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1 Introduction

The presence of a symmetry helps us to systematically understand various properties of

a physical system. Understanding the physics based on the symmetry may open up the

possibility of understanding a specific example based on a more universal property of

physical systems which share similar symmetry groups. It has been suggested that the

infrared (IR) properties of the primordial perturbations generated during inflation are

deeply related to the large gauge transformations. The large gauge transformation is
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a local symmetry transformation which does not approach the unity at the infinity of

spacetime [1, 2].

The large gauge transformations which play an important role in cosmology are those

defined at a time constant slicing and diverge at the spatial infinity. In single field models

of inflation, the invariance under the dilatation and shear transformations, which are both

large gauge transformations, directly ensures the massless property of the curvature per-

turbation ζ and the gravitational waves γij . It is widely known that these massless fields ζ

and γij have several universal properties in the IR, which are valid in rather general single

field models of inflation. First, at the tree-level computation, ζ and γij are non-linearly

conserved in time in the IR limit [3–11]. (The conservation of ζ was discussed by including

the radiative corrections of ζ in refs. [12, 13].) Second, the influence from the soft modes of

ζ and γij on the hard modes are, rather generically, characterized by the so-called consis-

tency relation [14, 15], which is an example of the soft theorem in cosmology. It has been

suggested, e.g., in refs. [3, 16–20], that these universal properties are both consequences

of the invariance under the large gauge transformations. However, it was also revealed

that this invariance is not sufficient to derive the consistency relation. In refs. [18–20], the

analyticity in the soft limit was additionally imposed to derive the consistency relation.

The consistency relation has been understood as a relation between the n-point corre-

lation function with n hard modes and the (n+ 1)-point correlation function with n hard

modes and one soft mode. In deriving the consistency relation, usually, the validity of

the perturbation theory is presumed. However, this is not trivially guaranteed, because

the massless fields ζ and γij are not screened in the large scale limit and their radiative

corrections can diverge due to their unsuppressed IR contributions. Therefore, unless the

IR divergence is regularized without violating the dilatation invariance, the consistency

relation cannot be well-defined as a relation between the correlation functions. Notice that

introducing a naive IR cutoff which regularizes the IR radiative corrections can violate the

dilatation invariance, which is a crucial property for the consistency relation.

The goal of this paper is to clarify the relation between the large gauge transformations

and the above-mentioned universal properties of ζ and γij in the IR, i.e., the soft theorem

(also known as the consistency relation), the conservation in time, and the possible appear-

ance of the IR divergence. In particular, along the line of the argument in refs. [18–20],

we will clarify the physical meaning of the analyticity in the soft limit, which is needed to

derive the consistency relation. In ref. [18], it was argued that this condition is related to

the locality of theory. In this paper, we scrutinize this argument, clarifying what we need

to require as the locality condition, because the locality has a broad meaning. We also

discuss what the consistency relation actually describes, taking into account the possibility

that the perturbative prediction can be spoiled by the IR divergence.

We will also show that the large gauge transformations play a crucial role also in dis-

cussing the radiative corrections from massive fields. Being motivated by string theory,

which may predict the presence of higher spin fields in the four dimensional theory ob-

tained after compactification, we consider massive fields with arbitrary integer spins. After

deriving the consistency relation for the hard modes of the massive fields with non-zero

spins, we discuss the condition that the curvature perturbation ζ stops evolving in time in
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the soft limit under the influence of the radiative corrections from the massive fields. This

is a generalization of our previous study [19], where we considered the radiative corrections

from a massive scalar field, to a massive field with a general integer spin. As was argued in

ref. [21], exploring an imprint of the higher spin fields in the primordial non-Gaussianity of

ζ may provide a unique probe of string theory. (See also refs. [22–25].) Our study provides

the conditions for the absence of such an imprint made after the Hubble crossing time of

the comoving scale of our interest during inflation.

Recently, the relation among the large gauge transformations, the soft theorem, and

the IR divergence has been studied intensively for gauge theories in an asymptotically flat

spacetime [26–28]. (For a review, see ref. [29].) In ref. [26], it was shown that Weinberg’s

soft theorem [30], which describes the influence of the soft photon and graviton, can be

obtained as a Ward-Takahashi identity of the asymptotic symmetries at the null infinity.

(The soft theorem for massless higher spin fields in an asymptotically flat spacetime was

discussed in ref. [31].) More recently, (the cancellation of) the IR divergence was discussed,

using the Noether charge of the asymptotic symmetries [32]. At first sight, the IR struc-

tures for the gauge fields in the asymptotically flat spacetime have similar properties to

those for the primordial perturbations ζ and γij in cosmology. We give a closer look at

this apparent similarity.

This paper is organized as follows. In section 2, considering single field models of in-

flation, we discuss the relation between the large gauge transformation and the consistency

relation for ζ. Here, we seek for a deeper understanding about the locality condition as

the necessary condition to derive the consistency relation for ζ. In section 3, we will show

that the discussion in section 2 can be straightforwardly extended to an interacting system

composed of the inflaton and the massive fields with non-zero spins. We also show that the

locality condition implies both the consistency relation for the hard modes of the massive

fields and the conservation of ζ. In section 4, we show that the locality condition also en-

sures the cancellation of the IR divergence for a certain class of variables. In section 5, we

briefly show that the discussion for the soft graviton proceeds almost in parallel to the one

for the soft modes of ζ, discussed in section 2–4. In section 6, after summarizing our results,

we discuss a similarity and an apparent difference between the IR properties for the gauge

fields in the asymptotically flat spacetime and those for the primordial perturbations.

2 Asymptotic symmetry and soft theorem

In this section, we discuss the relation between the large gauge transformations and the

soft theorem in cosmology, also known as the consistency relation. We clarify the condition

that derives the consistency relation and discuss its physical meaning. Before we start our

discussion, we clarify what we mean by “soft” and “hard.” The soft modes mean the modes

with k/aH → 0 but k 6= 0, and the hard modes mean the remaining inhomogeneous modes,

including the super Hubble modes with k/aH <∼ 1 but excluding the limit k/aH → 0. By

contrast, we describe the wave vector of a longer mode and that of a shorter mode as kL and

kS , respectively, simply based on the ratio between these wavenumbers, i.e., kL/kS ≪ 1.

– 3 –
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As we will discuss in section 4, in the limit k/aH ≪ 1, a perturbative expansion can break

down in computing some quantity and taking this limit requires a careful treatment.

2.1 Large gauge transformations

Likewise in the discussion about the soft photons and gravitons in the asymptotically flat

spacetime, a large gauge transformation plays a crucial role for a clear understanding about

the soft modes of ζ and γij in an inflationary spacetime. In line with refs. [1, 2], we define the

large gauge transformation as follows. A local symmetry denotes a symmetry under a trans-

formation which is parametrized by a spacetime dependent function, while a global sym-

metry denotes a symmetry under a transformation by a spacetime independent function.

Among local symmetry transformations, it is important to make a distinction between

small gauge transformation and large gauge transformations. The former becomes the

identity at the infinity and the latter does not. In refs. [26, 29], it was shown that the

soft theorem for the photons and the gravitons in the asymptotically flat spacetime can be

derived from the Ward-Takahashi identities for large gauge transformations which do not

vanish on J ±.

2.1.1 Dilatation as a large gauge transformation

First, let us clarify the prescription we adopt. In this paper, we use the ADM form of the

line element:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where we introduced the lapse function N , the shift vector N i, and the spatial metric hij .

We determine the time slicing, employing the uniform field gauge:

δφ = 0 . (2.2)

We express the spatial metric hij as

hij = a2e2ζ [eγ ]ij , (2.3)

where γij is set to traceless. As spatial gauge conditions, we impose

∂iγij = 0 . (2.4)

To discuss the soft modes of the primordial perturbations in the spatially flat FRW

background, we consider the large gauge transformations, which do not vanish at the spatial

infinity on a time constant surface. This large gauge transformation was first discussed

in the context of cosmology by Weinberg in ref. [3]. In the unitary gauge, where the

fluctuation of the inflaton vanishes, we consider, in particular, the dilatation:

xi → esxi , (2.5)

where s is a constant parameter. Under the dilatation, the curvature perturbation ζ trans-

forms as

ζ(t, x) → ζs(t, x) = ζ(t, e−sx)− s . (2.6)
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The change of ζ is given by

∆sζ(t, x) = −s(1 + x · ∂xζ(t, x)) +O(s2) . (2.7)

The classical action in a diffeomorphism (Diff) invariant theory remains invariant under

the transformation of ζ given in eq. (2.6). As one may expect from the fact that the

dilatation shifts ζ by −s, the dilatation invariance is related to the massless property of ζ,

which implies that ζ is conserved at large scales in single clock inflation.

2.1.2 Two different prescriptions of dilatation

The dilatation invariance may be somehow confusing, because it also appears as a part

of the de Sitter invariance by changing the time coordinate simultaneously. The Killing

vector which corresponds to this transformation is given by

−η∂η − xi∂i ,

where η denotes the conformal time. The dilatation symmetry in de Sitter group states

that the time shift can be compensated by the scale transformation. Since inflation has

to end at some point, the time translation symmetry needs to be broken in the context of

inflationary scenario.

The time translation symmetry is broken, when the physical frequency ωph becomes

well below Λb with Λ4
b ≡ φ̇2. In the effective field theory of inflation [33], the Goldstone

mode, the pion π, is introduced to restore the invariance under the time reparametrization

t → t+ ξ , π → π − ξ (2.8)

in the symmetry breaking phase. With this construction, the pion Lagrangian non-linearly

preserves the invariance since π appears only in the combination t + π. Through the

coupling with the metric perturbations, the pion acquires the mass of mπ = O(
√
ε1H).

The relation between the dilatation discussed in section 2.1.1 and the one discussed

here is somewhat puzzling. As we will discuss in the following section, the former is

preserved in an arbitrary quasi FRW spacetime, while the latter is a part of the de Sitter

symmetry and is broken below the symmetry breaking scale Λb. Related to this point,

preserving the former dilatation invariance directly ensures that ζ should be massless. On

the other hand, there is no simple argument which shows the massless property of ζ in the

latter prescription, where ζ is related to the Goldstone mode π as ζ = −Hπ. Related to

this point, recall that the pion acquires the mass mπ through the coupling with the metric

perturbation for ωph <∼ mπ.
1 Therefore, in the regime where ζ approaches a constant

value, the pion is no longer massless. The curvature perturbation is sometimes said to be

a Goldstone mode, since π = −ζ/H is the Goldstone mode. This statement can cause

a confusion, because it may sound as if ζ preserves the shift symmetry, being massless,

because it is a Goldstone boson associated with the breaking of the de Sitter symmetry.

1Recall that the Goldstone mode for a global symmetry is not necessarily massless in a Lorentz violating

background.
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In the following, by the dilatation, we mean the former one, which is a spatial coordi-

nate transformation without the time coordinate change. Considering this dilatation, we

discuss the IR behaviour of ζ such as the consistency relation and the conservation in time.

We will emphasize that the invariance under this dilatation, which is a part of the large

gauge transformations, is preserved as well in the quantized system and therefore there is

no spontaneous symmetry breaking in this prescription.

2.2 Dilatation invariance and Noether charge

In this subsection, we discuss several implications of the dilatation invariance in single

clock inflation. Following ref. [16], we define the Noether charge for the dilatation as

Qζ ≡
1

2

∫

d3x [∆sζ(t, x)πζ(t, x) + πζ(t, x)∆sζ(t, x)] , (2.9)

where πζ denotes the conjugate momentum of ζ, which satisfies

[ζ(t, x), πζ(t, y)] = iδ(x− y) . (2.10)

Since the Hamiltonian for ζ is invariant under the dilatation, we obtain

[Qζ , H] = 0 , (2.11)

which implies that Qζ is independent of time. The Noether charge is a generator of the

dilatation transformation and satisfies

[Qζ , ζ(x)] = −i∆sζ(x) . (2.12)

Using the Fourier components of the fields2 we can rewrite the Noether charge Qζ as

Qζ = −sπζ,k=0 −
s

2

∫

d3k

(2π)3
{ζk, k · ∂kπζ,−k}+O(s2) . (2.13)

In performing the Fourier transformation, we did not drop the surface term. Therefore,

the charge Qζ given in eq. (2.9) is identical to the one given in eq. (2.13). The first term

of Qζ only operates on the k = 0 mode. The Noether charge Qζ can diverge due to the

IR modes, because it is an integral over the infinite spatial volume. In the following, we

neglect higher order terms of O(s2).

Equation (2.13) gives the non-perturbative definition of the Noether charge for the

dilatation. Since an explicit computation usually relies on perturbative expansion in the

interaction picture, one may want to introduce the Noether charge by using the fields in

2We use the convention of the Fourier transformation:

f(x) =

∫

d3k

(2π)3
eik·xf̂(k) , f̂(k) =

∫

d3xe−ik·xf(x) .

Here, the commutation relation for the Fourier modes of ζ and πζ is given by [ζk, πζ k′ ] = i(2π)3δ(k+ k
′).

– 6 –
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the interaction picture as3

QI
ζ ≡ 1

2

∫

d3x
[

∆sζ
I(t, x)πI

ζ (t, x) + πI
ζ (t, x)∆sζ

I(t, x)
]

, (2.15)

where ∆sζ
I(t, x) is given by

∆sζ
I(t, x) = −s(1 + x · ∂xζI(t, x)) . (2.16)

When we perform the dilatation transformation in the interaction picture or after the

perturbative transformation, there is one caveat which should be kept in mind. Changing

order of performing the finite dilatation transformation and performing the perturbative

expansion leads us to a different answer. In order words, performing the dilatation in the

interaction picture (with a use of QI
ζ) and performing the dilatation in the Heisenberg

picture (with Qζ) are different, while this discrepancy disappears, when we consider the

infinitesimal transformation generated by dQζ/ds|s→0. A lesson from here is that for a

legitimate prescription, the dilatation transformation should be performed in the non-

perturbative Heisenberg picture. A more detailed discussion can be found in appendix A.

2.3 Revisiting consistency relation

In this subsection, we discuss the condition(s) to derive the consistency relation of ζ. We

will see that while the dilatation invariance plays a crucial role, it is neither sufficient nor

even necessary to derive the consistency relation.

2.3.1 Condition for consistency relation

The consistency relation for ζ was first derived by Maldacena from an explicit computation

of the bi-spectrum of ζ [14]. Afterwards, the consistency relation was derived in a rather

general setup of single field models of inflation [15], while several examples that do not

satisfy the consistency relation were also reported [34–36] (see also refs. [37, 38]).

In ref. [14], it was argued that the bi-spectrum in the squeezed limit, which describes

the correlation between the long mode kL and short mode kS , can be computed by con-

sidering the influence of the long mode on the short mode. This influence can be described

as the dilatation kS → e
−ζkLkS . While ζ is not invariant under the dilatation transforma-

tion,4 we can construct another variable which is invariant under the dilatation transfor-

mation [39, 40]. In ref. [41], we showed that the leading contributions to the bi-spectrum

of such an invariant variable in the squeezed limit are canceled, choosing the adiabatic vac-

uum. In this computation, the squeezed bi-spectrum of ζ satisfies Maldacena’s consistency

relation, which is the key to ensure the cancellation.

3Notice that since the free Hamiltonian H0 is not invariant under the dilatation, i.e.,
[

H0, Q
I
ζ

]

6= 0 , (2.14)

in contrast to Qζ , which is time independent, the “charge” defined in the interaction picture QI
ζ varies

in time.
4The curvature perturbation ζ is invariant under the small gauge transformations but not under the

large gauge transformations.
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The consistency relation does not hold for an arbitrary quantum state even in single

field models. In refs. [17, 18, 20], it has been directly and indirectly suggested that the

dilatation invariance of the quantum state:

Qζ |Ψ〉 = 0 (2.17)

is crucial to derive the consistency relation. In ref. [17], it was shown that the invariance

of the 1PI effective action for ζ under the dilatation leads to a set of identities which relate

the n-point function and the (n + 1)-point function for ζ. What we directly obtain from

these identities, which are the so called Ward-Takahashi (WT) identity, is “the consistency

relation,” which relates the n-point function with n hard modes to the (n+1)-point function

with the homogeneous mode ζk=0 in addition to the n hard modes. The only difference from

the consistency relation is in that the inserted mode is not the soft mode ζk with k 6= 0.

Along this line, in refs. [20, 42, 43], “the consistency relation” was derived starting

with the dilatation invariance of the wave function in the ζ representation, Ψ[ζ] ≡ 〈ζ|Ψ〉,
where | ζ〉 is the normalized eigenstate of ζ, i.e.,

Ψ[ζs(t, x)] = Ψ[ζ(t, x)] , (2.18)

which directly follows from the invariance of the quantum state under the dilatation (2.17).5

If and only if the WT identity which describes the insertion of ζk=0 can be extended to

the relation which describes the insertion of the soft mode ζk with k 6= 0, we obtain the

consistency relation:

lim
kn→0

C(n)({ki}n)
P (kn)

= −
(

n−1
∑

i=2

ki · ∂ki
+ 3(n− 2)

)

C(n−1)({ki}n−1) , (2.19)

where C(n) denotes the n-point function of ζ with the momentum conservation factor

(2π)3δ

(

n
∑

i=1

ki

)

removed. Since we additionally need to impose that this extension is possible, requesting

the dilatation invariance of the quantum state (2.17) is not enough to derive the consistency

relation.

Now, the question is “What is the physical meaning of the additional condition that

allows the WT identity to be smoothly extended to the consistency relation, which describes

the insertion of the soft mode?” This issue was first addressed in ref. [18], where it was

argued that this condition is related to the locality of the theory. Even if the original

theory is local, the Lagrangian density for ζ in the unitary gauge becomes non-local due to

5For instance, at O(s), eq. (2.18) gives

0 =

∫

d3x∆sζ(t, x)
δ

δζ(t, x)
ψ[ζ] ,

which can be obtained from 0 = 〈ζ(x)|Qζ |ψ〉 by inserting the expression of the Noether charge, given in

eq. (2.9). Here, we used 〈ζ|πζ |ψ〉 ∝ δψ[ζ]/δζ.
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the presence of the Lagrange multipliers, the lapse function and the shift vector, which are

given by solving the elliptic equations. For instance, at the linear order in perturbation,

the shift vector Ni includes a contribution given by

∂iNi ⊃ εζ̇ ,

which introduces non-local interaction vertices. In the standard slow-roll inflation, ζ̇k is

suppressed in the limit k → 0 as ζ̇k = O(kpζk) with p ≥ 1. However, in the absence of this

suppression, the coefficients of the non-local interaction vertices in the Fourier space can

be singular in the limit k → 0. Then, Ni should be determined discontinuously at k = 0

in order to avoid the singular behaviour.

Along this line, our purpose of this section is to sharpen the relation between the

condition for the locality and the condition of being able to extend the “consistency re-

lation” with the insertion of the homogeneous mode to the consistency relation with the

soft mode k 6= 0, clarifying the physical meaning of the condition. As was mentioned

above, the Lagrangian density for ζ (and also for the gravitational waves) is non-local in

the sense that the Lagrangian density cannot be solely determined by the dynamical fields

at each spacetime point. For a classical theory, the condition for the smooth extension

of the homogeneous mode k = 0 to the soft modes k 6= 0 with a suitable fall-off at the

spatial infinity is nothing but the one to pick up the Weinberg’s adiabatic mode [3]. We

elaborate the physical meaning of this condition for a quantum theory by using the Noether

charge Qζ . As will be discussed in the next section, with the use of the Noether charge, a

generalization to the case with higher spin fields proceeds straightforwardly.

2.3.2 Conditions on the homogeneous mode and hard modes

As was mentioned in section 2.3.1, the validity of the consistency relation is deeply related

to the invariance of the wave function or the effective action under the dilatation, which is

a large gauge transformation. Maldacena derived the consistency relation for the tree-level

bi-spectrum in the squeezed limit, i.e., (2.19) with n = 3, choosing the adiabatic vacuum

(or the Euclidean vacuum) [14]. This vacuum also can be defined non-perturbatively by

requesting the regularity of correlation functions in the limits t → −∞(1± iǫ).6 Here, the

time path is rotated towards the imaginary axis in the distant past. This serves one of

the examples of the quantum state |Ψ〉, which preserves the dilatation invariance, since

this definition does not artificially introduce any specific scale. At perturbative level,

a correlation function for the Euclidean vacuum can be calculated by adopting the iǫ

prescription. Here, the (free) mode function should be chosen to be the one for the adiabatic

vacuum (a.k.a, the Bunch-Davies vacuum in de Sitter limit) [44].

In order to study the condition for the dilatation invariance of the quantum state (2.17),

we decompose the wave function in terms of the eigenstates of the spatial average of ζ all

over a time constant slicing, e.g., at the end of inflation,

ζ̄ ≡
∫

d3xζ(x)
∫

d3x
, (2.20)

6To be more precise, the regularity should be required in the limits t → −∞(1 ± iǫ) for a fixed set of

momenta. Therefore, all the momenta go to the UV in these limits.
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as

|Ψ〉 =
∫

dζ̄c |ψ(ζ̄c)| | ζ̄c 〉|Ψ〉ζ̄c . (2.21)

The eigenstate | ζ̄c 〉 satisfies

ζ̄| ζ̄c 〉 = ζ̄c| ζ̄c 〉 , (2.22)

where ζ̄c is a c-number eigenvalue. In order to distinguish the eigenvalues of ζ̄, which are

c-numbers, from the operator ζ̄, we put the index c on the eigenvalues. In eq. (2.21), we fac-

torized the wave function of ζ̄, ψ(ζ̄c), from 〈ζ̄c |Ψ〉, while absorbing the phase into |Ψ〉ζ̄c , as

〈ζ̄c |Ψ〉 = |ψ(ζ̄c)| |Ψ〉ζ̄c . (2.23)

From the normalization condition for |Ψ〉ζ̄c , the amplitude of the wave function |ψ(ζ̄c)|
is unambiguously defined. Since the quantum state |Ψ〉 also includes the inhomogeneous

modes with k 6= 0, 〈ζ̄c |Ψ〉 should be understood as a vector in infinite dimensional Hilbert

space. We express the normalized quantum state for all the modes with k 6= 0 obtained

by the projection of |Ψ〉 to the eigen state | ζ̄c〉 as |Ψ〉ζ̄c . Using eq. (2.12), we obtain

[

iQζ , ζ̄
]

= −s . (2.24)

Since an operation of eiQζ shifts the eigenvalue of ζ̄ by s, i.e.,

eiQζ | ζ̄c〉 = | ζ̄c + s〉 , (2.25)

we obtain

iQζ | ζ̄c〉 = s
∂

∂ζ̄c
| ζ̄c〉 . (2.26)

Using this condition, we can express the dilatation invariance condition for the quan-

tum state |Ψ〉, (2.17), as

0 =

∫

dζ̄c
[

−s
∂|ψ(ζ̄c)|

∂ζ̄c
| ζ̄c〉|Ψ〉ζ̄c + |ψ(ζ̄c)| | ζ̄c〉

(

iQζ − s
∂

∂ζ̄c

)

|Ψ〉ζ̄c
]

. (2.27)

Operating 〈ζ̄c′ | on eq. (2.27), the real and imaginary parts, respectively, give

∂

∂ζ̄c
|ψ(ζ̄c)| = 0 , (2.28)

and

iQζ |Ψ〉ζ̄c = s
∂

∂ζ̄c
|Ψ〉ζ̄c . (2.29)

The first condition (2.28) requires that the amplitude of the wave function ψ(ζ̄c), which

represents the probability distribution of ζ̄, should be flat in the direction of ζ̄ in the Hilbert

space. The condition (2.28) is satisfied, e.g., for a Gaussian wave function whose variance
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blows up in the limit of the homogeneous mode, which is the case for a nearly scale invari-

ant power spectrum. While the wave function for ζ̄ becomes non-normalizable, as will be

discussed in section 4, this does not create any problems as far as we compute a certain set

of quantities which mimic to observable quantities. The condition (2.28) requires that the

probability distribution should be non-perturbatively flat in the direction of the homoge-

neous mode ζ̄. The second condition may be a little more non-trivial. The quantum state of

the inhomogeneous modes generically changes under a variation of the homogeneous mode

ζ̄. The condition (2.29) restricts how the quantum state of the inhomogeneous modes should

respond to the change of the homogeneous mode, which is expressed by the operation of Qζ .

Since the consistency relation describes an insertion of an inhomogeneous mode with

k 6= 0 that suitably falls off at the spatial infinity, we need to extend the above argument to

inhomogeneous modes. For this purpose, we introduce the generator of a spatial dependent

dilatation given by

QW
ζ (x) ≡ 1

2

∫

d3x′W (x′ − x)
[

∆sζ(t, x
′)πζ(t, x

′) + πζ(t, x
′)∆sζ(t, x

′)
]

, (2.30)

where W (x) denotes a smooth window function which is normalized as
∫

d3xW (x) = 1

and which vanishes at |x| >∼ L. Here, we set L to be of order of 1/kL. The generator Q
W
ζ (x)

induces the dilatation only for the fields at x′ with |x−x′| <∼ L. The Noether charge (2.9) is

defined by the integral all over the time constant slicing and hence the integral does not con-

verge in general. The introduction of the window function can make the integral converge.

Since the domain of integration is finite, the generator QW
ζ (x) depends on where we choose

the center of the integral domain, x. Performing the Fourier transformation, we obtain

QW
ζ (kL) = −s−kL

[

πkL
+

1

2

∫

d3k

(2π)3
{ζk, k · ∂kπkL−k}

]

+O(s2) , (2.31)

where Ŵ (k) denotes the Fourier mode of the window function, which is normalized as

lim
k→0

Ŵ (k) = 1 ,

and vanishes for k ≫ 1/L. Here, we introduced

sk ≡ sŴ (k) . (2.32)

We focus on the field within a large volume of O(L3
c). We set Lc to be much larger than

all the wavelengths, i.e., Lc ≫ 1/kL, 1/kS , and we will send Lc → ∞ after our computation.

Next, we introduce a smeared field in momentum space defined by

ζ̃kL
≡ L3

c

∫

d3k′ Ŵ(kL − k′) ζk′ , (2.33)

with

Ŵ(k) =
3
∏

i=1

θ
[

(2Lc)
−1− |ki|

]

. (2.34)
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ζ̃kL
describes a collective mode with the representative wavenumber kL and when we eval-

uate ζ̃ in the position space by performing the inverse Fourier transformation, it decays

outside the local volume of O(L3
c). The fluctuations outside the local volume can be de-

scribed as the modes which are orthogonal to the collective mode ζ̃kL
. Since the correlations

between the fluctuations for |x| ≪ Lc and those outside the local volume of O(L3
c) are neg-

ligibly small, in what follows, we neglect the fluctuations outside the local volume, which

will disappear after taking the limit Lc → ∞.

The commutation relation of QW
ζ with the long mode ζkL

is given by

[

iQW
ζ (kL) , ζ̃pL

]

= −(2πLc)
3s−kL

Ŵ(kL + pL) . (2.35)

Equation (2.35) states that the generator QW
ζ (kL) shifts the collective soft mode ζ̃kL

by

−skL
(2πLc)

3. We will find that the factor (2πLc)
3, which blows up in the limit Lc → ∞,

is cancelled out in the final expression of the consistency relation as it should be. Whilst,

the commutation relation with the short mode ζpS
is given by

[

iQW
ζ (kL) , ζpS

]

≃ s−kL
∂pS

(pS ζpS+kL
) , (2.36)

where we approximated kS + kL as kS .

Repeating the argument around eqs. (2.21)–(2.23) except that the homogeneous mode

ζ̄ is now replaced with a collective inhomogeneous soft modes ζ̃kL
, we expand the quantum

state |Ψ〉 in terms of the orthonormal basis {| ζ̃cpL
〉}, which are the eigenstates of ζ̃pL

, as

|Ψ〉 =
∫

dζ̃cpL
|ψ(ζ̃cpL

)| | ζ̃cpL
〉|Ψ〉ζ̃cpL

, (2.37)

where we factorized the amplitude of the wave function, |ψ(ζ̃ckL
)|, from 〈ζ̃ckL

|Ψ〉, as before.
Using eq. (2.35), we obtain

iQW
ζ (kL)| ζ̃c−kL

〉 = (2πLc)
3s−kL

∂

∂ζ̃c−kL

| ζ̃c−kL
〉 . (2.38)

As we have already discussed, the dilatation invariance requires the conditions (2.28)

and (2.29). In particular, the second condition (2.29) restricts how the inhomogeneous

modes respond to the insertion of the homogeneous mode ζ̄. In the following, we will show

that when this condition can be extended to the soft mode with kL 6= 0, i.e.,

iQW
ζ (kL)|Ψ〉ζ̃c

−kL

= (2πLc)
3s−kL

∂

∂ζ̃c−kL

|Ψ〉ζ̃c
−kL

(2.39)

is fulfilled, we can derive the consistency relation for ζ as shown below.

In order to show the consistency relation by using the condition (2.39), we evaluate

〈Ψ | [iQW
ζ (kL), ζkS1

· · · ζkSn
] |Ψ〉 (2.40)

in two ways: first by operating iQW
ζ (kL) on the quantum state |Ψ〉 and second by consid-

ering the change of the short wavelength modes ζkS
under the inhomogeneous dilatation,
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expressed by the commutation relation with iQW
ζ (kL). When the condition (2.39) is satis-

fied, using eq. (2.38), we obtain

iQW
ζ (kL)|Ψ〉 = (2πLc)

3s−kL

∫

dζ̃c−kL
|ψ(ζ̃c−kL

)| ∂

∂ζ̃c−kL

(

| ζ̃c−kL
〉|Ψ〉ζ̃c

−kL

)

= −(2πLc)
3s−kL

∫

dζ̃c−kL

∂|ψ(ζ̃c−kL
)|

∂ζ̃c−kL

| ζ̃c−kL
〉|Ψ〉ζ̃c

−kL

. (2.41)

When we neglect the non-linear contributions of the soft modes,7 the wave function of

ζ̃ckL
is given by the Gaussian distribution function. Since the square of |ψ(ζ̃ckL

)| gives the

probability distribution, we can express the amplitude of the Gaussian wave function as

|ψ(ζ̃c−kL
)| ∝ exp

(

−
ζ̃ckL

ζ̃c−kL

4(2πLc)3Pζ(kL)

)

, (2.42)

where Pζ(kL) denotes the power spectrum of ζ. This is because the variance of ζ̃ckL
is

given by

〈 | ζ̃kL
|2〉 = (2π)3L6

c

∫

d3kŴ(kL − k)Ŵ(−kL + k)Pζ(kL) ≃ (2πLc)
3Pζ(kL) , (2.43)

where the last equality is exact in the limit Lc → ∞. Remember that ζ̃ckL
is not an

independent variable from ζ̃c−kL
, since ζ̃ckL

= ζ̃c∗−kL
holds from the reality of ζ.

Using eq. (2.42), we obtain

∂

∂ζ̃c−kL

|ψ(ζ̃c−kL
)| s.l.≈ −

ζ̃ckL

2(2πLc)3Pζ(kL)
|ψ(ζ̃c−kL

)| . (2.44)

Here and hereafter, we use
s.l.≈ to express that we approximate the wave function of the soft

mode by the above Gaussian distribution function. Replacing the eigenvalue ζ̃ckL
with the

operator ζ̃kL
, which commutes with the integral over ζ̃ckL

, we obtain

iQW
ζ (kL)|Ψ〉 s.l.≈ s−kL

2Pζ(kL)
ζ̃kL

|Ψ〉 . (2.45)

Using this expression, we arrive at

〈Ψ |[iQW
ζ (kL), ζkS1

· · · ζkSn
]|Ψ〉 s.l.≈ − s−kL

Pζ(kL)
〈Ψ |ζ̃kL

ζkS1
· · · ζkSn

|Ψ〉 . (2.46)

Meanwhile, using eq. (2.36), we obtain

〈Ψ |[iQW
ζ (kL), ζkS1

· · · ζkSn
]|Ψ〉 = s−kL

n
∑

i=1

∂kSi
kSi〈Ψ |ζkS1

· · · ζkSn
|Ψ〉 . (2.47)

7Here, all the interaction vertexes connected to more than two soft modes are neglected.
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Equating these two expressions derived from the two different ways, we have

−〈Ψ |ζ̃kL
ζkS1

· · · ζkSn
|Ψ〉 s.l.≈ Pζ(kL)

n
∑

i=1

∂kSi
kSi〈Ψ |ζkS1

· · · ζkSn
|Ψ〉 . (2.48)

The ordinary form of the consistency relation (2.19) is the one obtained by removing the

delta function, which describes the momentum conservation, from the expression

−〈Ψ |ζpL
ζkS1

· · · ζkSn
|Ψ〉 s.l.≈ Pζ(pL)

n
∑

i=1

∂kSi
kSi〈Ψ |ζkS1

· · · ζkSn
|Ψ〉 . (2.49)

If we take the average of eq. (2.49) operating L3
c

∫

d3pLŴ(kL − pL), we recover eq. (2.48).

After we take the limit Lc → ∞, which is automatically required when we take the soft

limit kL → 0, the averaging window becomes infinitesimally narrow. Therefore, we can

conclude that eq. (2.48) is equivalent to the ordinary consistency relation.

Under the Gaussian approximation of |ψ(ζ̃ckL
) |, the only assumption imposed to derive

the consistency relation (2.19) is eq. (2.39), which states that the influence of inhomoge-

neous dilatation is identical to shifting the collective soft mode ζ̃kL
which interacts with the

hard modes by +(2πLc)
3skL

. (The factor (2πLc)
3 here is an artifact caused by discussing

the Fourier space collective mode.) The consistency relation can be obtained, when the

condition (2.29), which was required to preserve the dilatation invariance of the quantum

state, can be extended to the inhomogeneous soft mode with kL 6= 0. In this sense, the

condition (2.39) can be understood as a quantum version of the condition for Weinberg’s

adiabatic mode.

The condition (2.39) cannot be satisfied, in case the (linear) soft mode ζkL
does not

stop evolving in time in the limit kL → 0 as in models with multi light fields and also in non-

attractor models.8 In fact, the condition (2.39) states that performing the inhomogeneous

dilatation transformation that induces the time-independent shift of ζkL
, is equivalent to

shifting (the eigen value of) ζkL
at the evaluation time, which implies that the inserted soft

mode should be dominated by a constant contribution.

Now, we show that the condition (2.39) can be indeed understood as the locality

condition. For this purpose, we consider a set of eigenstates for the Fourier mode ζkL

which satisfies ζkL
| ζcL 〉 = ζckL

| ζcL 〉 instead of the eigenstates for the collective mode ζ̃kL
.

Using the complete set of | ζcL 〉, we decompose the quantum state |Ψ 〉 as

|Ψ 〉 =
∫

DζL|ψ(ζcL )| | ζcL 〉 |Ψ 〉ζc
L
, (2.50)

where DζL represents the functional integral over all soft modes. The extension of eq. (2.39)

to the case of continuous modes will be

iQW
ζ (kL)|Ψ〉ζc

L
= sŴ (−kL)

δ

δζc−kL

|Ψ〉ζc
L
. (2.51)

8According to our understanding, in solid inflation [45], the anisotropic pressure plays the role of an

additional degree of freedom, leading to the non-conservation of ζ and also the violation of the consistency

relation. This is consistent with the statement shown in ref. [46] that the consistency relation can be

recovered by taking angular average over the long mode.
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Using this relation, we obtain

iQW
ζ (x)|Ψ〉ζ̃c

L
= s

∫

d3kL

(2π)3
e−ikL·x Ŵ (kL)

δ

δζkL

|Ψ 〉ζc
L
= s

δ

δζL(x)
|Ψ 〉ζc

L
, (2.52)

where

ζL(x) ≡
∫

d3kL

(2π)3
Ŵ (kL)e

ikL·xζkL
(2.53)

is the coarse grained field corresponding to the degrees of freedom of soft modes. Let

us imagine a set of the separate universes whose sizes are of O(L). The operator QW
ζ (x)

induces the dilatation only within the separate universe centered at x. The condition (2.52)

states that the impact of the soft mode on the quantum state of short modes is limited

only to the influence which is equivalent to the inhomogeneous dilatation in the separate

universe.

Notice that since (the amplitude of) the wave function is not flat in the direction of

the inhomogeneous mode of ζ, i.e., ∂|ψ(ζ̃kL
)|/∂ζ̃kL

6= 0 , as seen in eq. (2.44), the quantum

state |Ψ〉 does not remain invariant under the inhomogeneous dilatation QW
ζ (kL), i.e.,

QW
ζ (kL)|Ψ〉 6= 0 . (2.54)

As shown in eq. (2.45), operating the generator of the inhomogeneous dilatation inserts the

soft mode ζ̃kL
with kL 6= 0, which changes the quantum state, even if the state is invariant

under the homogeneous dilatation. As will be discussed in section 4, because of that,

choosing a quantum state which is invariant under the dilatation is not enough to guarantee

the IR regularity. Let us emphasize that there is no spontaneous symmetry breaking for

the large gauge transformations: the symmetry under the dilatation, generated by Qζ , is

preserved also after the quantization, while the inhomogeneous dilatation, generated by

QW
ζ , is not a symmetry of the classical action.

Although we assumed that the wave function of the soft mode, |ψ(ζ̃ckL
)|, is given by

the Gaussian distribution, the non-linear interactions of the hard modes are fully kept.

Therefore, the consistency relation thus derived can apply to a much more general setup

compared to the original one by Maldacena in ref. [14]. For instance, the wavelengths of the

hard modes can be arbitrary as far as kSL ≃ kS/kL ≫ 1, i.e., they are not necessarily in

super Hubble scales. In addition, obviously the same argument as above can apply, even if

the time coordinates of the short modes ζkSi
(ti) with i = 1, · · · , n are different among them.

Because of the Gaussian approximation for ψ(ζ̃ckL
), the consistency relation derived

here do not contain non-linear interactions of the soft modes. Notice that since there is no

approximation for the soft modes in the locality condition (2.39) or (2.52), when we include

the non-linear contributions of the soft modes, the same condition leads to the consistency

relation.9 However, the non-linear interactions of the soft modes in general yield the IR

divergences through their radiative corrections. Therefore, this extension requires a more

careful consideration. This issue will be discussed in section 4.
9When we include the non-linear contributions of the soft modes, the dilatation also changes the argu-

ment of ζ and the transformation of ζkL
under the dilatation is not the simple shift. In order not to change

the argument, we need to introduce the window function in a physical distance such as the geodesic distance.
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3 Massive particles with arbitrary spins

In this section, we consider an influence of heavy fields with arbitrary spins, which interact

with the inflaton directly or indirectly through the gravitational interaction. The argument

in this section is a generalization of the one in ref. [19], which showed the consistency

relation for a heavy scalar field and the conservation of ζ, taking into account radiative

corrections of the heavy scalar field. In the previous section, we derived the condition

for the consistency relation, using the generator(s) of the inhomogeneous dilatation. This

argument can be extended to the cases with the radiative corrections of massive non-zero

spin fields straightforwardly. In this section and in appendix B, to keep generality, we

consider a (d+ 1)-dimensional spacetime.

3.1 Setup of the problem

In this section, we consider a heavy field whose mass is MS and spin is S ≥ 0, including

higher spin fields. We only consider the mass range where there is no instability [21, 47],

e.g., M2 ≥ 2H for a spin 2 field. For our purpose, we do not need to specify the detail

of the interaction for the interacting system with the inflaton and the massive fields. We

simply express the action as

S[δg, χ] = Sad[δg] + Sχ[δg, χ] , (3.1)

with

Sχ[δg, χ] ≡
∑

α

∫

dt ddx ad edζ(x)f{iα}(φ, δg)O{iα}(x) , (3.2)

where χ and O{iα} denote a set of heavy fields χI with I = 1, 2, · · · and a composite

operator of χ, respectively, and δg denotes the set of the metric perturbations, N , Ni, ζ,

and γij . Here, the action Sad[δg] only includes the metric perturbations in the unitary

gauge defined by the condition δφ = 0 and it is identical to the action in single field models

of inflation.

The heavy fields and the inflaton φ also can interact directly. For the present purpose,

we do not need to specify the composite operators O{iα}. We only need to specify their

scaling dimensions ∆α, i.e., they transform as

Os
{iα}

(t, xs) = e−∆αsO{iα}(t, x) (3.3)

under the dilatation transformation x → xs = esx, where iα denotes tensor indices. While

the heavy fields can be a fermion with a half integer spin, we assume that δg interacts with

χ only through the composite operators which transform as tensors (with an integer spin)

under coordinate transformations. A composite operator with n tensor (lower) indices has a

scaling dimension n, e.g., ∆ = 0 for a scalar composite operator and ∆ = 1 for a vector one.

3.2 Soft theorem for heavy fields with non-zero spins

In this subsection, we derive the consistency relation or the soft theorem in the presence

of the heavy fields, extending the discussion in the previous section. In the previous sec-

tion, expanding the quantum state |Ψ〉 as in eq. (2.21), we derived the conditions (2.28)
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and (2.29) by requesting the invariance of the quantum state under the dilatation. Here,

repeating the same argument except that now the quantum state |Ψ〉 also includes the

heavy fields in addition to the inhomogeneous modes of ζ, we obtain the same conditions

as eqs. (2.28) and (2.29) from the dilatation invariance of |Ψ〉. Since |Ψ〉ζ̄c also includes

the degrees of freedom for the heavy fields, the condition (2.29) restricts how both of the

inhomogeneous modes of ζ and the heavy fields should respond to the dilatation transfor-

mation. Similarly, when the condition (2.29) can be extrapolated to the inhomogeneous

dilatation with the fall-off at the spatial infinity by replacing the homogeneous mode ζ̄c

in (2.29) with the soft mode ζ̃kL
, i.e., when the locality condition (2.39) is fulfilled also

in the interacting system with the inflaton and the heavy fields, we can derive the soft

theorem, which describe the influence of the soft mode.

Recall that the consistency relation can be derived by evaluating the change of the

quantum state |Ψ〉 and the change of the operators for the heavy fields. In order to derive

the soft theorem for the heavy fields, we consider

〈Ψ |[iQW
ζ (kL), O{iα1

}kS1
(t1) · · ·O{iαn}kSn

(tn)]|Ψ〉 , (3.4)

where O{iα}kS
(t) denotes the Fourier mode of O{iα}(x) with kL/kS ≪ 1. Repeating the

same argument and taking the limit Lc → ∞, we find that the condition (2.39) implies

eq. (2.45). Then, using eq. (2.45), we can compute the change of the quantum state under

the inhomogeneous dilatation as

〈Ψ |[iQW
ζ (kL), O{iα1

}kS1
(t1) · · ·O{iαn}kSn

(tn)]|Ψ〉
s.l.≈ − s−kL

Pζ(kL)
〈Ψ |ζkL

O{iα1
}kS1

(t1) · · ·O{iαn}kSn
(tn)|Ψ〉 . (3.5)

We equate this expression with the one obtained by computing the change of the composite

operators O{iα}k under the (inhomogeneous) dilatation. Since O{iα}k transforms as in

eq. (3.3), we obtain
[

iQW
ζ (kL), O{iα1

}kS

]

= s−kL

(

∂

∂kS
kS −∆α

)

O{iα1
}kS

. (3.6)

Likewise in the discussion for the single field case, whether the dilatation parameter is

homogeneous or inhomogeneous does not affect the transformation of the short modes.

Using this expression, we obtain

〈Ψ |[iQW
ζ (kL), O{iα1

}kS1
(t1) · · ·O{iαn}kSn

(tn)]|Ψ〉
s.l.≈ s−kL

n
∑

i=1

(∂kSi
kSi −∆αi

) 〈Ψ |O{iα1
}kS1

(t1) · · ·O{iαn}kSn
(tn)|Ψ〉 . (3.7)

Equating these two expressions and sending Lc to the infinity, we obtain the consistency

relation for the heavy fields as

lim
kL→0

〈Ψ|ζkL
O{iα1

}kS1
(t1) · · ·O{iαn}kSn

(tn)|Ψ〉′

Pζ(kL)

s.l.≈ −
(

n
∑

i=2

kSi ·
∂

∂kSi
+d(n−1)−∆

)

〈Ψ|O{iα1
}kS1

(t1) · · ·O{iαn}kSn
(tn)|Ψ〉′, (3.8)
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where we defined ∆ ≡
∑n

i=1∆αi
. We put a prime to denote the correlation functions with-

out the multiplicative factor (2π)d and the delta function which expresses the momentum

conservation.

3.3 Effective action

In order to show that the radiative corrections of the heavy fields do not induce any

time evolution of ζ at large scales when the condition (2.39) is satisfied, we compute the

effective action for ζ by integrating out the heavy fields χ in the closed time path (or

the in-in) formalism. In particular, the contributions of the heavy fields χ are described

by the Feynman and Vernon’s influence functional [48, 49]. In this subsection, we briefly

summarize the way to calculate the influence functional and the effective action. We will

see that now the argument to show the conservation proceeds almost in parallel to the one

for the heavy scalar field, discussed in ref. [19].

3.3.1 Influence functional

Performing the path integral along the closed time path, the n-point function of the cur-

vature perturbation ζ is given by

〈Ψ |Tζ(x1) · · · ζ(xn)|Ψ〉

=

∫

Dδgdy+
∫

Dχ+

∫

Dδgdy−
∫

Dχ− ζ+(x1) · · · ζ+(xn) eiS[δg+,χ+]−iS[δg−,χ−]

∫

Dδgdy+
∫

Dχ+

∫

Dδgdy−
∫

Dχ− eiS[δg+,χ+]−iS[δg−,χ−]
, (3.9)

where we double the fields: δg+ and χ+ denote the fields defined along the path from the

past infinity to the time t and δg− and χ− denote the fields integrated from the time t

to the past infinity. Since N and Ni are the Lagrange multiplies, which are eliminated by

solving the constraint equations, we perform the path integral only regarding the dynamical

degrees of freedom δgdy ≡ (ζ, γij) and χ. An insertion of δg+(x) into the path integral in

the numerator as above gives a correlation function in the time ordering, expressed by T ,

while an insertion of δg−(x) gives a correlator in the anti-time ordering, expressed by T̄ .

Separating the part which describes the radiative corrections of the heavy fields as

iSeff [δg+, δg−] ≡ ln

[
∫

Dχ+

∫

Dχ− eiS[δg+, χ+]−iS[δg−, χ−]

]

, (3.10)

we can express the n-point function for ζ superficially as if there are only the metric

perturbations and the inflaton as

〈Ψ |Tζ(x1) · · · ζ(xn)|Ψ〉 =
∫

Dδgdy+
∫

Dδgdy− ζ+(x1) · · · ζ+(xn) eiSeff [δg+, δg−]

∫

Dδgdy+
∫

Dδgdy− eiSeff [δg+, δg−]
. (3.11)

The effective action is recast into

Seff [δg+, δg−] = Sad[δg+]− Sad[δg−] + S′
eff [δg+, δg−] , (3.12)

where S′
eff is the so-called influence functional, given by

iS′
eff [δg+, δg−] ≡ ln

[
∫

Dχ+

∫

Dχ− eiSχ[δg+,χ+]−iSχ[δg−,χ−]

]

, (3.13)
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where we factorized Sad[δg±] which commutes with the path integral over χ±. Here, we

only consider the correlation functions for ζ, but the effective action Seff [δg+, δg−] describes

the evolution of both ζ and γij affected by the quantum fluctuations of the heavy fields χ.

For our later use, we introduce the correlation functions of χ computed in the absence of

the metric perturbations as

〈O[χ+, χ−]〉± ≡
∫

Dχ+

∫

Dχ−O[χ+, χ−]e
iSχ[0,χ+]−iSχ[0,χ−]

∫

Dχ+

∫

Dχ− eiSχ[0,χ+]−iSχ[0,χ−]
. (3.14)

Expanding S′
eff in terms of the metric perturbations δg = (δN, Ni, ζ, γij), we obtain

iS′
eff [δg+, δg−] ≡

∞
∑

n=0

iS′
eff(n)[δg+, δg−] , (3.15)

where S′
eff(n) denotes the terms which include n δgαs, given by

iS′
eff(n)[δg+, δg−] =

1

n!

∑

a1=±

· · ·
∑

an=±

∫

dd+1x1 · · ·
∫

dd+1xn

× δga1(x1) · · · δgan(xn)W
(n)
δga1 ···δgan

(x1, · · · , xn) , (3.16)

with the non-local interaction vertices induced by the heavy fields:

W
(n)
δga1 ···δgan

(x1, · · · , xn) ≡
δniS′

eff [δg+, δg−]

δga1(x1) · · · δgan(xn)

∣

∣

∣

∣

δg±=0

. (3.17)

In eq. (3.16), each δgam with m = 1, · · · , n should add up all the metric perturbations

δNam , Ni,am , ζam , γij am . Here and hereafter, for notational brevity, we omit the summation

symbol over δg unless necessary. Inserting eq. (3.13) into eq. (3.17), we can express the non-

local interaction vertices by using the correlators for χ. These expressions are summarized

in appendix B. Once we expand the effective action as in eq. (3.16), the shift symmetry

is lost at each order in perturbation about δg. In the following, we will show that we can

rewrite the effective action in such a way that the shift symmetry is manifestly preserved

by using the consistency relation.

3.3.2 Soft theorem and effective action

In order to show the conservation of ζ in the presence of the radiative corrections of the

heavy fields, here we rewrite the consistency relation (3.8). As was mentioned in the pre-

vious section, the time coordinates of the hard modes can be different among different

composite operators. Taking an appropriate ordering of the composite operators, i.e., we

can put the index ai = ± on each composite operator O{iαi
}kSi

in the consistency rela-

tion (3.8). In the following, we use the prescription introduced in the previous subsection

(see also appendix B). In particular, all the correlation functions should be understood as

being computed in the path ordering of the closed time path with the distinction of ±.
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Employing the Gaussian approximation for the soft mode of ζ again, we can compute

the correlation function in the first line of eq. (3.8) as

〈Ψ|ζkL
Oa1

{iα1
}kS1

(t1) · · ·Oan
{iαn}kSn

(tn)|Ψ〉
s.l.≈ −i 〈Ψ, 0ζ |Sint−

χ ζkL
Oa1

{iα1
}kS1

(t1) · · ·Oan
{iαn}kSn

(tn)|Ψ, 0ζ〉

+ i 〈Ψ, 0ζ |ζkL
Oa1

{iα1
}kS1

(t1) · · ·Oan
{iαn}kSn

(tn)S
int+
χ |Ψ, 0ζ〉 , (3.18)

where |Ψ, 0ζ〉 denotes the quantum state |Ψ〉 with ζ being in non-interacting vacuum.

Here, Sint
χ denotes a set of the interaction vertexes which include only one ζ without

derivative and the massive fields χ and is given by

Sint
χ =

∫

dt ddx ζ(x)
δSχ

δζ(x)

∣

∣

∣

∣

ζ=0

=

∫

dt

∫

ddk

(2π)d
ζk

δSχ

δζ

∣

∣

∣

∣

ζ=0

(t, −k) (3.19)

with

δSχ

δζ

∣

∣

∣

∣

ζ=0

(t, k) ≡
∫

ddx e−ik·x δSχ

δζ(x)

∣

∣

∣

ζ=0
. (3.20)

We express the interaction action Sint
χ with the heavy fields on the paths ± as Sint±

χ ,

respectively. Factoring out the power spectrum of ζ, we obtain

〈Ψ|ζkL
Oa1

{iα1
}kS1

(t1) · · ·Oan
{iαn}kSn

(tn)|Ψ〉
Pζ(kL)

s.l.≈ −i

∫

dt

〈

Ψ, 0ζ

∣

∣

∣

∣

∣

δS−
χ

δζ

∣

∣

∣

∣

ζ=0

(t, kL)O
a1
{iα1

}kS1
(t1) · · ·Oan

{iαn}kSn
(tn)

∣

∣

∣

∣

∣

Ψ, 0ζ

〉

+ i

∫

dt

〈

Ψ, 0ζ

∣

∣

∣

∣

∣

Oa1
{iα1

}kS1
(t1) · · ·Oan

{iαn}kSn
(tn)

δS+
χ

δζ

∣

∣

∣

∣

ζ=0

(t, kL)

∣

∣

∣

∣

∣

Ψ, 0ζ

〉

, (3.21)

where the power spectrum of ζ is canceled between the numerator and the denominator.

In the first line of eq. (3.21), we omitted the time coordinate of the soft mode ζkL
, since

it should be constant in time to satisfy the condition (2.39). (If one wants to specify the

time coordinate of ζkL
, we can place it along the closed time path at the end of inflation

where ζ+kL
= ζ−kL

.) Expressing the composite operators in the position space, we obtain

n
∑

i=1

{∂xi
xi − (d−∆i)}

〈

Ψ, 0ζ

∣

∣

∣

∣

∣

Oa1
{iα1

}(x1) · · ·O
an
{iαn}

(xn)

∣

∣

∣

∣

∣

Ψ, 0ζ

〉

s.l.≈ −i

∫

dt

〈

Ψ, 0ζ

∣

∣

∣

∣

∣

δS−
χ

δζ

∣

∣

∣

∣

ζ=0

(t, kL)O
a1
{iα1

}(x1) · · ·O
an
{iαn}

(xn)

∣

∣

∣

∣

∣

Ψ, 0ζ

〉

+ i

∫

dt

〈

Ψ, 0ζ

∣

∣

∣

∣

∣

Oa1
{iα1

}(x1) · · ·O
an
{iαn}

(xn)
δS+

χ

δζ

∣

∣

∣

∣

ζ=0

(t, kL)

∣

∣

∣

∣

∣

Ψ, 0ζ

〉

. (3.22)

Since we neglected the higher order contributions of the soft modes using the approximation

of
s.l.≈ , we replaced the quantum state |Ψ〉 in the first line with |Ψ, 0ζ〉.
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3.4 Conservation of ζ

For the purpose of showing the conservation of ζ, let us introduce

δĝ(x) = {N(x), e−ζ(x)Ni(x), ζ̇(x), e
−ζ(x)∂xζ(x), e

−ζ(x)∂x, e
−2ζ(x)γij(x)} . (3.23)

Since the metric perturbations transform as

Ns(t, xs) = N(t, x) , esNi, s(t, xs) = Ni(t, x) , (3.24)

ζs(t, xs) + s = ζ(t, x) , e2sγij s(t, xs) = γij(t, ,x) (3.25)

under the dilatation transformation, we can easily see that δĝ(x) transform as a scalar

under the dilatation.

Taking into account that the composite operator O{iα} transforms as given in eq. (3.3),

we also can construct a scalar operator for O{iα} as e−∆αζ(x)O{iα}(x). Here, introducing

f̂{iα}(φ, δĝ) ≡ e∆αζf{iα}(φ, δg) (3.26)

for each f{iα} in the action (3.2), we rewrite the action for the heavy fields as

Sχ[δg, χ] ≡
∑

a

∫

dt ddx adedζ(x)f̂{iα}(φ, δĝ)e−∆αζ(x)O{iα}(x) . (3.27)

Since f̂{ia} transforms as a scalar under the dilatation, the metric perturbations included

in f̂{ia} can be expressed only in terms of δĝ(x), which also transform as a scalar.

Taking the first and the second variations of Sχ with respect to ζ, we obtain

δSχ

δζ(x)

∣

∣

∣

∣

δg=0

=
∑

α

ad(t)(d−∆α)f
{iα}O{iα}(x) , (3.28)

δ2Sχ

δζ2(x)

∣

∣

∣

∣

δg=0

=
∑

α

ad(t)(d−∆α)
2f{iα}O{iα}(x) . (3.29)

Since we expressed the action as in eq. (3.27), the terms in which the derivative operates on

f̂{iα} vanish. Variations with respect to the other metric perturbations, δN, e−ζNi, e
−2ζγij ,

which are in the combination of δĝ, yield

δSχ

δĝ(x)

∣

∣

∣

∣

δg=0

=
∑

α

ad(t)
∂f̂{iα}

∂ĝ(x)

∣

∣

∣

∣

δg=0

O{iα}(x) , (3.30)

δ2Sχ

δĝ(x)δζ(x)

∣

∣

∣

∣

δg=0

=
∑

α

ad(t)(d−∆α)
∂f̂{iα}

∂ĝ(x)

∣

∣

∣

∣

δg=0

O{iα}(x) , (3.31)

and so on. Multiplying ad(t)∂f̂{iα}/∂g(x)|δg=0 on eq. (3.22) with n = 1 and all the remain-

ing metric perturbations set to 0 and taking summation over α, we obtain

∂x

{

xW
(1)
δg±

(x)
}

s.l.≈
∫

dty

∫

ddye−ikL·y
{

W
(2)
δg±ζ+

(x, y) +W
(2)
δg±ζ−

(x, y)
}

(3.32)
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for δg = ζ, δN, Ni, γij . Notice that the derivative with respect to e−ζNi and the one with

respect to Ni give the same answer after setting δg to 0. The same story also follows for

γij . Here, we expressed δSχ/δζ|ζ=0(t, kL) in eq. (3.22) in the position space. In deriving

eq. (3.22), we used the explicit forms of W
(2)
δga1δg̃a2

(x1, x2), summarized in appendix B.

Multiplying δg± on eq. (3.32) and integrating over xµ, we finally obtain the key formula to

show the presence of the constant solution as

∫

dd+1x {x · ∂xδg±(x)}W (1)
δg±

(x)

+

∫

dd+1x

∫

dd+1y e−ikL·yδg±(x)
{

W
(2)
δg±ζ+

(x, y) +W
(2)
δg±ζ−

(x, y)
}

s.l.≈ 0 , (3.33)

where we performed integration by parts. Meanwhile, multiplying e−ik′
L·x on eq. (3.32)

and integrating over xµ, we obtain

∫

dd+1xe−ik′
L·x

∫

dd+1ye−ikL·y
{

W
(2)
δg±ζ±

(x, y) +W
(2)
δg±ζ∓

(x, y)
}

= 0 . (3.34)

By adding the left hand side of eq. (3.33) multiplied by a constant parameter −s and

eq. (3.34) with δg± = ζ± multiplied by −s2/2, the linear and the quadratic terms in the

effective action can be given by

iS′
eff(1)[δg+, δg−] + iS′

eff(2)[δg+, δg−]

=
∑

a=±

∫

dd+1x δga, s(x)W
(1)
δga

(x)

+
1

2!

∑

a1,a2=±

∫

dd+1x1

∫

dd+1x2 δga1, s(x1)δg̃a2, s(x2)W
(2)
δga1δg̃a2

(x1, x2)

+O(δg3, δg2s, δgs2, s3) , (3.35)

where δgs denote the metric perturbations δg after the inhomogeneous dilatation. For

notational brevity, here we used the same notation as those for the global dilatation, given

in eqs. (3.25) and (3.24). Here, each δgi,a (i = 1, 2) sums over δNa,s, Ni,a,s, ζa,s, and γij,a,s.

In deriving eq. (3.35), we used

W
(2)
δga1δg̃a2

(x1, x2) = W
(2)
δg̃a2δga1

(x2, x1) . (3.36)

The first term in eq. (3.33) changes the argument of the metric perturbations in the linear

term of the metric perturbations in eq. (3.35). We also changed the arguments of the

quadratic terms, taking into account that the modification appears only in higher orders

of perturbation. The tadpole contributions, which are the terms in the second line of

eq. (3.35) should vanish by using the background equation of motion. (See ref. [19] for a

discussion about the heavy scalar field.)

Equation (3.35) shows that with the use of the consistency relation, δgα(x) in S′
eff

can be replaced with δgα, s(x). Since the rest of the effective action, Sad, is simply the

classical action for the single field model, it also should be invariant under this replacement.
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Therefore, when the locality condition (2.39) holds, the total effective action Seff preserves

the invariance under the inhomogeneous dilatation with the suitable fall-off, i.e., under the

change of δgα to δgs,α. Since eqs. (3.33) and (3.34) also hold for the soft modes not only

for the homogeneous mode with k = 0, we can shift ζ(x) by an inhomogeneous but time-

independent function instead of the homogeneous constant parameter. The invariance of

the effective action, which also includes the radiative corrections from the non-zero spin

massive fields, under the shift of the soft mode ζkL
directly implies the existence of the

constant solution for ζ.10

We assumed the locality condition (2.39) to derive the consistency relation, which was

used to show the invariance under the replacement of ζ with ζs in the effective action. As

was argued in section 2.3.2, the validity of eq. (2.39) requires the linear perturbation of the

soft mode ζkL
to be time independent. For that, the decaying mode of ζkL

should die off

sufficiently fast after the Hubble crossing. This happens when the background trajectory

is on an attractor, e.g., when the heavy fields do not alter this nature of the background

classical trajectory. As far as the radiative corrections of the heavy fields χ do not turn the

“decaying” mode of ζkL
into a growing mode, the existing constant solution should be the

dominant solution of ζ in the large scale limit. This should be the case, when the radiative

corrections of the heavy fields remain perturbative. In ref. [19], we listed the condition for

the conservation of ζ in the presence of the radiative corrections of a massive (scalar) field as

• The radiative corrections of the heavy field are perturbatively small.

• The background trajectory is on an attractor.

• The quantum system preserves the dilatation invariance.

Now the second and third conditions are rephrased by the single condition:

• The locality condition (2.39) is satisfied.

This guarantees the presence of the constant solution also for the soft modes ζkL
with

kL 6= 0, not only for the homogeneous mode. The current argument also can apply to

massive fields with arbitrary spins, including higher spin fields.

4 IR divergences of inflationary correlators

In the previous two sections, we showed that the locality condition (2.39) leads to the

consistency relation and the conservation of ζ. In this section, as another related subject,

we show that the condition (2.39) also plays an important role for the cancellation of the

IR divergent contributions.

10The lapse function and the shift vector, included in the effective action (3.35), can be eliminated by

solving the Hamiltonian and momentum constraint equations and expressing them in terms of ζs as in the

single field model [14]. Since the constraint equations for δgs are simply given by replacing δg with δgs
in the constraint equations for δg, the effective action obtained after eliminating these Lagrange multiplies

obviously preserves the invariance under the replacement of ζ with ζs.
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4.1 Overview of IR divergence problem

It is widely known that the loop corrections of a massless perturbation mode such as the

curvature perturbation ζ can yield various IR enhancements. (See, e.g., refs. [50–58].) In

this section, following ref. [59], we briefly summarize the IR enhancements. When we per-

form the perturbative expansion in terms of the interaction picture field ζI , an interaction

vertex which includes ζI without derivative can yield the radiative correction which is pro-

portional to 〈ζ2I 〉. The super Hubble modes with k <∼ aH contribute to 〈ζ2I 〉 as
∫ aH

0 d3k/k3,

yielding the logarithmic enhancement. We distinguish the divergent contribution due to

the modes 0 ≤ k ≤ kc (IRdiv) from the convergent but secularly growing one (∝ ln a) due

to the modes kc ≤ k ≤ aH (IRsec). Here, kc denotes an IR cutoff. The IRsec, which can-

not be removed by introducing the comoving IR cutoff, originates from the accumulation

of the super Hubble modes. The accumulation of the super Hubble modes enhances the

time integral at each interaction vertex (SG), introducing another secularly growing term

proportional to ln a or increasing the power of ln a included in the integrand. These IR

enhancements also can be introduced by the soft graviton.

4.2 Cancellation of IR divergence and the locality condition

In the series of papers [39, 40, 44, 59–64], we showed that the IR enhancements, i.e.,

IRdiv, IRsec, and SG, are due to the influences from the outside of the observable region.

What we observe in cosmological measurements corresponds to a quantity evaluated in a

completely fixed gauge. Fixing the gauge conditions eliminates the influence of the gauge

degrees of freedom. However, it is not possible to determine the gauge condition outside the

observable region, even if we completely specify the way of observation. Therefore, unless

the causality is manifestly ensured as in the harmonic gauge, the degrees of freedom outside

the observable region can affect the boundary conditions of the observable region. As was

argued in refs. [39, 40], changing the boundary conditions corresponds to changing the

spatial coordinates in the local observable region. Such spatial coordinate transformations

are the large gauge transformations. We dubbed a variable which is independent of those

boundary conditions of the local observable region as a genuine gauge invariant variable.

In refs. [39, 40, 44, 59, 60, 63, 64], we showed that all the IR enhancements are cancelled

out, when we calculate a correlation function of a genuine gauge invariant variable for a

specific initial state such as the adiabatic vacuum. In ref. [63], we argued that whether

the IR enhancements in the correlation function of the genuine gauge invariant operator

disappear or not depends on the choice of the initial states. In this subsection, scrutinizing

the condition on the quantum state to ensure the cancellation of the IR enhancements, we

show that when the locality condition (2.39) is satisfied, the IRdiv, which comes from the

momentum integral, is cancelled in the correlation functions of the invariant variable under

the large gauge transformations. In the following, we denote a genuine gauge invariant

variable as gR(x) without specifying it. (One way to construct gR(x) was discussed in

refs. [39, 40].)
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One important property of gR is being constructed only by local quantities such

that commute with the soft modes and remains invariant under the inhomogeneous

dilatation, i.e.,

gR(x) = eiQ
W
ζ

(kL)gR(x)e−iQW
ζ

(kL) . (4.1)

As in eq. (2.37), but focusing on a single soft mode, we expand the correlation function of
gR as

〈Ψ |gR(x1) · · · gR(xn)|Ψ〉

=

∫

dζ̃ckL
|ψ(ζ̃ckL

)|2 ζ̃c
kL

〈Ψ |gR(x1) · · · gR(xn)|Ψ〉ζ̃c
kL

, (4.2)

where we noted that the soft mode ζ̃kL
commutes with the genuine gauge invariant variable.

When the “locality” condition holds, since gR commutes with QW
ζ (kL) we obtain

0 = ζ̃c
kL

〈Ψ |
[

iQW
ζ (kL),

gR(x1) · · · gR(xn)
]

|Ψ〉ζ̃c
kL

=
∂

∂ζ̃ckL

ζ̃c
kL

〈Ψ |gR(x1) · · · gR(xn)|Ψ〉ζ̃c
kL

. (4.3)

Since the correlator in eq. (4.3) is independent of the soft mode ζ̃ckL
, it commutes with the

integral over ζ̃ckL
. Then, the divergent integral

∫

dζ̃ckL
|ψ(ζ̃ckL

)|2 in eq. (4.2) simply becomes

the normalization factor, which should be canceled in computing connected diagrams. Here,

we picked up a certain wavenumber kL. However, repeating the same procedure for the

whole soft modes, we find that all the soft modes which correlate with the hard modes

are canceled out. This cancellation yields a suppression of the soft modes which interact

with the hard modes and ensures the absence of the IRdiv in the correlation function of
gR. In this way, we find that while the quantum state |Ψ〉 is not invariant under the

inhomogeneous dilatation, which inserts the soft mode ζkL
, the correlation function of gR

for the quantum state |Ψ〉 is insensitive to the insertion. In ref. [41], this cancellation of

the correlation between the soft modes and the hard modes was presented by considering

the squeezed bi-spectrum.

Here, let us further discuss the relation between the genuine gauge invariance and the

absence of the IRdiv. Changing the boundary condition at the edge of the observable

region, we can alter the spatial average of the curvature perturbation ζ [39, 40, 60]. This

can be expressed as the dilatation whose constant parameter s is given by the spatial

average of ζ in the observable region. This dilatation changes the constant part of all

the modes with kL <∼ 1/LO, where LO is the size of the observable region, not only the

homogeneous mode with k = 0. Therefore, the genuine gauge invariance requires being

insensitive to the excitation of the constant soft modes ζkL
. As we argued in section 2.3.2

(see around eq. (2.54)), quantum states which satisfy the locality condition do not preserve

the genuine gauge invariance in the sense that it is not insensitive to the insertion of the

constant part of the soft modes ζkL
. What preserves the genuine gauge invariance is the

correlation function of the genuine gauge invariant operator evaluated for such quantum

– 25 –



J
H
E
P
1
0
(
2
0
1
7
)
1
2
7

states.11 While the relation between the dilatation invariance and the cancellation of the

IRdiv has been discussed in a number of literatures, e.g., in refs. [39, 40, 44, 60, 63, 65–69],

this aspect has not been clearly described elsewhere.

By contrast, since the curvature perturbation ζk is not a genuine gauge invariant

operator, the correlation functions which includes the operator ζk suffers from the IRdiv

(and also IRsec and SG). Because of that, the correlation functions 〈ζkL
OkS1

· · ·OkSn
〉

diverge due to the accumulation of the soft modes. Here, OkS
is either ζkS

or OkS
. In order

to make these correlation functions finite, we need to somehow introduce IR regularization.

However, recall that a naive introduction of the IR cutoff violates the dilatation invariance,

which was the starting point of the discussion about the consistency relation. Therefore,

to be precise, we should not understand the consistency relation as the relation between

the correlation functions for the Heisenberg operators ζkL
OkS1

· · ·OkSn
and OkS1

· · ·OkSn
,

since they are not well-defined. Instead, the consistency relation we discussed in this paper

should be understood as the relation between the “correlation function” for the hard modes

OkS1
· · ·OkSn

without any propagation of the soft modes and the one with the additional

insertion of the free soft mode as an external leg. Then, both of them do not contain the

loop corrections of the soft modes, which can lead to the IR enhancements. This is the

reason why we needed to employ the approximation
s.l.≈ in deriving the consistency relation.

5 Relevance and irrelevance of soft graviton insertion

The curvature perturbation ζ and the graviton γij are both massless fields and they have

similar IR behaviours. In this section, we briefly show that the discussion about the con-

sistency relation and the IR divergence for the graviton proceed almost in parallel to those

for the curvature perturbation ζ. For this purpose, we consider the shear transformation,

which is a large gauge transformation:

xi → x̃i ≡
[

e
S
2

]i

j x
j , (5.1)

where Sij is a constant symmetric and traceless tensor. Under this large gauge transfor-

mation, the spatial metric transforms as

[

eγ̃(t, x̃)
]

ij
=

[

e−
S
2

]

i

k
[

e−
S
2

]

j

l
[

eγ(t,x)
]

kl
. (5.2)

At the linear perturbation, γij is shifted as γ̃ij = γij −Sij . The classical action is invariant

under the large gauge transformation (5.1).

11Although the locality condition is necessary condition for the absence of IRdiv, this does not immedi-

ately imply that the locality condition is a requirement for the quantum state of the whole universe. When

we discuss observables for a local observer, it would be allowed to trace out the degrees of freedom which

the observer cannot see. After tracing out these degrees of freedom, the density matrix of the universe

will be block diagonalized with a good precision. Then, the observables will correspond to the expectation

values just for one of the blocks in the density matrix. In this sense, the actual observables are likely to be

quite different from the simple expectation values for a given wave functional of the whole universe.
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Similar to the dilatation, we define the Noether charge for the large gauge transforma-

tion (5.1) as

Qγ ≡ 1

2

∫

d3x
[

∆Sγij(t, x)π
ij
γ (t, x) + πij

γ (t, x)∆Sγij(t, x)
]

, (5.3)

where πij
γ denotes the conjugate momentum of γij and

∆Sγij(t, x) ≡ γ̃ij(t, x)− γij(t, x) . (5.4)

The invariance of the quantum state under this transformation requires

Qγ |Ψ〉 = 0 . (5.5)

Repeating a similar argument, we find that the invariance is preserved, when the following

conditions

∂

∂γ̄c
|ψ(γ̄c)| = 0 , (5.6)

iQγ |Ψ〉γ̄c = Sij
∂

∂γ̄cij
|Ψ〉γ̄c , (5.7)

are satisfied. Here, γ̄ij denotes the homogeneous mode of γij and |Ψ〉γ̄c denotes the pro-

jected quantum state into the eigenstate of γ̄cij .

Inserting the window function W (x) into the integrand of the Noether charge Qγ and

performing the Fourier transformation, we define QW
γ (kL), which inserts the soft graviton

γij,kL
. Again, we find that when the condition (5.7) can be extended to the soft modes

with kL 6= 0, i.e.,

iQW
γ (kL)|Ψ〉γ̃c

−kL

= (2πLc)
3Sij−kL

∂

∂γ̃cij−kL

|Ψ〉γ̃c

−kL

(5.8)

with Sij kL
≡ Ŵ (kL)Sij , we obtain the consistency relation which relates the correlation

functions for the hard modes and those with single insertion of the Gaussian soft graviton

(see, e.g., refs. [14, 70]). The quantum state |Ψ〉 changes due to the single insertion of the

soft graviton, i.e.,

QW
γ (kL)|Ψ〉 6= 0 , (5.9)

because the wave function is not completely flat in the direction of the soft graviton γij kL

with kL 6= 0 in contrast to the homogeneous mode, whose wave function is completely

flat, satisfying eq. (5.6). Let us emphasize again that this is not a spontaneous symmetry

breaking, because the large gauge transformation (5.1) with an inhomogeneous Sij is not

a symmetry of the classical action.

The correlation function of the genuine gauge invariant operator gR is insensitive to

the insertion of the soft graviton. This ensures the absence of the IRdiv due to the soft

graviton in the correlation functions of gR evaluated for |Ψ〉. By contrast, when we evaluate

a correlation function for an operator which does not preserve the genuine gauge invariance,

the insertion of the soft graviton changes the correlation function and this can lead to a

break down of the perturbative expansion [71, 73]. (See also ref. [74].)
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6 Concluding remarks

The relation among the large gauge transformations, the consistency relations for the soft

modes of ζ and γij , their conservation in time, and the IR enhancements has been discussed

in a number of literatures. However, as far as we understand, this relation was not fully

clarified and it was sometimes understood in a misleading manner. The purpose of this

paper is to sharpen the argument about the relation among these four. The invariance of

the quantum state |Ψ〉 under the dilatation and shear transformations can be preserved,

when the following two conditions are fulfilled. First, the amplitude of the wave function

ψ should be flat towards the directions for the homogeneous modes of ζ and γij . Second,

operating the Noether charges Qζ and Qγ on the quantum state of hard modes is equivalent

to additively and time-independently shifting the homogeneous modes ζ̄ and γ̄ij , which

interact with the hard modes, as described in eqs. (2.29) and (5.7).

The invariance under these large gauge transformations, just itself, leads to neither the

consistency relation nor the absence of IRdiv. The additional conditions (2.29) and (5.7) are

the non-trivial extensions to those which describe the insertion of the soft modes kL( 6= 0),

which are not always satisfied. These conditions can be interpreted as the locality condition,

which states that the inhomogeneous dilatation and shear transformations only change

the values of ζ and γij within each local universe. Since the wave function is not flat

in the directions of the soft modes for the curvature perturbation and the graviton, the

quantum state |Ψ〉 changes due to the insertion of these soft modes. When the locality

conditions (2.39) and (5.8) are satisfied, the influence of these soft modes are described

by the well-known consistency relations under the Gaussian approximation of the wave

function for the soft modes. This argument also applies in deriving the consistency relation

for massive fields. We also showed that the locality condition (2.39) implies the conservation

of ζ in the soft limit within the perturbation theory. The same argument also applies to γij .

The final issue is the IR enhancements due to the soft modes of ζ and γij . In contrast

to the correlation functions for ζ and γij , which are not genuinely gauge invariant, the

correlation functions for a genuine gauge invariant operator remain invariant under the

insertion of the soft modes for the curvature perturbation ζ and the graviton γij , when

the locality conditions hold. This ensures the absence of the IRdiv due to the soft modes

of ζ and γij . In this paper, we did not discuss the IRsec and the SG, which yields the

secular growth. When the locality conditions hold at each time slicing, repeating the same

argument as in refs. [44, 64], we can show the absence of the IRsec and SG. In fact, this

is the case when we choose the adiabatic vacuum (or the Euclidean vacuum) as the initial

state of the universe.

Recently, the relation among the asymptotic symmetry, the soft theorem, and the IR

divergence was discussed about gauge theories in asymptotically flat spacetime [26–28, 32].

In ref. [26], it was shown that the Weinberg’s soft theorem for the soft photons and gravitons

can be derived as the Ward-Takahashi identities for the asymptotic symmetry. (For a recent

review, see ref. [29].) In ref. [32], the relation between the asymptotic symmetry and the

IR divergence of the QED was discussed. About the IR divergence in QED, Faddeev

and Kulish showed that the IR finiteness can be guaranteed, when we consider the dressed
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charged particles by soft photon clouds. (See also refs. [76, 77].) While there is a qualitative

difference between the in-out formalism in QED and the in-in formalism in cosmology, our

genuine gauge invariant operator gR, whose correlators can be IR finite with an appropriate

choice of the initial state, also dresses the clouds of the soft ζ and γij as external legs.

At first glance, the IR structures for the gauge fields in the asymptotically flat space-

time have a certain similarity to those for the primordial perturbations ζ and γij . However,

a closer look may also reveal some differences in these two cases. For the gauge theories

in the asymptotically flat spacetime, we are interested in the transition at the asymptotic

infinity between before and after the propagations of the soft photons and gravitons. On

the other hand, for the primordial perturbations, the asymptotic infinity is the spatial

infinity and is out of reach in a causal evolution. Instead, what we are interested in is a

locally defined quantity like an actually observable quantity. Moreover, as is summarized

above, in order to derive the consistency relation, the soft theorem for ζ and γij , we need

to assume the locality condition, which is not trivially satisfied even in a Diff invariant the-

ory, at least in the current gauge choice (the Maldacena gauge [14]). These give qualitative

differences from the gauge theories in the asymptotically flat spacetime, which trivially

satisfy the locality.
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A Perturbative and non-perturbative definition of Noether charge

In this section, we show that performing the dilatation and performing the perturbative

expansion are not commutable processes, i.e., the dilatation transformation in the Heisen-

berg picture and the one in the interaction picture lead to different expressions. In order

to see this, let us first consider the dilatation in the Heisenberg picture with the use of the

Noether charge Qζ as

ζs(x) = eiQζζ(x)e−iQζ = ζ(x) + ∆sζ(x) . (A.1)

Then, we perturbatively expand both ζ(x) and ζs(x), i.e., before and after the dilatation

transformation, following the standard procedure, as

ζ(t, x) = U I†(t) ζI(t, x)U I(t) , (A.2)

and

ζs(t, x) = U I†
s (t) ζIs (t, x)U

I
s (t) , (A.3)
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where U I and U I
s denote the unitary operators which relate the Heisenberg and interaction

picture fields for before and after the dilatation transformation. Using the interaction

Hamiltonian HI ≡ H −H0, the unitary operator is given by

U I(t) ≡ Te−i
∫ t

dt′HI

, U I
s (t) ≡ Te−i

∫ t
dt′HI

s . (A.4)

Since the free Hamiltonian H0 changes due to the dilatation transformation while the total

Hamiltonian does not, the interaction Hamiltonian HI and U I also change through the

dilatation, i.e.,

U I †
s (t)U I(t) = 1 +O(s) . (A.5)

Next, we show that the interaction picture field ζIs (t, x), which is related to ζs as in

eq. (A.3), does not coincide with

ζ̃Is (x) ≡ eiQ
I
sζI(x)e

−iQI
s = ζI(x) + ∆ζI(x) , (A.6)

which is given by performing the dilatation transformation in the interaction picture. Here,

∆ζI is given by replacing the Heisenberg fields with the interaction picture fields in ∆ζ(x).

Notice that ζ̃Is (x) is related to ζs(x) by the unitary operator U I(t), i.e.,

ζ̃Is (x) = U I(t)ζs(t, x)U
I†(t) , (A.7)

while the standard perturbative prescription in the frame after the dilatation transforma-

tion uses the interaction picture field given by

ζIs (t,x) = U I
s (t)ζs(t, x)U

I†
s (t). (A.8)

As is shown in eq. (A.5), since the unitary operator UI(t) changes under the dilatation

transformation, we obtain

ζ̃Is (x)− ζIs (x) = O(s) . (A.9)

Therefore, the dilatation transformation in the interaction picture (A.6) does not give the

interaction picture field defined in the standard prescription of perturbation theory after

the dilatation transformation, i.e., eq. (A.3). This discrepancy vanishes by sending s to 0.

B Computing the effective action

In this appendix, we derive the expression of W
(n)
δga1 ···δgan

(x1, · · · , xn), defined in eq. (3.17).

The linear term in the effective action is given by

iS′
eff(1) =

∑

a=±

∫

dd+1x δga(x)W
(1)
δgα

(x) , (B.1)

where W
(1)
δgα

is given by the expectation value as

W
(1)
δg+

(x) = −W
(1)
δg−

(x) =

〈

δiSχ

δg(x)

∣

∣

∣

∣

δg=0

〉

. (B.2)
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Next, we compute the quadratic terms in S′
eff . Taking the second variation of S′

eff with

respect to δg+, we obtain

W
(2)
δg+δg̃+

(x1, x2) = i2

〈

δSχ[δg+, χ+]

δg+(x1)

∣

∣

∣

∣

δg+=0

δSχ[δg+, χ+]

δg̃+(x2)

∣

∣

∣

∣

δg+=0

〉

±

+ iδ(x1 − x2)

〈

δ2Sχ[ζ+, χ+]

δg+(x1)δg̃+(x1)

∣

∣

∣

∣

δg+=0

〉

±

, (B.3)

where δg and δg̃ are either δN , Ni, ζ, or γij . Here, we introduced the expectation value:

〈O[χ+, χ−]〉± ≡
∫

Dχ+

∫

Dχ−O[χ+, χ−]e
iSχ[0,χ+]−iSχ[0,χ−]

∫

Dχ+

∫

Dχ− eiSχ[0,χ+]−iSχ[0,χ−]
. (B.4)

Since the action Sχ[δg+, χ+] includes only local terms, the variation of Sχ[δg+, χ+] with

respect to δg+(x1) and δg̃+(x2) yields the delta function δ(x1 − x2) in eq. (B.3). Similarly,

the second variation of S′
eff with respect to δg− is given by

W
(2)
δg−δg̃−

(x1, x2) = i2

〈

δSχ[δg−, χ−]

δg−(x1)

∣

∣

∣

∣

δg−=0

δSχ[δg−, χ−]

δg̃−(x2)

∣

∣

∣

∣

δg−=0

〉

±

− iδ(x1 − x2)

〈

δ2Sχ[δg−, χ−]

δg−(x1)δg̃−(x1)

∣

∣

∣

∣

δg−=0

〉

±

. (B.5)

Taking the derivative with respect to both δg+ and δg−, we obtain

W
(2)
δg+δg̃−

(x1, x2) = −i2

〈

δSχ[δg+, χ+]

δg+(x1)

∣

∣

∣

∣

δg+=0

δSχ[δg−, χ−]

δg̃−(x2)

∣

∣

∣

∣

δg−=0

〉

±

, (B.6)

and

W
(2)
δg−δg̃+

(x1, x2) = −i2

〈

δSχ[δg−, χ−]

δg−(x1)

∣

∣

∣

∣

δg−=0

δSχ[δg+, χ+]

δg̃+(x2)

∣

∣

∣

∣

δg+=0

〉

±

. (B.7)

When the interactions of χ are perturbatively suppressed, we can compute the functions

W
(2)
δga1δg̃a2

(x1, x2) by expanding them in terms of the free propagators for χ.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.A. Harvey, Magnetic monopoles, duality and supersymmetry, hep-th/9603086 [INSPIRE].

[2] S.G. Avery and B.U.W. Schwab, Noether’s second theorem and Ward identities for gauge

symmetries, JHEP 02 (2016) 031 [arXiv:1510.07038] [INSPIRE].

[3] S. Weinberg, Adiabatic modes in cosmology, Phys. Rev. D 67 (2003) 123504

[astro-ph/0302326] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-th/9603086
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603086
https://doi.org/10.1007/JHEP02(2016)031
https://arxiv.org/abs/1510.07038
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07038
https://doi.org/10.1103/PhysRevD.67.123504
https://arxiv.org/abs/astro-ph/0302326
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0302326


J
H
E
P
1
0
(
2
0
1
7
)
1
2
7

[4] D. Wands, K.A. Malik, D.H. Lyth and A.R. Liddle, A New approach to the evolution of

cosmological perturbations on large scales, Phys. Rev. D 62 (2000) 043527

[astro-ph/0003278] [INSPIRE].

[5] A.A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and the Generation of

Perturbations, JETP Lett. 42 (1985) 152 [INSPIRE].

[6] D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in

inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

[7] M. Sasaki and E.D. Stewart, A general analytic formula for the spectral index of the density

perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71

[astro-ph/9507001] [INSPIRE].

[8] M. Sasaki and T. Tanaka, Superhorizon scale dynamics of multiscalar inflation,

Prog. Theor. Phys. 99 (1998) 763 [gr-qc/9801017] [INSPIRE].

[9] K.A. Malik and D. Wands, Evolution of second-order cosmological perturbations,

Class. Quant. Grav. 21 (2004) L65 [astro-ph/0307055] [INSPIRE].

[10] D.H. Lyth, K.A. Malik and M. Sasaki, A general proof of the conservation of the curvature

perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].

[11] D. Langlois and F. Vernizzi, Conserved non-linear quantities in cosmology,

Phys. Rev. D 72 (2005) 103501 [astro-ph/0509078] [INSPIRE].

[12] L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock Inflation at all loops,

JHEP 09 (2013) 148 [arXiv:1210.6048] [INSPIRE].

[13] V. Assassi, D. Baumann and D. Green, Symmetries and Loops in Inflation,

JHEP 02 (2013) 151 [arXiv:1210.7792] [INSPIRE].

[14] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary

models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[15] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function,

JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

[16] K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic

Modes in Cosmology, JCAP 01 (2014) 039 [arXiv:1304.5527] [INSPIRE].

[17] W.D. Goldberger, L. Hui and A. Nicolis, One-particle-irreducible consistency relations for

cosmological perturbations, Phys. Rev. D 87 (2013) 103520 [arXiv:1303.1193] [INSPIRE].

[18] L. Berezhiani and J. Khoury, Slavnov-Taylor Identities for Primordial Perturbations,

JCAP 02 (2014) 003 [arXiv:1309.4461] [INSPIRE].

[19] T. Tanaka and Y. Urakawa, Conservation of ζ with radiative corrections from heavy field,

JCAP 06 (2016) 020 [arXiv:1510.05059] [INSPIRE].

[20] J. Garriga and Y. Urakawa, Consistency relations and conservation of ζ in holographic

inflation, JCAP 10 (2016) 030 [arXiv:1606.04767] [INSPIRE].

[21] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043

[INSPIRE].

[22] X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single

Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

– 32 –

https://doi.org/10.1103/PhysRevD.62.043527
https://arxiv.org/abs/astro-ph/0003278
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0003278
https://inspirehep.net/search?p=find+J+%22JETPLett.,42,152%22
https://doi.org/10.1103/PhysRevD.42.3936
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D42,3936%22
https://doi.org/10.1143/PTP.95.71
https://arxiv.org/abs/astro-ph/9507001
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9507001
https://doi.org/10.1143/PTP.99.763
https://arxiv.org/abs/gr-qc/9801017
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9801017
https://doi.org/10.1088/0264-9381/21/11/L01
https://arxiv.org/abs/astro-ph/0307055
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0307055
https://doi.org/10.1088/1475-7516/2005/05/004
https://arxiv.org/abs/astro-ph/0411220
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0411220
https://doi.org/10.1103/PhysRevD.72.103501
https://arxiv.org/abs/astro-ph/0509078
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0509078
https://doi.org/10.1007/JHEP09(2013)148
https://arxiv.org/abs/1210.6048
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6048
https://doi.org/10.1007/JHEP02(2013)151
https://arxiv.org/abs/1210.7792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7792
https://doi.org/10.1088/1126-6708/2003/05/013
https://arxiv.org/abs/astro-ph/0210603
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0210603
https://doi.org/10.1088/1475-7516/2004/10/006
https://arxiv.org/abs/astro-ph/0407059
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0407059
https://doi.org/10.1088/1475-7516/2014/01/039
https://arxiv.org/abs/1304.5527
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.5527
https://doi.org/10.1103/PhysRevD.87.103520
https://arxiv.org/abs/1303.1193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1193
https://doi.org/10.1088/1475-7516/2014/02/003
https://arxiv.org/abs/1309.4461
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4461
https://doi.org/10.1088/1475-7516/2016/06/020
https://arxiv.org/abs/1510.05059
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.05059
https://doi.org/10.1088/1475-7516/2016/10/030
https://arxiv.org/abs/1606.04767
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.04767
https://arxiv.org/abs/1503.08043
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08043
https://doi.org/10.1103/PhysRevD.81.063511
https://arxiv.org/abs/0909.0496
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0496


J
H
E
P
1
0
(
2
0
1
7
)
1
2
7

[23] T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single

field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].
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