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1 Introduction

Black holes as classical solutions of Einstein gravity pose many puzzles that reveal a pro-

found conflict between quantum mechanics and general relativity [1]. By means of semi-

classical arguments, one is easily convinced that a black hole possesses an entropy, which

is given by its horizon area in Planck units [2], while classically, in general relativity, a

black hole solution turns out to be unique for a given value of its mass, charge and angular

momentum [3]. Such a no-hair theorem appears, then, to be in contrast with the existence

of any microscopic description of a given black hole, at least at a classical level. Due to the

above puzzle, the issue of constructing microstates of a black hole properly accounting for

its entropy is naturally turned into one of the biggest challenges for a theory of quantum

gravity.

Moreover, the enormous black hole entropy which is not visible at the black hole

horizon causes a violation of unitarity, in such a way that the information concerning the

original black hole state cannot be encoded into the Hawking radiation. Therefore, any

resolution of this puzzle requires new physics at the horizon scale [4]. However, due to the

horizon being a null surface, it turns out to be impossible to classically add new structure

at that scale, in that any form of matter will either fall into the singularity or dilute very

quickly.

In this context, black hole complementarity [5, 6] was proposed as a way of reconciling

the non-unitary phenomenon of black hole evaporation through Hawking radiation with

string theory, as a proposal for a unitary theory of quantum gravity. This idea suggests
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that information is both reflected at the event horizon and transmitted through without

being able to escape, in such a way that no observer can access both simultaneously. As

a consequence, nothing special happens at the horizon and all information passes through

according to an in-falling observer, while it gets completely absorbed into a stretched

horizon according to an external observer.

Nevertheless, whether a black hole really has a horizon, and whether there actually is

an interior to fall into, has been increasingly questioned during the last several years. The

work on firewalls [7] suggests that the idea of black hole complementarity might not work

or is at least incomplete. The main inconsistency there being the fact that any outgoing

particle would have to be entangled with both its past Hawking radiation and its twin

in-falling particle. The firewall resolution of this paradox mainly relies on an immediate

breakdown of entanglement as soon as the in-falling and outgoing particles get separated

on the two opposite sides of the horizon.

Parallely, the work on fuzzballs [8–10] suggests that string theory should give rise to a

new state of matter that prevents a black hole from forming in the first place. According to

such a proposal, the underlying black hole microstates consist of wrapped branes yielding

a perfectly smooth and horizonless geometry. In this case there are different views on what

an in-falling observer would actually experience. Some argue that the in-falling observer,

even though dissolved into fuzz, should effectively measure something close to what general

relativity predicts. Others hold the option open that the journey might end dramatically

when the new state of matter is reached.

In this paper we take this latter possibility seriously in the context of astrophysical

black holes. We argue that string theory might replace a Schwarzschild black hole with

a bubble of AdS space enveloped by a brane. The matter degrees of freedom live on the

brane, and we will be able to show that the thermodynamical properties of the black hole

are successfully reproduced by such a black shell. Our approach is inspired by the work on

gravastars in [11]. Interestingly, we find a universal prediction for the radius of the shell

that is significantly larger than the Schwarzschild radius. We suggest that our construction

could be relevant in studies of, e.g., gravitational radiation from colliding black holes.

The paper is organized as follows. In section 2, we review the model of a gravastar

adapted to the case of an AdS interior and use it to describe (non-) extremal Reissner-

Nordström black hole geometries and further discuss stability issues. In section 3, we

discuss the actual probability of nucleating such an AdS bubble within Minkowski spacetime

and subsequently keeping it dynamically stable at a fixed radius. In section 4, we present

a concrete stringy realization of the above ideas by employing a particular brane system in

massive type IIA string theory consisting of polarized branes wrapping an S2 in spacetime

and carrying lower-dimensional brane charges in a dissolved form. Finally, we present our

conclusions and discuss further possible developments in section 5.

2 AdS gravastars

There have been previous attempts to replace actual black holes by other compact objects.

General relativity typically requires extreme equations of state in order to stabilize an ultra
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compact object when attempting to push its size down towards the Schwarzschild radius.

Depending on the type of matter that one considers, there is a limit beyond which collapse

is inevitable. For instance, for a spherically symmetric object made of ordinary matter with

a density that increases monotonically towards the center, the radius cannot be smaller

than 9/8 times the Schwarzschild radius. This is often called the Buchdahl bound [12].

However, by allowing for exotic matter, the equilibrium radius may be pushed beyond this

limit towards an object of smaller radius. An example of this is provided in [11] where the

authors assume a thin shell of matter with some mass density and pressure, surrounding a

volume of de Sitter space, and find it possible to squeeze the shell arbitrarily close to the

Schwarzschild radius.

In this section we will investigate an especially intriguing possibility that has the benefit

of making sense from the point of view of string theory. Rather than a bubble of de Sitter

space, we will consider a bubble of AdS space,1 the wall separating the AdS interior from

outer flat space being composed of branes available in string theory.

2.1 Black holes as black shells

Let us first start by trying to get an AdS bubble stabilized at a finite radius, but carrying

no electromagnetic charge. This will result in an outer geometry which looks like a neutral

Schwarzschild black hole geometry.

2.1.1 Neutral Schwarzschild black hole

We consider a shell of matter (of radius r) with matter density ρ and two dimensional

pressure p. Inside the shell we have a cosmological constant Λ < 0, and outside of the

shell a Schwarzschild geometry with mass M . For stability we require the Israel-Lanczos-

Sen [13–15] thin shell junction conditions

ρ =
1

4πr

(√
1 + kr2 −

√
1− 2M

r

)
, (2.1)

p =
1

8πr

 1− M
r√

1− 2M
r

− 1 + 2kr2

√
1 + kr2

 . (2.2)

We work in units where GN = 1 and we have defined k ≡
∣∣∣Λ3 ∣∣∣ with Λ < 0. Using

Friedmann’s equation in 2 + 1 dimensions, pressure can be related to the energy density

through the continuity equation. Considering the radius r as a function of time, this is

given by

ρ̇+
2ṙ

r
(ρ+ p) = 0 , (2.3)

which can be written as

∂rρ+
2

r
(ρ+ p) = 0 , (2.4)

1AdS space was briefly considered in [11] for a special example.
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or

p = −ρ− r

2

dρ

dr
. (2.5)

The first of the junction conditions can be viewed as imposing conservation of the total

energy when written as

4πr2ρ− r
(√

1 + kr2 − 1
)

= E , (2.6)

where the two terms appearing on the left hand side represent the energy of the shell and

the (negative) energy of the AdS bubble, respectively, while on the right hand side we have

the energy of the Schwarzschild black hole, which is given by

E = r − r
√

1− 2M

r
. (2.7)

The energies are given relative to the outer empty Minkowski space. The black hole energy

includes a gravitational self-interaction term and solves

M = E − E2

2r
. (2.8)

The tension of the branes will be set by high energy physics and as a consequence, the size

of the negative cosmological constant as well. Expanding for a large cosmological constant,

i.e. large k, and keeping the leading terms we get

ρ =
k1/2

4π
+

1

8πk1/2r2
− 1

4πr
+ ρb , (2.9)

p = −k
1/2

4π
+

1

8πr
+ pb , (2.10)

where ρb and pb are defined by comparing with equation (2.1) on the preceding page and

equation (2.7) as

ρb =
1

4πr

(
1−

√
1− 2M

r

)
, (2.11)

pb =
1

8πr

 1− M
r√

1− 2M
r

− 1

 . (2.12)

Later in the paper we will provide a detailed stringy construction realizing this effective 4D

model. Nevertheless, let us briefly go through a heuristic argument that roughly explains

how all of this could be understood from string theory. A good starting point is to consider

black holes built up from 4 dimensional D-particles. An extremal black hole would consist

of the same number of such particles as its charge in fundamental units. A non-extremal

one would have pairs of particles and antiparticles in analogy with [16, 17]. We propose that

this is not the whole story but that these D-particles polarize [18] and become dissolved

in the aforementioned spherical branes. The action for the polarized system (reduced to

2 + 1-dimensions) is given by

S =

∫
d3σ τ e−T

2
√
− det(hµν + Fµν) . (2.13)
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Schematically, the DBI-action gives an energy 4πT2

√
r4 + n2, where T2 is the effective

tension of the 2-brane and n is the number of dissolved D-particles. At r = 0, we recover

4πT2 n as the mass of the D-particles. Conversely, at large r the 2-branes dominate and

we get
(

4π T2r
2 + 4πT2n2

2r2

)
, with the additional mass due to the D-particles suppressed as

r increases. Their contribution to the energy density on the brane goes like 1/r4, if n is

kept constant, which is the characteristic scaling behavior of two dimensional stiff matter

with p = ρ.

Note that, in presence of D-particles as well as anti D-particles, two separate terms

are needed in the action to account for both. The contribution to F2 in the Wess-Zumino-

Witten term cancels so that only the net D0-charge appears, while they will add in the

tension. Note also the presence of the tachyon field T that allows the brane to vary its

effective tension T2 = τe−T
2

(above a minimum set by the charge it carries).

The important point for us is that this contribution to the tension from the dissolved

branes will be almost invisible in our limit of high-energy branes with macroscopic radii.

Nevertheless, the presence of the dissolved branes, and the F2 field strength on the branes,

will play an essential role. In particular, in case of a black hole with a non-vanishing net

charge, it is responsible for the coupling of the brane to a spacetime electric field through

the Wess-Zumino-Witten term. In addition, it provides the coupling of n2 different kinds

of massless open strings to the brane, thereby allowing the existence of a gas at a finite

temperature.

Summarizing, we claim that the junction conditions take the form

τ + ρg + ρs =
k1/2

4π
+

1

8πk1/2r2
− 1

4πr
+ ρb , (2.14)

−τ + pg + ps = −k
1/2

4π
+

1

8πr
+ pb , (2.15)

where pg = 1
2ρg, and ps = ρs . If we assume that neither τ nor ρs depend explicitly on ρb,

the solution is uniquely determined and it is given by

ρg = ρb −
1

12πr
, (2.16)

τ =
k1/2

4π
− 1

6πr
+

1

16πk1/2r2
, (2.17)

ρs =
1

16πk1/2r2
, (2.18)

with pb = 1
2ρb.

2 Remarkably, this uniquely fixes the radius of the shell to the Buchdahl

radius at r = 9M
4 . The same above expressions will also hold for non-zero charge, with

the charge only appearing explicitly in the expression for ρb, and hence ρg. As will be

discussed later, the radius of the system will shift, as the charge is increased, from r = 9M
4

down to the horizon at M for the extremal case. This situation is depicted in figure 1 on

the following page.

2Note that the formulae determine the required values of τ , ρg, and ρs at a critical point, but not their

dependence on r in general.
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M
QM

2M

r

Figure 1. The equilibrium radius of the spherical shell r as a function of the total charge Q.

This approaches the position of the horizon of an extremal Reissner-Nordström black hole rhorizon
as Q→M .

Going back to the stringy picture of our black shell given in terms of polarized branes,

let us now be a little bit more specific and consider a D-brane polarized along an S2 in

space-time3 with d wrapped internal dimensions of equal size, and let us write
√
k = 1/R,

where R is the AdS-radius. We then get

R ∼ L6−d

`6−ds

`s
gs
, (2.19)

where L is the size of the extra dimensions. The density of the stiff matter is fixed so that

n2`4s
r4
∼ R2

r2
, (2.20)

implying

n ∼ rR

`2s
∼ L3−d

`3−ds

r

`Pl
. (2.21)

With exactly three wrapped dimensions, i.e. a D5-brane, we find n2 ∼ r2

`2Pl
, which is the

expected number of degrees of freedom. This guarantees that the energy 4πr2ρg ∼ M

with ρg ∼ n2T 3, if T ∼ 1/r. This result is invariant under S- and T-duality since it only

depends on `Pl. For instance, in case of a D3 polarizing into an NS5, the DBI-action has an

overall 1/g2
s , and an extra g2

s in front of the n2, which leads to the same result. In section 4

we will see how this works out in detail for a triple T-dual type IIA configuration.

3This can be compared to the setup in [19] where anti-D3 branes polarize into NS5 branes in internal

space, whereas we consider a D-brane polarizing in space-time.
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2.1.2 Stability against small perturbations

At first we start out by testing what happens if there is no energy transfer between the

different components in the system. Following the analysis carried out in [11], we write

ρ =
1

4πr

(√
1− 2V (r) + kr2 −

√
1− 2V (r)− 2M

r

)
. (2.22)

The junction conditions then become equivalent to stationary solutions of the system

ṙ2

2
+ V (r) = E , (2.23)

i.e. profiles of the form

ṙ = 0 at constant r = r0, and E = V (r0) = V ′(r0) = 0 . (2.24)

Stability can be checked by taking yet another derivative with respect to r and adjusting

the second derivative of V (r) such that we get the expected behavior for ∂rrρ assuming

that ρ has contributions coming from both a brane with constant tension τ and a gas

with ρg ∼ 1/r3. Working through these steps one easily concludes that ∂rrV < 0. As a

consequence, the shell is unstable with respect to small perturbations, and will start to

move away from the critical point either by contracting or by expanding. Equivalently,

one can simply observe that the pressure of the shell, when its radius is reduced, is smaller

than what is required by the junction condition for stability, and the shell will therefore be

pushed to an even smaller radius. Vice versa, if the radius is increased beyond the critical

point. Hence we seem to conclude that the configuration is unstable.

However, a more careful analysis is required in order to assess whether this is really

what happens. We have a gas consisting of n ∼ r massless particles at a temperature

T ∼ 1/r, yielding an energy density ρ ∼ n2T 3 ∼ 1/r. When n is assumed to be constant

we get ρg ∼ 1/r3. But what is the temperature and what is its origin? Naively, one

might be tempted to invoke the local Hawking temperature TH = 1

8πM
√

1− 2M
r

, aiming to

reproduce the exact same thermal properties as the ones of a corresponding black hole

carrying the same mass. However, there is no real reason for doing so. Instead, the natural

temperature is the local Unruh temperature [20]

TU =
a

2π
=

M

2πr2
√

1− 2M
r

, (2.25)

where a is the proper acceleration of the shell. The correct vacuum is picked by studying

the process that forms the object. In the case of a black hole that is the result of a

collapsing star, the infalling Minkowski vacuum develops into the Hawking vacuum at finite

temperature, rather than to the zero temperature Boulware vacuum. Similarly, when our

shell forms it will find itself accelerating with respect to the infalling Minkowsky vacuum,

suggesting that it will be heated to the Unruh temperature. Our conclusion agrees with [37],

where the same choice of vacuum was made in a similar situation. It is reasonable to assume

that the gas on top of the shell is heated to the same temperature. It is only when r → 2M

that TU → TH, and it is lower otherwise. A well known way to argue for the Hawking

temperature, is indeed to support the microscopic degrees of freedom of the black hole on
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would-be horizon

shell

Figure 2. An artist’s impression showing a cut-away of the microscopic description of the blackshell

(light sphere) with a gas of excited open strings on top of it. The dark sphere seen through the

cut-away marks the position of the would-be horizon.

a membrane which is placed at a Planck length or so away from the horizon. The local

Unruh temperature will be red shifted to the Hawking temperature far away. We will argue

in just the same way, but assume our shell to be much further away from the would-be

horizon, as shown in figure 2. In particular, at r = 9M
4 we find the local temperature to

be given by TU = 8
27πM . If this is the temperature of the black shell in its local rest frame,

the temperature measured by an asymptotic observer (at r →∞) will be 8
81πM < 1

8πM .

If we were to compress the shell, at constant n, and with no extra transfer of the

energy to the gas, ρg would simply respond as ρg ∼ 1/r3. On the other hand, if we assume

that the temperature adjusts itself to the new Unruh temperature the situation will be

completely different. Some energy then needs to be transferred to the gas, and the only

possible source is the brane.4

Let us see how this works in detail. We work to lowest order, and neglect the subleading

contribution from the stiff gas. To this end, we split the continuity equation (2.3) on page 3

into two parts, one for the brane and one for the gas:

τ̇ = −j , (2.26)

ρ̇g +
3ṙ

r
ρg = j , (2.27)

where j is a source term. This can also be written as

∂rτ = −j
ṙ
, (2.28)

∂rρg +
3

r
ρg =

j

ṙ
. (2.29)

4The scenario is exactly the same as was proposed in [21] in the context of non-Bunch-Davies vacua in

an inflationary cosmology. There, particle creation depletes the cosmological constant and leads to running.
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The source term j represents the energy transfer that adjusts the temperature of the gas so

that it follows the Unruh temperature. It cancels out in the expression of the total energy,

thus correctly accounting for an energy transfer. Varying the first junction condition,

assuming that it always holds, we get

∂rτ + ∂rρg = − 4

81πm2
. (2.30)

Assuming further that n be unaffected as the brane changes its temperature, we use ∂rT
T =

− 8
3M to get ∂rρg = 3∂rTT ρg = − 8

27πm2 . This allows us to determine the change in the brane

tension to be

∂rτ =
20

81πm2
. (2.31)

That is, the tension of the brane reduces when r is decreased. We now find:

∂rp = −∂rτ +
1

2
∂rρg = − 32

81πm2
< − 14

81πm2
, (2.32)

where we have compared with the derivative of the second junction condition. We conclude

that if the shell is compressed, the pressure of the shell becomes larger than what the

junction condition requires for stability, and the shell is pushed back out. Vice versa for

a shell at a larger radius. Physically, this is just what one would expect. When the shell

is compressed, the gas is heated up and wants to be pushed back out. Similarly, energy is

depleted from the brane that relaxes its grip and lets the shell move back out.

Note that, in the above argument, we have assumed that n does not change. If we

compress the brane, heating up the system, one would at least naively expect n, the number

of dissolved brane/anti-brane pairs, to increase. This would increase the energy of the gas

even further, in favor of stability. On the other hand, if n ∼ r as is the case at equilibrium,

the energy increase of the gas will be somewhat reduced. Nevertheless, it is easy to check

that the system will still be stable.

In our analysis we have ignored finite size effects and possible effects due to strong

coupling. A full analysis would require a better understanding of the detailed dynamics

of the gas, and the other matter components on the shell. With this caveat, we conclude

that the shell is stable under small perturbations provided that the gas is allowed to adjust

itself to the Unruh temperature.

2.2 (Non-)extremal Reissner-Nordström black hole

Let us now move to considering a black shell carrying some net electromagnetic charge, thus

effectively describing an outer Reissner-Nordström black hole geometry. The construction

works similarly to the previous case, at least in spirit. The junction conditions are now

given by

ρ =
1

4πr

(√
1 + kr2 −

√
1− 2M

r
+
Q2

r2

)
, (2.33)

p =
1

8πr

 1− M
r√

1− 2M
r + Q2

r2

− 1 + 2kr2

√
1 + kr2

 , (2.34)
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and the radius of the shell solves

1− M

r
= 2f(r)1/2 − f(r) , (2.35)

where f(r) ≡ 1− 2M
r + Q2

r2
. The local Hawking temperature is given by

TH =
κ(r+)

2π

1

f(r)1/2
, (2.36)

where

κ(r) =
1

2
f ′(r) =

M

r2
− Q2

r3
, (2.37)

is the surface gravity at radius r. In particular, κ(r+) = r+−r−
2r2+

where r± ≡M±
√
M2 −Q2.

For us the relevant temperature is again the Unruh temperature, which is in turn given by

TU =
κ(r)

2π

1

f(r)1/2
, (2.38)

evaluated at the radius of the shell.

Let us now focus on the near-extremal limit for a Reissner-Nordström black hole. It

may be seen that the aforementioned limit is approached by taking

M

r
= 1− ε1 , (2.39)

Q2

r2
= 1− ε2 , (2.40)

where ε2 = 2ε1−
ε21
4 such that pg = 1

2ρg. The surface gravity vanishes in the extremal limit,

but the blow up of the blueshift as the horizon is approached still turns out to yield a finite

temperature given by

TRN =
1

πM
. (2.41)

Interestingly, we find that the entropy of the black hole in the extremal limit can be

carried by a gas at non-zero temperature. In this way we hope to have clarified a long-

standing confusion concerning the possibility for an extremal Reissner-Nordström black

hole to carry non-vanishing entropy. The confusion arises from the fact that, while a

semiclassical calculation would seem to indicate that such an object should have vanishing

entropy, the area of its event horizon is non-zero [22, 23] (see also [24]).

In this context one should note that there is an alternative way of solving the junction

conditions in case of the extremal Reissner-Nordström black hole. Just assume a shell

enclosing a region of flat space with zero cosmological constant, with the junction conditions

collapsing to

ρ =
Q

4πr2
, (2.42)

p = 0 , (2.43)

where Q = M . This is simply a shell of pressure-less dust that can be put at any radius

outside of the horizon, and is a simple consequence of the cancellation of the gravitational

and electric forces between the particles. If we take the limit of a large number of particles

we get a continuous shell with a metric without any singularities. The mass of the black
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hole is fully carried by the D-particles, and there is no need for a gas. We think that

this latter construction with dust could be closer to the fuzzballs of [25, 26] than the ones

with branes above. The goal in these papers was to construct horizonless black holes using

a finite number of particles. This can be achieved if the particles in the multi-centered

solutions are carefully positioned just at the right places. Our continuum limit is of course

not sensitive to these details. This kind of extremal black hole cannot be obtained through

a limit of the non-extremal case, which, we suggest, leads to the inevitable presence of

branes in which the dust is dissolved.

To our understanding, there exist, therefore, two different microscopic descriptions

of an extremal black hole, one of which describes a supersymmetric system, whereas the

other one does not. In one description the extremal black hole consists of charged dust

at zero temperature, its (possibly) non-vanishing value of the entropy simply accounting

for a non-trivial degeneracy index of the vacuum state of the system. This is the result

which was first successfully reproduced in [27] and subsequently in many other works in

various other cases along the same lines. The other description instead retains a gas at

finite temperature while taking the near-extremal limit of a non-extremal black hole. Far

away from the black hole the temperature approaches zero, but just at the horizon a finite

value remains in that limit. It is this gas that carries the entropy. For this mechanism

to actually work, it is essential that the contribution to the mass due to the elementary

charges, or D-particles, be suppressed and effectively vanishing. As explained previously,

this comes about since they are dissolved in the high tension brane.

3 Bubble nucleation

So far we have managed to establish the existence of ultra compact objects in the form of

black bubbles of AdS space. There are now two important things we need to do. First, we

need to check the stability of the Minkowski vacuum against spontaneous and disastrous

formation of bubbles leading to a phase transition. Second, we need to show that stable

bubbles are likely to form at the end of gravitational collapse.

The probability of tunneling can be obtained by integrating the junction condition

corresponding to energy conservation. Following the analysis initiated in [28], and further

expanded in [29], we write the junction condition between AdS space and Minkowski as

∂B

∂r
= 6π2r2

(
ρ− 1

4πr

(√
1 + kr2 − 1

))
= 0 , (3.1)

where B is the instanton action, and the probability of tunneling can be written ∼ e−B.

Integrating, and fixing the constant of integration so that B vanishes at r = 0, we find

B = 2π2ρr3 − π

2

(1 + kr2
)3/2 − 1

k
− 3r2

2

 . (3.2)

Here we have assumed that ρ is a constant representing pure tension.
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If we evaluate the instanton action at its extremum, i.e., when the junction condition

is satisfied, we find

B =
πr2

4
+

π

2k

(
1−

√
1 + kr2

)
. (3.3)

The actual value is set by the tension ρ of the brane, and the cosmological constant within

the bubble. With the AdS-radius much larger than the Planck scale it follows that B is

always of order r2 in Planck units. If this radius is at least a few orders of magnitude larger

than the Planck scale, the formation of bubbles is heavily suppressed. In the limit which

is relevant to us, the radius is much larger than the AdS-radius, and therefore B ∼ πr2

4 (in

Planck units).

A natural question that may arise at this point concerns tunneling during gravitational

collapse. Let us now assume, for simplicity, that the collapsing star is in the form of a thin

shell of matter with Schwarzschild geometry on the outside, and Minkowski space on the

inside. As we have seen, the formation of an AdS-bubble somewhere inside of the collapsing

shell will be heavily suppressed, unless it lands right on top of the shell. In such a case, it

can then immediately absorb all of the matter content, and transform it into brane/anti-

brane pairs supporting a gas of open strings with high entropy. Let us consider the moment

when the shell is about to pass through the Buchdahl radius. It is easy to calculate the

entropy that is available at this point.

Using dE = TdS, and working in a time frame far away from the system where E = M

and T = 8
81πM , we recover the standard expression for the entropy given by S = πr2,

provided that r = 9M
4 . The tunneling rate is then given by

Γ ∼ e−
πr2

4 eπr
2 ∼ e

3πr2

4 � 1 . (3.4)

This suggests that the tunneling is extremely rapid, driven by the huge increase in entropy.5

To be precise, we should take into account the entropy already present in the matter shell

but this will be tiny compared to the one carried by the walls of the final AdS-bubble.

It is reassuring that in the absence of the entropy available from this collapsing shell of

matter the tunneling rate is extremely small, which ensures that the metastable Minkowski

vacuum that we live in is extremely long lived and there is no real danger of a spontaneous

decay.

Now one might actually wonder whether the tunneling can happen already if the shell

has a much larger radius than the Buchdahl radius. This is a more difficult fact to be

assessed. The system would be then out of equilibrium, but if it still made sense to

associate a temperature with the system, then it should be lower. This could lead to a

reduced number of brane/anti-brane pairs, fewer degrees of freedom, and overall a lower

entropy. At some critical radius, larger than the Buchdahl radius, entropy can no longer

compensate for the low tunneling amplitude. If our proposal is correct, one should therefore

expect tunneling to occur some time after this critical radius is crossed, but before the

Buchdahl radius is reached. If the shell forms at a radius larger than the Buchdahl radius,

5The argument reminds in spirit that of [30], which has been employed in the context of fuzzballs. There,

the corresponding tunneling rate was found to be unity.
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there will be oscillations and emission of energy before it settles down at the Buchdahl

radius.

4 A stringy realization

So far we have proposed a 4D effective model capturing some essential features of spherically

symmetric black holes and discussed some relevant thermodynamical properties thereof.

In this last section we further investigate how this may be, first of all, embedded in a 4D

supergravity context, and, secondly, we present a concrete stringy setup realizing it.

4.1 Black shells in SUGRA

We will now investigate how to realize the above construction within a particular N = 1

D = 4 supergravity coupled to three chiral multiplets inspired from flux compactifications

of type II string theory. Consider a spherical bubble with a supersymmetric AdS vacuum

in the interior. We label the superpotential inside the bubble by W2. Outside the bubble

we consider a no-scale non-supersymmetric Minkowski vacuum, which we label by W1, i.e.

W2 6= 0 , DW2 = 0 , (4.1)

W1 6= 0 , DW1 6= 0 , (4.2)

where D denotes the Kähler covariant derivative operator. The scalar potential in this

N = 1 D = 4 SUGRA is given by

V = eK
(
−3|W |2 +|DW |2

)
, (4.3)

where K represents the Kähler potential and W is the holomorphic superpotential which

we think of as perturbatively induced by fluxes and internal curvature. The AdS vacuum

inside the bubble is therefore given by V = −3|W2|2 ≡ Λ. This was defined in section 2.1

on page 3 in terms of k as k ≡|Λ| /3, which gives
√
k = |W2|.

The shell should have a tension at least as large as the shift in the superpotential

across it

τ ≥ |W2 −W1|
4π

. (4.4)

On the other hand, from our solution to the junction conditions in equation (2.16) on

page 5,

τ =
|W2|
4π
− 1

6πr
+

1

16π|W2| r2
, (4.5)

where we have used
√
k = |W2|. For a deep AdS vacuum, the last term is extremely small

and can be ignored. The second term is subleading but imposes an upper bound on the

tension of the brane
|W2|
4π
≥ τ . (4.6)

This gives a bound for the tension of the shell as

|W2|
4π
≥ τ ≥ |W2 −W1|

4π
. (4.7)
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We assume W2 to be the same for all black holes of sufficiently large masses, and all charges.

This means that there is a minimum possible value for their size. As we have seen, this

will be set by high energy physics and will typically be a few orders of magnitude away

from the string scale.

Let us now consider the case of the minimum tension bubble of AdS space inside a

pure Minkowski background. Such a shell, however, is not stationary. This can easily be

seen by realizing that the junction conditions in equation (2.1) on page 3 do not have a

solution when the geometry outside of the bubble is Minkowski (i.e. M = 0). This happens

because the junction condition corresponding to energy conservation is solved when the

kinetic energy is taken into account, but the junction condition for pressure cannot be

satisfied, indicating that there is a net force causing the shell to expand. In a frame of

reference that is at rest with respect to the center of the shell, the speed of the expanding

shell will approach the speed of light as the radius increases and the shell approaches a

flat wall. There is no stationary solution with a flat wall separating AdS from Minkowski

spacetime. Luckily, as we have seen in the previous section, the probability of nucleating

such an ultra-extremal bubble is very low, and it will take long before the Minkowski space

time is destroyed.

4.2 A model in string theory

Before moving to the actual stringy realization of the above 4D supergravity model, an

important remark is due. In section 2.1.1, we went through the counting of the expected

amount of degrees of freedom carried by D5-branes wrapped along three compact dimen-

sions and obtained n ∼ r
`Pl

as a result. Our concrete realization of the shell will actually

involve a four-charge brane system dissolved on the shell, where furthermore all four charges

will have to be identified in order to correctly reproduce a 4D Reissner-Nordström black

hole. It is therefore natural to require the size of the internal dimensions to be such that

the tension of all four branes carrying the charges are the same. In addition, the tensions

of the four branes into which they polarize should also be the same. Furthermore, if these

branes contribute a fixed fraction to the tension of the shell it follows that n ∼ r
`Pl

.

After making this remark, let us now construct a concrete realization of such a system

in string theory. We will work in type IIA string theory on T6/ (Z2 × Z2) and comment on

type IIB at the end. In this case, we retain three complex scalar fields denoted by (S, T, U).

The Kähler potential reads

K = − log
(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
− 3 log

(
−i (U − Ū)

)
, (4.8)

while the superpotential can be written as

W = a0 − 3a1U + 3a2U
2 − a3U

3 − b0S + 3b1SU + 3c0T + 3c1TU , (4.9)

where the one-to-one relationship between the above various superpotential couplings and

type IIA fluxes can be read from table 1 on page 16. Let us now consider a no-scale

Minkowski background with the superpotential given by

W1 =
√
k
(

3b1U
2 + b0U

3 − b0S + 3b1SU
)
, (4.10)
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where k is a normalization that will become relevant in the following. In this background,

we place a shell composed of the branes in table 2 on the next page. We want to construct

a supersymmetric AdS vacuum inside the shell for which we pick the solution from [31]

given by

W2 =
√
k

(
3
√

10

2
− 3
√

6

2
U −

√
10

2
U2 − 5√

6
U3 +

√
6

3
S +
√

10SU +
√

6T + 3
√

10TU

)
,

(4.11)

where k is given in terms of the AdS vacuum as before. The difference in the superpotential

across the shell should be generated by shifts in the fluxes associated with a brane whose

tension must obey τ ≥ |∆W |/4π. Our goal therefore is to choose parameters such that

this brane be composed of the branes listed it table 2 on the following page.

To achieve this, we need to scale the moduli and move away from the origin of the

moduli space by turning on axions and read off the corresponding fluxes. We do the

following non-compact SL(2)3 transformations

S 7→ x S + x̃ , (4.12)

T 7→ y T + ỹ , (4.13)

U 7→ z U + z̃ , (4.14)

where the shifts (x̃, ỹ, z̃) are given in terms of the rescaling parameters (x, y, z) by

x̃ =
3y + 2z −D

8
√

15z
,

ỹ =
−D

((
37− 36x2

)
yz + 2

(
54x2 + 11

)
z2 + 3y2

)
+ 3

(
36x2 − 49

)
y2z

96
√

15z2(y − 3z)

−4
(
63x2 + 187

)
yz2 + 4

(
71− 54x2

)
z3 + 9y3

96
√

15z2(y − 3z)
,

z̃ =
D
((

67− 12x2
)
yz + 2

(
18x2 − 7

)
z2 − 3y2

)
+ 3

(
71− 12x2

)
y2z

96
√

15yz(y − 3z)

+28
(
3x2 + 13

)
yz2 + 4

(
18x2 − 53

)
z3 + 9y3

96
√

15yz(y − 3z)
,

(4.15)

with D defined as

D ≡
√

9y2 + 252yz − 476z2 . (4.16)

These shifts in the moduli, shift the superpotentials W1 and W2, and their difference

∆W ≡W2 −W1, in such a way that it is possible to satisfy the requirements of symmetry

outlined in the beginning of the section. In particular we want a shift that is symmetric in

all the fluxes of the form

|∆a1| = |∆a3| , |∆b0| = |∆c0| , |∆b1| = |∆c1| . (4.17)
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Type IIA fluxes W couplings

F(0) a3

F(2) a2

F(4) a1

F(6) a0

H(3) b0

H(3) c0

ω b1

ω c1

Table 1. The dictionary between type IIA fluxes and superpotential couplings in compactifica-

tions on a twisted T6/ (Z2 × Z2) with R-R & NS-NS fluxes, as well as well including metric flux

ω. Repeated fluxes may have different independent components inducing different superpotential

terms.

— t ξ1 ξ2 r x1 x2 x3 x4 x5 x6

D8
⊗ ⊗ ⊗

—
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

D4
⊗ ⊗ ⊗

—
⊗ ⊗

— — — —

D4
⊗ ⊗ ⊗

— — —
⊗ ⊗

— —

D4
⊗ ⊗ ⊗

— — — — —
⊗ ⊗

NS5
⊗ ⊗ ⊗

—
⊗

—
⊗

—
⊗

—

NS5
⊗ ⊗ ⊗

— — — —
⊗ ⊗ ⊗

NS5
⊗ ⊗ ⊗

—
⊗ ⊗

— — —
⊗

NS5
⊗ ⊗ ⊗

— —
⊗ ⊗ ⊗

— —

KK5
⊗ ⊗ ⊗

—
⊗

—
⊗

— iso
⊗

KK5
⊗ ⊗ ⊗

—
⊗ ⊗

iso —
⊗

—

KK5
⊗ ⊗ ⊗

— iso —
⊗ ⊗ ⊗

—

KK5
⊗ ⊗ ⊗

— —
⊗

—
⊗

iso
⊗

KK5
⊗ ⊗ ⊗

— —
⊗

iso
⊗

—
⊗

KK5
⊗ ⊗ ⊗

— iso
⊗

—
⊗

—
⊗

KK5
⊗ ⊗ ⊗

— —
⊗ ⊗

—
⊗

iso

KK5
⊗ ⊗ ⊗

—
⊗

— — iso
⊗ ⊗

KK5
⊗ ⊗ ⊗

—
⊗

iso
⊗

— —
⊗

Table 2. Arrangement of branes comprising the shell. Each brane in this system realizes a jump

of the corresponding flux when going across the shell.
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Furthermore, our construction does not contain branes sourcing ∆a0 or ∆a2 on the shell

and so we need them to vanish in ∆W . This determines b0 and b1 in terms of (x, y, z) as

b0 =
2z − 7y +D

2
√

6y
,

b1 =

√
10 (y − 3z)

3y
,

(4.18)

where D is the quantity defined in equation (4.16) on page 15. In order to have ultracriti-

cality i.e.
|W2|
4π
≥ |W2 −W1|

4π
, (4.19)

the parameters (x, y, z) must lie in the region shown in figure 3 on the following page.

Picking a point in this region, for concreteness x = 1/10, y = 4, z = 3/2, the superpotential

outside and inside the bubble after shifts and rescaling in moduli space read

W2 =
√
k

2

√
2

5
SU −

√
2

3

(√
65− 9

)
S +

9

2
√

10
TU − 3

4

√
3

2

(√
65− 9

)
T

− U3

200
√

6
− U2

10

√
5
(

73 + 9
√

65
) −

(
26245 + 1221

√
65
)

9600
√

6
U

+
3683

√
10 + 367

√
26

2880

 ,

(4.20)

and

W1 =
√
k

− SU

2
√

10
−

5
(√

65− 9
)

4
√

6
S +

(
3
√

65− 25
)

8000
√

6
U3

− U2

10

√
5
(

73 + 9
√

65
) −

(
131495 + 6159

√
65
)

48000
√

6
U

+
3683

√
10 + 367

√
26

2880

 ,

(4.21)

respectively. This gives the jump in the superpotential across the shell as

∆W = 3aU − aU3 + bS + 3bT + cSU + cTU , (4.22)
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0

1

1.5

2

3

4

y
z

Figure 3. Left : the region of the three-dimensional parameter space corresponding to valid explicit

realizations of flux shifts compatible with a bubble wall of the type sketched in table 2 on page 16.

Right : a two-dimensional slice of the parameter space on the left corresponding to the explicit

choice x = 1
10 .

where

a =

√
3

2

(
5 +
√

65
)

8000

√
k ,

b =
1

4

√
3

2

(
9−
√

65
)√

k ,

c =
9

2
√

10

√
k .

(4.23)

Evaluated numerically this is

∆W =
√
k
(

0.006U − 0.002U3 + 0.29S + 0.87T + 1.42SU + 1.42TU
)
. (4.24)

Evaluated at the origin of moduli space (S = T = U = i), the real and imaginary parts

of the jump in the superpotential add with the same signs respectively as expected. The

inequality equation (4.19) on the previous page can also be checked explicitly

6.5
√
k > 3.1

√
k . (4.25)

Now that we have a concrete construction of the shell in string theory, let us take a

moment to understand the underlying geometry. The first two terms in equation (4.22) on

the preceding page come from the D8-D4-D4-D4 system. The next two terms reflect the

presence of a singlet NS5 and a triplet of NS5-branes on the shell. The fluxes corresponding
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to all of these branes contribute to the imaginary part of the superpotential and come with

the same sign. There is no binding energy between these branes.

The last two terms come from the KK5-monopoles and contribute to the real part of

the jump in the superpotential. They are responsible for a change in the metric flux. They

also add with the same relative sign, and have no binding energy between them.

There is, however, binding energy between the KK5-monopoles and the other branes.

This can be seen when computing |∆W | =
√(

Re (∆W )
)2

+
(
Im (∆W )

)2
, and can be

understood as the KK5-monopoles binding the other branes together and preventing them

from drifting away.

To summarize, branes that make up the shell are

(i) a D8-brane sourcing an F(0) flux,

(ii) a triplet of D4-branes sourcing three different F(4) fluxes,

(iii) NS5-branes sourcing 3-form fluxes H(3),

(iv) KK-monopoles sourcing metric fluxes ω.

After constructing the shell, let us now construct a Reissner-Nordström black hole from

branes dissolved in the shell. We consider a system composed by the branes in table 3 on

the next page. The corresponding 10D metric is given by

ds2
10 = −

HD6
3∏
i=1

HD2
i

−1/2

dt2 +

HD6
3∏
i=1

HD2
i

1/2

r2dΩ2
(2)

+

√
HD2

2 HD2
3

HD6HD2
1

(
(dx1)2 + (dx2)2

)
+

√
HD2

1 HD2
3

HD6HD2
2

(
(dx3)2 + (dx4)2

)

+

√
HD2

1 HD2
2

HD6HD2
3

(
(dx5)2 + (dx6)2

)
,

(4.26)

and the dilaton

e2φ =

 3∏
i=3

HD2
i

1/2 (
HD6

)−3/2
. (4.27)

The R-R potentials read

C(3) =

[(
HD2

1

)−1
− 1

]
dt ∧ dx1 ∧ dx2 +

[(
HD2

2

)−1
− 1

]
dt ∧ dx3 ∧ dx4

+

[(
HD2

3

)−1
− 1

]
dt ∧ dx5 ∧ dx6 , (4.28)

C(7) =

[(
HD6

)−1
− 1

]
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dx6 , (4.29)

yielding the following non-vanishing components for the R-R field strengths

Ftrx1x2 , Ftrx3x4 , Ftrx5x6 ; Ftrx1x2x3x4x5x6 .
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— t ξ1 ξ2 r x1 x2 x3 x4 x5 x6

D6
⊗

— — —
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

D2
⊗

— — —
⊗ ⊗

— — — —

D2
⊗

— — — — —
⊗ ⊗

— —

D2
⊗

— — — — — — —
⊗ ⊗

Table 3. Dissolved branes producing a Reissner-Nordström black hole.

We now put

HD2
1 = HD2

2 = HD2
2 = HD6 =

(
1− Q

r

)−1

, (4.30)

which makes all field strengths equal contributing to F tr = Q/r. Compactifying directions

x1, . . . , x6 on a torus T6, the metric becomes that of a Reissner-Nordström black hole with

a constant dilaton.

The picture of a black hole we have constructed is that of a shell made up of bound

system of D8, D4, NS5-branes and KK-monopoles. The four-charge Reissner-Nordström

black hole arises as D6-D2-D2-D2 branes that are dissolved in the shell. The size of

the extra dimensions, yielding symmetric tensions, obey L2 = `2s/L1, L4 = `2s/L3 , and

L6 = `2s/L5 . Typically three of these will be smaller than string scale, which can be fixed

by three T-dualities to type IIB, with charges carried by D3-branes. The price to pay is

that non-geometric fluxes are needed to support the AdS-vacuum. Furthermore, we expect

it to be possible to build non-extremal solutions on this taking inspiration from [17].

5 Conclusions

In this paper we have investigated an alternative to black holes in the form of gravastars

built out of branes surrounding bubbles of AdS-space. We have argued that such configura-

tions not only solve the equations of motion, but are also stable against small perturbations

when the thermodynamical properties are taken into account. Crucial to our construction,

is that the background Minkowski vacuum is non-perturbatively unstable towards a tran-

sition into the AdS-vacuum. The decay time is shown to be large, and the Minkowski

vacuum sufficiently long lived. We also show that a collapsing shell of matter will initiate a

rapid transition when it becomes smaller than some critical radius. This leads to a bubble

stabilized at a final radius larger than the horizon radius of the black hole that otherwise

would have formed. In case of a neutral black hole this turns out to be the Buchdahl radius

at r = 9M
4 .

If the black hole is charged, the radius will be smaller. In the limit of extremal Reissner-

Nordstöm, the shell approaches the horizon. Even though the asymptotic temperature is

zero, as expected, the local temperature is finite at the position of the shell due to the

diverging blueshift. Hence, the otherwise somewhat mysterious non-zero entropy of a zero

temperature extremal black hole can ultimately be traced to a gas at finite temperature.
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In the paper we manage to identify all the necessary building blocks within string

theory. This involves a set of branes building up the shell, together with lower dimensional

dissolved branes, as well as a gas of open strings. We go through a detailed example in

type IIA, where we explicitly identify all the different kind of branes, and show how the

fluxes shift between the vacuum outside and inside of the shell. It is highly non-trivial that

we are able to satisfy the necessary requirements to form stable gravastars.

Our analysis suggests that there are ultra compact objects in string theory that from

far away look very similar to black holes, and that these, rather than proper black holes,

are the likely result of gravitational collapse. The proposal has many similarities in spirit

with the fuzzballs, but is in many respects different. In particular, the anatomy of the

object is different, with a thin shell enclosing empty AdS space rather than a fuzzy clump

of matter.

When generalized to rotating systems, our results should be relevant to the recent

observations of gravitational radiation from colliding black holes. For instance, it has been

proposed that hard surfaces outside of the horizon could give rise to echoes of gravitational

waves, see [32–35]. Similarly, while two colliding bona fide black holes only emit gravita-

tional radiation, it is less clear what happens in the case of two shells. Furthermore, it

would be interesting to consider what kind of signatures one should look for with the Event

Horizon Telescope. Still, it is likely that any effect of this sort will be heavily suppressed.

Our shells have an enormous number of degrees of freedom, and entropy considerations

suggest that infalling matter is absorbed with an extreme efficiency. This is also the way

that the shells may evade the kind of bounds discussed in [36]. On the other hand, given

the size of our shells, there could be non-trivial modifications of the ring down signal. We

hope to return to these questions in the near future.
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