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1 Introduction

In modern high-energy physics experiments, in order to closely scrutinize (and eventually

go beyond) our established particle physics models such as the Standard Model (SM), it is

important to push the precision of theoretical predictions that follow from these models to

the highest possible level. All parameters that appear in these quantum field theories such

as the SM change as functions of the energy scale, in a well-defined way that is governed by

so-called renormalization group equations. These, in turn, depend on a number of renormal-

ization group parameters that can be deduced from the underlying quantum field theory.

Perhaps the most fundamental of such renormalization group parameters is the Beta

function, governing the running of the gauge coupling constant, and consequently much

effort has been invested into precision determinations of this coefficient. After seminal work

at one-loop order [1, 2], demonstrating the asymptotically free nature of the strong coupling

constant and therefore establishing Quantum Chromodynamics (QCD) as a central part of

the Standard Model, perturbative corrections have been pushed to 2-loop [3, 4], 3-loop [5, 6]

and 4-loop [7, 8] level. Five-loop results have appeared over the last ten years or so, first

for the case of Quantum Electrodynamics (QED) [9–11], then for physical QCD with gauge

group SU(3) [12, 13], and finally for QCD with more general gauge groups [14, 15].

Given the complexity of the five-loop calculation, there is an urgent need to confirm

the Beta function as given in [15] by an independent approach. We fill this gap in the
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present paper, building upon our earlier work [14], where a proof-of-concept had been laid

out (and in the meantime been successfully tested and expanded, see [16, 17]). Throughout

the paper, we work in dimensional regularization around d = 4− 2ε space-time dimensions

and in the MS scheme.

Of course, the (gauge-invariant) Beta function is not the only fundamental parameter

governing renormalization of a gauge theory. All fields and parameters of the theory need

to be renormalized, giving rise to a set of renormalization constants (RCs) that can be

evaluated order by order in perturbation theory. Perhaps the second most important

representative of this set is the (gauge-invariant) renormalization constant for the quark

mass, needed for a precise evolution of measured low-energy quark masses to current and

future high-energy collider experiment energies. It has been known at two [18] and three

loops [19, 20] for a long time already; at four loops, complete results for SU(N) and QED

as well as general Lie groups are available [21, 22]; at five loops, mass renormalization is

known for SU(3) as well as general Lie groups [16, 23, 24].

The remaining members of the set of RCs depend on the gauge parameter. At four

loops, these are known since more than a decade for SU(N) and Lie groups, see [8, 25]

and references therein. Full gauge dependence for the case of Lie groups has been added

only recently [16, 17]. At five loops and for a general Lie group, all of them are presently

known in Feynman gauge [16, 17] (some notable exceptions being all-order Landau gauge

results in the limit of many fermion flavors, see e.g. [26]). In order to push forward the

renormalization program, we continue to evaluate corrections to the set of renormalization

constants, which at five-loop level are available (mostly) in Feynman gauge only. To this

end, we present new results for the complete set of RCs, including linear terms in the gauge

parameter, in an expansion around the Feynman gauge. These types of terms might be

needed in future projects, to provide for valuable cross-checks concerning gauge invariance

of the observables under investigation.

The structure of the paper is as follows. We begin by explaining our calculational setup

in section 2. There, we define the set of renormalization constants and anomalous dimen-

sions we are after, describe the massive regularization method we have employed to extract

ultraviolet divergences, and introduce the set of group invariants that are needed to express

the higher-order results. In section 3, we present our results for the five-loop gluon field

anomalous dimension (in Feynman gauge), from which we extract the (gauge-invariant)

Beta function. We then continue to push the 5-loop renormalization program further, and

present the linear terms in an expansion around the Feynman gauge in section 4, and con-

clude in section 5. Two appendices are devoted to list perturbative coefficients for certain

renormalization constants that are needed in the main text.

2 Setup

We begin by making a number of definitions and technical remarks. First, we define the

various renormalization constants and anomalous dimensions that are the focus of this

work, and list relations between them. Then, we explain parts of our computational setup

that allows us to extract these coefficients from the short-distance (ultraviolet) divergences
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of the theory. Finally, we introduce some convenient definitions for gauge group invariants

that will allow us to compactly present results later on.

2.1 Renormalization constants

The fermion-, gauge- and ghost fields as well as fermion mass, gauge coupling and gauge-

fixing parameter of the gauge theory are renormalized multiplicatively via

ψb =
√

Z2ψr , Ab =
√

Z3Ar , cb =
√

Zc
3cr , (2.1)

mb = Zmmr , gb = µεZggr , ξL,b = ZξξL,r . (2.2)

We have used the subscript b and r for bare and renormalized quantities, respectively. All

renormalization constants (RCs) have the form Zi = 1 +O(g2r ). There actually is no need

to renormalize the gauge-fixing term ∼ (∂A)2/ξL, such that setting Zξ = Z3 leaves us

with five independent renormalization constants only. A very economic way of recording

the various renormalization constants Zi is to merely list the corresponding anomalous

dimensions, defined by

γi = −∂lnµ2 lnZi . (2.3)

Following usual conventions, instead of considering Zg, one renormalizes the gauge

coupling squared (which in our notation is

a ≡ CA g2r (µ)

16π2
(2.4)

with CA the quadratic Casimir operator of the adjoint representation of the gauge group,

cf. section 2.3) with the factor Za ≡ Z 2
g and calls the corresponding anomalous dimension

γa = 2γg ≡ β the Beta function. Note that, due to the renormalization scale independence

of the bare gauge coupling, using eqs. (2.2) and (2.3) this immediately implies

β = ε+ ∂lnµ2 ln a ⇔ ∂lnµ2a = −a
[

ε− β
]

. (2.5)

The Beta function is a gauge invariant object and is known at five loops [15], as discussed

further in section 3. The second gauge invariant anomalous dimension is γm, corresponding

to the renormalization of the quark mass. At the five-loop level, it has been given in [16],

and confirmed by [23].

To complete the renormalization program, we are left with choosing (besides the gauge

invariants β and γm) three further RCs. These three coefficients will necessarily be gauge-

parameter dependent, and at the five-loop level only the Feynman-gauge results are known

so far, see [17] for a complete list of results. In practical calculations, it can sometimes

be convenient to consider ‘vertex RCs’ which are products of the Zi, such as those that

multiply the 3-gluon, 4-gluon, ghost-gluon and quark-gluon vertex. These vertex RCs are

usually denoted as Zj
1 (where j ∈ {3g, 4g, ccg, ψψg}). Out of this set, we found it convenient

to evaluate the combination Zccg
1 =

√
Z3 Z

c
3 Zg, giving us the anomalous dimension γccg1 .

For the remaining two of the minimal set of five RCs, we simply pick Z2 and Zc
3, encoded

in the respective anomalous dimensions γ2 and γc3.
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Once the minimal set of renormalization constants (chosen here to be γm, β, γc3, γ
ccg
1

and γ2, as explained above) is known, all other anomalous dimensions can be reconstructed

from simple linear relations, since they are related via gauge invariance of the QCD action

(see e.g. [25]):

γ3 = 2(γccg1 − γc3)− β , γ3g1 = 3(γccg1 − γc3)− β , (2.6)

γ4g1 = 4(γccg1 − γc3)− β , γψψg1 = γccg1 − γc3 + γ2 . (2.7)

If one needs to reconstruct renormalization constants Zi from the anomalous dimen-

sions γi, one can start from eq. (2.3), recalling that Zi(a, ξL) depends on the renormaliza-

tion scale through both of its variables. Using the d-dimensional Beta function of eq. (2.5);

remembering that the gauge parameter renormalizes as the gluon field ξL,b = Z3ξL,r; ex-

pressing the gauge parameter as ξL = 1 − ξ where ξ = 0 now corresponds to Feynman

gauge; and converting all anomalous dimensions to our preferred minimal set, one obtains

the relation

γi = −a(β − ε)(∂a lnZi)− (2γccg1 − 2γc3 − β)(ξ − 1)(∂ξ lnZi) . (2.8)

The coefficients z
(n)
i of the RCs Zi = 1+

∑

n>0 z
(n)
i /εn finally follow from solving eq. (2.8),

requiring γccg1 , γc3 and β at one loop lower only. In turn, once the RCs Zi are available, the

corresponding anomalous dimensions can be extracted from the single poles, γi = a∂az
(1)
i .

2.2 Extraction of ultraviolet divergences

In order to compute the field, mass, and vertex renormalization constants in the MS scheme

we are tasked with extracting the ultraviolet (UV) divergences of corresponding Green’s

functions. Since UV divergences are known to be independent of the masses and external

momenta, it is desirable to eliminate as many of these scales as possible to facilitate the

computation. In fact, in the calculationally most efficient approaches all scales are initially

sent to zero and auxiliary masses are only introduced to separate infrared (IR) from UV

divergences.

One highly successful method for infrared regularization is given by the

R∗-operation [27–30]. For instance, it has been used in the recent computations of the

five-loop anomalous dimensions in QCD [13, 24] and their generalization to an arbitrary

gauge group [15, 23]. Its main appeal is that L-loop anomalous dimensions can be deduced

from the calculation of (L− 1)-loop massless diagrams with one external momentum. The

price to pay is an increased conceptual complexity. Up to now, only the “local” variant

of the R∗-operation has been automatized [29], whereas the computationally more efficient

“global” operation still requires significant manual work.

In this work, we will pursue a conceptionally much simpler alternative approach pio-

neered in [31, 32], which is also sufficiently powerful to allow the computation of five-loop

anomalous dimensions in a general gauge group [14, 16, 17].1 It is based on the exact

decomposition [32]
1

(l + q)2
=

1

l2 −M2
− q2 + 2lq +M2

(l2 −M2)(l + q)2
, (2.9)

1See also [7, 8, 22, 37–41] for applications of this method to four-loop problems.
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where l is a linear combination of loop momenta, q a linear combination of external mo-

menta. By introducing an auxiliary mass M we have ensured that the first term on the

right-hand side is IR finite. While the second term can lead to IR divergences, the UV

degree of divergence is reduced compared to both other terms.

After subtracting all subdivergences, we can apply relation (2.9) iteratively to all mass-

less propagators in order to decompose a given diagram into a UV-divergent part containing

only massive denominators and a UV-finite but potentially IR-divergent remainder. Since

we are only interested in the UV divergence, we can safely drop this remainder.

Furthermore, we note that the left-hand side of eq. (2.9) is independent of the auxiliary

mass M and the dependence on M therefore has to drop out in the final result. This allows

us to discard the factor M2 in the numerator of eq. (2.9) and cancel the resulting M -

dependence using new counterterms proportional to M2. Any such counterterm originating

from a four-dimensional Lagrangian has to be proportional to M2A2 and can therefore be

interpreted as a “gauge boson mass” counterterm. The normalization is then fixed by

the condition that the inverse gauge boson propagator must not contain a (UV-divergent)

contribution proportional to M2.

We note that the prescription of repeatedly applying eq. (2.9) and discarding all terms

that are UV finite or contain factors of M2 can be formulated in an even simpler way. By

direct comparison, we see that it is completely equivalent to introduce the auxiliary mass

M in all denominators and perform a Taylor expansion in small external momenta.

It is then straightforward to modify the denominators and introduce the gauge boson

mass counterterm by changing the Feynman rules for the propagators accordingly. We

start from the conventionally renormalized propagators Dδ, where δ = f, c, g denotes a

fermion, ghost, or gauge boson, respectively. They are given by the usual expressions (we

drop the subscripts r of eq. (2.2) from now on, writing m for the renormalized fermion

mass and ξL for the renormalized gauge parameter)

Z2Df (p) =
i

p/− Zmm
, Zc

3 Dc(p) =
i

p2
, Z3Dg

µν(p) = − i

p2

[

gµν − (1− Z3ξL)
pµpν
p2

]

.

(2.10)

In order to eliminate a scale, we expand the fermion propagator in the limit of a small

fermion mass. Retaining the first two terms in the expansion is sufficient for the determi-

nation of the wave function and mass renormalization constants. Introducing an auxiliary

mass M and the corresponding gauge boson mass counterterm ZM2 we then obtain

D̃f (p) = i
p/+m

p2 −M2

(

1 + i
[

δZ2(p/−m)− Z2 δZmm
]

D̃f (p)
)

+O(m2) , (2.11)

D̃c(p) =
i

p2 −M2

(

1 + i δZc
3 p

2D̃c(p)
)

, (2.12)

D̃g
µν(p) =

−i

p2 −M2

(

gµρ−ξ
pµpρ

p2 −M2

)

(

gρν − i
[

ZM2M2gρσ + δZ3(gρσp
2−pρpσ)

]

D̃g
σν(p)

)

(2.13)

for the modified propagators D̃. We have again rewritten ξL = 1 − ξ, such that ξ = 0

corresponds to Feynman gauge. The counterterm ZM2 is then fixed by requiring that
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the gauge boson propagator with vanishing external momentum must be finite at each

order in perturbation theory. For future reference, we list this auxiliary counterterm ZM2

in appendix B.

After the above-mentioned Taylor expansion in small external momenta, we are left

with fully massive vacuum integrals, where all propagators share the common regulator

mass M . We have two independent in-house codes at hand, crusher [33] and Spades [34],

that systematically exploit the well-known integration-by-parts identities to achieve the

mapping of such fully massive vacuum integrals onto a small set of master integrals. At

five loops, these master integrals have recently been evaluated to high numerical preci-

sion [34], allowing high-confidence analytic fits of individual integrals, sums thereof, and/or

full results. For further details on our reduction and integration strategy and all relevant

references, we refer to [14, 16, 17, 35, 36].

2.3 Notation for color factors

Let us finally define some useful notation concerning group invariants, which we will need

to present our results. To this end, we re-iterate notation that we had already utilized in

previous works [14, 16, 17]. We focus on a Yang-Mills theory coupled to Nf fermions in

the fundamental representation. It is straightforward to generalize our results to fermions

in a (single) arbitrary representation R by substituting all generators of the fundamental

representation with generators of R.

The real and antisymmetric structure constants fabc are defined by the commutation

relations T aT b − T bT a = ifabcT c between hermitian generators T a of a semi-simple Lie

algebra, with trace normalization Tr(T aT b) = TFδ
ab. The quadratic Casimir operators

of the fundamental and adjoint representations (of dimensions NF and NA, respectively)

are then defined in the usual way, as T aT a = CF11 and facdf bcd = CAδ
ab. To facilitate

compact representations of our results, we find it convenient to use the following normalized

combinations of group invariants:

nf =
Nf TF

CA
, cf =

CF

CA
. (2.14)

In loop diagrams, one typically encounters traces of more than two group generators,

giving rise to higher-order group invariants. These higher-order traces can be systematically

classified in terms of combinations of symmetric tensors [42]. Rewriting the generators of

the adjoint representation as [F a]bc = −ifabc, we need the following three combinations

(again, we normalize conveniently):

d1=
[sTr(T aT bT cT d)]2

NAT 2
FC

2
A

, d2=
sTr(T aT bT cT d) sTr(F aF bF cF d)

NATFC3
A

, d3=
[sTr(F aF bF cF d)]2

NAC4
A

.

(2.15)

Here, sTr(ABCD) = 1
6Tr(ABCD + ABDC + ACBD + ACDB + ADBC + ADCB) is a

fully symmetrized trace.

Taking the gauge group to be SU(N) and setting TF = 1
2 and CA = N , our set of

normalized invariants then reads [42]

nf =
Nf

2N
, cf =

N2−1

2N2
, d1 =

N4−6N2+18

24N4
, d2 =

N2+6

24N2
, d3 =

N2+36

24N2
. (2.16)
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From here, one can for example easily obtain the SU(3) coefficients, corresponding to

physical QCD.

3 Gauge field anomalous dimension and Beta function

Following up on our previous work on the N
{4,3}
f terms of the five-loop Beta function [14]

as well as our determinations of the full ghost field and -vertex anomalous dimensions γc3
and γccg1 [17], we have now also calculated the remaining N

{2,1,0}
f terms of the 5-loop gluon

field renormalization constant γ3 in Feynman gauge. In terms of the renormalized gauge

coupling a as defined in eq. (2.4), we have obtained

γ3 = −a

[

8nf − (10 + 3ξ)

6
+ γ31a+ γ32a

2 + γ33a
3 + γ34a

4 + . . .

]

. (3.1)

The coefficients γ3n are functions of the group invariants and the gauge parameter, see

appendix A for expressions up to four loops. At five loops and in Feynman gauge ξ = 0, we

have obtained (to clearly expose the group structure, we use a scalar-product-like notation,

where e.g. {c2f , cf , 1}.{a, b, c} = c2fa+ cfb+ c)

21335 γ34 = γ344
[

16nf

]4
+γ343

[

16nf

]3
+γ342

[

16nf

]2
+γ341

[

16nf

]

+γ340+O(ξ) , (3.2)

γ344 =
{

cf ,1
}

.
{

107+144ζ3,−619/2+432ζ4
}

, (3.3)

γ343 =
{

c2f , cf ,d1,1
}

.
{

576(4961/48−238ζ3+99ζ4),576(16973/288+221ζ3−198ζ4+72ζ5),

−10368(55/3−41ζ3+12ζ4+20ζ5),144(14843/36+722ζ3+165ζ4−816ζ5)
}

, (3.4)

γ342 =
{

c3f , c
2

f , cfd1, cf ,d2,d1,1
}

.
{

82944(2509/48+67ζ3−145ζ5),

−1152(135571/16+4225ζ3−3024ζ2
3
−99ζ4−18900ζ5+5400ζ6),

−6635520(13/8+2ζ3−5ζ5),

288(476417/72−23035ζ3−25056ζ2
3
+34929ζ4−44640ζ5+10800ζ6),

13824(230−2354ζ3+54ζ2
3
+360ζ4−295ζ5+225ζ6),

6912(2373−4715ζ3+288ζ2
3
+900ζ4−820ζ5),

−72(1524019/8−33931ζ3−47808ζ2
3
+108225ζ4−73572ζ5−39600ζ6)

}

, (3.5)

γ341 =
{

c4f , c
3

f , c
2

f , cfd2, cf ,d3,d2,1
}

.
{

20736(4157+768ζ3),

−165888(11277/4+1541ζ3+335ζ5−2520ζ7),

1152(2208371/3+396403ζ3+91800ζ2
3
−65115ζ4−647460ζ5+229500ζ6−362880ζ7),

165888(236−386ζ3−216ζ2
3
−895ζ5−357ζ7),

−5184(1139437/9−29587ζ3+18744ζ2
3
+42880ζ4−124360ζ5+25500ζ6−33362ζ7),

−1728(11659/2−116251ζ3+8880ζ2
3
+171ζ4+59980ζ5+40200ζ6−99099ζ7),

−1728(77920−735952ζ3−61272ζ2
3
+150480ζ4+249580ζ5+76500ζ6+52479ζ7),

72(124662829/18−4899045ζ3−63192ζ2
3
+3669873ζ4+4836692ζ5−2278200ζ6

−4098024ζ7)
}

, (3.6)

γ340 =
{

d3,1
}

.
{

6912(47317−814000ζ3+15294ζ2
3
+42300ζ4+61390ζ5+427125ζ6+358848ζ7),

−144(112182361/9−12985044ζ3−2403444ζ2
3
+6431460ζ4+53855480ζ5−12870750ζ6

−30266775ζ7)
}

. (3.7)
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From the first of eq. (2.6), using the relation β = 2(γccg1 −γc3)−γ3, this enables us to obtain

the corresponding terms of the Beta function, whose coefficients we define as

∂lnµ2 a = −a
[

ε− β
]

= −a
[

ε+ b0 a+ b1 a
2 + b2 a

3 + b3 a
4 + b4 a

5 + . . .
]

. (3.8)

The L-loop coefficients bL−1 are polynomials in nf , and up to four loops read

31 b0 =
[

−4
]

nf+11 , (3.9)

32 b1 =
[

−36cf−60
]

nf+102 , (3.10)

33 b2 =
[

132cf+158
]

n2

f+
[

54c2f−615cf−1415
]

nf+2857/2 , (3.11)

35 b3 =
[

1232cf+424
]

n3

f+432(132ζ3−5)d3+(150653/2−1188ζ3)+ (3.12)
[

72(169−264ζ3)c
2

f+64(268+189ζ3)cf+1728(24ζ3−11)d1+6(3965+1008ζ3)
]

n2

f+
[

11178c3f+36(264ζ3−1051)c2f+(7073−17712ζ3)cf+3456(4−39ζ3)d2+3(3672ζ3−39143)
]

nf ,

while at five loops we get (using the same scalar-product-like notation as above)

35 b4= b44n
4
f+b43n

3
f+b42n

2
f+b41nf+b40 , (3.13)

b44=
{

cf ,1
}

.
{

−8(107+144ζ3),4(229−480ζ3)
}

, (3.14)

b43=
{

c2f , cf ,d1,1
}

.
{

−6(4961−11424ζ3+4752ζ4),−48(46+1065ζ3−378ζ4),

1728(55−123ζ3+36ζ4+60ζ5),−3(6231+9736ζ3−3024ζ4−2880ζ5)
}

, (3.15)

b42=
{

c3f , c
2
f , cfd1, cf ,d2,d1,1

}

.
{

−54(2509+3216ζ3−6960ζ5),

9(94749/2−28628ζ3+10296ζ4−39600ζ5),25920(13+16ζ3−40ζ5),

3(5701/2+79356ζ3−25488ζ4+43200ζ5),−864(115−1255ζ3+234ζ4+40ζ5),

−432(1347−2521ζ3+396ζ4−140ζ5),843067/2+166014ζ3−8424ζ4−178200ζ5

}

,

(3.16)

b41=
{

c4f , c
3
f , c

2
f , cfd2, cf ,d3,d2,1

}

.
{

−81(4157/2+384ζ3),81(11151+5696ζ3−7480ζ5),

−3(548732+151743ζ3+13068ζ4−346140ζ5),−25920(3−4ζ3−20ζ5), (3.17)

8141995/8+35478ζ3+73062ζ4−706320ζ5,216(113−2594ζ3+396ζ4+500ζ5),

216(1414−15967ζ3+2574ζ4+8440ζ5),−5048959/4+31515ζ3−47223ζ4+298890ζ5

}

,

b40=
{

d3,1
}

.
{

−162(257−9358ζ3+1452ζ4+7700ζ5),

8296235/16−4890ζ3+9801ζ4/2−28215ζ5

}

. (3.18)

Out of these 5-loop coefficients, b44 has in fact been known already for quite some time

from a large-Nf analysis [43, 44], while b43 was given in [14], as a proof-of-concept of our

setup that we have used in this and earlier works [16, 17]. The three coefficients b42, b41
and b40 have first been computed by an independent group [15], using the background field

method, infrared rearrangement [45] and the so-called R∗ operation [30] in order to map UV

divergences onto the class of massless four-loop two-point functions which were evaluated
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via their code FORCER [46–48]. Equations (3.16)–(3.18) fully coincide with the results of [15].

As a further check of the 5-loop expressions given above, all coefficients reduce to the results

given in [13] when setting the group invariants to their SU(3) values (cf. eq. (2.16)).

To summarize, eqs. (3.13)–(3.18) are in complete agreement with the corresponding

terms of the Beta function given in [15]. This represents the first independent check of the

correctness of this important renormalization group parameter. As a result, all terms of

the five-loop Beta function have now been checked by two independent groups employing

completely different methods, which should lead to a high confidence in its correctness.

4 Beyond the Feynman gauge

To provide — other than the confirmation of the five-loop Beta function presented in

the previous section — some genuinely new results in this paper, and to also showcase

the versatility of our integral reduction codes Crusher and Spades, we have evaluated

the linear terms of an expansion around the Feynman gauge (ξ = 0). From the integral

reduction point of view, this means that compared to the Feynman-gauge calculations, we

need to be able to reduce integrals with one more dot and one more scalar product.

We need to perform this exercise for a minimal set of three (out of five linearly inde-

pendent) anomalous dimensions only, since β and γm are gauge parameter independent and

already known [14–16]. The full set is then obtained via well-known linear relations, see

eqs. (2.6), (2.7). For the convenience of the reader, we have prepared computer-readable

files, attached to this article as supplementary material, that contain the complete set

of renormalization constants and anomalous dimensions up to five loops including these

new terms.

In the following, we present our new five-loop results for these linear terms in ξ for

the ghost field, ghost-gluon vertex, as well as quark field anomalous dimensions. We keep

the notation in line with our previous publications, such that it suffices to record the new

terms here.

4.1 Ghost field anomalous dimension

As in [17], we write the ghost field anomalous dimension as

γc3 = −a

[

−1

4
(2 + ξ) + γc31a+ γc32a

2 + γc33a
3 + γc34a

4 + . . .

]

. (4.1)

As fully gauge-dependent expressions up to four loops and the Feynman-gauge result at five

loops have been given in [17], we here add as a new result the linear term in ξ at five loops:

214 35 γc
34

= γc
344

[16nf ]
4+γc

343
[16nf ]

3+γc
342

[16nf ]
2+γc

341
[16nf ]+γc

340
, (4.2)

γc
34i = γc

34i0+ξ γc
34i1+O(ξ2) , (4.3)

γc
3441

=0 , (4.4)

γc
3431

=
{

cf ,1
}

.
{

0,2(569+576ζ3−1296ζ4)
}

, (4.5)

γc
3421

=
{

c2f , cf ,d1,d2,1
}

.
{

0,36(−8191+6984ζ3+1944ζ4−3456ζ5),0,0,

−2(66745+295182ζ3−23328ζ4−208764ζ5)
}

, (4.6)
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γc
3411

=
{

c3f , c
2

f , cfd2, cf ,d2,d3,1
}

.
{

0,−5184(1349+3018ζ3−720ζ2
3
+666ζ4−2520ζ5−1800ζ6),

0,144(90827+34092ζ3+7776ζ2
3
−15552ζ4−32832ζ5−32400ζ6),

5184(32+4008ζ3+432ζ4−3060ζ5−900ζ6−1323ζ7),

2592(208−1141ζ3+162ζ2
3
−297ζ4−8375ζ5+3525ζ6+882ζ7), (4.7)

4(3979604+2404521ζ3−750222ζ2
3
+1808649ζ4−4632336ζ5−1111725ζ6+904932ζ7)

}

,

γc
3401

=
{

d3,1
}

.
{

10368(2732−13091ζ3−4146ζ23−2241ζ4+150485ζ5−50925ζ6−14434ζ7),

−144(55138033/36−72901ζ3−105498ζ23+1074645ζ4−1516578ζ5−467775ζ6+68397ζ7)
}

.

(4.8)

We observe that only 10 of the 17 possible color structures contain terms linear in ξ.

4.2 Ghost-gluon vertex anomalous dimension

Again following the notation of [17], the anomalous dimension of the ghost-gluon vertex is

γccg1 = −a(1− ξ)

[

1

2
+

6− ξ

8
a+ γccg12 a2 + γccg13 a3 + γccg14 a4 + . . .

]

, (4.9)

where the prefactor follows from the finiteness of the Landau-gauge ghost vertex [49, 50],

which therefore does not need to be renormalized, hence γccg1 |ξ=1 = 0. The 3- and 4-loop

coefficients (with full gauge dependence) and the 5-loop term (in Feynman gauge) have

been given in [17], to which we here add the linear term in ξ at five loops:

214 35 γccg
14

= γccg
143

[16nf ]
3+γccg

142
[16nf ]

2+γccg
141

[16nf ]+γccg
140

, (4.10)

γccg
14i = γccg

14i0+ξ γccg
14i1+O(ξ2) , (4.11)

γccg
1431

=0 , (4.12)

γccg
1421

=
{

cf ,1
}

.
{

0,2(7855−22464ζ3+3240ζ4)
}

, (4.13)

γccg
1411

=
{

c2f , cf ,d2,d3,1
}

.
{

0,93312(56−31ζ3−14ζ4),0,

5184(820ζ3−78ζ2
3
−171ζ4−660ζ5+225ζ6),

216(1247753/108+24604ζ3−66ζ2
3
+1491ζ4−8760ζ5+1575ζ6)

}

, (4.14)

γccg
1401

=
{

d3,1
}

.
{

5184(1986−74900ζ3+4992ζ2
3
+10044ζ4+52440ζ5−24000ζ6+25137ζ7),

−216(39394519/54+616864ζ3+11472ζ2
3
−36984ζ4−718836ζ5+81300ζ6+29925ζ7)

}

.

4.3 Quark field anomalous dimension

Following the notation of [16], the quark field anomalous dimension reads

γ2 = −cf a
[

(1− ξ) + γ21 a+ γ22 a
2 + γ23 a

3 + γ24 a
4 + . . .

]

. (4.15)
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As a new result, we add here the linear terms in the gauge parameter at five loops,

243 γ24 = γ244

[

16nf

]4

+γ243

[

16nf

]3

+γ242

[

16nf

]2

+γ241

[

16nf

]

+γ240 , (4.16)

γ24i = γ24i0+ξ γ24i1+O(ξ2) , (4.17)

γ2441 =0 , (4.18)

γ2431 =
{

cf ,1
}

.
{

0,3197/144+7ζ3−36ζ4

}

, (4.19)

γ2421 =
{

c2f , cf ,d1,1
}

.
{

0,−36(23831/144−241ζ3+54ζ4+48ζ5),0,

−3541/2−13261ζ3+3258ζ4+4800ζ5

}

, (4.20)

γ2411 =
{

c3f , c
2

f , cfd1, cf ,d1,d2,1
}

.
{

0,−432(4261/12+947ζ3−120ζ2
3
+111ζ4−1140ζ5−300ζ6),0,

216(1085843/432−1049ζ3−324ζ2
3
+402ζ4−924ζ5−350ζ6),576(184ζ3+168ζ2

3
−441ζ7),

48(84+13124ζ3+1596ζ2
3
−774ζ4−10880ζ5+1650ζ6−9261ζ7),

4190641/12+652599ζ3+40944ζ2
3
−106038ζ4−390506ζ5−1950ζ6+5292ζ7

}

, (4.21)

γ2401 =
{

c4f , c
3

f , c
2

f , cfd2, cf ,d2,d3,1
}

.
{

0,0,864(412−2480ζ3−72ζ2
3
+1700ζ5+1239ζ7),

1728(120−1664ζ3+1608ζ2
3
+2240ζ5−2765ζ7),

−36(20100−168816ζ3+1944ζ2
3
+6804ζ4+127120ζ5−16200ζ6+83657ζ7),

−24(6960+286640ζ3+138864ζ2
3
−145008ζ4−534680ζ5+334200ζ6−355635ζ7),

72(5679−98586ζ3−72432ζ2
3
−15714ζ4+52640ζ5+20100ζ6+113666ζ7),

−4(19063201/9+2617006ζ3+164922ζ2
3
−624285ζ4−3552844ζ5+535650ζ6

+1691907ζ7/4)
}

. (4.22)

As a check, the coefficients γ2441 and γ2431 coincide with the respective contribution ex-

tracted from the all-order large-Nf Landau gauge result [26, 51, 52].

5 Conclusions

The purpose of this paper has been twofold. First, and perhaps most importantly, we have

provided the first independent verification of the five-loop result for the Beta function of

a non-abelian gauge field coupled to a single, but general, representation of a family of

Nf fermions, first obtained in [15]. Finding full agreement, this constitutes an important

check of this key result. As explained in sections 2.2 and 3, we have employed very different

methods than those used in [15], thus drastically increasing the confidence in the final result.

Second, we have used our setup to provide, for the complete set of 5-loop renormal-

ization constants, the subleading terms in an expansion around the Feynman gauge. We

have explicitly given the linear terms in the gauge parameter for a minimal choice of

anomalous dimensions, while all others can be obtained from simple linear relations, see

eqs. (2.6)–(2.7); for completeness, we provide electronic versions of all renormalization con-

stants as supplementary material to this article. This step aims at completing the five-loop

renormalization program, and should be extended to include complete gauge dependence.

As a crosscheck, it would be valuable to evaluate the linear gauge terms of another renor-

malization constant, for example the one of the gluon field. Due to the complexity of the

5-loop gluon propagator and limited computer resources to our disposal, we leave this as a

future project.
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It would be interesting to perform a 5-loop check of the known Landau-gauge rela-

tion [53, 54] between β, γ3 and the anomalous dimension of the composite gauge-field

operator Aa
µA

µa (for results concerning renormalization of this operator up to 4 loops,

see [25, 53, 55, 56]). We have not yet attempted to do this (requiring full gauge depen-

dence). In principle, this should be within reach of our method; having all master integrals

at hand, it would in practice require substantial computer resources for an enlargement of

our integral reduction tables, in order to accommodate integrals with larger exponents of

propagators as well as numerators.
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A Gauge field anomalous dimension

Let us give those coefficients of the gauge field anomalous dimension γ3 of eq. (3.1) that

have not yet been listed in section 3. These lower-order terms have of course been known

for a longer time already, and we refer to [17] for the corresponding references, as well as for

explicit expressions in computer-readable form (where also the 5-loop terms in Feynman

gauge had in fact already been included, assuming the validity of the Beta function [15]).

From two to four loops, the coefficients of eq. (3.1) read, with full gauge dependence:

24 γ31=
(

4cf+5
)[

16nf

]

−2
(

46+15ξ−2ξ2
)

, (A.1)

2632 γ32=−
(

11cf+19
)[

16nf

]2−2
(

36c2f−(5+432ζ3)cf−(875+36ξ−324ζ3)
)[

16nf

]

−2
(

8102+2286ξ−486ξ2+63ξ3−54(4−ξ)(2−ξ)ζ3
)

, (A.2)

2935 γ33= γ333
[

16nf

]3
+γ332

[

16nf

]2
+γ331

[

16nf

]

+γ330 , (A.3)

γ333=
{

cf ,1
}

.
{

−154,−355/2+216ζ3
}

, (A.4)

γ332=
{

c2f , cf ,d1,1
}

.
{

−144(169−264ζ3),−4(7541+15768ζ3−5832ζ4),

3456(11−24ζ3),−41273+1229ξ+216(85−6ξ)ζ3−17496ζ4
}

, (A.5)

γ331=
{

c3f , c
2
f , cf ,d2,1

}

.
{

−357696,144(10847+5880ζ3−12960ζ5),

−4(363565−69903ξ−6048(89−9ξ)ζ3+11664(21+ξ)ζ4−233280ζ5),

−6912(64−516ζ3−135ζ5),2809922+70690ξ−10449ξ2

−648(3855−296ξ+4ξ2)ζ3+972(774+26ξ+ξ2)ζ4+855360ζ5
}

, (A.6)
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γ330=
{

d3,1
}

.
{

216(4(524+162ξ−27ξ2)−36(2456/3+556ξ−63ξ2+9ξ3−2ξ4)ζ3

−45(2144−132ξ2+26ξ3−ξ4)ζ5),

−2(8076320+3078806ξ−619326ξ2+134217ξ3−14580ξ4)

+162(66880−18672ξ+2534ξ2−36ξ3−37ξ4)ζ3−1944(444−292ξ+49ξ2−3ξ3)ζ4

−405(32800−4224ξ−84ξ2+130ξ3−23ξ4)ζ5
}

. (A.7)

Up to the linear terms in ξ, the 4-loop coefficient γ33 has already been given in [8]; we find

full agreement for these terms, of course. In the above, we have generalized that result to

include full gauge parameter dependence.

B Auxiliary mass renormalization

Here, we list results for the auxiliary mass counterterm ZM2 , as introduced in section 2.2.

Let us stress once more that this term, being an artefact of our infrared regularization

method, is non-physical (and hence also gauge-parameter dependent). Nevertheless, to

render this paper self-contained, and in order to facilitate comparisons in future works, we

wish to record its detailed form. In terms of the normalized gauge coupling a of eq. (2.4),

its structure is

ZM2 =
a

ε

(

[16nf ] + (4− 3ξ)

16
+

a

ε

[

[16nf ]z11 + z10

]

+
a2

ε2

[

[16nf ]
2z22 + [16nf ]z21 + z20

]

+
a3

ε3

[

[16nf ]
3z33 + [16nf ]

2z32 + [16nf ]z31 + z30

]

+
a4

ε4

[

[16nf ]
4z44 + [16nf ]

3z43 + [16nf ]
2z42 + [16nf ]z41 + z40

]

+ . . .

)

, (B.1)

where we have explicitly shown nf -dependence, and where the coefficients zij are degree-

i polynomials in ε that can be extracted from the (i+1)-loop gluon propagator at zero

external momentum. In turn, the coefficients of the zij then depend on the group invariants

of section 2.3, as well as the gauge parameter ξ. Note that, due to the absence of a tree-level

contribution, there is no leading constant as in all other RCs (which have the generic form

Z = 1 + az1 + a2z2 + . . . ). After accounting for the different normalization conventions,

the leading (1-loop) term of eq. (B.1) can be seen to coincide with the one given in eq. (4)

of [32]. At two loops, again using the scalar-product-like notation of the main text to

emphasize group structure (and normalizing conveniently with an overall factor), we have

210 z11 = +ε1
{

cf , 1
}

.
{

− 4(1− ξ), 5(5/3− ξ)
}

+ ε0
{

cf , 1
}

.
{

8(1− ξ),−2(13− 5ξ)
}

, (B.2)

210 z10 = +ε1
(

2(146/3− 49ξ + 10ξ2)
)

+ ε0
(

− 2(72− 58ξ + 15ξ2)
)

. (B.3)
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The three-loop coefficients read

2153z22=+ε2
{

cf ,1
}

.
{

20,−394/27
}

+ε1
{

cf ,1
}

.
{

−16,160/9
}

+ε0
{

cf ,1
}

.
{

0,−40/3
}

, (B.4)

2153z21=+ε2
{

c2f , cf ,1
}

.
{

−16(2−2ξ+ξ2),−8(253−79ξ+17ξ2−48(5−ξ)ζ3),

22768/27−184ξ+71ξ2−48(20+ξ)ζ3
}

+ε1
{

c2f , cf ,1
}

.
{

−32(7−2ξ+ξ2),8(186−93ξ+19ξ2),−2(5534/9−399ξ+86ξ2)
}

+ε0
{

c2f , cf ,1
}

.
{

64(1−2ξ+ξ2),−48(10−13ξ+3ξ2),4(946/3−169ξ+35ξ2)
}

,

(B.5)

2153z20=+ε2
(

8(22837/27−837ξ+292ξ2−49ξ3+6(12−22ξ+5ξ2)ζ3)
)

+ε1
(

−4(29168/9−2976ξ+1095ξ2−154ξ3)
)

+ε0
(

12(6872/9−604ξ+222ξ2−35ξ3)
)

. (B.6)

At four loops, we get

22134 z33 =+ε3
{

cf ,1
}

.
{

−872,−1334/3+576ζ3
}

+ε2
{

cf ,1
}

.
{

720,204
}

+ε1
{

cf ,1
}

.
{

−288,360
}

+ε0
{

cf ,1
}

.
{

0,−288
}

, (B.7)

22134 z32 =+ε3
{

c2f , cf ,1
}

.
{

216(151−19ξ−128ζ3),18(62026/9−1507ξ−96(46−7ξ)ζ3

+288(13−ξ)ζ4),−2(9157/3−2957ξ−108(219−31ξ)ζ3+324(65+ξ)ζ4)
}

+ε2
{

c2f , cf ,1
}

.
{

576(19−6ξ),−108(2723/3−239ξ+32(11+ξ)ζ3),3(17429−5443ξ

+144(79−ξ)ζ3)
}

+ε1
{

c2f , cf ,1
}

.
{

−864(9−5ξ),72(578−211ξ),−36(1881−368ξ)
}

+ε0
{

c2f , cf ,1
}

.
{

0,−4752(1−ξ),36(979−147ξ)
}

, (B.8)

22134 z31 =+ε3
{

c3f , c
2

f , cf ,d2,1
}

.
{

864(240+90ξ−3ξ2+ξ3+96(1−ξ)ζ3),

216(8228+5ξ(374−50ξ+ξ2)−32(187+42ξ+9ξ2)ζ3−288ξ(5−ξ)ζ4−1920(5−2ξ)ζ5),

−18(3699988/9−126068ξ+24669ξ2−4239ξ3−48(13546−2347ξ+150ξ2)ζ3

+144(946−151ξ+6ξ2)ζ4+2880(52−2ξ+ξ2)ζ5),

−5184(2(48−8ξ+ξ2)−(1016−60ξ−28ξ2+11ξ3)ζ3+20(74−21ξ+4ξ2)ζ5),

2587604/3−474148ξ+146205ξ2−60993ξ3/2−432(10689−397ξ−60ξ2+4ξ3)ζ3

+648(2102+226ξ−7ξ2)ζ4+2160(22+ξ)(34+5ξ)ζ5)
}

+ε2
{

c3f , c
2

f , cf ,d2,1
}

.
{

1728(43−5ξ−3ξ2+ξ3),

−432(12242/3−773ξ+186ξ2−25ξ3−96(16−5ξ+ξ2)ζ3),

108(189176/3−24678ξ+5943ξ2−839ξ3−16(1906−751ξ+66ξ2)ζ3),0,

−3(706004−362512ξ+120456ξ2−20997ξ3−144(3350−710ξ−67ξ2)ζ3)
}

+ε1
{

c3f , c
2

f , cf ,d2,1
}

.
{

−3456(1−ξ)(16−2ξ+ξ2),864(752−642ξ+214ξ2−31ξ3),

−72(36660−25388ξ+7443ξ2−969ξ3),0,54(37136−25888ξ+9072ξ2−1289ξ3)
}

+ε0
{

c3f , c
2

f , cf ,d2,1
}

.
{

6912(1−ξ)3,−5184(1−ξ)2(18−5ξ),

432(1−ξ)(1248−538ξ+89ξ2),0,−36(33052−20088ξ+6678ξ2−945ξ3)
}

, (B.9)
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22134 z30 =+ε3
{

d3,1
}

.
{

−1296(12(28−18ξ+5ξ2)−4(3128−1868ξ+329ξ2−69ξ3+18ξ4)ζ3

+5(2144+56ξ−716ξ2+182ξ3−9ξ4)ζ5),

2(2(11725124/3−3353810ξ+1154358ξ2−332937ξ3+43740ξ4)

+18(215728−195576ξ+38430ξ2−999ξ4)ζ3−648(640−1084ξ+257ξ2−21ξ3)ζ4

−135(34240−13688ξ−1012ξ2+1078ξ3−207ξ4)ζ5)
}

+ε2
{

d3,1
}

.
{

0,−12(2045504−1866458ξ+795753ξ2−200016ξ3+23004ξ4

+72(1072−2380ξ+1049ξ2−147ξ3)ζ3)
}

+ε1
{

d3,1
}

.
{

0,72(348728−298948ξ+129576ξ2−31335ξ3+3294ξ4)
}

+ε0
{

d3,1
}

.
{

0,−36(318160−243624ξ+101484ξ2−25020ξ3+2835ξ4)
}

. (B.10)

From the Feynman-gauge gluon propagator that we have evaluated in order to compute

the gluon field anomalous dimension γ3 in section 3, we could in principle even extract the

5-loop terms z4i at ξ = 0. Since they do not enter the calculations presented in this paper,

however, we do not list them here.
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