological parameters of the

compactification manifold [4–7]. However, while flux compactifications produce many low-

energy effective descriptions, it is not known whether any of them support solutions that

are consistent with all experiments and observations. Consequently, it is not known if our
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own universe is included in this set of solutions, and if so, what (if any) the distinguishing

characteristics of the physically interesting solutions are.

A key challenge in determining the properties of generic flux compactifications is that

most vacua arise from the topologically richest and most complicated manifolds, obscuring

the connection with observation. Deformation modes of the compact geometry appear in

the low-energy theory as light ‘moduli’ fields. Topologically interesting compactifications

come with many moduli: typical type IIB scenarios have O(100) moduli fields [8], while for

F-theory scenarios that number easily reaches O(105) [9]. Those moduli do not only appear

as exotic particles in the spectrum but also control important parameters in the low energy

theory such as coupling constants. This brings the need for a controlled stabilisation, with

non-zero masses and fixed vacuum expectation values.

The stabilised geometry, free of tachyons, corresponds to critical points of the effective

potential that satisfy a perturbative (meta-)stability condition. For a configuration with

∂AV = 0, where ∂A = ∂
∂φA for the moduli fields φA, this means that the Hessian matrix,

H =

(

∂2
AB̄

V ∂2
ABV

∂2
ĀB̄

V ∂2
ĀB

V

)

, (1.1)

has only positive eigenvalues. Stability is guaranteed for supersymmetric solutions. How-

ever, the accelerated expansion of the universe and the absence of observed superpartners

to the Standard Model particles means that supersymmetry must be broken in solutions

aiming to describe the real world. This motivates studying non-supersymmetric solutions

of string compactifications. Ensuring a positive definite spectrum of the high-dimensional

matrix H in solutions with broken supersymmetry is a non-trivial task.

Moreover, to address the accelerated expansion of the universe, the vacuum should be a

de Sitter solution with a positive cosmological constant [10, 11]. There are good reasons to

believe that string compactifications allowing de Sitter solutions will be quite special and

may share characteristic properties that could possibly lead to observational signatures.

One piece of evidence for this comes from theories with many randomly interacting fields

which can be studied by the means of random matrix theory (RMT). In such theories,

metastable de Sitter vacua are exceptionally rare [12]; this conclusion remains unchanged

even for typical critical points of supergravity theories with spontaneously broken super-

symmetry [13]. Hence, some type of non-random structure inherited from the string com-

pactification appears to be required to explain the accelerated expansion of the universe.1

1Recently, several attempts have been made to model the low-energy effective theories from string theory

using classes of random functions, in particular Gaussian Random Fields (GRFs). These studies have found

that, at least for trivial field space geometry and a particular choice of covariance function [14], or upon

ignoring the structures imposed by supergravity [15, 16], metastable vacua are more common than the

random matrix theory argument suggests. In the simplest models where V is postulated to be a mean-zero

Gaussian Random Field with a Gaussian covariance function, the increase in the number of vacua can be

understood to arise from a rigid shift in the eigenvalue spectrum [14, 15]: for V = 0, the GRF and RMT

both predict a mean-zero Wigner semi-circle spectrum, but for V > 0 the spectrum of the GRF potential are

shifted downwards and metastability is more rare in the GRF than the RMT analysis suggests. Conversely,

for V < 0 the spectrum is shifted to positive values and metastable vacua are more common. Hence, the

GRF analysis suggests that the RMT estimate provides an upper bound on the frequency of metastable de

Sitter vacua in random potentials.

– 2 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
3

The most studied class of metastable de Sitter solutions arising from string theory

involve the ‘uplift’ of a supersymmetric anti-de Sitter solution to positive vacuum energy

by the means of a set of supersymmetry breaking anti-branes placed in a warped throat

of the compactification manifold. By tuning the fluxes, many moduli can be stabilised

supersymmetrically at a parametrically high scale, and are rather insensitive to the uplift.

The low-energy effective field theory derived from dimensional reduction of this theory can

be rephrased as an interesting version of N = 1 supergravity [17–26]. Alternative proposals

for constructing Minkowski or de Sitter vacua either deform the theory, as in the so-called

Kähler uplift [27, 28], or extend its field content, by e.g. the addition of open string fields

and gauge dynamics [29–46]. However, these solutions may ultimately only correspond to

a particular branch of a much wider set of metastable de Sitter solutions, and it is possible

that more general and simpler solutions remain to be discovered.2

The purpose of this paper is to construct a new branch of metastable de Sitter solutions

of type IIB flux compactifications at large volume. These solutions are in some sense simpler

than those obtained from anti-brane breaking: the de Sitter solutions presented in this

paper require only the minimal set of ingredients being generated simply from spontaneous

supersymmetry breaking in the moduli sector, including a comparatively small amount

of supersymmetry breaking from the complex structure moduli and axio-dilaton sector.

Consequently, all relevant physics should be captured by the standard N = 1 supergravity

describing the low-energy limit of string compactifications.

The new solutions arise as a direct generalisation of those in [48] (see also [49]) by

including multiple Kähler moduli and thereby allowing for a larger compactification vol-

ume that in turn is a necessary condition for our construction. Similar ideas have been

explored numerically before in particular examples by allowing relevant contributions to

the supersymmetry breaking from the axio-dilaton and complex structure sector, either by

stabilising the Kähler sector as in the KKLT scenario [50], or by non-geometric fluxes in

STU-models [51], or by modelling the spectrum by random matrix theory [52].

The de Sitter and Minkowski vacua reported here allow for an analytic treatment

and extends the vacua constructed in the so-called Large Volume Scenario (LVS) [53, 54].

Notably, we will present explicit de Sitter solutions, building on LVS, for compactifications

on the Calabi-Yau orientifold realised as a hypersurface in CP
4
11169.

A key benefit of these solutions is that they render almost all moduli metastable,

without much tuning. This is achieved by only weakly breaking the leading order no-scale

symmetry of the four-dimensional supergravity, and by utilising the lingering decoupling

between the Kähler moduli sector and the complex structure moduli and the axio-dilaton.

These results deepen our understanding of the vacuum structure of the effective theories

arising from flux compactifications and may have interesting applications for cosmological

and particle physics models in string theory. They may also serve as a rather explicit

testing ground for conjectures about non-supersymmetric vacua in string theory [55–57].

2Certain simplifications, as the absence of quantum corrections, still seem problematic though [47].
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2 Review of type IIB flux compactifications

In this section, we review the structure of supergravity theories in four dimensions de-

scending from the low-energy limit of IIB string theory on a Calabi-Yau orientifold with

RR and NSNS fluxes.3 In particular: in section 2.1 we review the Kähler geometry of the

moduli space; in section 2.2 we discuss the flux induced superpotential and possible non-

perturbative corrections; and in section 2.3 we detail how physical quantities relevant for the

four-dimensional effective theory are captured by the various components of the flux vector.

We consider the four-dimensional spectrum of a compactification on the orientifold

M̃3 of the Calabi-Yau three-fold M3. The low-energy degrees of freedom include the axio-

dilaton S = C0+ie−φ, the complex structure moduli ui, where i = 1, . . . , h1,2− (M̃3), and the

Kähler moduli T a, where a = 1, . . . , h1,1+ (M̃3) [58]. The corresponding low-energy theory

can often be described by four-dimensional N = 1 supergravity in which the moduli furnish

the scalar components of chiral multiplets. Our convention for indices is as follows: A, B

etcetera run over all moduli fields, I, J run over all complex structure moduli and the axio-

dilaton, i, j run over complex structure moduli only, a, b run over Kähler moduli only, and

finally, s runs over ‘blow-up’ Kähler moduli:

XA ≡ (S, ui, T a) , XI ≡ (S, ui) , T a ≡ (T big, T s) . (2.1)

2.1 Moduli space geometry

The kinematics of the moduli fields are governed by a real Kähler potential, K, which

at sufficiently large volume and weak string coupling can be written as the sum of three

contributions,

K = Kdil +Kc.s. +KK . (2.2)

We will throughout this paper use the shorthands Ki = ∂uiK, Ka = ∂TaK, KS = ∂SK,

etc, and we will also use the notation K̃ = Kdil +Kc.s.. The explicit expression for (2.2)

is determined by the geometry and topology of the compactification manifold, as we now

briefly review.

2.1.1 Axio-dilaton and complex structure deformations

The leading-order Kähler potential for the axio-dilaton S is given by,

Kdil = − ln
[

−i(S − S̄)
]

. (2.3)

Because of the SL(2,Z) S-duality, the axio-dilaton S can be restricted to the fundamental

domain of the torus, {S ∈ C, |ReS| < 1
2 , |S| ≥ 1, Im (S) > 0}.

The complex structure moduli space is conveniently parametrised by means of projec-

tive coordinates zI , I = 0, 1, . . . h1,2, which correspond to the periods of the holomorphic

three-form Ω,

~Π =

(

∫

AI Ω
∫

BI
Ω

)

≡
(

zI

GI

)

, (2.4)

3We anticipate that our analysis and results extend straight-forwardly to F-theory compactifications on

CY4-manifolds.
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where we chose a canonical symplectic basis (AI , BI) of the third homology group of

H3(M3) and (αI , β
I) denote the dual cohomology group basis

∫

M3

αI ∧ βJ = −
∫

M3

βJ ∧ αI = δJI ,

∫

M3

αI ∧ αJ =

∫

M3

βI ∧ βJ = 0 . (2.5)

The periods GI satisfy the condition 2GI = ∂I(z
JGJ), thus form the gradient of a function

that is homogenous of degree two: GI = ∂IG.
The set of inhomogeneous coordinates on the complex structure moduli space is con-

ventionally chosen as,

ui = zi/z0 , i = 1, . . . , h1,2 . (2.6)

Upon setting z0 = 1, the period vector is given by.

~Π =















1

ui

2F − ujFj

Fi















, (2.7)

with the prepotential F = G/(z0)2.
An N = 1 supergravity theory in d = 4, at low energies, is obtained by working not

in M3 but on its orientifold image M̃3, where only the involution-odd complex structure

moduli are kept in the chiral spectrum. Since we will not be concerned with the details of

this involution, we will simply restrict ui to run over i = 1, . . . , h1,2− .

The complex structure-dependent contribution to the Kähler potential is given by,

Kc.s. = − ln

(

i

∫

M3

Ω ∧ Ω̄

)

= − ln
(

i~Π†Σ ~Π
)

, (2.8)

where Σ denotes the symplectic metric,

Σ =

(

0 1

−1 0

)

. (2.9)

2.1.2 Kähler deformations

The imaginary component of the Kähler moduli fields T a are given by the four-cycle vol-

umes, τa, which can be defined from the Calabi-Yau manifold volume, V . The volume is a

homogeneous function of degree 3 in the two-cycle volumes ta, and the four-cycle volumes

are defined by τa = Vta . It then follows that,

taτ
a = 3V . (2.10)

Our focus in this paper is on de Sitter vacua in the Large Volume Scenario [53, 54], for

which it is convenient to consider compactifications volumes of the (strong) ‘Swiss cheese’

type,

V = (ηbigτ
big)

3
2 −

Nsmall
∑

s=1

(ηsτ
s)

3
2 , (2.11)
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where ηa ∈ R. We have also split the index a = 1, . . . , h1,1+ into one ‘big’ cycle and

s = 1, . . . , Nsmall ‘small’ cycles. Here Nsmall = h1,1+ − 1 is the number of blow-up cycles in

the compactification geometry.

The Kähler potential for the Kähler moduli is given by [59],

KK = −2 ln

[

V +
ξ

2

(

−i
S − S̄

2

)
3
2

]

. (2.12)

The contribution multiplying ξ = −χ(CY3)ζ(3)
2(2π)3

arises from (α′)3 corrections in the ten-

dimensional theory. At sufficiently large volume, this term provides the dominant correction

to the resulting scalar potential [60, 61]. The α′-correction induces non-vanishing cross-

terms between the axio-dilaton and Kähler moduli components of the metric. The relevant

components of the inverse metric are given by [62],

Kab̄
K = −2

(

V +
ξ̂

2

)

(

∂2V
∂τa∂τ b

)−1

+ τaτ b
4V − ξ̂

V − ξ̂
, (2.13)

KaS̄
K = i

3

2
(S − S̄)τa

ξ̂

V − ξ̂
, (2.14)

KSS̄
K = −(S − S̄)2

4

4V − ξ̂

V − ξ̂
, (2.15)

where ξ̂ = ξ(−i(S − S̄)/2)3/2.

2.2 Flux compactifications

We are interested in compactifications in which integrally quantised RR (F3) and NSNS

(H3) fluxes thread some non-trivial three-cycles of M3,

1

(2π)2α′

∫

AI ,BI

F3 = ~NRR ∈ Z
2(h1,2

−

+1) ,
1

(2π)2α′

∫

AI ,BI

H3 = ~NNSNS ∈ Z
2(h1,2

−

+1) . (2.16)

It is conventional to introduce the complex three-form flux G3 = F3−SH3, and convenient

to define the complexified flux vector as,

~N = −
(

∫

AI G3
∫

BI
G3

)

. (2.17)

The fluxes contribute to the D3-charge tadpole by,

Qflux =
1

(2π)4(α′)2

∫

M3

H3 ∧ F3 =
1

(2π)4(α′)2
~hTΣ~f = − 1

(2π)4(α′)2
KS

~N †Σ ~N , (2.18)

where,

~f =

(

∫

A F3
∫

B F3

)

, and ~h =

(

∫

AH3
∫

B H3

)

. (2.19)
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The relation between ~N and ~f and ~h is then clearly,

Re( ~N) = −~f3 +Re(S)~h3 , and Im( ~N) = Im(S)~h3 . (2.20)

Requiring that the total sum of all D3 charges vanishes in the internal space leads

to a joint condition on the D3-brane content, the fluxes, and the D7-brane and O-plane

configuration,

Qflux +ND3 =
χ

24
, (2.21)

where ND3 denotes the net number of D3-branes, and χ is the Euler characteristic of the

Calabi-Yau fourfold that corresponds to the F-theory lift of our type IIB compactification.

Fluxes that preserve supersymmetry contribute positively to this tadpole condition.

The fluxes induce a complex structure and axio-dilaton dependent energy density that

in the four-dimensional theory is captured by the flux induced superpotential [63],

W0 =

∫

M3

G3 ∧ Ω = − ~NT Σ ~Π . (2.22)

This superpotential is exact to all orders in perturbation theory, and does not receive

α′-corrections. However, non-perturbative contributions from Euclidean D3-branes and

gaugino condensation on stacks of D7-branes induce additional contributions:

W = W0 +Wnp = W0 +

Nsmall
∑

s=1

As e
iasT s

, (2.23)

where we have specialised to compactifications of ‘Swiss-cheese’ form (2.11), and included

non-perturbative corrections for all blow-up moduli T s, but — anticipating solutions with

large volume — neglected such a correction for the single ‘big cycle’ T big. The factor as
is as = 2π for Euclidean D3-branes and as = 2π/ND7 for a stack of ND7 branes. The

prefactors As depend on the axio-dilaton and the complex structure moduli. The moduli

dependence can in principle be determined from the Pfaffian of one-loop corrections to

the instanton action, however such a computation is very difficult. As we show below,

the particular functional forms of the prefactors As are generically not important for our

analysis and we can consistently treat them as constants.

In this paper we denote by DA the Kähler and geometrically covariant derivative, and

we use the following notation for covariant derivatives of the superpotential,

FA = DAW = ∂AW +KAW ,

ZAB = DAFB = ∂AFB +KAFB − ΓC
ABFC ,

UABC = DAZBC = DBZAC = DCZBA . (2.24)

The supergravity F-term scalar potential is denoted by,

V = eK
(

FAF̄
A − 3|W |2

)

, (2.25)

where indices are raised with the inverse Kähler metric KAB̄. The gravitino mass is given

by,

m3/2 = eK/2|W | . (2.26)
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2.3 Decomposition of flux vector

The three-form G3 is conveniently decomposed by Hodge type, and it is well known that

supersymmetric fluxes are of Hodge type (2,1) and primitive [64–66]. This condition is man-

ifest in the low-energy effective description in that, at the complex structure moduli space

location of the vacuum, the flux vector ~N only has non-vanishing components along the

Di
~Π directions. The de Sitter solutions that we construct will involve non-supersymmetric

flux vectors that in addition to the (2,1) components have a non-vanishing (0,3) piece (cor-

responding to W0 6= 0), and comparatively smaller contributions along the (1,2) and (3,0)

directions (corresponding to Fi, FS 6= 0).

To see the relation between physical quantities and fluxes explicitly, we first recall that

{Ω, Ω̄, DiΩ, D̄ı̄Ω̄} form a basis of three-forms for generic values of the moduli [67]. Cor-

respondingly, {~Π, ~Π∗, Di
~Π, D̄ı̄

~Π∗} form an orthogonal basis with respect to the symplectic

inner product [6, 68, 69],

~ΠT Σ ~Π∗ = +ie−Kc.s. , (2.27)

Di
~ΠT Σ D̄̄

~Π∗ = −iKīe
−Kc.s. , (2.28)

~ΠT ΣDi
~Π = ~ΠT Σ D̄ı̄

~Π∗ = Di
~ΠT ΣDj

~Π = 0 . (2.29)

Hence, any vector ~V in the ‘period/charge’ vector space can be expanded as follows:

~V = ieKc.s.

(

(~Π†Σ~V )~Π− (~ΠTΣ~V )~Π∗ − (K ̄lD̄̄
~Π†Σ~V )Dl

~Π+ (Kjl̄Dj
~ΠTΣ~V )D̄l̄

~Π∗
)

,

for ~Π evaluated at a generic point in the complex structure moduli space. For the flux

vector ~N , the expansion coefficients have direct physical interpretations,

~N = ieKc.s.

(

F̄S̄

KS̄

~Π−W0
~Π∗ − Z

i
S̄

KS̄

Di
~Π+ F ı̄D̄ı̄

~Π∗

)

. (2.30)

which follows straightforwardly from the superpotential and by using DS
~N = KS

~N∗.

We note that DiDjΩ is purely (1,2) and can be expanded using only the three-forms

D̄ı̄Ω̄. Therefore the component Zij = DiDjW of the tensor are not free variables, but

given in terms of the fluxes Z̄ı̄S̄ as,

Zij = +ieKc.s.κ k̄
ij

~N Σ D̄k̄
~Π∗ = − i

KS̄

eKc.s.κ k̄
ij Z k̄S̄ , (2.31)

where κijk denotes the (in general field-dependent) ‘Yukawa couplings’, κijk =
∫

M3
Ω ∧

∂3
ijkΩ. The flux tadpole contribution may now be expressed as,

(2π)4(α′)2Qflux = −iKSe
Kc.s.

(

|W0|2 +
1

|KS |2
ZSlZ

l
S̄ − FiF̄

i −
∣

∣

∣

FS

KS

∣

∣

∣

2
)

. (2.32)

We will find the decomposition of the flux vector (2.30) very useful in constructing explicit

de Sitter vacua in section 5.
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3 No-scale symmetry, slightly broken

In this section we review the implications of no-scale symmetry for the low-energy effective

theory from string compactifications. Our particular focus will be on the metastable de

Sitter vacua constructed in [48], for which the slightly broken no-scale symmetry bestows

favourable metastability properties.

3.1 No-scale symmetry

Four-dimensional N = 1 supergravity theories are said to be ‘no-scale’ [70–72] if a subset

of the fields, here denoted T a,

i) have no Kähler potential cross-couplings with the other fields, here denoted XI , so

that K = K1(X
I) +K2(T

a),

ii) do not appear in the superpotential, W = W0(X
I),4

iii) have a field-space geometry satisfying the no-scale condition,

KaK
ab̄Kb̄ = 3 . (3.1)

Such theories can admit solutions to the critical point equation, ∂AV = 0, with FI = 0 and

Fa = KaW , so that,

V = eK
(

FAF̄
A − 3|W |2

)

= eKFI F̄
I = 0 . (3.2)

In these non-supersymmetric Minkowski solutions, the fields XI are stabilised while the

fields T a remain unfixed. Specifically, for these solutions ∂2
T T̄

V = ∂2
TTV = ∂2

iT̄
V = ∂2

iTV =

0. The Hessian matrix for the fields XI is, in the notation of equation (2.24), given by,

H =

(

∂2
IJ̄
V ∂2

IJV

∂2
ĪJ̄
V ∂2

ĪJ
V

)

= eK

(

(ZZ)IJ̄ +KIJ̄ |W |2 2WZIJ

2WZ̄Ī J̄ (ZZ)ĪJ +KĪJ |W |2

)

. (3.3)

For canonically normalised fields5 it has the eigenvalues [48],

m2
I± = eK (λI ± |W |)2 , (3.4)

where λ2
I is an eigenvalue of (ZZ)IJ̄ ≡ ZIKZ

K
J̄ . The semi-positive-definiteness of the

eigenvalues of the Hessian follows from the convexity of the potential (3.2), and it has

important consequences for the metastability of de Sitter vacua constructed from theories

with slightly broken no-scale symmetry.

To lowest order in the gs and α′ expansions of type IIB string theory, the Kähler po-

tential of the Kähler moduli sector is given by KK = −2 lnV , cf. (2.12), and there are no

4A weaker form of ‘generalised no-scale condition’ takes W (XI , T a) but postulates that the first three

derivatives of W with respect to the fields T a vanish at the critical point [73].
5We call fields φ̃I canonically normalised, if they satisfy KIJ̄∂µφ

I∂µφ̄J̄ = δIJ̄∂µφ̃
I∂µ ¯̃φJ̄ , and we call the

eigenvalues of the Hessian the masses squared.
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cross-couplings between Kähler moduli and the complex structure/axio-dilaton moduli sec-

tor, i.e. XI = (ui, S). The geometric condition that the volume is a homogeneous function

of degree 3/2 in the four-cycle volumes, cf. equation (2.10), implies that Kab̄KaKb̄ = 3.

Moreover, to this order, the superpotential is simply given by the Kähler moduli indepen-

dent flux-induced contribution (2.22), and the Kähler moduli enjoy a leading order no-scale

symmetry. Consequently, the complex structure moduli and the axio-dilaton have squared

masses given by (3.4), once canonically normalised.

3.2 Approximately no-scale de Sitter vacua

In type IIB compactifications at low energies the no-scale symmetry is only approximate,

broken by both string loop and sigma model corrections. For example, the leading (α′)3

correction captured by the Kähler potential (2.12) implies that,

Ka = −2
Va

V

(

1− ξ̂

2V

)

, (3.5)

so that the α′-corrections break the no-scale condition by a small, volume suppressed,

amount:

Kab̄KaKb̄ = 3 +
3

4

ξ̂

V . (3.6)

This small breaking is of critical importance to the AdS vacua of the Large Volume Scenario

(as we review in section 4.1), and will become equally important for our de Sitter vacua

constructed in section 4. For the remainder of this section however, we take ξ̂ → 0 and

consider a different type of no-scale breaking that arises from a postulated, small explicit

superpotential deformation of the theory.

More precisely, following [48], we specialise to the single Kähler modulus case and take,

W (T,XI) = W0(X
I) + δW (T,XI) . (3.7)

The superpotential deformation δW (and any derivative of it) is assumed to be small

compared to W0: |δW/W0| ≪ 1. The F-terms are now given by,

FT = KTW + δWT , and FI = ǫW fI , (3.8)

where ǫ ≪ 1 and fI is a unit vector. A consistent solution of the critical point equation

∂TV = 0 takes δW (and any derivatives of it) to be of O(ǫ2W ). The critical point equations

for the remaining fields, ∂IV = 0, imply that,

ZIJ F̄
J = −WFI , (3.9)

up to corrections of O(ǫ2). Note that ZIJ is a complex symmetric tensor and hence not

unitarily diagonalisable. However, equation (3.9) may be recast as an eigenvalue equation

for the Hermitian matrix (ZZ)IJ̄ , the eigenvalue |W |2 and the eigenvector FI :

(ZZ̄) J
I FJ = |W |2FI . (3.10)
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An immediate and important implication of equation (3.10) is that one of the eigenvalues

λ2
I of (ZZ) will be precisely equal to |W |2, and hence, according to equation (3.4), there is

one real degree of freedom in the complex structure and axio-dilaton sector that is massless

to leading order:

m2
1± =

{

2eK |W |2 +O(ǫ|W |2) ,

O(ǫ|W |2) .
(3.11)

To order O(ǫ0), the massless spectrum of these solutions contains a total of three modes:

the real and imaginary parts of T and X1−.

To linear order in ǫ, the relevant part of the Hessian matrix is given by,

H =

(

∂2
IJ̄
V ∂2

IJV

∂2
ĪJ̄
V ∂2

ĪJ
V

)

= eK

(

(ZZ)IJ̄ +KIJ̄ |W |2 2WZIJ + UIJK F̄K

2WZ̄Ī J̄ + ŪĪJ̄K̄F K̄ (ZZ)ĪJ +KĪJ |W |2

)

. (3.12)

The field X1− is then lifted at O(ǫ) with the squared mass,

m2
1− = eKRe

(

UIJK f̄ I f̄J f̄KW
)

ǫ , (3.13)

in the generic case of UIJK f̄ I f̄J f̄K ∼ O(1). This squared mass can be made positive by a

moderate tuning of the phase of the superpotential.

In sum, the full spectrum of these solutions then consists of three sets of fields:

• All XI , except for X1−, receive positive squared masses at O
(

max(eKλ2
I , e

K |W |2
)

,

and are not destabilised by the inclusion of small amounts of supersymmetry breaking

in the complex structure and axio-dilaton sector.

• The field X1− is lighter than the other fields in this sector, but can be stabilised at

O(FI/W ) ∼ ǫ by a small amount of tuning.

• The real and imaginary parts of T are lifted at O(ǫ2) and the corresponding eigen-

values of the Hessian matrix are given by,

m2
T± =

(

−4KT

3
Re

(

WδWT

)

± |KTWδWTTT − 4KT

3
Re(WδWT )|

)

eK . (3.14)

As shown in [48], both these eigenvalues can be rendered positive. However, in the

case of a single Kähler modulus, the tuning is somewhat restrictive. For example, in

the case of δW arising from a single non-perturbative effect, δW = A(Xi)exp (iaT ),

positivity of m2
T− requires aτ <

√
2, while de Sitter minima have aτ > 1. These

conditions restrict the values of ǫ that are realisable, given the vacuum expectation

values of A and W0: 1.47|A|/|W0| < ǫ2 < 1.57|A|/|W0|. Hence, in this case ǫ ≪ 1

requires |A| ≪ W0.

In this paper, we will go beyond the discussion of [48] by including no-scale breaking

effects in both the superpotential and the Kähler potential, and we will consider compact-

ifications with an arbitrary number of moduli. In this arguably more interesting case, we

will see that the conditions for metastable de Sitter vacua can be greatly relaxed.
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4 De Sitter vacua at large volume

In this section, we describe how the prescription of reference [48] can be generalised to

produce metastable de Sitter vacua at exponentially large volume, thereby extending the

non-supersymmetric AdS vacua of [53].

4.1 Anti-de Sitter vacua in the Large Volume Scenario

We briefly recall the prescription of the Large Volume Scenario (LVS) for constructing non-

supersymmetric AdS vacua [53]. Starting from the α′-corrected Kähler potential (2.2)

and the flux-induced superpotential (2.23), the complex structure and axio-dilaton are

stabilised by requiring that the three-form flux background is supersymmetric, i.e. FI = 0.

To zeroth order in α′, the Kähler moduli sector is no-scale, and the squared masses of the

complex structure moduli and the axio-dilaton are given by equation (3.4). Under these

circumstances (3.10) does not imply λI = |W |, and generically, the complex structure

moduli and the axio-dilaton are stabilised at the scale O
(

max(eKλ2
I , e

K |W |2)
)

for each

λI . These moduli are then generically decoupled from the details of the Kähler moduli

stabilisation [74–76].

Secondly, the axions of the ‘small’ cycles, Re(T s), are lifted by contributions to the

potential of the form eK
(

WnpW + c.c.
)

. Minimising the resulting cosine potentials results

in a scalar potential only involving the overall volume V and the ‘small’ Kähler moduli, τ s.

The leading contributions to the scalar potential in an expansion in powers of the inverse

volume are,

VLVS = eK̃

[

3ξ(Im(S))3/2

4V3
|W0|2−

Nsmall
∑

s

4asτ
s|AsW0|
V2

e−asτs+

Nsmall
∑

s

8
√
τ s

3η
3/2
s V

a2s|As|2e−2asτs

]

,

≡ a

V3
−
∑Nsmall

s=1 bsxse
−xs

V2
+

∑Nsmall

s=1 cs
√
xse

−2xs

V , (4.1)

where we have introduced the notation xs = asτ
s. To consistently neglect higher order

instanton corrections, we only consider solutions with xs > 1 for all s.

The critical point equations ∂xsV = 0 are solved by,

Vmin = 2
bs
cs
exs

√
xs

(

xs − 1

4xs − 1

)

≈ bs
2cs

exs
√
xs , (4.2)

for each xs. In the last step we approximate xs ≫ 1. Using the above in ∂VV = 0, implies

that,

a = 4

Nsmall
∑

s=1

b2s
cs
x5/2s

(xs − 1)

(4xs − 1)2
≈ 1

4

Nsmall
∑

s=1

b2s
cs
x3/2s . (4.3)

This critical point is the minimum of the potential for V . Away from the critical point the

potential approaches zero from below in the limit xs → lnV and V → ∞:

VLVS ∼ − lnV
V3

→ 0 . (4.4)
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Consequently, the minimum is a non-supersymmetric AdS vacuum. The leading-order

vacuum energy is given by,

VLVS|min = − 2

V3
min

(

∑

s

b2s(xs − 1)x
3/2
s

cs(4xs − 1)2

)

≈ − 1

8V3
min

∑

s

b2s
cs

√
xs . (4.5)

4.2 Large volume extrema

We now generalise the prescription of the Large Volume Scenario to construct de Sitter

vacua with an exponentially large volume. The key idea is, just as discussed in section 3.2,

to consistently include a small amount of flux-induced supersymmetry breaking in the

complex structure and axio-dilaton sector, as parametrised by the F-terms,

FI = ǫWfI , (4.6)

with ǫ ≪ 1 a small parameter and fI a unit vector. Our construction generalises that of [48]

by including multiple Kähler moduli and additional no-scale breaking from α′-corrections

to the Kähler potential.

An immediate concern is that non-vanishing F-terms for the complex structure and

the axio-dilaton potentially destabilise the potential and cause decompactification. The

additional F-terms, FI F̄
I = FiF̄

i + FSF̄
S , contribute to the potential like,

V = VLVS +
eK̃FI F̄

I

V2
. (4.7)

Since VLVS ∼ V−3, we see that generic amounts of supersymmetry breaking, FI F̄
I ∼ |W |2,

source a dominant run-away potential for the volume.6 If the supersymmetry breaking in

the complex structure and axio-dilaton sector is suitably small, however, FI F̄
I can provide

the positive energy contribution necessary to lift the LVS AdS vacua to positive vacuum

energy, without causing destabilisation.

For FI = ǫWfI as in (4.6), we have FI F̄
I = ǫ2|W 2| and the condition that at the min-

imum the extra contribution to the potential is of the same order as the LVS contribution

requires that:

ǫ = O(V−1/2
min ) . (4.8)

Such a small contribution can be achieved by the tuning of fluxes: for continuous fluxes,

such tuning is always possible; for quantised fluxes, we expect this be possible in compact-

ifications with many cycles and a large flux tadpole. We emphasise, however, that these

new F-terms are the consequence of non-supersymmetric three-form fluxes, and not the re-

sult of an ubiquitous small backreaction from the non-SUSY solution in the Kähler sector,

6The existence of run-away directions in the moduli space has since long been identified as a critical

aspect of string compactifications [77]. A detailed analysis of the FI F̄
I ∼ |W |2 case is intricate: for compara-

tively small volumes and large supersymmetry breaking the various contributions to the potential become of

similar magnitude and couplings between the axio-dilaton, complex structure and the Kähler moduli are all

important [74, 75]. Moreover, the applicability of the four-dimensionalN = 1 supergravity as an effective de-

scription of the low-energy theory becomes questionable as the hierarchy between the compactification scale

and the supersymmetry breaking scale decreases. We will not be concerned about this regime in this paper.
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which induces even smaller F-terms of the order of FI F̄
I ∼ O(|W |2/V2

min) ∼ O(ǫ4|W |2) in
the standard Large Volume Scenario.

To construct perturbatively metastable vacua, we need to solve the critical point equa-

tions and ensure that the Hessian matrix has no negative eigenvalues. With non-vanishing

supersymmetry breaking in the complex structure and axio-dilaton sector, the critical point

equation for these moduli fields becomes,

∂IV = ∂IVLVS + eK̃
(

F̄ JZIJ + FIW
)

V2
, (4.9)

where we have used that ∂I

(

eK̃FJ F̄
J
)

= eK̃
(

F̄ JZIJ + FIW
)

. Since
(

F̄ JZIJ + FIW
)

∼
V−1/2
min and ∂IVLVS scales like V−3

min, the second term provides the leading order contribution

to the critical point equation in an expansion in the inverse volume. Thus, up to corrections

of O(V−1
min), the equation ∂IV = 0 implies that,7

F̄ JZIJ = −WFI . (4.10)

This is precisely equation (3.9). The implications of this equation are again very important:

the three-form fluxes can stabilise most of the fields in the complex structure and axio-

dilaton sector with squared masses of ∼ 1/V2
min, but a consistent inclusion of the additional

supersymmetry breaking effects requires one eigenvalue of (ZZ) to be equal to |W |2. So,

again, one real component of these fields is unstabilised at leading order. We will again

denote this component by X1− and we will see in section 4.3 that this field is lifted at

subleading order and can be stabilised by very modest amounts of tuning.

Granted a solution of equation (4.10) (we give an explicit prescription for solving it in

section 5), we now turn to the critical point equation for the Kähler moduli. The scalar

potential is now given by,

V =
ã

V3
−

∑

s b̃sxse
−xs − ǫ2f̃2

V2
+

∑

s c̃s
√
xse

−2xs

V , (4.11)

where, ã, b̃, c̃, f̃ are complex structure and axio-dilaton dependent (but Kähler moduli

independent) parameters:

ã =
3

4
eK̃ ξ(Im(S))3/2|W0|2 , b̃s = 4eK̃ |AsW0| , (4.12)

c̃s =
8

3
eK̃

a
3
2
s |As|2

η
3/2
s

, ǫ2f̃2 = eK̃FI F̄
I . (4.13)

Clearly, while the new f̃2 = exp(K̃)|W0|2 contribution affects the equation ∂VV = 0, it

does not enter into the critical point equations for the ‘small’ Kähler moduli, ∂xsV = 0.

Hence, we again find,

Vmin = 2
b̃s
c̃s
exs

√
xs

(

xs − 1

4xs − 1

)

≈ b̃s
2c̃s

exs
√
xs , (4.14)

7Since ZSS ≡ 0 in general, FI cannot be exactly aligned with the axio-dilaton direction, but needs to

have some non-vanishing component in the complex structure sector.
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for each xs, as in equation (4.2). Equation (4.3) instead is generalised to,

ã+
2

3
ǫ2f̃2Vmin = 4

Nsmall
∑

s=1

b2s
cs
x5/2s

(xs − 1)

(4xs − 1)2
≈ 1

4

Nsmall
∑

s=1

b2s
cs
x3/2s . (4.15)

The implicit solutions of the critical point equations (cf. (4.10), (4.14) and (4.15)) do

not guarantee that the solution is a local minimum of the potential. To investigate the

metastability of theses we now turn to the Hessian matrix.

4.3 Metastable vacua

Perturbative metastability requires that all the eigenvalues of the Hessian matrix are pos-

itive. A key concern is the magnitude of the off-diagonal terms in the mass matrix, which

lead to mass splittings that can cause destabilisation. To estimate the importance of these

effects, it often suffices to recall that to second order in matrix perturbation theory for the

matrix HAB = H(0)
AB + δHAB, the perturbed eigenvalues are given by,

m2
A = m2

(0), A + δHAA +
∑

B 6=A

|δHAB|2
m2

(0), A −m2
(0), B

, (4.16)

where m2
(0), A denotes the eigenvalues of the unperturbed matrix H(0)

AB. We will now show

that the volume scaling of the various terms in the Hessian matrix makes ensuring pertur-

bative stability a rather simple task.

Most of the fields in the complex structure moduli and the axio-dilaton sector are

stabilised at a high scale. The Hessian matrix to zeroth order in ǫ is again given by (3.12),

and these fields have canonically normalised squared masses,8

m2
I± =

eK̃ (λI ± |W0|)2
V2

+O
(

1/V5/2
)

. (4.17)

However, since the critical point equation (4.10) requires that (ZZ) has one eigenvalue

equal to |W |2, one real degree of freedom in this sector, X1−, is lifted at O
(

1/V5/2
)

precisely as discussed in section 3.2. The leading order squared mass is again given by,

m2
1− =

eK̃Re
(

UIJK f̄ I f̄J f̄KW
)

V2
ǫ . (4.18)

In general we expect the contribution UIJK f̄ I f̄J f̄K to be order one. If this contribution

is sub-leading, however, this mode will be lifted at O
(

1/V3
min

)

and a more complicated

analysis is required. This could occur if Dk

(

κijle
Kc.s.

)

= 0, which holds if the moduli space

is a symmetric space with a covariantly constant Riemann tensor. This is the case for

the STU -model considered in [48], but for the moduli space of a more general Calabi-Yau

compactification, Dk

(

κijle
Kc.s.

)

6= 0.9

8The volume scaling of the masses in this sector is unaffected by the canonical normalisation.
9We note that, contrary to an aside assertion of [7], generically Dk

(

κijle
Kc.s.

)

6= 0 in the large complex

structure limit of the compactification manifold.
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The stability of the Kähler moduli sector can be understood from the volume scaling

of the elements of the full Hessian matrix. We here, for simplicity, consider non-canonically

normalised fields; canonical normalisation does not change the metastability of a critical

point. Cross-terms between the ‘small’ Kähler moduli on the one hand and the axio-

dilaton and complex structure moduli on the other arise only from VLVS in equation (4.7),

and hence ∂2
IτsV ∼ ∂ĪτsV ∼ 1/V3. Cross-terms with the overall volume modulus scale like

∂2
IVV ∼ ∂2

ĪV
V ∼ 1/V4.

The Hessian matrix is then schematically given by,

H =















m2
I±

~0 ∂2
IτsV ∂2

IVV

~0T m2
1− ∂2

IτsV ∂2
IVV

∂2
IτsV ∂2

IτsV ∂2
τsτsV ∂2

τsVV

∂2
IVV ∂2

IVV ∂2
τsVV ∂2

VVV















= O(V−2)















1 ~0T O(V−1) O(V−2)

~0 O(V− 1
2 ) O(V−1) O(V−2)

O(V−1) O(V−1) O(V−1) O(V−2)

O(V−2) O(V−2) O(V−2) O(V−3)















.

(4.19)

Using equation (4.16), we see that cross-terms between the complex structure and axio-

dilaton sector and the Kähler moduli contribute only with sub-leading corrections. The

‘small’ Kähler moduli squared masses are corrected at order O
(

V−7/2
)

, but the diagonal

contributions are of O
(

V−3
)

. The overall volume squared mass scales is corrected at

O
(

V−11/2
)

, but the leading order contributions from the Kähler sector enter at O
(

V−5
)

.

Thus, we can consistently neglect cross-couplings between the axio-dilaton and complex

structure moduli on the one hand, and the Kähler moduli on the other. We also note that

the volume scalings of equation (4.19) are still satisfied for moduli dependent prefactors

As(S, u
i) of equation (2.23), and we expect the decoupling to apply also in this more general

case.

Focussing on the Kähler moduli sector, equations (4.16) and (4.19) imply that the small

Kähler moduli are stabilised at O(1/V3), and that cross-couplings with the overall volume

modulus only lead to very small corrections. Since the potential (4.1) is sum-separable in

the fields τ s, the only non-vanishing elements of the Hessian matrix are the diagonal values

which (again for non-canonically normalised fields) are given by,

∂2
τsτsV |min =

a2s b̃
2
s(xs − 1)

(

xs
(

8x2s − 6xs + 3
)

+ 1
)

c̃sV3
min(4xs − 1)2

√
xs

≈ a2s b̃
2
sx

3
2
s

2c̃sV3
min

, (4.20)

with no sum on s. Here we have used equations (4.14) and in the last step we took xs ≫ 1.

Equation (4.20) clearly implies positive squared masses for the small Kähler moduli, just

as in the standard Large Volume Scenario.

We now turn to the metastability of the overall volume, and the possibility to get

Minkowski or de Sitter vacua from this construction.

4.4 Metastability condition and de Sitter vacua

The leading order vacuum energy in the presence of f̃ 6= 0 is given by,

V |min =
1

V3
min

(

1

3
ǫ2f̃2Vmin − 2

∑

s

b̃2s(xs − 1)x
3/2
s

c̃s(4xs − 1)2

)

. (4.21)
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Clearly, a non-negative vacuum energy then requires,

6
∑

s

b̃2s(xs − 1)x
3/2
s

c̃s(4xs − 1)2
≤ ǫ2f̃2Vmin . (4.22)

However, f̃ is also bounded from above: the lightest mode, which coincides at leading order

with the overall volume modulus, is destabilised by too large flux-induced F-terms. More

precisely, the second derivative of the potential with respect to the volume is given by,

∂2
VV |min =

2

V5
min

(

2
∑

s

b̃2sx
3/2
s (2x2s − xs − 1)

c̃s(4xs − 1)2
− ǫ2f̃2Vmin

)

. (4.23)

The corresponding eigenvalue of the Hessian matrix gives the squared mass. For a single

small blow-up modulus and non-canonically normalised fields it is given by,

m2
V =

2

V5
min

(

6b̃21x
5/2
1

(

12x31 − 23x21 + 16x1 − 5
)

c1(4x1 − 1)2
(

8x31 − 6x21 + 3x1 + 1
) − ǫ2f̃2Vmin

)

. (4.24)

Thus, metastability requires,

ǫ2f̃2Vmin <
6b̃21x

5/2
1

(

12x31 − 23x21 + 16x1 − 5
)

c1(4x1 − 1)2
(

8x31 − 6x21 + 3x1 + 1
) . (4.25)

Defining,

hs(xs) =
b̃2s
c̃s

(xs − 1)x
3/2
s

(4xs − 1)2
≥ 0 , (4.26)

the constraints (4.22) and (4.25) can be written as,

1 ≤ ǫ2f̃2V
6h1(x1)

<
x1(5 + x1(12x1 − 11))

1 + x1
(

8x21 − 6x1 + 3
) . (4.27)

The right-hand-side is a monotonic function of x1 ≥ 1 that is equal to 1 for x1 = 1

and asymptotes to 3/2 for x1 → ∞. Thus for any x1 = a1τ
1 > 1 there always exists a

range of values for ǫ2 for which we have stable dS vacua. This result is easily generalised

to the several blow-up moduli situation in the case we are interested in, namely when

these are supported by individual non-perturbative effects. In this case, the effects of the

blow-up moduli on the volume modulus mass simply ‘add up’, and the generalisation of

equation (4.27) is given by,

∑

s

hs(xs) ≤
ǫ2f̃2V

6
<

∑

s

(

xs(5 + xs(12xs − 11))

1 + xs (8x2s − 6xs + 3)
hs(xs)

)

. (4.28)

By the same reasoning as in the single blow-up modulus case, there is always a permitted

range of values for ǫ that gives rise to metastable de Sitter vacua. From equation (4.28),

we see that this range grows with the inclusion of additional Kähler moduli.
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5 An explicit example for CP
4

11169

In this section, we give a general method for constructing examples of the new class of

metastable de Sitter vacua presented in this paper, and we illustrate this method by an

explicit example.

5.1 Method

The class of vacua constructed in this paper can be obtained explicitly in a straightforward,

step-by-step procedure, at least for continuous fluxes. Key to this is the decomposition of

the flux vector (2.30), which allows us to engineer a consistent supersymmetry breaking

flux background. We here present the detailed steps of this prescription.

Method:

1. Pick a point p in the complex structure and axio-dilaton moduli space at which the

vacuum should be realised; evaluate the basis vectors {~Π, ~Π∗, Di
~Π, D̄ı̄

~Π∗}|p at this

point.

2. Turn on fluxes along the Di
~Π|p directions only. According to (2.30), this corresponds

to freely choosing the values of ZiS |p. These fluxes are supersymmetric withW0|p = 0,

and the flux vector is now given by,

~N = −ieKc.s.

(

Z
i
S̄

KS̄

Di
~Π

)∣

∣

∣

∣

∣

p

. (5.1)

Given (2.31), this also specifies Zij |p. In fact, since ZSS = 0 this determines the

entire tensor ZIJ |p in the complex structure and axio-dilaton sector.

3. Solve the equation,

v∗IZIJ |p = −λ∗vJ , (5.2)

for vI and λ, with vI(K
IJ̄ |p)v∗J̄ = 1. The vector vJ is then an eigenvector of (ZZ) J

I |p
with the eigenvalue |λ|2. We now take W0|p = λ and add to the flux vector the

corresponding contribution along the ~Π∗|p direction,

~N = −ieKc.s.

(

W0
~Π∗ +

Z
i
S̄

KS̄

Di
~Π

)∣

∣

∣

∣

∣

p

. (5.3)

The flux now has (2,1) and (0,3) components, and will generically induce non-

vanishing F-terms for the Kähler moduli, but not for the complex structure moduli

or the axio-dilaton.

4. Fix the flux induced contribution to the D3-tadpole, cf. (2.32), to any desired value

by re-scaling ZSi|p and W0|p. We will further slightly deform this flux background,

but this will only change the tadpole by a small amount of O(ǫ2) that we will not be

concerned with.
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5. For the choice of branes and instantons supporting the non-perturbative effects

in (2.23) and the flux-induced superpotential folowing from (2.22) and (5.3), find

the non-supersymmetric AdS vacuum following the Large Volume Scenario prescrip-

tion reviewed in section 4.1. Compute the magnitude of the uplift required to achieve

a semi-positive definite vacuum energy.

6. Take FI = ǫWvI |p and choose ǫ ≪ 1 so that these F-terms can provide the right level

of uplift. Add fluxes along the ~Π|p and D̄ı̄
~Π∗|p directions so that the full flux vector is

given by (2.30). These fluxes are now constructed to satisfy the non-supersymmetric

critical point equation (3.9).

7. Minimise the full potential, dependent on both Kähler moduli and complex structure

moduli, to find the perturbatively stable de Sitter vacuum.10

5.2 Example

We here illustrate our general prescription to construct de Sitter vacua by presenting an

explicit example using the Calabi-Yau threefold obtained as a hypersurface in the projective

space CP
4
11169. This Calabi-Yau has h1,1 = 2 and h2,1 = 272, but to render the model

tractable, we follow the discussion of this example in [53] and consistently set all but two

of the complex structure moduli to zero.

5.2.1 CP
4

11169

The geometry of the axio-dilaton moduli space of this compactification is determined by

the pre-potential which in the ‘large complex structure expansion’ is given by,

F = −3

2
(u1)3 − 3

2
(u1)2u2 − 1

2
u1(u2)2 +

9

4
(u1)2 +

3

2
u1u2 +

17

4
u1 +

3

2
u2 − iζ(3)

135

4π3
. (5.4)

In addition, the prepotential receives instanton corrections that are exponentially sup-

pressed for sufficiently large Im(ui), and will not be important for our example. The

Kähler potential for the complex structure moduli is then explicitly given by,

Kc.s. = − log

[

i

2
(u1 − ū1)

(

3(u1 − ū1)(u2 − ū2) + 3(u1 − ū1)2 + (u2 − ū2)2
)

+
135ζ(3)

π3

]

.

The compactification volume is expressed in terms of four-cycle moduli as,

V =
1

9
√
2

(

(

−i
T big − T̄ big

2

)3/2

−
(

−i
T s − T̄ s

2

)3/2
)

, (5.5)

and the Kähler potential is given by equation (2.12) with ξ = −χ(CY3)ζ(3)
2(2π)3

≈ 1.31.

10Due to the coupling between the Kähler sector and the axio-dilaton and complex structure sectors, the

axio-dilaton and complex structure vevs at the de Sitter vacuum are slightly shifted from their previously

chosen values at the point p.
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The flux-induced superpotential is given by,

W0 =
1

4
(h0S − f0)

(

6(u1)3 + 6(u1)2u2 + u1
(

2(u2)2 + 17
)

+ 6

(

u2 − 45iζ(3)

π3

))

+
1

4
(f1 − h1S)

(

18(u1)2 + 6u1(2u2 − 3) + 2(u2)2 − 6u2 − 17
)

+
1

2
(f2 − h2S)

(

3(u1)2 + u1(2u2 − 3)− 3
)

+ f3 − h3S + (f4 − h4S)u
1

+(f5 − h5S)u
2 , (5.6)

and non-perturbative effects are assumed to be supported by a stack of ten D7-branes

wrapping the blow-up cycle; we take,

as =
2π

10
, As = 1 . (5.7)

5.2.2 Step-by-step procedure

We here give a very detailed description of the construction of a single de Sitter vacuum in

CP
4
11169. Throughout this example, we work with continuous fluxes and present our results

with three significant digits, however, we keep working at each step with numbers with

higher precision.

1. We choose to construct a vacuum at p = {S = u1 = u2 = 2i}, i.e. we set the axion

vevs in this sector to zero. The relevant period vectors are,

~Π ≈

























1

2i

2i

−19.1i

36.3 + 12i

11.5 + 3i

























, D1
~Π ≈

























0.558i

−0.117

−1.12

−17.1

−2.20− 3.76i

−0.175− 1.58i

























, D2
~Π ≈

























0.174i

−0.349

0.651

−5.16

−0.594− 1.67i

−0.523 + 0.00669i

























.

2. We choose to turn on fluxes so that ZS1|p = 2.4 and ZS2|p = −5.43. The full tensor

ZIJ |p is then given by,

ZIJ |p ≈









0 2.4 −5.43

2.4 −7.24 −2.41

−5.43 −2.41 5.57









. (5.8)

The flux vector is now given by equation (5.1). The RR and NSNS fluxes expressed

in the original basis are given by,

~f ≈

























0

6.03

−18.7

3.65

−0.9

9.04

























, ~h ≈

























0.113

0

0

0

−5.55

4.46

























. (5.9)
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By construction, these fluxes give W |p = FI |p = 0.

3. The equation v∗IZIJ |p = −λ∗vJ has several solutions, and λ can be chosen as the

positive or negative square-root for either of the three eigenvalues of (ZZ) J
I |p. We

take λ ≡ λ1 ≈ −104, corresponding to the middle eigenvalue, the others being

λ2 ≈ −53.6 and λ3 ≈ −1230. The vector vI is then given by,

vI ≈









−0.196i

+0.189i

+0.0365i









, (5.10)

which is unit normalised with respect to the field space metric. We identify our chosen

value of λ with the desired vacuum expectation value of the flux superpotential, and

turn on (0,3) fluxes according to (5.3). The RR and NSNS fluxes are now given by,

~f ≈

























0

6.93

−17.8

−5.03

4.55

10.4

























, ~h ≈

























−0.114

0

0

0

−13.8

1.85

























. (5.11)

4. In this example, the flux induced tadpole becomes,

(2π)4(α′)2Qflux = ~hTΣ~f ≈ 129 . (5.12)

This is (by our ostensibly prescient choice of ZSi) already consistent with the tadpole

constraint from a known embedding of CP4
11169 into F-theory [78]. However, due to

the linearity of the problem, other tadpole constraints corresponding to other 7-brane

configurations can be satisfied by simply rescaling W0|p and ZSi|p.

5. To estimate the magnitude of the required uplift, we minimise the LVS scalar po-

tential (4.1) for the Kähler moduli sector alone, given W0|p = −104,11 and find a

non-supersymmetric AdS solution.12 In this example, the volume of the AdS vacuum

is given by, V|p ≈ 6360 and the leading order ‘cosmological constant’ is given by,

V |p ≈ −1.15× 10−11 . (5.13)

In point 6 below, the inclusion of non-vanishing F-terms for the complex structure

moduli and the axio-dilaton will shift the vev of the volume. Nevertheless, the volume

of the AdS vacuum indicates the rough size of the desired uplift: ǫ ∼ V−1/2|p ≈ 1/80.

11In the literature (for example [79]), a commonly used definition of W0 used in studies of Kähler moduli

stabilisation includes a normalisation factor from the complex structure and axio-dilaton Kähler potential.

In our example,
(

eK̃/2W0

)

∣

∣

p
= −3.44.

12By construction, this solution has a leading-order flat direction in the axio-dilaton and complex structure

sector.
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m2
3+ m2

3− m2
1+ m2

2+ m2
2− m2

1−

1.61× 10−5 1.15× 10−5 3.56× 10−7 2.12× 10−7 2.20× 10−8 2.23× 10−9

Table 1. Canonically normalised squared masses for the axio-dilaton and complex structure moduli

in natural units. We labeled the masses squared as in section 3.

6. We now turn on fluxes that are, at p, not supersymmetric in the complex struc-

ture and axio-dilaton sector. To satisfy the leading order critical point equation,

cf. equation (3.9), these have to be proportional to vI . We choose ǫ2 = FI F̄
I/|W |2 =

(1/120)2, and find the slightly corrected fluxes,

~f ≈

























0

6.94

−17.7

−4.98

4.60

10.4

























, ~h ≈

























−0.114

0

0

0

−13.7

1.88

























. (5.14)

7. Finally, we directly minimise the full scalar potential given the fluxes (5.14). We

consistently find a critical point near, but not exactly at p, with relative deviations of

O(V−1/2) due to the mixing with the Kähler moduli. The moduli vevs at the critical

point are given by,

S ≈ 1.96 i , u1 ≈ 2.03 i , u2 ≈ 1.97 i , (5.15)

τ s ≈ 9.64 , V ≈ 11300 . (5.16)

The ‘small’ Kähler modulus axion is stabilised at zero (since W0 < 0 and As > 1),

and the axion of the ‘large’ cycle remains unfixed. The vacuum expectation value of

the potential at the critical point is positive,

V ≈ 9.03× 10−14 . (5.17)

The eigenvalues for the Hessian matrix for canonically normalised fields are given in

tables 1 and 2. The spectrum is positive semi-definite, with only the axion of the

large Kähler modulus still massless.

We close this section by discussing the consistency of our analytical discussion in

section 4 with the spectra of tables 1 and 2.

The canonically normalised masses for the axio-dilaton and complex structure moduli

are well described by the analytical expressions reported in [48] and reviewed in sections 3

and 4, in particular equations (4.17) and (4.18) reproduce the masses squared in table 1 at

the percent level.
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m2
Re(T s) m2

Im(T s) m2
Im(Tbig)

m2
Re(Tbig)

1.18× 10−5 1.10× 10−5 7.06× 10−12 0

Table 2. Canonically normalised squared masses for the Kähler moduli. As in standard LVS,

the masses of T s are of the same order as the masses in the axio-dilaton and complex structure

sector. As previously discussed in subsection 4.4, there is a leading order mass mixing between the

overall volume and the small cycle, so that the eigenvalue denoted by m2
Im(Tbig) corresponds to an

eigenvector with leading entries along the Im(T big) and Im(T s) directions.

Similarly, we can compare the squared masses for the small Kähler modulus with the

expression given in (4.20). For a single small Kähler modulus and without the assumption

xs ≫ 1, we find the canonically normalised mass squared

1

2
KT sT̄ s

∂2
τsτsV ≈ 1.10× 10−5 , (5.18)

which is in perfect agreement with the result above.

As a final check of our solution, we can calculate the canonically normalised mass

for the overall volume from the simplified scalar potential given in equation (4.11). This

requires us to determine ǫ2f̃2 = eK̃FI F̄
I . We find for our example,

eK̃FI F̄
I = 0.00109

(

0.793 +
828

V +
314000

V2

)

, (5.19)

where the terms that are subleading in powers of the volume arise from the inverse Kähler

metric in FI F̄
I = FIK

IJ̄ F̄J̄ . However, the potential of equation (4.11) is only valid to

leading order in the volume, and keeping only the leading order contribution to eK̃FI F̄
I

we have ǫ2f̃2 = eK̃FI F̄
I = 0.000866. We then find for the volume modulus the canonically

normalised squared mass13 m2
Im(Tbig)

≈ 1.50× 10−12. This value is still roughly consistent

with our full result above, but shows the largest deviation from the true value than our

analytical estimates of the other moduli masses. This is explained by the only moderately

large volume in our explicit example, and the fact that the volume modulus is the lightest

modulus and hence the most sensitive one to small corrections that arise due to the large

volume approximation in section 4.

Comparing with the metastability analysis in subsection 4.4, we find from equa-

tion (4.27) for the final values the range,

9.38 < ǫ2f̃2V < 13.6 , (5.20)

where for our solution we have ǫ2f̃2V ≈ 10.7.

As discussed above, we did not try to get the fluxes to be simultaneously integer quan-

tised and consistent with a given, moderately large flux tadpole. We expect that the flux

tuning required to make ǫ ≪ 1 can be realised using quantised fluxes in compactifica-

tions with more moduli (or substantially larger flux tadpoles) than the example we have

considered.
13As discussed in subsection 4.4, there is a non-negligible mass mixing with the small cycle so we have to

diagonalise the Hessian. Note, that the eigenvalue given in (4.24) corresponds to non-canonically normalised

fields so it does not give the value we quote here.
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6 Visible sector soft terms

In this paper we have focussed on the generation of metastable de Sitter vacua with sta-

bilised moduli, but compactifications of string theory hoping to describe the real world also

need to include matter and gauge fields compatible with the Standard Model of particle

physics. Such a ‘visible sector’ may for example be generated by intersecting branes or

by localising branes at singularities in the compactification geometry. Our mechanism for

generating metastable de Sitter vacua has important consequences for the properties of the

soft supersymmetry breaking terms in the visible sector, as we briefly outline in this section.

For concreteness, we focus on the well-studied case of visible sectors generated by

branes at singularities, cf. [62, 80–84] for earlier work on such models in the Large Volume

Scenario. We denote the Kähler modulus that resolves the cycle by T SM, with the four-

cycle volume controlled by Im(T SM) = τSM. Due to the issues of large-scale breaking of the

Standard Model symmetries raised in [85], the new modulus T SM is taken to be distinct from

the moduli Ts that are stabilised by non-perturbative effects. The modulus T SM is instead

assumed to be stabilised supersymmetrically using D-terms, giving FTSM = 0. In this case,

the soft supersymmetry breaking parameters determining the low-energy phenomenology

of the model are generated by couplings to the supersymmetry breaking bulk moduli, T big,

ui and S, which can be computed using the general formulae of [86–88].

We begin by computing the induced gaugino masses in our scenario. For branes lo-

calised at a collapsed singularity, the holomorphic gauge kinetic function is given by,

f = c1 S + c2 T
SM . (6.1)

The gaugino masses are then given by,

M1/2 =
1

2Im(f)
eK/2F̄A∂Af =

1

2Im(f)
eK/2F̄S∂Sf ∼

m3/2

V1/2
min

. (6.2)

While suppressed with respect to m3/2, these fields are heavier by a factor of
√Vmin than

usually assumed in the Large Volume Scenario.

For chiral visible sector fields Ca with a diagonal matter metric,

K =
∑

α

K̃αC
αC̄ᾱ + . . . , (6.3)

the soft masses for the non-canonically normalised fields in an approximately Minkowski

vacuum are given by [87],

m2
α = m2

3/2 − eK F̄AF B̄∂2
AB̄log(K̃α) . (6.4)

Thus, determining the soft masses requires knowing the moduli dependence of the matter

Kähler metric.

Arguments based on holomorphicity and locality suggest that for visible sectors realised

at branes at singularities [89],

K̃α = hα(X
I , X̄ Ī) eK/3κα , (6.5)
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for XI = (S, ui). Here κα is assumed to not depend on bulk moduli. For hα a moduli-

independent constant, this Kähler metric is of the ‘sort-of-sequestered’ form [90], implying

vanishing soft masses, just as in the scenario of sequestered supersymmetry breaking of

reference [91]. However, sequestering in string compactifications is expected to be at best

approximate, and non-vanishing soft terms can be induced by e.g. α′ corrections [62, 92],

superpotential de-sequestering [90, 93], or, in our case, a non-constant function hα(X
I , X̄ Ī).

These de-sequestering effects can dominate over anomaly mediated contributions to the soft

masses. Explicit computations of the matter metric in certain toroidal orbifolds indicate

that, at least in these cases, hα is a non-constant function [94–96].

For hα non-constant, the soft terms are generated as, schematically,

m2
α ∼

m2
3/2

Vmin

(

∂∂̄hα
hα

− ∂hα∂̄hα
h2α

)

∼ M2
1/2 . (6.6)

In this case, we also expect that,14

(Aαβγ)
2 ∼ Bµ ∼

m2
3/2

Vmin
∼ M2

1/2 . (6.7)

This scenario has far-reaching phenomenological implications.15 By virtue of coupling

with gravitational strength interactions to all sectors of the theory, moduli tend to be

displaced from their vacuum expectation values during inflation, and subsequently come

to oscillate around the vacuum, red-shifting like matter before eventually decaying. This

way, long-lived moduli can come to dominate the energy density of the universe, but —

if too long-lived — may fail to reheat the Standard Model at temperatures sufficient for

Big Bang Nucleosynthesis. This is the ‘cosmological moduli problem’ [97–99]. For moduli

with generic, gravitational strength interactions, the corresponding bound on the decay

rate implies that m & 50TeV. The cosmological moduli problem applies in particular to

the overall volume modulus, so that,

mV ∼
m3/2√Vmin

& 50 TeV . (6.8)

However, according to equations (6.6) and (6.7), the soft terms are all at the same scale as

the volume modulus, mV ∼ msoft ∼ A ∼ √
Bµ, implying that,

msoft & 50 TeV . (6.9)

This lower bound on the soft masses has obvious implications for laboratory searches

for supersymmetry, but also constrains the particle nature of dark matter. The lightest

superparticle (LSP) in supersymmetric extensions of the Standard Model is the prime

WIMP candidate, but in our scenario equation (6.9) implies that it would hardly lie in

the WIMP window. Hence, dark matter cannot be the standard WIMP, but may well be

realised by e.g. axions.

14For hα constant and vanishing superpotential cross-couplings between the supersymmetry breaking

moduli and the matter fields, equation (6.5) also implies the vanishing of the leading order contribution to

the soft A-terms and, in the absence of a µ-term, also a vanishing soft Bµ term.
15We are very grateful to Michele Cicoli for discussions on this point.
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7 Conclusions

In this paper we have proposed an extension of the standard Large Volume Scenario in

which we relaxed the assumption on exactly vanishing F-terms in the axio-dilaton and

complex structure sector. The additional amount of supersymmetry breaking in this sector

has to be small, F 2 ∼ O(1/V), in order to not destabilise the Kähler sector. We showed

that the non-supersymmetric critical point equation for the axio-dilaton and the complex

structure moduli has direct implications for the moduli spectrum of the compactification,

and forces one real field in this sector to be lighter than in the standard Large Volume

Scenario. Just as in [48] however, this field can be stabilised by a moderate tuning of a

phase. This ensures that the decoupling of the axio-dilaton and complex structure sector

from the Kähler sector is still essentially the same as in the standard Large Volume Scenario.

The inclusion of additional sources of spontaneous supersymmetry breaking leads to

the following schematic potential for the Kähler moduli:

V ∼ F 2

V2
+

ã

V3
− b̃τe−aτ

V2
+

c̃
√
τe−2aτ

V . (7.1)

We find that the new F-term breaking can lead, for a finite range of F 2, to metastable de

Sitter vacua that do not require any additional uplift (like for example an anti-D3-brane).

Thus our construction constitutes a new class of de Sitter vacua in string theory.

In section 5, we presented a general method for explicitly constructing examples of this

class of vacua, and we illustrated this method for the particular case of compactifications

on the Calabi-Yau constructed as a hypersurface in CP
4
11169. This method relies on the

continuous flux approximation, but we expect that examples with quantised fluxes can

be constructed in compactifications with a larger number of three-cycles and a large flux

tadpole. It would be very interesting to explicitly construct such examples.

We also discussed potential implication for supersymmetry breaking soft terms for

visible sectors realised through branes at local singularities [83, 92]. Our solutions invoke

larger supersymmetry breaking contributions from the axio-dilaton and complex structure

fields compared to the usual LVS construction. This leads to larger gaugino masses than

usually assumed in the Large Volume Scenario,

M1/2 ∼
m3/2√Vmin

, (7.2)

and soft terms of the same order,

m2
soft ∼ M2

1/2 ∼ A2 ∼ Bµ . (7.3)

Since also mV ∼ msoft, the resolution of the cosmological moduli problem suggest that

these soft terms are & 50TeV, which predicts null results at present laboratory searches

for supersymmetry, and a non-WIMP origin of dark matter. It would be interesting to

study the phenomenology and cosmology of this scenario in more detail.

Our present analysis applies to Calabi-Yau manifolds of strong Swiss-cheese type with

an arbitrary number of small cycles. It would be interesting to check whether it also

extends to more general compactification topologies.
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We consider de Sitter solutions in four-dimensional effective theories derived from

string compactifications. It would be interesting to understand the full ten-dimensional

solution. Such a solution requires a ten-dimensional description of the non-perturbative

gaugino condensate arising from strong gauge dynamics on stacks of D7-branes. Recent

discussions in ten dimensions show possible subtle issues in particular constructions, over

which one desires full control in ten dimensions to justify our small corrections [100–102].

It remains an open question whether it is consistent to add those non-perturbative quantum

corrections on no-scale backgrounds after α′ corrections, as pointed out recently in [103].
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[47] D. Andriot and J. Bl̊abäck, Refining the boundaries of the classical de Sitter landscape,

JHEP 03 (2017) 102 [arXiv:1609.00385] [INSPIRE].

[48] M.C.D. Marsh, B. Vercnocke and T. Wrase, Decoupling and de Sitter vacua in approximate

no-scale supergravities, JHEP 05 (2015) 081 [arXiv:1411.6625] [INSPIRE].

[49] R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic classes of metastable de Sitter

vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].

[50] A. Saltman and E. Silverstein, The scaling of the no scale potential and de Sitter model

building, JHEP 11 (2004) 066 [hep-th/0402135] [INSPIRE].
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