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1 Introduction

M-theory is generally viewed as a non-perturbative completion of string theory. While

string theory is based on a perturbative quantization of strings there is no similar con-

struction in M-theory. Branes of various types are known to play an important role in

string theory. These often have a perturbative definition in terms of open strings and have

decoupling limits leading to non-gravitating theories in any dimension less than ten. In M-

theory one finds just M2-branes and M5-branes but embedded into an eleven-dimensional

spacetime. Each of these admits a decoupling limit leading to interacting quantum field

theories in three and six dimensions but there is typically no perturbative description (at

least for smooth eleven-dimensional spacetime). These theories are of great interest as they

are inherently strongly coupled and understanding them is thought to be a big step in the

general understanding of M-theory.

In [1, 2] a closed system of equations for various six-dimensional fields was obtained that

are invariant under the (2, 0) superalgebra which is associated to the worldvolume of M5-

branes embedded in an eleven-dimensional spacetime. The fields take values in a 3-algebra,

except for the gauge field that takes values in the Lie-algebra (specifically su(2) ⊕ su(2)

for the case at hand) that acts on the 3-algebra. The system can be thought of as a set of

dynamical equations for the scalars, fermions and self-dual three-form as well as constraints

for the additional gauge and vector fields that it contains. In addition the system depends
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on a choice of abelian three-form Cµνλ. For Cµνλ = 0 it reproduces various descriptions of

two M5-branes [1, 3, 4]. For Cµνλ spacelike the constraints reduce it to the equations two

M2-branes [2]. The purpose of this paper is to explore the system for a null choice of Cµνλ.

We will see that this leads to a novel supersymmetric system of equations on R2 times a

null direction R+. Alternatively, via an M-theory version of T-duality, we can think of this

system as describing intersecting M2-branes which are tangent to a null direction.

A similar system of equations but defined on R4 times a null direction R+ was obtained

in [1] (and is therefore also a solution to the constraints of [2]). These were analysed

in [3] where it was shown they reduce to dynamics on instanton moduli space with the

null direction playing the role of ‘time’. From the origin of these equations in the (2, 0)

superalgebra it is clear that the resulting system describes two M5-branes compactified on

a null circle with corresponding null momentum given by the instanton number. This is

in agreement with the DLCQ prescription of [5, 6]. We similarly expect that the system

here corresponds to two M5-branes compactified on T2 and carrying momentum along the

null direction. We show that the system reduces to quantum mechanics on Hitchin moduli

space and provides a description of intersecting null M2-branes. We note that there is

a similar DLCQ description of four-dimensional maximally supersymmetric SU(N) Yang-

Mills with null momentum K which is also based on quantum mechanics on Hitchin moduli

space [7, 8]. We will argue that this construction is related to our system by U-duality.

Another motivation for our work is to find and study field theories which have sym-

metry groups corresponding to branes embedded into eleven dimensions. From the field

theory point of view an embedding into eleven dimensions, as opposed to just ten, corre-

sponds to enhanced R-symmetries, presumably arising at strong coupling. It is therefore of

interest to obtain any such theories and study their interpretation: both as corresponding

to objects in M-theory as well as strong coupling limits of field theories.

The rest of this paper is organised as follows. In section two we review the system of [2]

and then examine it for the case of a null background 3-form C3. In section three we analyse

this new system and in particular show how, for a particular choice of fields, it reduces

to supersymmetric dynamics on the moduli space of solutions to Hitchin’s equations. In

section four we provide a physical interpretation of our system in terms of intersecting

M2-branes. Section five contains our comments and conclusions on our results. We also

provide an appendix with several conventions.

2 The system

Let us start by reviewing the (2, 0) system of [2] (which itself is a generalization of [1]).

The fields Y µ, X i, Hµνλ,Ψ all take values in a Lie-3-algebra, that is in a vector space

endowed with a totally anti-symmetric product [ , , ] from the vector space to itself.

Here µ, ν = 0, 1, 2, 3, 4, 5 and i = 6, 7, 8, 9, 10. If we expand all in fields in terms of a basis

for the 3-algebra {TA}, i.e. X = XAT
A, then

[X,Y, Z]D = XAYBZCf
ABC

D , (2.1)
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where the structure constants of the 3-algebra fABCD are anti-symmetric in the upper

indices. Furthermore the triple product is required to satisfy the fundamental identity

which reads

[U, V, [X,Y, Z]] = [[U, V,X], Y, Z] + [X, [U, V, Y ], Z] + [X,Y, [U, V, Z]] , (2.2)

or equivalently, the structure constants need to satisfy:

f [ABC
Ef

D]EF
G = 0 . (2.3)

We also require the existence of a symmetric inner-product which is invariant under the

action of the 3-algebra, which allows the definition of a metric structure

hAB = 〈TA, TB〉 . (2.4)

This is equivalent to the condition f [ABCD] = 0, where fABCD = fABCEh
ED. In addition

there is a gauge field Aµ which takes values in linear maps from the 3-algebra to itself and

a covariant derivative:

DµXa = ∂µXa − (Aµ)baXb = ∂µXa −Aµ(X)a . (2.5)

Lastly there is an abelian, constant, 3-form Cµνλ.

The equations of motion are

0 = D2Xi − i

2
[Y σ, Ψ̄,ΓσΓiΨ] + [Y σ, Xj , [Yσ, X

j , X i]]

+
i

2 · 3!
Cστω[Ψ̄,ΓστωΓijΨ, Xj ] +

1

2 · 3!
CστωCστω[[Xi, Xj , Xk], Xj , Xk]

0 = D[λHµνρ] +
1

4
εµνλρστ [Y σ, X i, DτXi]− 1

2
(?C)[µνλ[Xi, Xj , [Yρ], X

i, Xj ]]

+
i

8
εµνλρστ [Y σ, Ψ̄,ΓτΨ]− i

2
(?C)[µνλ[Xi, Ψ̄,Γρ]Γ

iΨ]

0 = ΓρDρΨ + ΓρΓ
i[Y ρ, X i,Ψ] +

1

2 · 3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ] , (2.6)

where Γµ,Γi are 32 × 32 real Γ-matrices with µ, ν, . . . = 0, 1, 2, . . . , 5 and i, j, . . . =

6, 7, 8, 9, 10. The spinors also satisfy

Γ012345ε = ε Γ012345Ψ = −Ψ , (2.7)

and the three-form is self-dual:

Hµνλ =
1

3!
εµνλρστH

ρστ . (2.8)
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In addition to these equations of motion one has the constraints:

0 = Fµν(·)− [Y λ, Hµνλ, · ] + (?C)µνλ[Xi, DλXi, · ] +
i

2
(?C)µνλ[Ψ̄,ΓλΨ, · ]

0 = DνY
µ − 1

2
CµλρHνλρ

0 = CµνσDσ(·) + [Y µ, Y ν , · ]

0 = [Y ν , Dν · , ·′ ] +
1

3!
Cστω[Hστω, · , ·′ ]

0 = C ∧ Y
0 = C[µν

ρCλ]ρ
σ . (2.9)

This system is invariant under the supersymmetry transformations

δX i = iε̄ΓiΨ

δY µ =
i

2
ε̄ΓλρC

µλρΨ

δΨ = ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓµνλε

− 1

2
ΓµΓij [Y µ, X i, Xj ]ε+

1

3!2
CµνλΓµνλΓijk[Xi, Xj , Xk]ε

δHµνλ = 3iε̄Γ[µνDλ]Ψ + iε̄ΓiΓµνλρ[Y
ρ, X i,Ψ]

+
i

2
ε̄(?C)µνλΓij [Xi, Xj ,Ψ] +

3i

4
ε̄Γ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) = iε̄Γµν [Y ν ,Ψ, · ]− i

3!
ε̄CνλρΓµνλρΓ

i[Xi,Ψ, · ] . (2.10)

2.1 A null C and SO(2) × SO(6)

In this paper we wish to analysis this system for the choice

C34+ = l3, (2.11)

where

x+ =
x5 + x0

√
2

x− =
x5 − x0

√
2

. (2.12)

In particular we will see that the solution of the constraints leads to fields that only

depend on x+, x1, x2. Although the system we started with has an SOL(1, 5) × SOR(5)

symmetry turning on C+34 breaks the Lorentz group SOL(1, 5) to an SOL(2) that acts as

rotations in the (x1, x2)-plane along with an SOR(2) that acts as rotations in the (x3, x4)-

plane and which is now viewed as an R-symmetry. Somewhat surprisingly we find that

there is an enhancement of the original SOR(5) R-symmetry to SOR(6) so that the final

system has an SOL(2)× SOR(2)× SOR(6) symmetry.
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To exhibit this symmetry on the fermions it is useful to introduce a new representation

of the Spin(1, 10) Clifford algebra:

Γ̂0 = Γ0534

Γ̂1,2 = Γ0Γ1,2

Γ̂3,4 = Γ05Γ4,3

Γ̂5 = Γ0Γ34

Γ̂i = Γ0Γi ,

which satisfy {Γ̂m, Γ̂n} = 2ηmn, m,n = 0, 1, 2, . . . , 10. However in what follows we will only

be interested in the Spin(10) subalgebra which is broken to Spin(2) × Spin(2) × Spin(6).

We will also decompose any spinor χ as χ = χ+ + χ− where

Γ05χ± = Γ̂034χ = ±χ± . (2.13)

2.2 Solving the constraints and equations of motion

Our first task is to solve the constraints. From the last constraint in (2.10) we see that only

Y −, Y 3, Y 4 are non-vanishing. The third and fourth equations in (2.10) can be reduced to

algebraic equations if we take ∂−, ∂3, ∂4 to vanish. Thus all fields are functions of x+, x1, x2.

Solving the resulting algebraic equations from the third and fourth equations in (2.10) one

finds that

A− =
1

l3
[
Y 3, Y 4, ·

]
A3 =

1

2l3
[
Y 4, Y −, ·

]
A4 = − i

2l3
[
Y 3, Y −, ·

]
. (2.14)

Next we can use the second equation in (2.10) to determine the components of Hµνλ. Using

self-duality we find

H34− = H12− = − 1

l6
[
Y 3, Y 4, Y −

]
H34+ = −H12+ =

1

l3
D+Y

−

H3−+ = H124 = − 1

l3
D+Y

4

H4−+ = −H123 =
1

l3
D+Y

3

H134 = −H2−+ =
1

l3
D1Y

−

H234 = H1−+ =
1

l3
D2Y

−

− 1

l3
D1Y

4 = H13− = −H24− = − 1

l3
D2Y

3

1

l3
D1Y

3 = H14− = H23− = − 1

l3
D2Y

4 . (2.15)
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To proceed it is useful to introduce the complex coordinates and fields

z = x1 + ix2 z̄ = x1 − ix2

Z = Y 4 + iY 3 Z̄ = Y 4 − iY 3 . (2.16)

Here, and in what follows, a bar denotes complex conjugation and not the Dirac conjugate.

In addition we introduce an SO(6) multiplet of scalar fields XI , I = 5, 6, . . . , 10, defined by

X5 = l−3Y − XI = Xi I = 6, . . . , 10 . (2.17)

We first note that there is one independent component of Hµνλ that is not determined

from the constraints above and so we define

H = H+z3 = iH+z4 . (2.18)

We then find that the self-dual conditions H13− = −H24− and H14− = H23− are equivalent

to

D̄Z = 0 . (2.19)

The remaining constraints can now be evaluated to give

F+z(·) = il3
[
XI , DXI , ·

]
− i [Z,H, · ]− l3

2

([
ΨT

+, Γ̂zΨ−, ·
]

+
[
ΨT
−, Γ̂zΨ+, ·

])
(2.20)

Fzz̄(·) = − i

4l3
([
Z,D+Z̄, ·

]
+
[
Z̄,D+Z, ·

])
− 1

4

[
XI ,

[
Z, Z̄,XI

]
, ·
]
− l3

2
√

2

[
ΨT

+,Ψ+, ·
]
.

Our last job is to evaluate the equations of motion. The scalar equation becomes

0=2(DD̄+D̄D)XI+
i

2l3
[D+Z,Z̄,X

I ]+
i

2l3
[Z,D+Z̄,X

I ]+
i

l3
[Z,Z̄,D+X

I ] (2.21)

+
1

2

[
Z,XJ ,[Z̄,XJ ,XI ]

]
+

1

2

[
Z̄,XJ ,[Z,XJ ,XI ]

]
−l3
√

2
[
ΨT

+,Γ̂ZZ̄ Γ̂IJΨ+,X
J
]

+
i

2

([
Z,ΨT

+,Γ̂Z Γ̂IΨ−

]
−
[
Z,ΨT

−,Γ̂Z Γ̂IΨ+

]
+
[
Z̄,ΨT

+,Γ̂Z̄ Γ̂IΨ−

]
−
[
Z̄,ΨT

−,Γ̂Z̄ Γ̂IΨ+

])
,

where the I = 5 component actually arises from the (DH)zz̄+− equation. The only

other new equation that arises from the (DH)µνλ equation comes from the (DH)zz̄+3

and (DH)zz̄+4 terms and gives

0 = D2
+Z + il3[Z,XI , D+X

I ]− l6

2
[XI , XJ , [XI , XJ , Z]] + 4l3DH̄

+
l3√
2

[
Z,ΨT

−,Ψ−
]

+ il6
([

ΨT
+, Γ̂Z̄ Γ̂IΨ−, X

I
]
−
[
ΨT
−, Γ̂Z̄ Γ̂IΨ+, X

I
])
. (2.22)

The fermion equations are

0 = D+Ψ+ +
√

2Γ̂zD̄Ψ− +
√

2Γ̂z̄DΨ− + il3Γ̂ZZ̄ Γ̂IJ
[
XI , XJ ,Ψ+

]
+

1√
2

Γ̂I Γ̂Z
[
Z,XI ,Ψ−

]
+

1√
2

Γ̂I Γ̂Z̄
[
Z̄,XI ,Ψ−

]
. (2.23)
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and

0 =
√

2Γ̂zD̄Ψ+ +
√

2Γ̂z̄DΨ+ −
i

2l3
[
Z, Z̄,Ψ−

]
− 1√

2
Γ̂I Γ̂Z

[
Z,XI ,Ψ+

]
− 1√

2
Γ̂I Γ̂Z̄

[
Z̄,XI ,Ψ+

]
. (2.24)

Here we see that the equations of motion have a natural SOL(2) × SOR(2) × SOR(6)

symmetry. In particular the field Y − has enhanced the original SOR(5) to SOR(6).

2.3 Supersymmetry

The supersymmetry transformations can also be expressed as

δXI = iεT+Γ̂IΨ− + iεT−Γ̂IΨ+

δZ = 2
√

2l3εT+Γ̂Z̄Ψ+

δAz = iεT−Γ̂zΓ̂Z̄
[
Z̄,Ψ+, ·

]
− iεT+Γ̂zΓ̂Z [Z,Ψ−, ·]

δA+ =
√

2iεT−Γ̂Z [Z,Ψ−, ·] +
√

2iεT−Γ̂Z̄
[
Z̄,Ψ−, ·

]
+ 2l3εT−Γ̂ZZ̄ Γ̂I

[
XI ,Ψ+, ·

]
− 2l3εT+Γ̂ZZ̄ Γ̂I

[
XI ,Ψ−, ·

]
δΨ+ =

i√
2l3

Γ̂I
[
Z, Z̄,XI

]
ε− −

i

l3

(
Γ̂ZD+Z − Γ̂Z̄D+Z̄

)
ε+

− 1

2

(
Γ̂Z Γ̂IJ

[
Z,XI , XJ

]
+ Γ̂Z̄ Γ̂IJ

[
Z̄,XI , XJ

])
ε+

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂

ID̄XI
)
ε+

+

√
2i

l3

(
Γ̂z̄Γ̂ZDZ − Γ̂zΓ̂Z̄D̄Z̄

)
ε−

δΨ− = −
√

2Γ̂ID+X
Iε+ −

2
√

2il3

3
Γ̂ZZ̄ Γ̂IJK

[
XI , XJ , XK

]
ε+

+
1

2

(
Γ̂Z Γ̂IJ

[
Z,XI , XJ

]
+ Γ̂Z̄ Γ̂IJ

[
Z̄,XI , XJ

])
ε−

− i

l3

(
Γ̂ZD+Z − Γ̂Z̄D+Z̄

)
ε−

+ 2
√

2i
(

Γ̂z̄Γ̂Z̄H − Γ̂zΓ̂ZH̄
)
ε+ . (2.25)

The variation of H = H+z3 requires special attention as self-duality implies that H =

iH+z4. Evaluating these gives

δH+z3 =
√

2εT−

(
Γ̂Z − Γ̂Z̄

)
DΨ− + εT+Γ̂zΓ̂ZD+Ψ− + εT−Γ̂zΓ̂Z̄D+Ψ+

+
i

2
l3εT−Γ̂zΓ̂Z̄ Γ̂IJ

[
XI , XJ ,Ψ+

]
+
i

2
l3εT+Γ̂zΓ̂Z Γ̂IJ

[
XI , XJ ,Ψ−

]
+
√

2εT−Γ̂zΓ̂ZZ̄ Γ̂I [Z + Z̄,XI ,Ψ−]

iδH+z4 =
√

2εT−

(
Γ̂Z + Γ̂Z̄

)
DΨ− + εT+Γ̂zΓ̂ZD+Ψ− − εT−Γ̂zΓ̂Z̄D+Ψ+

− i

2
l3εT−Γ̂zΓ̂Z̄ Γ̂IJ

[
XI , XJ ,Ψ+

]
+
i

2
l3εT+Γ̂zΓ̂Z Γ̂IJ

[
XI , XJ ,Ψ−

]
−
√

2εT−Γ̂zΓ̂ZZ̄ Γ̂I [Z − Z̄,XI ,Ψ−] . (2.26)
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Demanding that these are equal gives the condition

εT−

(√
2Γ̂Z̄DΨ−−Γ̂zΓ̂Z̄D+Ψ+−

i

2
l3Γ̂zΓ̂Z̄ Γ̂IJ

[
XI ,XJ ,Ψ+

]
+
√

2Γ̂zΓ̂ZZ̄ Γ̂I [Z,XI ,Ψ−]

)
=0

(2.27)

As required this vanishes as a consequence of the fermion equation (2.22). As a result we

find

δH =
√

2εT−Γ̂ZDΨ− + εT+Γ̂zΓ̂ZD+Ψ−

+
i

2
l3εT+Γ̂zΓ̂Z Γ̂IJ

[
XI , XJ ,Ψ−

]
+
√

2εT−Γ̂zΓ̂ZZ̄ Γ̂I [Z̄,XI ,Ψ−] . (2.28)

It is worth commenting that the identification H+z3 = iH+z4 maps the SOR(2) action as

rotation by θ on x3, x4 to the U(1) action H → eiθH.

We also note that a rescaling of l can be absorbed by a rescaling of x+ and H. Hence-

forth we simply take l = 1.

2.4 Energy-momentum and superalgebra

The general form for the supercurrent and energy-momentum tensor were given in [2] as:

Sµ = −2πi〈DνX
i,ΓνΓiΓµΨ〉+

πi

3!
〈Hστω,Γ

στωΓµΨ〉 − πi〈[Yν , X i, Xj ],ΓνΓijΓµΨ〉

+
πi

3 · 3!
Cστω〈[Xi, Xj , Xk],ΓijkΓστωΓµΨ〉 , (2.29)

and1

Tµν = 2π〈DµX
i, DνX

i〉 − πηµν〈DλX
i, DλXi〉+ π〈[Xi, Xj , Yµ], [Xi, Xj , Yν ]〉 (2.30)

− π

2
ηµν〈[Xi, Xj , Yλ], [Xi, Xj , Y λ]〉+

π

2
〈Hµλρ, H

λρ
ν 〉

− iπ〈Ψ̄,ΓµDνΨ〉+ iπηµν〈Ψ̄,ΓλDλΨ〉 − iπηµν〈[Ψ̄, Y λ, X i],ΓλΓiΨ〉

+
π

3!
〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉(CµτωC τω

ν − 1

3!
ηµνC

2)

+
π

3!
Cµλρ(?C)ν

λρ〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉 − iπ

3!
ηµνC

στω〈[Ψ̄,ΓστωΓijΨ, X i], Xj〉 .

Setting the fermions to zero we find that in the case at hand

T−− = 2π〈DZ, D̄Z̄〉 − π

2
〈[Z, Z̄,XI ], [Z, Z̄,XI ]〉

= π∂〈Z, D̄Z̄〉+ π∂̄〈Z̄,DZ〉

T−+ = −4π〈DXI , D̄X̄I〉 − π

2
〈[Z,XI , XJ ], [Z̄,XI , XJ ]〉 − π〈D+Z,D+Z̄〉

= −2π∂
(
〈XI , D̄XI〉+ 〈Z̄, H̄〉

)
− 2π∂̄

(
〈XI , DXI〉+ 〈Z,H〉

)
− π

2
∂+

(
〈Z,D+Z̄〉+ 〈Z̄,D+Z〉

)
T−z = −π∂〈Z,D+Z̄〉 . (2.31)

1This corrects a misprint in the fermion kinetic term contribution to Tµν that appears in [2].
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In the system here the role of time is played by x+ so we define

P+ = V3

∫
dzdz̄ T−+

Pz = V3

∫
dzdz̄ T−z

Q± = V3

∫
dzdz̄ S+

± , (2.32)

as well as the topological term

W = V3

∫
dzdz̄ T−− . (2.33)

Here V3 is a three-dimensional volume factor that arises from the fact that Tµν , as defined

above, has dimension six as appropriate for a six-dimensional theory. Given that there is

only one length scale in our system it is natural to take V3 = l3. After some calculations

one finds that the superalgebra takes the form

{Q−,Q−} = 2
√

2W
{Q+,Q−} = −4PzΓ̂z̄ − 4Pz̄Γ̂z

+ 4ZIZ Γ̂Z̄ Γ̂I + 4ZIZ̄ Γ̂Z Γ̂I

+
1

2!
ZIJz̄ Γ̂zΓ̂

IJ +
1

2!
ZIJz Γ̂z̄Γ̂

IJ

+
1

3!
ZIJKZ̄ Γ̂Z Γ̂IJK +

1

3!
ZIJKZ Γ̂Z̄ Γ̂IJK

{Q+,Q+} = −2
√

2P+

+
1

2!
ZIJzz̄ Γ̂zz̄Γ̂

IJ +
1

2!
ZIJZZ̄ Γ̂ZZ̄ Γ̂IJ

+
1

3!
ZIJKZ̄z Γ̂Zz̄Γ̂

IJK +
1

3!
ZIJKZ̄z̄ Γ̂ZzΓ̂

IJK

+
1

3!
ZIJKZz Γ̂Z̄z̄Γ̂

IJK +
1

3!
ZIJKZz̄ Γ̂Z̄zΓ̂

IJK +
1

4!
ZIJKLΓ̂IJKL . (2.34)

The central charges are given by

ZIZ = 2πiV3

∫
dzdz̄∂〈XI , D̄Z̄〉

ZIZ̄ = −2πiV3

∫
dzdz̄∂̄〈XI , DZ〉

ZIJz̄ = 4πiV3

∫
dzdz̄

(
〈D̄Z̄,

[
Z,XI , XJ

]
〉 − 2〈D̄XI ,

[
Z, Z̄,XJ

]
〉
)

ZIJz = −4πiV3

∫
dzdz̄

(
〈DZ,

[
Z̄,XI , XJ

]
〉+ 2〈DXI ,

[
Z, Z̄,XJ

]
〉
)

ZIJKZ̄ = 6iπV3

∫
dzdz̄〈

[
Z,XI , XJ

]
,
[
Z, Z̄,XK

]
〉

ZIJKZ = 6iπV3

∫
dzdz̄〈

[
Z̄,XI , XJ

]
,
[
Z, Z̄,XK

]
〉
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ZIJzz̄ = −32
√

2πV3

∫
dzdz̄〈DXI , D̄XJ〉

ZIJZZ̄ = 4
√

2πV3

∫
dzdz̄

(
2〈
[
Z,XI , XK

]
,
[
Z̄,XJ , XK

]
〉

+i〈
[
Z,XI , XJ

]
, D+Z̄〉+ i〈

[
Z̄,XI , XJ

]
, D+Z〉

)
ZIJKZ̄z = 24

√
2πV3

∫
dzdz̄〈

[
Z,XI , XJ

]
, DXK〉

ZIJKZ̄z̄ = 24
√

2πV3

∫
dzdz̄〈

[
Z,XI , XJ

]
, D̄XK〉

ZIJKZz = 24
√

2πV3

∫
dzdz̄〈

[
Z̄,XI , XJ

]
, DXK〉

ZIJKZz̄ = 24
√

2πV3

∫
dzdz̄〈

[
Z̄,XI , XJ

]
, D̄XK〉

ZIJKL = −12
√

2πV3

∫
dzdz̄〈

[
Z,XI , XJ

]
,
[
Z̄,XK , XL

]
〉 , (2.35)

where anti-symmetrization on all free I, J,K,L indices is understood.

3 Reduction to dynamics on moduli space

We now turn to an analysis of the dynamical equations that we found above. We view

x+ as ‘time’ and take the Hamiltonian to be −P+. They are a novel system of differential

equations for a set of three-algebra valued fields (XI , Z,H,Ψ+,Ψ−) along with a Lie-algebra

valued gauge field (A+, Az, Az̄) all of which depend on two space and one null directions

(z, z̄, x+) and are invariant under 16 supersymmetries generated by Q+ and Q−.

3.1 Abelian case

To gain some insight it is helpful to first solve the abelian case where the triple product

vanishes and we set the gauge fields to zero. The equations of motion are simply

∂+Ψ+ +
√

2Γ̂z∂̄Ψ− +
√

2Γ̂z̄∂Ψ− = 0
√

2Γ̂z∂̄Ψ+ +
√

2Γ̂z̄∂Ψ+ = 0

∂̄Z = 0

∂̄∂XI = 0

∂2
+Z̄ + 4∂̄H = 0 . (3.1)

The solutions to these equations are readily seen to be given by taking Z to be an arbitrary

x+ dependent holomorphic function of z and XI can be taken to be the real part of an

arbitrary x+ dependent holomorphic function. For H we find

H = h− 1

4

∫ z̄

0
∂2

+Z̄(z̄′)dz̄′ . (3.2)
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where h is a holomorphic function which also has an arbitrary dependence on x+. Looking

at the fermions we find

Ψ+ = η+ + η̄+

Ψ− = η− + η̄− −
1√
2

∫ z

0
Γ̂z∂+η+(z′)dz′ − 1√

2

∫ z̄

0
Γ̂z̄∂+η̄+(z̄′)dz̄′ , (3.3)

where η± are spinors which satisfy

Γ̂z̄η± = 0 . (3.4)

and which are also holomorphic functions and arbitrary functions of x+.

Thus the solution space is a set of holomorphic functions with arbitrary x+-dependence.

To recover some physics we note that for generic solutions the energy P+ will diverge due

to the poles in the holomorphic functions. Thus on physical grounds we should take all

holomorphic functions to be constant. In this case P+ will still diverge due to the integral

over z however we could imagine putting the theory on a torus, reducing the system to a

quantum mechanical model. In that case global consistency requires that

∂+Ψ+ = 0 ∂2
+Z = 0 . (3.5)

In this way we see the recover the familiar free-dynamics of Ψ+ and Z, although the x+

dependence of XI , H and Ψ− remain unconstrained. Looking that the on-shell supersym-

metry in this case we see that

δΨ+ = −i(Γ̂Z∂+Z − ¯̂
ΓZ̄∂+Z̄)ε+

δΨ− =
i

l3

(
Γ̂Z∂+Z − Γ̂Z̄∂+Z̄

)
ε− + 2

√
2i
(

Γ̂z̄Γ̂Z̄H − Γ̂zΓ̂ZH̄
)
ε+

δZ = 2
√

2εT+Γ̂Z̄Ψ+

δXI = iεT+Γ̂IΨ− + iεT−Γ̂IΨ+

δH = εT+Γ̂zΓ̂Z∂+Ψ− . (3.6)

Thus under Q+ (Z,Ψ+) and (XI , H,Ψ−) form separate multiplets whereas under Q−
(Z,Ψ+) and H are invariant but (XI ,Ψ−) transform into in (Ψ+, Z).

Even in the non-abelian case one sees that there are no standard kinetic terms for XI ,

H and Ψ−. Indeed there are no D+ derivatives on H or Ψ− and D+ only appears linearly

on XI and within a triple product. Thus we will interpret XI , H and Ψ− as, possibly

x+-dependent, background fields. Given a particular choice of these fields as functions of

z and x+ the equations of motion then determine the behaviour of Z and Ψ+.

3.2 Vacua of the non-Abelian system

Next we look at the form of the supersymmetry algebra. Here one sees that Q− is broken

unless

W = 0 . (3.7)

However this implies that DZ = 0 and hence Fzz̄(Z) = 0. This effectively reduces the

system back to the abelian case. Thus in what follows we assume that Q− is broken and
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set ε− = 0. We then wish to examine the system where only Q+ acts dynamically. The

role of Q− can then be thought of as mapping between different backgrounds defined by

choices of XI , H and Ψ−.

In this paper we will only consider backgrounds which preserve all of the Q+ super-

symmetries. In particular for a generic ε+ one sees that such backgrounds are of the form

Ψ− = 0, H = 0 with D+X
I = 0 and [XI , XJ , XK ] = 0. Henceforth we will only consider

such solutions. In this case the gauge fields are also invariant under Q+. Therefore the

dynamical fields are Z and Ψ+. For simplicity we will also set Ψ+ = 0 with the under-

standing that their dynamics can be recovered by applying the Q+ supersymmetry to the

bosonic equations.

To begin we note that the ground states with P+ = 0 correspond to

DXI = 0 [Z,XI , XJ ] = 0 D+Z = 0 , (3.8)

and such states are indeed invariant under Q+ and can have a non-vanishing W. The

equations of motion reduce to simply

D̄Z = 0

Fzz̄(·) = −1

4

[
XI ,

[
Z, Z̄,XI

]
, ·
]
. (3.9)

Since the XI are covariantly constant: DXI = D̄XI = 0 this equation is essentially just

that of a Hitchin system [9] but in a three-algebra format as we now detail.

To continue we consider the specific case of a positive-definite 3-algebra with generators

TA, A = 1, 2, 3, 4 whose inner-product is 〈TA, TB〉 = δAB and triple product

[TA, TB, TC ] =
2π

k
εABCDTD , (3.10)

where k is a constant (usually taken to be integer). The gauge field takes values in so(4) =

su(2) ⊕ su(2) and the fields XI and Z are in the vector of SO(4). Solutions for XI that

satisfy [XI , XJ , XK ] = 0 can be expanded in terms of two constant SO(6) vectors uI , vI :

XI = uIT 3 + vIT 4 . (3.11)

For generic choices of uI and vI the gauge group is completely broken and the vacuum

equations have no non-trivial solutions. In particular Z is also restricted to lie in the T 3

and T 4 directions of the 3-algebra and the gauge field is locally flat. As with the abelian

case above all the non-zero components of the fields are given by holomorphic functions.

However demanding that W and P+ be finite requires that these holomorphic functions

are constant and space is compactified.

However if we take all the XI to be aligned in the 3-algebra, say XI = vIT 4 then

there is an unbroken SO(3). If we expand Z =
∑
ZAT

A then DXI = D̄XI = 0 implies

∂vI = ∂̄vI = 0 and Az4
b = Aza

4 = 0, a, b,= 1, 2, 3. The solutions are then given by

D̄Z = 0

Fzz̄ = −π
2|v|2

k2
[Z, Z̄] , (3.12)
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where a bold face indicates that the components are orthogonal to T 4 in the three-algebra

and re-expressed as elements of the SO(3) Lie algebra: (Z)ab = εcabZc, DZ = ∂Z− [A,Z].

Furthermore [ , ] is the usual Lie-bracket.2 In other words bold-faced fields can be viewed

as taking values in the unbroken su(2) Lie algebra. This is precisely the Hitchin system

for gauge algebra su(2) [9]. The equations of motion allow for Z4 to be any holomorphic

function but demanding that W is finite implies that Z4 is constant. Thus the vacuum

solutions are in a one-to-one correspondence with solutions to the Hitchin system for su(2).

It is useful to recall here that the Hitchin system itself is the dimensional reduction of

the four-dimensional self-duality equations to two-dimensions. In particular let us define

A3 =
2π|v|
k

Z− Z̄

2i
A4 =

2π|v|
k

Z + Z̄

2
. (3.13)

Equation (3.12) can then be written as (recall that z = x1 + ix2)

F13 = −F24

F23 = F14

F12 = F34 , (3.14)

which are indeed the self-duality conditions andW is the dimensional reduction of instanton

number and as such is no longer integer.

3.3 Dynamical evolution

Next we allow for x+ dependence and allow Z to be dynamical, although we continue

to restrict to the Q+ invariant sector: D+X
I = H = [XI , XJ , XK ] = Ψ− = 0. For

simplicity we also set Ψ+ = 0 with the understanding its dynamics can be restored using

the Q+ supersymmetry. Keeping XI = vIT 4 and Z4 = w this requires that ∂+v
I = 0 and

Aa+4 = −A4
+a = 0. It is helpful then to rewrite the equations for the various remaining

fields which we now express in their su(2)-valued form.

We start with the observation that (B)bc = εabcA
a
z4 is not necessarily zero since DXI

need not vanish. This implies that the holomorphic constraint D̄Z = 0 leads to the

equations

∂̄w +
1

2
tr(B̄Z) = 0

D̄Z + B̄w = 0 , (3.15)

for the A = 4 and A = a components respectively. Thus a non-zero w and B lead to change

in the holomorphic constraint on Z.

Next we recall that the Hitchin equation (3.12) which arose from the (C,D) = (c, d)

component of the Fzz̄ equation now becomes

Fzz̄ = −π
2|v|2

k2
[Z, Z̄] + [B, B̄] +

i

4

(
2π

k

)
(wD+Z̄ + w̄D+Z− Z̄∂+w − Z∂+w̄) , (3.16)

2Note that our conventions for matrix multiplication are somewhat unusual: (MN)ABXA =

MC
BN

A
CXA.
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where

Fzz̄ = ∂Ā− ∂̄A− [A, Ā] . (3.17)

If we examine the (C,D) = (c, 4) component of the Fzz̄ equation we find

DB̄− D̄B = − i
4

(
2π

k

)(
[Z,D+Z̄] + [Z̄,D+Z]

)
. (3.18)

From the F+z equation we learn that

D+B = 0

∂+A−DA+ = −2πi

k
|v|2B , (3.19)

due to the (C,D) = (c, d) and (C,D) = (c, 4) components respectively. From the (DD̄ +

D̄D)XI equation we find

∂∂̄vI +
1

2
tr(B̄B)vI = 0

(DB̄ + D̄B)vI + 2B∂̄vI + 2B̄∂vI =
i

4

(
2π

k

)(
[Z,D+Z̄]− [Z̄,D+Z]

)
vI , (3.20)

arising from to the A = 4 and A = a components respectively. Lastly we also simply find

D2
+Z = 0 ∂2

+w = 0 . (3.21)

We see that non-vanishing B and w lead to a z-dependent vI and hence to a modification

of Hitchin’s system.

Our approach here is to treat XI and hence vI as a background field. Elementary

manipulations of the first equation in (3.20) show that∮
vIdvI =

∫
1

2
tr(B†B)|v|2 +

∫
|∂vI |2 + |∂̄vI |2 ≥ 0 . (3.22)

Thus if we are interested in solutions for which vI approaches a non-zero constant value at

infinity plus subleading terms then the left hand side vanishes. Therefore B = 0 and vI is

constant. Let us first consider the case when w = 0. We then see that Hitchin’s equation

is preserved for all time. Thus any dynamical motion can only take place on the moduli

space of solutions to Hitchin’s system. In addition the remaining dynamical equations are

[Z,D+Z̄] = 0, ∂+A = DA+ , D2
+Z = 0 . (3.23)

To understand these equations we recall that (A,Z) are required to solve the Hitchin

equations for all x+. Thus motion can only take place on the moduli space solutions so

that under x+ → x+ + ε,

δA = ∂+Aε δZ = ∂+Zε , (3.24)

where δA and δZ are fluctuations of the solution to Hitchin’s equations: i.e. solutions to

the linearised Hitchin equations. In particular these linearised equations are

D∂+Ā− D̄∂+A = −π
2

k2
|v|2

(
[∂+Z, Z̄] + [Z, ∂+Z̄]

)
D̄∂+Z− [∂+Ā,Z] = 0 . (3.25)
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Using the second equation in (3.23) we see that

D∂+Ā− D̄∂+A = (DD̄− D̄D)A+

= −[Fzz̄,A+]

=
π2

k2
|v|2[[Z, Z̄],A+]

= −π
2

k2
|v|2([[A+,Z], Z̄] + [Z, [A+, Z̄]])

= −π
2

k2
|v|2

(
[∂+Z, Z̄] + [Z, ∂+Z̄]

)
, (3.26)

where in the last line we used the first equation in (3.23). Thus (3.23) imply the first

equation in (3.25). Using (3.23) the second equation in (3.25) becomes simply

D̄D+Z = 0 . (3.27)

Thus the dynamical equations (3.23) along with (3.27) describe motion on the Hitchin

moduli space.

To continue we note that we do not want to consider motion that arises from gauge

transformations: δA = Dω, δZ = [ω,Z]. Therefore we impose that the fluctuations are

orthogonal to gauge transformations:3

− 1

2
tr

∫
dzdz̄

[
2D̄ωδA + 2DωδĀ +

2π2

k2
|v|2

(
[ω, Z̄]δZ + [ω,Z]δZ̄]

)]
= 0 . (3.28)

Integrating by parts and demanding that ω is arbitrary gives the condition

DδĀ + D̄δA =
π2

k2
|v|2

(
[Z, δZ̄] + [Z̄, δZ]

)
. (3.29)

Identifying δA = ∂+Aε, δZ = ∂+Zε and combining with the first equation in (3.25) gives

the gauge fixing condition:

D̄∂+A =
π2

k2
|v|2[Z, ∂+Z̄] , (3.30)

or equivalently using (3.23)

D̄DA+ =
π2

k2
|v|2[Z, [A+, Z̄]] . (3.31)

Thus for the background XI = vIT 4, Z4 = 0 the whole dynamical system is reduced

to motion on the moduli space of solutions to Hitchin’s equations with the dynamical

equations (3.23), (3.27) and gauge fixing condition (3.31). The Hamiltonian is given by

3This is just the reduction of the standard instanton moduli space gauge fixing condition tr
∫
A1δA1 +

. . .+A4δA4 for the four-dimensional gauge field defined in (3.13).
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H = −P+ which in turn is simply that of a σ-model on the moduli space:

H = π

∫
dzdz̄〈D+Z,D+Z̄〉

= −π
2

tr

∫
dzdz̄

(
(∂+Z− [A+,Z])(∂+Z̄− [A+, Z̄])

)
= −π

2
tr

∫
dzdz̄

(
∂+Z∂+Z̄−A+[Z̄, ∂+Z]−A+[Z, ∂+Z̄] + A+[Z, [A+, Z̄]]

)
= −π

2
tr

∫
dzdz̄

(
∂+Z∂+Z̄−

1

2
A+[Z̄, [A+,Z]]− 1

2
A+[Z, [A+, Z̄]]

)
= −π

2

∫
dzdz̄

(
∂+Z∂+Z̄−

k2

2π2|v|2
A+DD̄A+ −

k2

2π2|v|2
A+D̄DA+

)
= − k2

2π|v|2
tr

∫
dzdz̄

(
π2|v|2

k2
∂+Z∂+Z̄ + ∂+A∂+Ā

)
=

k2

2π|v|2
gmn∂+ξ

m∂+ξ
n , (3.32)

where we have used the relations [Z, ∂+Z̄] = [Z, [A+, Z̄]], D̄∂+A = π2

k2
|v|2[Z, ∂+Z̄] and

∂+A = DA+. Furthermore ξm are the moduli space coordinates and

gmn = −1

2
tr

∫
dzdz̄ (δmA1δnA1 + δmA2δnA2 + δmA3δnA3 + δmA4δnA4) , (3.33)

is the natural metric on the moduli space. As shown by Hitchin [9] this space is hyper-

Kahler and therefore, by standard arguments, the dynamics can be extended to include

fermions in such a way as to preserve the 8 supersymmetries generated by Q+.

Next we can consider the effect of a non-zero w but we still keep vI constant and

hence B = 0. We see that for static solutions with ∂+ = A+ = 0 we still reduce to

Hitchin’s system however for A+, ∂+ 6= 0 there is a modifcation. To see what happens we

can differentiate (3.16) with respect to ∂+ to find (recall that D2
+Z = ∂2

+w = 0):

D̄∂+A− D̄∂+A = −π
2|v|2

k2

(
[∂+Z, Z̄] + [Z, ∂+Z̄]

)
+
i

4

(
2π

k

)
(w∂+D+Z̄ + w̄∂+D+Z− ∂+w[A+, Z̄]− ∂+w̄[A+,Z])

=
π2

k2
|v|2[[Z, Z̄],A+]

− i

4

(
2π

k

)
[wD+Z̄ + w̄D+Z− ∂+wZ̄− ∂+w̄Z,A+] . (3.34)

This generalises the first equation in (3.25) and the rest of the analysis continues as before.

One sees that the analysis in (3.26) still goes through one still finds that (3.23) imply the

first equation in (3.25). However (3.31) is now modified to

D̄DA+ =
π2

k2
|v|2[Z, [A+, Z̄]]

− i

8

(
2π

k

)
[wD+Z̄ + w̄D+Z− wZ̄− w̄Z,A+] . (3.35)
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The rest of the equations remain unchanged. In particular the Hamiltonian is the same

except for an additional term in P+:

π

∫
D+Z4D+Z̄4 = π

∫
dzdz̄∂+w∂+w̄ . (3.36)

This will diverge unless ∂+w = 0 as w is holomorphic (although it would be finite for

constant w if we are on a compact Riemann surface).

Lastly we can quantize the system in a natural way by considering wavefunctions ψ(ξm)

and replacing

∂+ξ
m → −i ∂ψ

∂ξm
. (3.37)

Thus the dynamics reduces to quantum mechanics on Hitchin moduli space.

4 Physical interpretation

So far in this paper we have solved the constraints of the (2, 0) superalgebra of [2] for a

particular choice of three-form C = l3dx3∧dx4∧dx+. We showed that the resulting system

of equations had a vacuum configurations consisting of solutions to the Hitchin system on

R2. We also saw that the dynamical evolution consisted of motion on the moduli space

HK(su(2),R2) of such solutions. Here Hn(g,Σ) denotes the moduli space of the charge n

Hitchin system with gauge algebra g on a Riemann surface Σ. Therefore it is of interest to

see how our construction fits in with other known descriptions of M-branes.

To begin with we recall that to solve the constraints of the original (2, 0) algebra we

had to dimensionally reduce the full six-dimensional system on x3, x4 and x−. However

it is clear from the subsequent analysis that the resulting system still carries information

about the momentum around x− in the form of the topological term W ∼
∫
T−−. Thus we

should view the system as two M5-branes compactified on T2 × S1
− but with a fixed null

momentum P− ∼ W .

We can view a null compactification as a limit of a boosted spacelike compactification

where x5 is taken to be compact with a radius that vanishes so that in the limit of a

null boost the radius R− remains finite. Therefore let us review the case where C =

l3dx3∧dx4∧dx5 is spacelike and the constraints imply that the fields have no dependence on

x3, x4, x5. It was shown in [2] that the (2, 0) superalgebra reduces to the description of two

M2-branes with a transverse R8. From a brane perspective we can think of this as a toroidal

compactification on x3, x4, x5, sending all the radii to zero, accompanied by a U-duality

transformation which decompactifies the dual torus. This can be thought of as an M-theory

version of T-duality that takes N M5-branes wrapped on T3 to N M2-branes which are

transverse to a dual T̂3.4 In particular the U-duality we require consists of reducing to

string theory on x5, leading to N D4-branes wrapped on a T2 with a coupling g2
YM ∼ R5,

and then performing T-dualities along x3 and x4 to find N D2-branes with a transverse

T̂2 × R5 where the radii are R̂3 = α′/R3 and R̂4 = α′/R4 and the coupling constant is

4For the sake of generality here we have considered an arbitrary number of M-branes whereas the results

we found above only concern the case of N = 2.
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M5: 0 1 2 3 4 5

  P :                5

M2 : 0 1 2            

      M2 : 0       3 4          

D4: 0 1 2 3   5

 P :               5

D3: 0 1 2       5

  P:                5

D2 : 0 1 2            

      D2 : 0       3 4          

            D4 : 0 1 2 3 4      
D0 : 0                               

T3T3,4

IIA4IIA5

M5

Figure 1. U-dualities of an M5 with momentum. IIAn indicates reduction to string theory along

xn, Tn T-duality along xn and Mn lift to M-theory along xn.

ĝ2
YM ∼ R5/R3R4. If we now shrink the original radii to zero we obtain the strong coupling

limit of N D2-branes in a transverse R7 or equivalently N M2-branes in a transverse R8.

Let us repeat these steps with K units of momentum along x5. In addition to the N

D4-branes we also find K D0-branes. After T-duality these become K D2-branes along

x3, x4. Taking all the radii to zero leads to N M2-branes along x0, x1, x2 and K M2-branes

along x0, x3, x4. The Hitchin system can then be thought of as the BPS condition for K M2-

branes intersecting the original N M2-branes, generalising the familiar abelian holomorphic

condition ∂̄Z = 0 for intersecting branes. We also see that there will be an SOL(2) ×
SOR(2)×SOR(6) symmetry from rotations in the (x1, x2), (x3, x4) and (x5, . . . , x10) planes

respectively.

Lastly we need to perform the light-like boost along x5 which is transverse to all the

M2-branes. In terms of static gauge this corresponds to replacing X5 with −vx0 + X5

and taking the limit v → 1. For v 6= 0 this will break the SOR(6) symmetry of the total

transverse space to SO(5). However one can see that the breaking only occurs through

the time derivative kinetic terms. The spatial gradient terms will remain invariant under

SOR(6). The interaction terms also remain invariant since X5 → −vx0 + X5 is a shift

by the centre of mass degree of freedom which is non-interacting.5 If we take the limit

v → 1 then the M2-brane tension vanishes, the kinetic terms diverge and we are forced to

set them to zero. Thus the SOR(6) symmetry is restored. In addition we can allow the

moduli to evolve such that ∂0ξ
m ∼ O(

√
1− v2). In this case the SOR(6) symmetry remains

unbroken as these moduli are invariant under rotations of the total transverse space. In

the limit that v → 1 the Manton approximation of slow motion on the moduli space of

solutions becomes exact and the dynamics reduces exactly to motion on HK(su(2),R2).

This agrees with the results that we have found in the previous section. Stated some-

what differently boosting the intersecting M2-branes leads to ‘fast’ modes corresponding

5This is clear for D2-branes where the centre of mass degree of freedom is given by the identity matrix

and all interactions are through commutators. This degree of freedom can be somewhat subtle in interacting

M2-brane models but ultimately one expects this statement to remain true.
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to the over-all transverse scalars XI (what we called the background fields before) and

‘slow’ modes corresponding to the moduli ξm. Time evolution of the ‘fast’ modes breaks

SOR(6) to SO(5) but time evolution of the ‘slow’ modes does not. Thus the (2, 0) system

we obtained above can be viewed as describing the ‘slow’ modes, with the ‘fast’ modes

frozen or integrated out (i.e. set to their expectation values).

Let us now comment on a separate but related description of N M5-branes on T2×S1
−.

In particular let us first compactify on T2. As is well known reduction of the AN−1 (2, 0)

theory on a torus of vanishing area (but fixed shape) leads to maximally supersymmetric

U(N) Yang-Mills. More precisely we can reduce to string theory on x4 to obtain N D4-

branes with coupling g2
YM ∼ R4 and then T-dualise along x3 to find N D3-branes with

finite coupling g2 ∼ R4/R3. Lastly we introduce K units of null momentum along x5 which

leaves a manifest SO(2) × SO(6) symmetry that arises from rotations in the (x1, x2) and

(x3, x6, x7, x8, x9, x10) planes respectively. This is the set-up for a DLCQ construction of

four-dimensional maximally super-symmetric Yang-Mills. This was given in [8] in terms

of the quantum mechanics on HN (u(K), T̂2) where T̂2 is an auxiliary two-torus. Various

details of this system have been studied in detail more recently in [10] and see also [7] for

an alternative description.

These two descriptions differ by a T-duality along x4 as well as a U-duality correspond-

ing to the choice of M-theory direction (a ‘9 − 11 flip’ that swaps x4 with x5). However

it is also possible that the two descriptions involve different choices of ‘fast’ and ‘slow’

modes. In the case of D3-branes there is a manifest SO(2) × SO(6) symmetry that comes

from rotations in the (x1, x2) and (x3, x6, x7, x8, x9, x10) planes respectively. In the case

of M2-branes we saw that there is an SO(2) × SO(2)× SO(6) symmetry corresponding to

rotations in the (x1, x2) and (x3, x4) and (x5, x6, x7, x8, x9, x10) planes respectively. This

enhancement of the R-symmetry from SO(2)×SO(6) to SO(2)×SO(2)×SO(6) presumably

comes from taking the strong coupling limit corresponding to the lift to M-theory. There-

fore we expect it to be present in the strong coupling DLCQ description of D3-branes but

only in the case where R3 = R4.

Perhaps a more direct relation between the two descriptions can been seen as follows.

We are free to compactify R2 to a torus T2
12. Our M2-brane description then becomes

motion on HK(su(N),T2
12) and the SOL(2) × SOR(2) × SOR(6) symmetry is broken to

SOR(2) × SOR(6). If we reduce to string theory on x5 we again obtain the intersecting

D2-branes discussed above but we can now T-dualise along x1, x2, x3, x4 and then lift back

to M2-branes. This has the effect of simply swapping the original N M2-branes that were

tangent to x0, x1, x2 with the K intersecting M2-branes that were tangent to x0, x3, x4.

The result is motion on HN (su(K), T̂2
12) where T̂2

12 is the T-dual torus to T2
12. This is

almost in agreement with the DLCQ description if we identify T̂2 with T̂2
12. However

there is one caveat: we see only the su(K) Lie algebra and not u(K). We assume that

this came about because of the gauge group of the three-algebra associated with maximal

supersymmetry is su(2)⊕ su(2) rather than u(N)⊕ u(N) that arises in the ABJM model.

Thus it would seem that the T-duality and U-duality discussed above manifest themselves

as a rank-charge duality in the quantum mechanics on the Hitchin moduli space.
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Lastly let us examine the formula for W in the case that we considered in section

3.3 and propose an interpretation for it as the M5-brane momentum P−. It is known

that there are no finite action regular solutions to the Hitchin system on R2 [11] (more

recently see [12]) but here we will make a proposal on how to interpret certain multi-

valued solutions. Restoring the factor of l, identifying 〈A,B〉 = −1
2tr(AB) (valid in the

case considered in section 3.3) and replacing the integral over x3, x4, x− by the volume

factor V3 = (2π)3R3R4R− that we would get by taking x3, x4, x− to be periodic we have

W =
π

2l6
V3
i

2

∫
dtr(Z̄DZdz)− dtr(ZD̄Z̄dz̄) . (4.1)

For a smooth solution the integral is only over the sphere at infinity. Let us assume that for

large z we can treat Z as abelian and ignore A (which can either be subleading or simply

commuting with Z). Then up to a gauge transformation we can expand

Z = −iaJ3 ln z + C + . . . , (4.2)

where J3 is a real anti-hermitian generator of so(3) normalised to tr(J2
3) = −2 and the

ellipsis denotes subleading terms. We have assumed this asymptotic form so that W 6= 0.

Even so the expression for W is problematic as there is a divergence:

W = − πi
4l6

V3

[∮
2|a|2 ln z̄

z
dz + itr(aJ3C̄)

∮
1

z
dz

]
+ c.c. . (4.3)

However if we cut-off the divergent terms at some large by finite r = |z| they become

W∞ = − πi
4l6

V3a|2
∮

ln z̄

z
dz + c.c.

= − πi
4l6

V3|a|2
∮

ln z̄d ln z + c.c.

= − πi
4l6

V3|a|2
∫ ln r+iπ

ln r−iπ
w̄dw + c.c.

=
π

4l6
V3|a|2

∫ π

−π
(ln r − iθ)dθ + c.c.

=
π2

l6
V3|a|2 ln r , (4.4)

where we have introduced a branch cut for ln z that runs along the negative real axis and

written w = ln r + iθ. Therefore we find

W =W∞ +
π2i

2l6
V3 tr(J3(aC̄− āC)) . (4.5)

Next we observe that Z is not single valued: under a rotation z → e2πiz we see that Z ∼=
Z+2πaJ3. We recall that Z = Y4+iY3 where Y4 and Y3 are real anti-symmetric matrices.

These have imaginary eigenvalues y4 and y3 respectively which, after multiplication by i,

can be thought of as positions of the two M5-branes along x4, x3 directions. The above

identification then implies that y4 ∼= y4 + 2πRea and y3 ∼= y3 + 2πIma. We learn from this

that Y 3 and Y 4 must be treated as periodic and hence we identify a = R4 + iR3.
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This means that the divergent term only depends on R3, R4, R−. Unfortunately we do

not have a physical interpretation for this divergence, it would be interesting to find one.

However in this discussion we only want to consider solutions that correspond to fixed radii

and so we will simply ignore the divergence and consider instead

Wfinite =
π2i

l6
V3 tr(J3(aC̄− āC)) . (4.6)

Let us write C = cJ3 + . . . where the ellipsis denotes terms that are orthogonal to J3. Thus

Wfinite = −2π2i

l6
V3(ac̄− āc) . (4.7)

The multivalued nature of Z also means that in the space of solutions, those which differ

by c→ c+ 2πa must be identified with each other. Therefore if we write

c = 2πR4n4 + 2πiR3n3 , (4.8)

then solutions that differ by (n3, n4)→ (n3 + 1, n4 + 1) are identified with each other. As

a result we have

Wfinite =
8π3

l6
V3R3R4(n4 − n3)

=

(
V3

l3

)2 n4 − n3

R−
. (4.9)

This suggests that we should identify l3 = V3 = (2π)3R3R4R− and so recover the KK

spectrum of a null compactification on x−, provided that n4 − n3 is an integer. Putting

this another way: in order to arrive at the interpretation of our model as describing a

null compactification M5-branes we should assume (Y 3, Y 4) are periodic and impose on

our Hitchin system the boundary condition Z ∼ −i(R4 + iR3)J3lnz+ 2π(R4n4 + iR3n3)J3

where n4 − n3 is an integer. Lastly we mention that, according to the previous discussion,

we are ultimately required to let R3, R4, R5 → 0. However when viewed as the limit of a

null boost, the spacelike radius is sent to zero in such that a way that R− is fixed. In this

case Wfinite remains finite.

5 Conclusion

In this paper we presented a solution to the constraints of the (2, 0) system derived in [2].

The result was a system of equations for 3-algebra valued fields Z,H,XI ,Ψ±, along with

an associated gauge field one-form A, that are defined on a plane R2 times a null direc-

tion R+ which we used as ‘time’. We saw that for choices of the fields XI , H,Ψ− that

preserve the Q+ supersymmetries the system reduced to supersymmetric dynamics (with

supersymmetry generator Q+) on the moduli space of an SO(3) Hitchin system. We also

gave a physical interpretation of the resulting system as a re-formulation of the M5-brane

on T2 × S1
− as intersecting null M2-branes or alternatively a DLCQ of four-dimensional

maximally supersymmetric Yang-Mills.
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The original Hitchin system arises in our system for one particular choice of back-

ground. In addition our equations admit generalizations such as a non-zero Z4 and non-

constant XI . It would be interesting to examine these backgrounds and their associated

dynamics. It is also possible to include impurities giving by sources in the Hitchin equations

as done in [7, 8]. We also expect that our results can be naturally extended to a Lorentzian

3-algebra and hence to an arbitrary gauge group. We also note that Hitchin’s system has

also appeared before in conjunction with class-S theories derived from the M5-brane [13–17].

Lastly we note that the Hitchin system is generally thought of as applying to a Riemann

surface Σ of genus g. However here we have taken the coordinates (z, z̄) to be those of

the flat plane, or possibly a torus, which admit covariantly constant spinors. Due to the

SOR(2) symmetry we may twist our theory by taking Killing spinors of the diagonal group of

SOL(2)×SOR(2). Alternatively we could break the transverse SO(5) → SO(3)×SO(2) and

use the later to twist the theory. Thus we expect to be able to extend our supersymmetric

system to a generic Riemann surface and possibly make contact with the class-S theory

literature (or at least toroidal compactifications of them). In doing so we should also allow

for singularities at marked points on the Riemann surface.
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A Conventions

In the text we introduced the coordinates

x+ =
x5 + x0

√
2

x− =
x5 − x0

√
2

. (A.1)

In these coordinates we find

η+− = η−+ = 1

ε1234+− = ε+−1234 = −1 . (A.2)

For spinors we find it useful to introduce the following conventions:

Γ± =
Γ5 ± Γ0√

2

Γ05 = Γ+− . (A.3)
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We then find that

Γ−χ = Γ−χ+ = −
√

2Γ0χ+

Γ+χ = Γ+χ− =
√

2Γ0χ−

Γ±χ± = 0

Γ−Γ+χ = 2χ−

Γ+Γ−χ = 2χ+ . (A.4)

We also introduced complex coordinates

z = x1 + ix2 , (A.5)

so that

gzz̄ =
1

2
ε−+zz̄34 =

i

2

D ≡ Dz =
1

2
(D1 − iD2) D̄ ≡ Dz̄ =

1

2
(D1 + iD2) . (A.6)

We also define

Γ̂z =
1

2
(Γ̂1 − iΓ̂2) =

1

2
(Γ01 − iΓ02)

Γ̂z̄ =
1

2
(Γ̂1 + iΓ̂2) =

1

2
(Γ01 + iΓ02) . (A.7)

Next we introduced the complex scalar

Z = Y 4 + iY 3 , (A.8)

and

Γ̂Z =
1

2
(Γ̂3 − iΓ̂4) =

1

2
(Γ054 − iΓ053)

Γ̂Z̄ =
1

2
(Γ̂3 + iΓ̂4) =

1

2
(Γ054 + iΓ053) . (A.9)
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