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Abstract: In this work we systematically enumerate genus one fibrations in the class

of 7, 890 Calabi-Yau manifolds defined as complete intersections in products of projective

spaces, the so-called CICY threefolds. This survey is independent of the description of

the manifolds and improves upon past approaches that probed only a particular algebraic

form of the threefolds (i.e. searches for “obvious” genus one fibrations as in [1, 2]). We also

study K3-fibrations and nested fibration structures. That is, K3 fibrations with potentially

many distinct elliptic fibrations. To accomplish this survey a number of new geometric

tools are developed including a determination of the full topology of all CICY threefolds,

including triple intersection numbers. In 2, 946 cases this involves finding a new “favorable”

description of the manifold in which all divisors descend from a simple ambient space. Our

results consist of a survey of obvious fibrations for all CICY threefolds and a complete

classification of all genus one fibrations for 4, 957 “Kähler favorable” CICYs whose Kähler

cones descend from a simple ambient space. Within the CICY dataset, we find 139, 597 ob-

vious genus one fibrations, 30, 974 obvious K3 fibrations and 208, 987 nested combinations.

For the Kähler favorable geometries we find a complete classification of 377, 559 genus one

fibrations. For one manifold with Hodge numbers (19, 19) we find an explicit description

of an infinite number of distinct genus-one fibrations extending previous results for this

particular geometry that have appeared in the literature. The data associated to this scan

is available here [3].
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1 Introduction: fibrations in Calabi-Yau threefolds

Calabi-Yau manifolds admitting fibrations have long played a central role in the study of

string compactifications. This has included bringing to light remarkable string dualities

including heterotic/Type IIA duality, heterotic/F-theory duality and F-/M-theory duality,

among others. Crucially, because F-theory arises from a “geometrization” of the axio-

dilaton of Type IIB string theory [4], the structure of effective theories in this context is

intrinsically linked to the geometry of elliptically (or more generally, genus one) fibered

Calabi-Yau (CY) manifolds. In addition, genus one fibered CY geometries are significant

because they provide an important foothold into attempts to classify all compactification

geometries since the set of all genus one fibered CY 3-folds has been proven to be finite [5].

Recent progress [6] has given evidence of finiteness for genus one fibered CY 4- and 5-folds

as well. From a mathematical perspective, these classifications [5, 7] were motivated by

the hope that they could provide tools which might be used to establish the finiteness of

the set of all CY n-folds. However, despite these hopes, and the manifest utility of CY

fibrations for string dualities, for many years it was generally thought that CY manifolds

which admit fibrations (i.e. genus-one, K3, or abelian surface fibrations) would likely be

rare within the set of all CY geometries.

Recent work has made clear that, in fact, the vast majority of all known Calabi-Yau

manifolds are genus-one fibered [1, 2, 8–11]. Further, these manifolds also appear to be

generically multiply fibered, that is that they can be written in more than one way as a

genus-one fibration, over topologically distinct bases [1, 2, 8, 12]. More explicitly, a multiply

elliptically fibered (or genus one fibered in the case without section) CY n-fold admits

multiple descriptions of the form πi : Xn −→ B
(i)
n−1 with elliptic fiber E(i)b = π−1(b ∈ B(i)

n−1)

(denoted succinctly by πi : Xn

E(i)−→ B
(i)
n−1). That is,

Xn

E(1)

zz

E(2)
��

E(i)

$$

B
(1)
n−1 B

(2)
n−1 . . . B

(i)
n−1

(1.1)

For each fibration, πi, the form of the associated Weierstrass model [13], the structure of

the singular fibers, discriminant locus, fibral divisors and Mordell-Weil group can all be

different, as can the topology of the base manifolds B
(i)
n−1. Initial steps to explore such
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prolific fibration structures were taken for CICY four-folds in [1] and some examples were

studied for three-folds in [2].

In this work, we will be focused on systematically enumerating such fibration struc-

tures for a simple dataset of CY threefolds. To begin, we will consider a dataset that is

sufficiently large in scope to be interesting, but small enough to be tractable — the set of

7890 CY manifolds constructed as complete intersections in products of projective spaces

(CICYs) [1, 14–16]. However many of the tools and observations could equally well be

applied to complete intersections in toric varieties [8, 17, 18] or the recently constructed

gCICY manifolds [19–23].

A CICY manifold can be described by a so-called “configuration matrix” which encodes

the data essential to the algebraic definition of the manifold. In general, a three-fold X

can be defined as the complete intersection of K polynomials, pα where α = 1, · · · ,K, in

an ambient space, A = Pn1 × · · · × Pnm . The polynomials pα are sections of appropriate

line bundle OA(a1
α, · · · , amα ), with arα ≥ 0 specifying the non-negative homogeneous degree

of pα in the r-th projective piece. Here the indices r, s, · · · = 1, · · · ,m are used to label

the projective ambient space factors Pnr , and the indices α, β, · · · = 1, · · · ,K, to label

the polynomials, pα. A family of such geometries can be characterized by a configuration

matrix of the form,

X = [A || {aα} ] =


Pn1 a1

1 · · · a1
K

Pn2 a2
1 · · · a2

K
...

...
. . .

...

Pnm am1 · · · amK

 (1.2)

where

dimC X =

m∑
r=1

nr −K = 3 , (1.3)

and the Calabi-Yau condition leads to the degree constraints,

nr + 1 =
K∑
α=1

arα , (1.4)

for each r = 1, · · · ,m.

Within this dataset, many fibration structures are “obvious” from the form of the

configuration matrix above. It should be noted that it is possible to perform arbitrary row

and column permutations on a configuration matrix without changing the geometry that

is described. These operations simply correspond to reordering the Pnr ambient factors

and the hypersurface equations, respectively. Thus, we can ask whether the configuration

matrix can be put in the following form by row and column permutations:

X =

[
A1 0 F
A2 B T

]
. (1.5)

where A1 and A2 are both products of projective spaces, while F ,B and T are block sub-

matrices. Such a configuration matrix describes a fibration of the manifold described by
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[A1|F ] over the base [A2|B] where the “twisting” of the fibre over the base is determined

by the matrix T . Therefore, as long as the number of columns of F and the dimension

of A1 are such that F is of complex dimension 1, (1.4) guarantees that the fibers will be

Calabi-Yau one-folds: that is genus-one curves. It follows that the base of the fibration

will then be of complex dimension n− 1.

As a simple example, consider the following configuration matrix defining the tetra-

quadric threefold:

X{4,68} =


P1 2

P1 2

P1 2

P1 2

 (1.6)

as a single hypersurface of multi-degree {2, 2, 2, 2} in a product of four P1 factors. By

choosing a point in a surface defined by any two ambient P1 factors, it is clear that the

defining equation takes the form of a genus one curve defined via a {2, 2} hypersurface in

the remaining P1×P1 factors. Thus, this manifold can be described as a genus one fibration

π : X → P1 × P1. There are 6 distinct (but equivalent) fibrations of this type. Likewise,

there are 4 manifest K3 fibrations, ρ : X → P1, in which the K3 fiber is itself genus one

fibered and is described as a {2, 2, 2} hypersurface in a product of three P1 factors.

Fibers of the type described above — evident from the algebraic description of the

manifold — have been referred to as Obvious Genus-One Fibrations (OGFs). As noted

above, nearly all CICYs admit multiple fibrations of this kind. Of the 7,890 CICY three-

fold configuration matrices it was noted in [2] that 7,837 admit at least one such fibration,

with the average number of inequivalent obvious fibrations per manifold being 9.85. For

the CICY four-folds, the percentage of obviously fibered manifolds is even higher with

921,420 out of 921,497 cases admitting such a fibration (here the average manifold can be

described as OGF in 54.6 different ways [1]).

It is important to note however, that the existence of such obvious fibration structures

can be dependent on the algebraic form of the manifold and hence, potentially incomplete.

For example, consider the following CY threefold with Hodge numbers (h1,1, h1,2) = (6, 51).

X{6,51} =

 P2 2 0 1

P1 1 1 0

P3 0 1 3

 (1.7)

By inspection, this manifold admits two obvious genus one fibrations of the form described

in (1.5), π1 : X{6,51} → P2 and π2 : X{6,51} → dP4 where dP4 denotes the fourth del

Pezzo surface (P2 blown up at four generic points). These can be seen by splitting the

configuration matrix up into two pieces, one describing the base and the other the fiber.
P1 1 1 0

P3 0 1 3

P2 2 0 1

 ,


P3 0 1 3

P1 1 1 0

P2 2 0 1

 . (1.8)
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In the first case, the rows of the configuration matrix have been reordered to separate the

P2 base from the fiber and in the second case, the base surface

dP4 =

[
P1 1

P2 2

]
(1.9)

has been made clear. In each case if any point is selected on the base manifold, substitut-

ing the coordinates of this point into the remaining defining relations leads to (a specific

complex structure and) equations which now depend only upon the coordinates in the first

projective space factors (given above the dotted horizontal line in the two cases above).

The degrees of the equations in the remaining variables satisfy (1.4) thus, these equations

describe a Calabi-Yau one-fold — a torus. If the choice of point in the base is varied, the

complex structure describing the associated torus fiber will change, and so it is clear that

each of the configuration matrices in (1.8) is a non-trivial fibration of a genus-one curve

over that base. However, it must be noted that the description given in (1.7) is not unique.

The same CY manifold can also be described by the configuration matrix:

X̃{6,51} =


P3 0 0 0 1 3

P1 0 0 1 1 0

P2 1 1 1 0 0

P2 1 1 0 0 1

 . (1.10)

This description makes evident yet another fibration π3 : X̃{6,51} → dP3 given by

dP3 =

[
P2 1 1

P2 1 1

]
. (1.11)

The existence of OGF structures has also been observed in other constructions of CY

manifolds (e.g. toric [17], gCICY constructions [19] and CY quotient geometries [24, 25])

and its ubiquitous nature is suggestive of the fact that most CY manifolds with large

enough topology may admit a genus one fibration. However, the above example illustrates

that any characterization of fibrations that relies on one algebraic description of a given

CY manifold is destined to be incomplete and that a full classification can only be possible

via criteria that rely only on the fundamental topology of the CY manifold. Fortunately,

just such a tool exists for CY 3-folds and we will employ it in this work.

1.1 Criteria for the existence of a genus one fibration

Throughout this work we will refer to a fibration in which the generic fiber is a complex

curve of genus one as a genus one fibration.1 The existence of a genus-one fibration in

a Calabi-Yau n-fold has been conjectured by Kollár [26] to be determined by the follow-

ing criteria:

1Sometimes in the literature the terms “elliptic fibration” and “genus one fibration” are used interchange-

ably. Here we will follow the convention that an elliptic fibrations is a genus one fibration with section.

In the present work we do not attempt to identify sections in our classification of genus one fibrations

(although tools to do this for CICYs have recently been developed in [29]).
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Conjecture [26]: let X be a Calabi-Yau n-fold. Then X is genus-one fibered iff there

exists a (1, 1)-class D in H2(X,Q) such that D · C ≥ 0 for every algebraic curve C ⊂ X,

Ddim(X) = 0 and Ddim(X)−1 6= 0.

In the case that X is a Calabi-Yau threefold this conjecture has been proven by Oguiso

and Wilson subject to the additional constraints that D is effective or D ·c2(X) 6= 0 [27, 28].

Phrased simply these criteria are characterizing the existence of a fibration by character-

izing a particular divisor in the base manifold of that fibration. In particular, the role of

the divisor D above is that of a pull-back of an ample divisor in the base, B, where the

fibration of X is written π : X → B. Such a divisor in X is sometimes referred to as

semi-ample [26]. The existence of D = π∗(Dbase) makes it possible to define the form dual

to points on the base (i.e. Ddim(X)−1) which in turn determines the class of the genus-one

fiber itself.2 While Kollár’s conjecture has yet to be proven for CY manifolds in arbitrary

dimensions, for threefolds, this is a well-established if and only if condition that can be

used to determine whether or not fibrations exist. In this paper we will employ the criteria

above to enumerate all genus one fibrations in a set of CICY 3-folds (K3 fibrations will also

be enumerated using different means in section 3). Throughout this work, we will refer to

an effective divisor satisfying the criteria in the conjecture above to be a “Kollár divisor”.

Before beginning such an enumeration, it should be noted that there can in fact be

many divisors D of the form above for a single fibration structure in X. Thus, to count

fibrations using this tool, the question of redundancy must be addressed. For a given

fibration π : X → B there are in general, an infinite number of divisors D ⊂ X satisfying

the criteria above. For example, for a fibration π : X → P2 not only will the pull-back of

the hyperplane class, H, of the base P2, satisfy D2 6= 0 and D3 = 0, but also any multiple

of it, aH for a ∈ Z>0. This is not surprising since for any value of a, D2 defines both a

good volume form for P2 and the class of one or more fibers (i.e. a2 fibers) of π : X → B.

To eliminate this redundancy of counting, we will consider two divisors D,D′ ⊂ X to

define generically the same fibration if the fiber classes they define are proportional curves

within X. That is,

D2 ∼ D′2 as curves in X (1.12)

If this proportionality is satisfied, there are two immediate possibilities that are likely to

arise: a) The fibers are proportional as in (1.12) and as in the π : X → P2 example above,

are associated to the same base and hence, the same fibration (in this case D and D′ just

count multiple copies of the same fundamental fiber class) or b) The two fibrations differ

at non-generic points over the base. This case would be expected in cases where the two

base geometries (associated to D and D′) are birational. We will study such possibilities in

detail in sections 5 and appendix A.2. Throughout this work, the criteria in (1.12) will be

most useful to us to establish that when proportionality fails, the two possible fibrations

are definitely distinct (and not even birational).

2It should be noted that the existence of a fibration structure within a smooth Calabi-Yau n-fold with

n > 2 is a deformation invariant quantity (i.e. given a fibered manifold, every small deformation is also

fibered) [26, 28, 30]. Indeed this must clearly be the case if the above conjecture is to make sense.
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Finally, we note that since triple intersection numbers of divisors in CY threefolds are

generally easier to compute than double intersection numbers, we will frequently apply this

test as

D ·D ·Dr = aD′ ·D′ ·Dr (1.13)

for some a and every divisor Dr, r = 1, . . . h1,1 in the basis.

With these results in hand, we turn now to a brief summary of our approach and

key results.

1.2 Enumeration of fibrations and key results

The goal of this work is to systematically count genus one fibrations in the dataset of CICY

threefolds. There are two distinct ways that we undertake this study:

1. By enumerating obvious fibrations (OGFs as defined in section 1) that are apparent

from the given algebraic (in this case complete intersection) form of the CY geometry.

2. By utilizing the criteria in section 1.1 to scan for possible base divisors D and thereby

to systematically enumerate all fibrations.

Since all surveys in the literature to date have involved the first approach, we will be

interested in undertaking both and comparing the totals where possible. In addition, we

would like to probe other fibration structures (i.e. K3- or Abelian Surface fibrations). It

should also be noted that at present the “obvious” fibration approach is our only tool to

count K3 fibrations or to consider compatible (i.e. nested) K3 and genus-one fibrations.

It is clear from the Kollár-Oguiso-Wilson criteria laid out in section 1.1 that a system-

atic search for genus-one fibrations must begin with a clear determination of all intersection

numbers in the CY geometry as well as the structure of the Kähler and Mori cones. Despite

the fact that the CICY dataset has existed for nearly 30 years, this information was still in-

complete for the majority of manifolds in the list. In the following sections we compute the

triple intersection numbers of all CICY threefolds and provide a description of the Kähler

and Mori cones for the subset of “Kähler Favorable” geometries whose Kähler/Mori cones

descend in a simple way from an ambient space. For this subset of 4957 manifolds out of

7890, we are able to completely classify all genus one fibrations.

Thus our first results, laid out in section 2 are,

• Algorithmic tools are developed to systematically replace CICY configuration ma-

trices with new descriptions that provide an easy determination of their topological

data (i.e. Hodge numbers, c2(X) and triple intersection numbers, drst, r = 1, . . . h1,1).

We construct this complete topological data for all CICY threefolds.3

• For the 4957 Kähler favorable geometries their Kähler and Mori cones are constructed

explicitly. 4874 of these geometries are Kähler favorable with respect to an ambient

3It would be interesting to use this data to investigate the number of distinct Calabi-Yau threefolds

described by the CICY configuration matrices, in line with the work in [31]. We thank the referee for

making this suggestion.
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product of projective spaces and 83 are Kähler favorable with respect to an ambient

space defined as the product of two almost del Pezzo surfaces.

With these tools available, we then undertake the fibration surveys described above. In

section 3 we enumerate obvious fibration structures extending the tools developed in [1,

2, 20, 29]. These are applied to all 7868 CICY threefolds which are not direct products.

We find

• 139, 597 obvious genus one fibrations.

• 30, 974 obvious K3 fibrations.

• 208, 987 distinct nestings of these fibrations.

In section 4 we complete a scan for Kollár divisors of the type described in section 1.1

for the 4874 Kähler favorable geometries descending from an ambient space of the form

Pn1 × . . .×Pnm and compare this to the OGF count for these manifolds. We find that here

• The number of OGF fibrations exactly matches the exhaustive list of fibrations (ob-

tained by counting Kollár divisors). In these cases the (special) chosen algebraic form

of the manifold has captured all relevant fibration structures.

Finally, there remains to consider the 83 CICY configurations which are Kähler favorable

with respect to an ambient space of the form S×S′ where S, S′ are almost del Pezzo surfaces

(i.e. P1×P1, dPr with r = 0, . . . 7 or the smooth rational elliptically fibered surface denoted

as dP9 in the physics literature). This class of geometries is studied in sections 5 and 6.

For these CY geometries

• For the 83 CICYs defined as hypersurfaces in a product of almost del Pezzo surfaces,

the criteria given in section 1.1 produce vastly more fibrations than the OGF count.

• More precisely, for the CYs defined as an anticanonical hypersurface in a product of

two del Pezzo surfaces, we find 327, 340 fibrations, of which at most 1, 289 are OGFs.

• Combining the counts of genus-one fibrations classified in all Kähler favorable geome-

tries (with ambient spaces consisting of products of projective spaces and almost del

Pezzo surfaces) we provide a complete classification of 377, 559 fibrations in total on

4, 957 manifolds.

• For one manifold — the threefold4 with Hodge numbers (h1,1, h2,1) = (19, 19) — our

survey yields an infinite number of genus-one fibrations.

Finally, in sections 7 we provide an overview of our conclusions and future applications

of this work. The appendices provide a collection of useful technical results. All of the data

outlined above, including a new augmented CICY list (with complete topological data),

and all the fibration data described is publicly available at [3] and in part through an arXiv

4Sometimes referred to as the “Schoen” manifold (due to its study in [33]) or the “split bi-cubic” (from

its original inclusion in [16]).
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attachment associated to this work. The exception to this are the intersection numbers of

the CICYs which can quickly be computed in all cases using the results of this paper. The

size of the data associated to these invariants means that it is more efficient to compute

them as needed rather than tabulate their values.

2 Completing the topological data of the CICY 3-folds: intersection

numbers and Kähler cones

As described in the Introduction, in any attempt to systematically classify all genus one

fibrations within a dataset of Calabi-Yau manifolds, it must first be possible to fully de-

termine, for each manifold, X:

• The Kähler and Mori Cones of X.

• The triple intersection numbers of all effective divisors on X.

In this section we attempt to characterize both of these structures as far as possible for

the entire CICY threefold dataset using all available tools. We will begin with a systematic

approach to determining the Picard groups of CICY threefolds.

2.1 Splitting configuration matrices to produce favorable descriptions

In the context of this work, when all divisors (equivalently the Picard group) of a Calabi-

Yau three-fold X descend from the simple ambient space A, we refer to it as a “favorable”

geometry [32]. To determine explicitly when this occurs, consider the adjunction sequence

and its dual:

0 → TX → TA|X → N|X → 0, (2.1)

0 → N ∗|X → TA∗|X → TX∗ → 0.

The latter induces the long exact sequence in cohomology,

· · · −→ H1(X,N|∗X)
α−−−−−−−−→ H1(X,TA|∗X) −−−−−→ H1(X,TX∗)

// H2(X,N ∗|X)
β−−−−−−−−→ H2(X,TA|∗X) −−−−−→ H2(X,TX∗) −→ · · · .

(2.2)

It follows that the Kähler moduli of X can be decomposed as H1(X,TX∗) ∼= H1,1(X) ∼=
coker(α)⊕ ker(β). These two contributions correspond to the descent of the Kähler mod-

uli on A to Kähler moduli on X and Kähler forms that arise on X only (i.e. non-toric

divisors) . If the contribution from ker(β) is zero, the only divisors on X are those de-

scending from A (possibly with additional linear relations) and we say the geometry is

“favorable”. In such a case we see that h1,1(X) = dim(H1,1(X)) ≤ dim(Pic(A)). The

simplest case of a favorable geometry is when h2(X,N|∗X) = 0 (or by Serre duality, when

h1(X,N|X) = 0). Of the original 7890 configuration matrices in the CICY three-fold

dataset [16], there are 4896 favorable geometries (including 22 direct product geometries)

and 2994 unfavorable geometries.
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For 2994 manifolds then, there are non-toric divisors present from the point of view of

the given configuration matrix and it is clear that the standard tools (see for example [34])

will not suffice to determine the required data for a fibration scan. We turn next to one

approach to remedying this deficit.

2.1.1 A review of CICY splitting/contraction

To improve this situation, in this work, we make systematic use of a known approach to

exchanging one configuration matrix with another that describes the same CY threefold.

This process, known as “splitting” or “contracting” a CICY has long been utilized in the

context of this dataset of manifolds [16]. It was noted early on to be useful in computing

Hodge data for example [35]. The original generating algorithm of the CICY threefold

dataset was designed to remove many such redundancies from the list.

The notion of splitting/contracting first arose naturally in the context of conifold

transitions [36]. For example the famous conifold of the quintic:[
P4
∣∣∣ 5 ]1,101

(Def) ⇔ l1q2 − l2q1 = 0 (sing.locus) ⇔

[
P1

P4

∣∣∣∣∣ 1 1

1 4

]2,86

(Res) .

Here the left and right configuration matrices form the deformation and resolution sides

of the conifold, respectively. The two topologically distinct geometries share a common

singular locus in their moduli space — in this case the nodal quintic (given in the center

above, where li and qi, i = 1, 2 are linear and quartic polynomials in the coordinates of

P4). See [36] for a review. An example of a CICY topology changing transition such

as this is called an “effective splitting” of the initial manifold (in this case the quintic).

However, there is another possibility in that the shared locus in moduli space between two

configuration matrices need not be singular. For example, the singularities arise from the

nodal quintic above for the 16 points where l1 = l2 = q1 = q2 = 0. On P4 there exists a

common solution to the four equations, however, if the ambient space had been say, P3, no

such solution would exist. When the shared locus in moduli space is smooth the splitting

operation on the configuration matrix is referred to as an ineffective splitting. Because the

manifolds described by the initial configuration matrix and its split then share a common

smooth locus in moduli space, they are topologically equivalent.

In the remainder of this section, we will use this observation and the technique of “inef-

fective splitting” to try to determine when it is possible to split an unfavorable configuration

matrix of a CICY three-fold to a favorable one. It is clear in principle that such ineffective

splittings in general increase the number of rows/columns of the configuration matrix and

as a result, will likely change the number of “obvious” genus one fibrations available.

More precisely, a Pn-splitting of a CICY configuration matrix (corresponding to the

manifold, X) can be written as follows:

X = [A | c C] −→ X ′ =

[
Pn 1 1 . . . 1 0

A c1 c2 . . . cn+1 C

]
, c =

n+1∑
α=1

cα . (2.3)

We begin with an initial CICY three-fold, X, defined above by a starting configuration

matrix of the form [A | c C] where A = Pn1 × . . .Pnm and c and C form an m×K matrix
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of polynomial degrees for the K equations defining the complete intersection hypersurface.

The first column of this matrix, c, has been explicitly separated from the remainder of

the columns, denoted by C, to facilitate the rest of our discussion. Since X is a three-

fold,
∑m

r=1 nr − K = 3. We can “split” X by introducing the new configuration matrix

X ′ where the vector c has been partitioned as the sum of n + 1 column vectors ci (of

dimension m) with nonnegative components, as indicated. Since X ′ is still a three-fold,

the new configuration matrix is (m+ 1)× (K + n) dimensional.

While the process of going from X to X ′ is called “splitting”, the reverse process, in

which X ′ → X, is called a “contraction” [16] (see [37] for some work related to tracking

bundles through this process). As described above, in some cases, a splitting of the form

(2.3) will not produce a new (i.e. topologically distinct) Calabi-Yau three-fold, but rather

a new description of the same manifold. As in the case of the quintic above, in either an

effective or ineffective splitting, two manifolds X and X ′ related as in (2.3) share common

loci in their complex structure moduli space — the so-called “determinental variety”. It

is defined as follows. Take the subset of the defining relations of X ′ corresponding to the

first n+ 1 columns on the right hand side of (2.3).
f1

1 f1
2 . . . f1

n+1

f2
1 f2

2 . . . f2
n+1

...
...

. . .
...

fn+1
1 fn+1

2 . . . fn+1
n+1



x0

x1

...

xn

 = 0 , (2.4)

Here fkα is of degree cα for all k. The determinental variety (i.e. shared locus in moduli

space) is found by taking the determinant of the matrix in (2.4) and combining it with the

remaining equations whose degree is governed by C.
We can thus state more clearly the observation made above: if the two configurations X

and X ′ can be smoothly deformed into each other and hence represent the same topological

type of Calabi-Yau manifolds, the splitting is called “ineffective” [16]. Otherwise it is an

“effective” splitting. Thus, the question of whether a given splitting is effective or ineffective

is decided by whether or not the determinental variety defined via (2.4) is smooth. For

all CICY three-fold splittings, the singular locus of the determinental variety is a zero-

dimensional space. That is, it can either be the empty set or a collection of points. It turns

out that the number of singular points is counted by the difference in Euler characteristic

between the original and the split configuration (the 16 singular points lead to ∆χ = 32

in the example above). This leads to the simple rule that two three-fold configurations,

related by splitting as in (2.3), are equivalent if and only if they have the same Euler

characteristic. In this case, the splitting is ineffective.

2.1.2 Finding favorable splitting chains

With these definitions in hand, we now turn to the question of when can a chain of inef-

fective splittings of a configuration matrix take a non-favorable configuration matrix to a

favorable one? An important tool in this regard was provided by a small lemma in [38]

which we re-state here for completeness:
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Lemma 2.1 Suppose that X and X ′ are two Calabi-Yau three-folds realized as complete

intersections in products of projective spaces and related by a splitting of the type described

in (2.3). Let L = OX(a1, . . . , am) be a “favorable” line bundle on X-that is, a line bundle

corresponding to a divisor D ⊂ X such that D = DA|X is the restriction of a divisor

DA in the ambient space. Then the calculation (and dimension) of the cohomology of

L̂ = OX′(0 . . . , 0, a1, . . . , am) on X ′ (defined by (2.3)) is identical to that of L on X on the

locus in complex structure moduli space shared by X and X ′.

See [38] for a proof/discussion.

Returning to the adjunction sequence (2.1) above, we see that a CICY configuration

matrix will be potentially non-favorable whenever h1(X,NX) > 0 (denoting NX = N|X
as a sum of line bundles on X). Thus, in the process of splitting, we would like to know

when it is possible to generate a new configuration matrix such that h1(X ′,N ′X′) goes to

zero? For any CICY configuration matrix, NX is simply a sum of line bundles and from

the lemma above, it is clear that the line-bundle cohomology of any line bundle, L ⊂ NX ,

on X does not change if we do not split the elements (i.e. partition the multi-degree) of

the column in X associated to that component of the normal bundle (i.e. L).

As a result, to find an ineffective split that changes an unfavorable to a favorable

manifold, it is not necessary to split any part of NX — i.e. column of the configuration

matrix — in which the associated line bundle cohomology gives h1(X,L) = 0. Instead,

we will systematically consider splitting only those columns for which the associated line

bundle cohomology is non-vanishing and determine whether splitting reduces that number.

To make the somewhat opaque description above more clear, it is useful to illustrate

this with an explicit CICY configuration matrix. One example of a non-favorable CICY is

given by the following configuration matrix.

X =


L1 L2 L3

P2 2 0 1
P1 1 1 0
P3 0 1 3

 . (2.5)

where (h1,1(X), h1,2(X)) = (6, 51) and χ(X) = −90. Since h1,1(X) = 6, but only three

Kähler forms descend from the ambient projective spaces, this configuration matrix is

clearly unfavorable in the original CICY list.

To begin, it can be verified that only one line bundle in NX has a non-zero h1. That is,

denotingNX = L1⊕L2⊕L3 (with multi-degree given by the columns in (2.5) above), we find

the cohomology dimensions: h•(X,L1) = (11, 3, 0, 0), h•(X,L2) = (7, 0, 0, 0), h•(X,L3) =

(59, 0, 0, 0). Overall, the dimension of the cohomology of the normal bundle is h•(X,NX)

= (77, 3, 0, 0). Since h1(X,L1) 6= 0, in order to find a favorable description we must begin

with a splitting which partitions the column associated to the line bundle L1.

For this column there is only one split available which will non-trivially partition the

entries and add a P1 factor to the ambient space as:

X ′ =

 L′1 L4 L̂2,3

P1 1 1 0
A c1 c2 C

 =


L′1 L4 L̂2 L̂3

P1 1 1 0 0
P2 1 1 0 1
P1 1 0 1 0
P3 0 0 1 3

 (2.6)

– 11 –



J
H
E
P
1
0
(
2
0
1
7
)
0
7
7

For this new configuration matrix, h•(X ′,L′1) = (9, 2, 0, 0) and h•(X ′,L4) = (5, 0, 0, 0),

while due to the lemma above, the cohomology of L̂2,3 stays the same. It is easy to verify

that this splitting is ineffective with χ(X ′) = −90. Moreover, by performing this P1-split,

the dimension of the first cohomology of the normal bundle decreases from h1(X,NX) = 3

to h1(X ′,N ′X′) = 2 while h2(X ′,N ′X′) = 0. It is clear that this splitting has produced a

potentially slightly more favorable configuration matrix and furthermore, that this process

can be continued — that is, there are still further splittings of the configuration avail-

able to us.

Starting again from the configuration X ′, we can proceed to split the first column in

L′1 ∈ X ′ with a P2 in a way that the new submatrix ci has the maximal rank:

X ′′ =

 L′′1 L6 L5 L̂2,3,4

P2 1 1 1 0

A c′1 c′2 c′3 C

 =



L′′1 L6 L5 L̂4 L̂2 L̂3

P2 1 1 1 0 0 0

P1 0 0 1 1 0 0

P2 1 0 0 1 0 1

P1 0 1 0 0 1 0

P3 0 0 0 0 1 3


(2.7)

with h•(X ′′,L′′1) = (7, 1, 0, 0), h•(X ′′,L5,6) = (5, 0, 0, 0). Once again, the remaining normal

bundle cohomology and the overall Euler number of the manifold is unchanged. At this

step in the splitting chain, the dimension of the first cohomology of the normal bundle

decreases from h1(X ′,N ′X′) = 2 to h1(X ′′,N ′′X′′) = 1 while the second cohomology group

is still zero.

It is important to note at this stage, that even having identified a problematic element

of the normal bundle (such as L1 above), not all splittings will cause the relevant cohomol-

ogy, h1(X,L1) to decrease. In general, an analysis of the associated long exact sequences

in cohomology demonstrates that the maximal change is possible when the new submatrix,

ci, is of maximal rank. For example, an alternative splitting to (2.7) is

X̂ =



L′′1 L6 L5 L̂4 L̂2 L̂3

P2 1 1 1 0 0 0

P1 0 0 1 1 0 0

P2 0 1 0 1 0 1

P1 0 1 0 0 1 0

P3 0 0 0 0 1 3


For this configuration, h•(X̂,L′′1) = (2, 0, 0, 0) while h•(X̂,L6) = (9, 2, 0, 0), h•(X̂,L′′1) =

(3, 0, 1, 0). Unfortunately, h1(X̂, N̂X̂) does not decease while h2(X̂, N̂X̂) increases. Finally,

it should be noted that even with maximal rank splittings of a column in some non-generic

cases, the cohomology may not decrease in the desired manner. We will return to this in

a moment, but for now it is enough to observe that in general there are only a few choices

of maximal rank splittings available and thus this process is suitable for an automated,

algorithmic search for ineffective, favorable splittings.

To conclude the example at hand, we have one further step to take from the configu-

ration, X ′′, in (2.7). Once again, the final P1 splitting is performed on the first column in
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the configuration matrix L′′1 on X ′′ as

X ′′′ =

 L′′′1 L7 L̂2,3,4,5,6

P1 1 1 0

A c′′1 c′′2 C

 =



L′′′1 L7 L̂6 L̂5 L̂4 L̂2 L̂3

P1 1 1 0 0 0 0 0

P2 0 1 1 1 0 0 0

P1 0 0 0 1 1 0 0

P2 1 0 0 0 1 0 1

P1 0 0 1 0 0 1 0

P3 0 0 0 0 0 1 3


(2.8)

with h•(X ′′′,L′′′1 ) = (5, 0, 0, 0), h•(X ′′,L7) = (5, 0, 0, 0) and χ(X ′′′) = −90. Now at

last, after a three-step chain of splittings, a configuration matrix has been obtained with

H1(X ′′′,NX′′′) = 0. Thus, the procedure outlined above has produced a new, equivalent

description of the same CY manifold, but one for which we have complete control of the

divisors/line bundles via restriction from a simple ambient space.

In summary, it is clear that for a given CICY configuration matrix, there are a finite

number of such splitting chains that have the potential to lead to a new, favorable descrip-

tion of the manifold via ineffective splitting. In practice, a computer search can easily be

implemented. The algorithm we employed consists of the following steps:

1. Begin by computing the line-bundle cohomology for each component of the nor-

mal bundle (i.e. column of the matrix) and split (in any order) those with non-zero

h1(X,L) cohomology. Due to the Lemma, other line-bundle cohomology groups will

not change in the splitting process.

2. If the maximal size of the degree entries in the chosen column/line bundle L =

OX(a1, . . . , am) is 2, split it with P1 as:5

[
Pn 2 b

A c C

]
=

 P1 1 1 0

Pn 1 1 b

A c1 c2 C

 (2.9)

and at the same time choose degree partitions such that the submatrix [ci,j] is maxi-

mal rank. If the largest degree entry in the chosen line bundle L is 1, then perform a

Pn-split, where n =
∑m

i a
i−1 and choose the submatrix [ci,j] to be of maximal rank.

3. For each step of splitting, verify that the split is ineffective by computing the Euler

number of the new configuration matrix.

4. Repeat these procedures whenever h1(X,NX) decreases while h2(X,NX) is un-

changed. Finish the procedure when h1(X,NX) = 0 and a favorable description

of the manifold has been obtained.

5In the original CICY list with unfavorable descriptions, 2 is the largest degree/entry for the line-bundle

involved in the splitting.
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Implementing this search in the original CICY database [16], there are 2994 unfavor-

able configuration matrices to be analyzed. A search as described above readily provides

a new, favorable description of 2946 of them. For the remaining 48 configuration matrices

an exhaustive search demonstrates that no chain of splittings/contractions will lead to a

favorable description. The remaining 48 configuration matrices will be dealt with sepa-

rately in section 5 where we will demonstrate that this set of 48 geometries in fact contains

15 descriptions of the same CY threefold (the so-called “Schoen manifold” with Hodge

numbers (19, 19)) and 33 others. Of these latter manifolds, we find a further 9 redundan-

cies and observe that the remaining 24 distinct geometries can all be simply described as

hypersurfaces defined in an ambient product of two del Pezzo surfaces.

For now, we see that the simple process of splitting has allowed to generate a new

version of the CICY list in which we have dramatically increased the number of favorable

configurations to 7842 in total. For each of these new descriptions, we can employ existing

tools [34, 39] to fully specify the topological data of the manifold, including the triple

intersection numbers, line bundle cohomology, etc. By combining these results with those

from section 5 for the remaining 48 manifolds we have produced a new version of the CICY

list with all topological data fully specified. It is available at [3] and in an attachment to

the arXiv submission of this work.

2.2 Kähler favorable manifolds

As observed in section 1.2, a fibration scan crucially relies on the characterization of the

Kähler and nef cones. Although the Kähler cone of a hypersurface in a Fano variety

descends simply from the ambient space, in general, few tools exist to characterize the

Kähler cones of complete intersection Calabi-Yau manifolds (even those defined in simple

ambient spaces). In this section, we review two useful tools that together help us to

determine the Kähler and Mori cones of 4957 out of 7890 configuration matrices in the list

of CICY threefolds. This set has the simple property that their Kähler cones descend from

the ambient space in which they are embedded. We will refer to such manifolds as “Kähler

Favorable” configurations (see [40] for earlier related ideas). For these, we will provide a

complete classification of all genus one fibrations in the CY geometries.

To begin, let us review two simple results about Kähler and Mori cones of CICYs. The

first is the following result for the cone of curves (denoted NE(X)) of CY hypersurfaces

in Fano fourfolds proved in [41]:

Lemma 2.2 (Kollár) Let Y be a smooth Fano variety with dim(Y) ≥ 4. Let X ⊂ Y be

a smooth divisor in the class −KY (in fact X can have arbitrary singularities). Then the

natural inclusion

i∗ : NE(X)→ NE(Y ) (2.10)

is an isomorphism.

Thus, a CY hypersurface in any smooth Fano fourfold has a cone of algebraic curves that

descends simply from its ambient space. Moreover, from the simple form of intersection

numbers on a hypersurface, it follows that the (dual) Kähler cone also descends from the
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ambient space (for a careful set of arguments on the descent of the effective, nef and ample

cones of divisors see [42, 43]). We will utilize this, and one additional result, to describe

the Kähler cones of 83 CICYs described as hypersurfaces in a product of two almost del

Pezzo surfaces in sections 5 and 6.

For more general complete intersections X ⊂ A, the first observation to be made is

that every Kähler form on A restricts to a Kähler form on X. For the CICY threefolds

defined in products of projective spaces considered here, the Kähler cone of Pn1 × . . .Pnm

is simply the positive orthant (see [16] for details). Thus, for all the favorable manifolds in

the CICY list, it is clear that the Kähler cone of X is at least as big as the positive orthant.

In general, however, it could be larger. To illustrate this, consider the following example:

X =


P2 0 0 0 3

P1 1 0 0 1

P1 0 1 0 1

P1 0 0 0 1

P2 1 1 1 0

 . (2.11)

This manifold (with Hodge numbers (h1,1, h2,1) = (5, 59)) is an anti-canonical hypersurface

in P2×dP3. It is also a manifest genus one fibration over dP3 (with a P2[3] fiber). Although

it is favorable in the sense that its Picard group descends from the ambient product of 5

projective spaces, it is not Kähler favorable since the Kähler cone of X is actually larger

than the positive orthant! To see this, note that by Lemma 2.2 above the Kähler cone of

X is simply that of P2 × dP3. However, the Kähler cone of dP3 is non-simplicial (with 5

generators [44]). Written in terms of a basis of the 5 restricted hyperplanes (Di, i = 1, . . . 5),

the six generators of the Kähler cone of X are

{D1, D2, D3, D4, D5, D2 +D3 +D4 −D5} (2.12)

This last generator, D2 + D3 + D4 − D5, is manifestly not in the Kähler cone of the

ambient space.

How, then, are we to determine when the Kähler cone of a CICY, X is “enhanced”

in this way relative to the Kähler cone of the ambient space? It is clear that whenever

the Kähler cone expands (as in the example above), the dual (i.e. Mori) cone must shrink.

Thus, one simple way to determine when the Kähler cone of X descends from that of A is

to determine when the Mori cone remains the positive orthant.

More precisely, consider the basis of curves dual to the Kähler forms Ji (i.e. basis of

H1,1 restricted from the ambient space in a favorable CICY), defined via∫
Ci

Jj = δij (2.13)

A general curve can be written in terms of this basis as C = aiCi. The claim for a favorable

CICY then is

If Ci are in the (closure of the) Mori cone for all i then the Kähler cone

is exactly the positive orthant.
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The expectation then is that if all Ci (i.e. all the boundaries of the dual positive orthant)

are in the Mori cone then it is clear that the Mori cone cannot be smaller than that orthant

(as would be the case if the Kähler cone expanded as in (2.12)). For the example above, it

is clear that because of the presence of the last Kähler generator, D2 +D3 +D4 −D5, the

curve C5 (dual to J5) is not an element of the Mori cone.

It remains then to try to determine when can we establish that X contains effective

curves in the class [Ci]? One simple (but certainly not exhaustive) approach6 is to use

existing tools to determine the existence of curves of a given class and genus in X —

namely to compute the Gromov-Witten Invariants of X.

In the case at hand — that of complete intersection Calabi-Yau manifolds in smooth

toric ambient spaces — techniques to compute the genus zero Gromov-Witten Invariants

are well established in the literature using mirror symmetry [45–47]. In particular, the tools

laid out in [46] provide a simple algorithmic way to enumerate simple, algebraic curves in

genus zero. In general, caution must be used in interpreting a Gromov-Witten invariant as

an actual count of algebraic curves, however for the CICYs in consideration here (defined

in simple, smooth toric ambient spaces) the results of a mirror symmetry computation lead

to positive integers which are expected to give a physically relevant, enumerative count

(see [48–50] for mathematical conjectures in this regard).

We employ the method of [46] to determine the vector:

n(0, [Ci]) = (#, . . . ,#) (2.14)

where i = 1, . . . h1,1(X) for every favorable CICY in the augmented CICY list attached

to this arXiv submission. We find that for 4874 out of 7820 non-product, favorable CICY

configuration matrices (in the new list),

n(0, [Ci]) > 0 ∀i = 1, . . . h1,1(X) (2.15)

Thus, for this subset of CICY manifolds, every dual curve Ci in the positive orthant should

in fact be effective and hence in the Mori cone. It follows from the logic above that the

Kähler cones are in turn exactly the (dual) positive orthant. Since the Kähler cones for

these manifolds descend exactly from the ambient product of projective spaces, they are

Kähler favorable as defined above. Of course, a zero entry in the genus zero Gromov-

Witten Invariant vector does not necessarily imply that the Mori cone is smaller than the

positive orthant. However, the condition above should be sufficient (though not in general

necessary) and for these geometries we will provide a complete classification of genus one

fibrations. We leave it to future work to thoroughly explore the full curve enumeration on

CICYs and their correspondence with Gromov-Witten invariants. In addition, we would

also hope to search for other tools that might fully determine the Kähler cones of the

remaining CICYs.

Summarizing the two approaches outlined above, we find that 4957 out of 7890 CI-

CYs have Kähler cones that descend from a simple ambient space — either a product of

6We would like to thank Andre Lukas for helpful discussions on this topic and for pointing out the utility

of Gromov-Witten Invariants for this question. See also the recent work [51] for alternative approaches to

curve counting in CICY geometries.
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projective spaces (with entirely non-vanishing n(0, [Ci]) as described above) or a product

of two almost del Pezzo surfaces. Of this latter type, there are 83 geometries in the CICY

list that can be written this way and we will analyze them in section 5.

In the augmented CICY list attached to this arXiv submission, there are simple flags

added to each entry to denote the status of the Picard group (“Favorable → True” indi-

cates the Picard group descends from the ambient space) and Kähler cone (“KahlerPos

→ True” denotes a Kähler cone that descends from the ambient product of projective

spaces). In addition, the configuration matrix, second Chern class and Hodge numbers are

also provided. A sample entry in the new CICY list, with all data annotated, is given in

appendix E.

3 A search for “obvious” genus one fibrations

3.1 General comments on obvious Calabi-Yau fibrations

As was described in the introduction, row and column permutations can be applied to the

configuration matrix of a CICY without affecting the geometries it describes. Permuting

rows simply corresponds to writing the ambient projective space factors in a different order,

and permuting columns corresponds to relabeling the defining equations. Consider a case

where such row and column permutations can be used to put a configuration matrix in the

following block form.

X =

[
A1 0 F
A2 B T

]
(3.1)

Here A1 is a product of m projective spaces and A2 is a product of N−m projective spaces

(where N is the total number of such factors in the initial configuration). The blocks 0 and

B contain n columns while F and T contain K − n. We will include cases where n = 0.

A configuration which can be put in the form (3.1) describes a fibration of the fiber[
A1 F

]
over the base

[
A2 B

]
where the twisting of the fiber over the base is encoded by

the matrix T . To see this, consider the following line of reasoning. First, pick a solution to

the first n equations by choosing a point in A2 which satisfies the equations whose degrees

are encoded by B. This furnishes us with a point in the base. Take this set of coordinates

in A2 and substitute it into the remaining K − n equations, whose multi-degrees are

determined by the matrices F and T . This results in a particular set of equations, whose

degrees are described by the configuration matrix
[
A1 F

]
, associated to that base point.

As we change the base point the complex structure of this fiber over that base point will

change. Thus we end up with a non-trivial fibration of this type over the base.

Note that the fiber
[
A1 F

]
is a Calabi-Yau manifold. This is a simple consequence of

the Calabi-Yau condition applied to the original configuration matrix (1.4), together with

the presence of a completely zero block in the top left of (3.1). For an initial configuration

describing a Calabi-Yau p-fold, we can in general find Calabi-Yau q-fold fibers of this type

for any q < p. For the case of q = 1 fibrations that can be seen in this manner have been

referred to as Obvious Genus One Fibrations (OGFs) [1, 29].
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In fact, as has been noted before [1], a given configuration will generically admit a

multitude of different such fibrations. In other words, a given configuration matrix can

often be put in the form (3.1) in several different ways. For example, the following are all

rearrangements of the same configuration matrix.
P2 0 0 0 0 2 1

P3 0 0 1 1 1 1

P1 1 0 1 0 0 0

P2 1 2 0 0 0 0

P1 0 1 0 1 0 0




P1 0 1 1 0 0 0

P2 0 0 0 0 2 1

P3 0 0 1 1 1 1

P1 1 0 0 1 0 0

P2 2 1 0 0 0 0




P1 0 0 1 1 0 0

P2 0 0 0 0 2 1

P3 0 1 0 1 1 1

P1 1 1 0 0 0 0

P2 1 0 2 0 0 0

 (3.2)


P2 0 0 0 0 2 1

P2 1 0 2 0 0 0

P3 0 1 0 1 1 1

P1 1 1 0 0 0 0

P1 0 0 1 1 0 0




P1 1 1 0 0 0 0

P1 0 0 1 1 0 0

P2 0 0 0 0 2 1

P3 0 1 0 1 1 1

P2 1 0 2 0 0 0




P1 1 1 0 0 0 0

P1 0 0 1 1 0 0

P2 1 0 2 0 0 0

P3 0 1 0 1 1 1

P2 0 0 0 0 2 1


The block matrix form, as described in (3.1) has been denoted here with dotted lines.

Computing the dimension of the fibers in this case the reader will find that these constitute

six different torus fibrations of the CY manifold. Similarly we can find two different K3

fibrations in this case.
P2 0 0 0 0 2 1

P3 0 0 1 1 1 1

P1 1 0 1 0 0 0

P2 1 2 0 0 0 0

P1 0 1 0 1 0 0




P2 0 0 0 0 2 1

P3 0 0 1 1 1 1

P1 0 1 0 1 0 0

P2 1 2 0 0 0 0

P1 1 0 1 0 0 0

 (3.3)

Note that trivial redundancies have been removed in enumerating the fibrations in

the (3.2) and (3.3) above. For example, column permutations that do not mix the first n

and the last K−n columns generate obviously identical fibrations and thus this redundancy

has been removed. Similarly for row permutations that do not mix the fiber (first m) and

base (last N −m) rows. In the results we present here, however, there are certain potential

redundancies, which have been removed in the previous literature [1] which we will not

be removing from our data. These are best illustrated with an example. Consider the

bi-cubic.

Xbicubic =

[
P2 3

P2 3

]
(3.4)

In past work this manifold would have been said to admit a single obvious fibration, a

torus described as a cubic in P2 fibered over a P2 base. Here we will count both fibrations

of this type that appear in the matrix - that is we will consider the two fibrations which

arise by considering each of the two P2 factors in the ambient space to be the base in turn.

There are two main reasons for making this choice in our approach to redundancy re-

moval, one physical and one mathematical. First, counting distinct but identical fibrations
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like these will enable us to enumerate fibrations in a manner which agrees with the mathe-

matics literature. After all, there are two fibrations in our example (3.4), albeit ones that

are symmetric in structure. In particular, counting fibrations that appear with symmetry

like this will make it easier to compare to the number of fibrations that are obtained by

applying Kollár’s criteria. Second, from a physical perspective, the fact that there are two

distinct fibrations in the example (3.4) does have important physical consequences. One

would not obtain two different F-theory models by compactifying on the two fibrations, of

course, as the moduli space of the two F-theory geometries would be identical. Neverthe-

less, in considering dualities, the fact that there are two fibrations can be key. Picking a

particular complex structure for the bi-cubic and performing a heterotic compactification,

for example, one finds that the two fibrations present in (3.4) will lead to two very differ-

ent F-theory duals [2] (see also [52] for related ideas in 6-dimensional heterotic/F-theory

duality). This is due to the fact that at a given point in complex structure moduli space,

the two torus fibers will be twisted over their P2 bases in distinct ways. Given the above

discussion, we will not remove distinct but topologically isomorphic fibrations from our

scans over the CICYs.

Another issue that must be addressed in enumerating obvious fibrations of the type

being discussed in this section is that of multiple fibers. Consider, for example, the following

configuration matrix and associated obvious fibration:

Xmultiple =

 P2 0 3

P1 2 0

P2 1 2

 . (3.5)

This follows all of the rules to be considered an OGF but exhibits an obvious problem.

The fiber in this case, as described by the configuration,

Xfiber =

[
P2 0 3

P1 2 0

]
, (3.6)

is not a single genus one curve. Instead it describes two disjoint tori embedded in the

P2 × P1 ambient space. All such cases can be removed from consideration by imposing

the additional condition that no fiber can be described by a configuration matrix that can

be put in block diagonal form by row and column permutations. We shall impose this

requirement in all of the fibrations, by Calabi-Yau of any dimension, that we discuss in the

remainder of this paper.

As a last point in the general discussion of this section, we should note that the Calabi-

Yau fibers of different dimensions discussed above can be nested within one another. For

example, if we look at the first matrices in (3.2) and (3.3) above, we see that the torus

fibration depicted in (3.2) is actually also a torus fibration of the K3 fibration in (3.3).

Such nesting is rather common, with the vast majority of higher dimensional Calabi-Yau

fibers also being fibered themselves. However, not every torus fibration need be nested in

a K3 fibration in this manner. As an example of this, the final torus fibration presented

in (3.2) clearly does not lie nested within a K3 fibration as its base is simply P2.
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Figure 1. Distribution of obvious torus fibration abundance in the CICY threefold list (excluding

product manifolds). The values lie in the range 0 - 93. We find 139, 597 fibrations in total and on

average each CICY threefold configuration is elliptically fibered in 17.7 different ways.

3.2 Enumeration of obvious Calabi-Yau fibrations

Classifying the obvious fibrations, as discussed in the previous subsection, results in the

following numbers of inequivalent structures of this type. For torus fibers, the CICY three-

folds, using the new favorable configurations mentioned in section 2.1, admit an average

of 17.7 fibrations per configuration matrix, for a total of 139, 597 such structures in the

list. The maximum number of such torus fibrations admitted by any one configuration

matrix is 93. Note that these figures are somewhat larger than those given in [2]. This

is for three reasons. First, we have favorable configurations describing more of the CICY

manifolds and thus can find more torus fibrations. Second, as described in the proceeding

subsection, we are not removing what was considered a redundancy in that work. That is,

we are keeping symmetric fibrations that are nevertheless distinct. A plot of the number of

configurations admitting a given number of obvious torus fibrations is presented in figure 1.

For K3 fibrations, the threefolds in our data set admit an average of 3.9 fibrations per

configuration matrix, for a total of 30, 974 such structures in total. The maximum number

of such K3 fibrations admitted by any one configuration matrix is 9. A plot of the number

of configurations admitting a given number of obvious K3 fibrations is presented in figure 2.

Finally, we can ask about the nesting of the torus fibrations inside K3 fibrations.

Counting each different obvious torus fibration with a multiplicity determined by how many

obvious K3 fibrations it appears nested inside, we find that the average CICY threefold

admits 26.6 such structures. Note that this is bigger than the average number of obvious

torus fibrations given above as a given torus fibration can be nested inside multiple different

K3 fibrations. The total number of such nested fibrations is 208, 987 with the largest

example admitting 174 such nested fibrations. A plot of the number of configurations

admitting a given number of obvious torus fibrations nested inside obvious K3 fibrations

is presented in figure 3.

The full data describing these fibration structure can be found at [3]. The data format

is described in appendix E.
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Figure 2. Distribution of obvious K3 fibration abundance in the CICY threefold list (excluding

product manifolds). The values lie in the range 0 - 9. We find 30, 974 fibrations in total and on

average each CICY threefold configuration is obviously K3 fibered in 3.9 different ways.
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Figure 3. Distribution of the abundance of obvious torus fibrations nested inside obvious K3 fibra-

tions in the CICY threefold list (excluding product manifolds). The values lie in the range 0–174.

We find 208, 987 such nested fibrations in total and on average each CICY threefold configuration

admits 26.6 different nested fibrations of this type.

4 A comparison of obvious fibrations vs. all fibrations for Kähler favor-

able manifolds

As discussed in section 1.1 (see the conjecture there), it has been established [26–28] that

any effective divisor class D of a Calabi-Yau threefold, X, leads to a genus-one fibration if

and only if it obeys the following criteria:

D · C ≥ 0 for all effective curves C in X ; D2 6= 0 ; D3 = 0 . (4.1)
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One is thus led to classify the solutions to (4.1) for

D =

h1,1(X)∑
r=1

arJr , with ar ∈ Z , (4.2)

where {Jr} is a chosen basis of H1,1(X).

In this section we will compare the results of a scan for Kollár divisors of the form given

above to the searches for OGFs described in section 3. It is of interest to see whether the

total number of fibrations (as counted by the divisor criteria above) exceeds the number

of “obvious” fibrations that are visible from the algebraic form of the CICY configuration

matrix. To make this comparison however, full control of the Kähler cone of X is crucial.

Thus, we will be able to make this comparison only for Kähler favorable manifolds as

defined in section 2.2. For these, the Kähler cone of X descends directly from the ambient

product of projective spaces.

Given such a Kähler favorable CICY threefold X embedded in A =
∏
r Pnr , let us take

the Jr to be the harmonic (1, 1)-form of the ambient Pnr pieces; we call X ⊂ A favorable if

the Jr’s form a basis7 of H1,1(X). We begin by writing the conditions in (4.1) in terms of

the explicit divisor in (4.2). These take the following forms in terms of ar, respectively, as

ar ≥ 0 for all r ;

h1,1∑
s,t=1

drstasat 6= 0 for some r ;

h1,1∑
r,s,t=1

drstarasat = 0 , (4.3)

where drst :=
∫
X Jr∧Js∧Jt are the triple intersection numbers of X. We may then assume

that a given solution to (4.3), ar = a
(0)
r , is ordered as 0 = a1 = · · · aν < aν+1 ≤ · · · ≤ ah1,1 ,

upon an appropriate permutation of the Pnr ’s in A. Here, ν is the number of 0’s appearing

in the solution. Because all the triple intersections drst of a favorable CICY are nonnegative,

it is then obvious that there is another solution, ar = a
(1)
r :

a(1)
r =

{
0 if r ≤ ν
1 if r > ν ,

(4.4)

which must represent the same genus-one fibration as the original solution (using the condi-

tions of equivalence outlined in section 1.1). Thus, for Kähler favorable CICYs, in searching

for Kollár divisors, we need only consider D as in (4.2) with ar = 0 or 1 in classifying the

solutions to (4.1). For each of the 4874 CICYs that are Kähler favorable with respect to an

ambient space Pn1 × . . .×Pnm , such a search for minimal Kollár divisors (with 0 ≤ ar ≤ 1)

was carried out.

Moreover, as described in section 3, a systematic scan for obvious genus-one fibrations

(OGFs) has been completed for all the maximally favorable configuration matrices. In

each case the classification proves to be finite and impressively, a one-to-one correspon-

dence between the two classification results can immediately be found. In each case we find

50, 219 fibrations in the set of 4874 manifolds and an exhaustive comparison shows that

7In general such a basis could be redundant but we will not need to consider such an eventuality here.
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each Kollár divisor corresponds to an OGF (the converse is automatic). Thus, for Kähler

favorable CICYs, the OGFs already provide a complete set of genus-one fibrations for these

geometries. This result is not entirely surprising since the Kähler favorable form engineered

in section 2 has been chosen to provide a description in which the ambient projective space

factors encode the maximal amount of information about the Picard group and Kähler

cone of X. It should be noted that this correspondence does not persist for non-Kähler

favorable CICY configurations. For example, 2946 out of 7890 manifolds in the set de-

scribed above have been described by new CICY configurations compared to the original

CICY threefold data set. If the OGFs are counted for any non-favorable description of one

of these geometries, many fibrations are missing. That is, the OGF count is found to be

considerably less than the true count (based on (4.1)), as expected.

To conclude this comparison, it is worth making several remarks on the ubiquity of

genus one fibrations within this dataset. Each of the 4874 CICY configurations studied

yields a finite number of fibration structures. Moreover, the maximal number of fibrations

observed from any one threefold in this set is 39 and the average number of fibrations is

10.3. Finally, it should be noted that this search yields 53 configuration matrices which

do not admit any fibration structure (either via (4.1) or the OGF criteria). The CICY

number of those 53 favorable configuration matrices are:

{6771, 6803, 7036, 7208, 7242, 7530, 7563, 7566, 7571, 7578, 7588, 7626, 7631,

7635, 7636, 7638, 7644, 7647, 7648, 7679, 7717, 7721, 7726, 7734, 7747, 7759,

7761, 7781, 7799, 7806, 7809, 7816, 7817, 7819, 7822, 7823, 7840, 7842,

7858, 7861, 7863, 7867, 7869, 7873, 7878, 7879, 7882, 7885− 7890} (4.5)

(labels refer to the dataset in [3]). Since this set are within the geometries for which we

can scan exhaustively using the Kollár criteria, we are certain that they are not genus-

one fibered. This is intriguing since it demonstrates that the largest value of h1,1 for a

non-fibered CY manifold in the CICY threefold list is h1,1 = 4 (note that for every other

manifold in the CICY list, at least one OGF is present).

We will return to this point in section 7, but for now it suffices to note that all existing

fibration studies within CY threefolds indicate that genus one fibered geometries seem to

become ubiquitous as h1,1 increases. For the CICY threefold data set it is clear that this

bound on h1,1 in order for the manifold to be guaranteed a genus-one fibration is quite

low indeed.

5 Exceptional configurations

As described in section 2.1, the process of splitting/contraction yields a favorable descrip-

tion (in which a full basis for divisors is obtained via restriction from ambient projective

space hyperplanes) for all but 48 configurations in the CICY list. In this section and the

next, we turn our attention to these 48 seemingly non-favorable CICY threefold config-

urations. Fortunately, as we will see shortly, all 48 configurations in fact have a simple

structure that will allow us to not only determine their Picard groups, but also their Kähler
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and Mori cones and all their topological data, including the triple intersection numbers.

We will thus analyze such topological properties and apply Kollár’s criteria (4.1) to ex-

haustively search for the genus-one fibration structures. Unlike in the case of the favorable

configurations studied in section 4, here we will see that there exist many more fibration

structures than are visible as OGFs. We will enumerate these fully in the following sections.

To begin, it is worth considering the possible redundancy among the 48 configurations.

We state the results here and leave the proofs of the equivalences to appendix D. First,

the set contains 15 configurations with Hodge numbers (h1,1, h2,1) = (19, 19) which are

equivalent to one another and which all describe the Schoen manifold. Since our fibration

analysis shows qualitatively different features for the Schoen manifold, we will elaborate

on the Schoen manifold in section 6.

It turns out that each of the remaining 33 configurations is favorably embedded as an

anticanonical hypersurface in a product of two del Pezzo surfaces of the form,

Ar,s ≡ dPr × dPs or As ≡ P1 × P1 × dPs . (5.1)

Here, r = 0, . . . , 7 and s = 5, 6, 7, leading us to a total of 24 geometries with r ≤ s.

This fact strongly suggests further redundancy and indeed some exists. Using equivalent

descriptions of the ambient space surfaces and splittings/contractions, the 33 configurations

can be grouped into the 24 distinct Calabi-Yau geometries as listed in table 1. In addition,

there exist 35 favorable CICY configurations which are not Kähler favorable with respect

to the ambient product of projective spaces, but which are still anticanonical hypersurfaces

in ambient spaces of the form (5.1) with r = 0, . . . , 7 and s = 3, . . . , 7. All of these cases

may be analyzed in the same fashion. Table 1 thus has total of 68 CICY configurations

leading to 35 distinct Calabi-Yau geometries. In this section, we will analyze topological

properties of these 35 anticanonical hypersurfaces,

Xr,s ⊂ Ar,s and Xs ⊂ As , (5.2)

where r = 0, . . . , 7 and s = 3 . . . , 7 with r ≤ s, and will classify genus one fibrations therein.

5.1 Favorable hypersurfaces in products of two del Pezzo surfaces

5.1.1 Topological data

It is fortunate that the configurations in table 1 all take the form of an anticanonical

hypersurface in an ambient space consisting of the direct product S × S ′ of two smooth

Kähler Fano surfaces. Such geometries8 were systematically classified in [53]. Since the

ambient space takes such a simple form, we have once again found a favorable description

of the geometry in which the divisors on X descend simply from those on A = S × S ′. In

addition, thanks to the Lemma 2.2 the Kähler and Mori cones of such CY threefolds X

can also be simply obtained via restriction. With these results in hand, the analysis is now

8Note that in fact all anticanonical hypersurfaces in dPr × dPs with r = 0, . . . 7 and s = r, . . . , 7 appear

in the CICY list, however those not listed in table 1 have Kähler favorable descriptions with respect to an

ambient product of projective spaces and their fibration structures are considered in section 4.
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Ambient Space CICY Id Numbers

P1 × P1 × dP3 (7709, 7731)

P1 × P1 × dP4 (7459)

P1 × P1 × dP5 6826 (6829, 6925)

P1 × P1 × dP6 5298

P1 × P1 × dP7 2565

dP0 × dP3 (7800, 7810)

dP0 × dP4 (7665)

dP0 × dP5 7232 (7233, 7298)

dP0 × dP6 6021

dP0 × dP7 3405 (6748, 6796)

dP1 × dP3 (7716, 7743)

dP1 × dP4 (7512)

dP1 × dP5 6795

dP1 × dP6 5282

dP1 × dP7 2548

dP2 × dP3 (7546, 7603)

dP2 × dP4 (7126)

dP2 × dP5 6291 (6292, 6369)

dP2 × dP6 4473

dP2 × dP7 1835

dP3 × dP3 (7206, 7246, 7300)

dP3 × dP4 (6533, 6619)

dP3 × dP5 5254, 5300 (5121, 5257, 5306, 5440)

dP3 × dP6 3388, 3406

dP3 × dP7 1257, 1268

dP4 × dP4 (5636)

dP4 × dP5 4077 (3936, 4081)

dP4 × dP6 2199

dP4 × dP7 708

dP5 × dP5 2564, 2566, 2638 (2568, 2641, 2837)

dP5 × dP6 1266, 1267, 1289

dP5 × dP7 381, 382, 384

dP6 × dP6 536

dP6 × dP7 206

dP7 × dP7 95

Table 1. The 33 exceptional configurations which are not favorable with respect to the ambient

product of projective spaces and which are not the Schoen manifold. Each of them turns out to

be an anticanonical divisor of either dPr × dPs or P1 × P1 × dPs, for r = 0, · · · , 7 and s = 5, 6, 7.

The configurations are labelled by their standard CICY ID numbers [3, 16]. In fact, there exist an

additional 35 configurations which describe an anticanonical divisor in ambient spaces of the same

form with possibly some smaller values of s. These are favorable but not Kähler-favorable with

respect to the ambient product of projective spaces, and are also listed here in parentheses.
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as tractable as those studied in previous sections, although they are not Kähler favorable

with respect to the ambient product of projective spaces.

Given the explicit embeddings, all of the relevant topological properties of the Calabi-

Yau hypersurfaces can be obtained by choosing a description of the space H1,1 in terms

of the (1, 1)-forms descended from those of the del Pezzo surface factors. This can be

illustrated via concrete configuration matrix (e.g., number 4077 in the CICY list [3, 16]):

X ∼

 P1 1 0 0 1

P2 2 0 0 1

P4 0 2 2 1

 , (5.3)

with Hodge numbers (h1,1(X), h2,1(X)) = (11, 31). This configuration matrix is highly

non-favorable with respect to the ambient product of projective spaces as is obvious from

h1,1(X)−h1,1(A) = 11−3 = 8 > 0 with A = P1×P2×P4. On the other hand, the threefold

X can also be thought of as an anticanonical divisor of the fourfold, A4,5 = dP4 × dP5,

where the two del Pezzo surfaces are respectively given by the configurations,

dP4 ∼

[
P1 1

P2 2

]
, dP5 ∼

[
P4 2 2

]
. (5.4)

One can then easily see that the h1,1(A4,5) = 11 Kähler forms of A4,5 descend to the

h1,1(X) = 11 independent Kähler forms of the Calabi-Yau hypersurface X and hence that

X is favorably embedded in A4,5.

For any of the 35 geometries in table 1, a simple description of the divisors can be

obtained from the ambient product of surfaces. Let us set the notation for such a basis

here. Recall that the del Pezzo surface dPr is constructed by blowing up a P2 at r generic

points. The second homology group H2(dPr,Z) is spanned by the hyperplane class L in P2

as well as the r exceptional divisors Ei, i = 1, · · · , r, which intersect with one another as

L · L = 1, L · Ei = 0, Ei · Ej = −δij . (5.5)

In this basis, the Mori cone generators of the del Pezzo surfaces dPr can be expressed as

in table 2 and the first Chern class of dPr is given by

c1(dPr) = 3L−
r∑
i=1

Ei . (5.6)

See for example, [54] for more details on the geometry of the surface dPr.

Equipped with such topological information, the triple intersections d
(r,s)
mnp of the Calabi-

Yau hypersurfaces, Xr,s ⊂ Ar,s can be straightforwardly computed as

d(r,s)
mnp ≡

∫
Xr,s

Jm ∧ Jn ∧ Jp =

∫
Ar,s

Jm ∧ Jn ∧ Jp ∧
(

3L−
r∑
i=1

Ei + 3L′ −
s∑

i′=1

E′i′

)
, (5.7)

where m, n, p are the indices labeling the h1,1(X) = r+s+2 harmonic (1, 1)-forms on Xr,s,

L, Ei=1,...,r, and L′, E′i′=1,...,s , (5.8)

descending from those on dPr and dPs, respectively.
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r Generators (i < j < · · · ≤ r) Number

0 L 1

1 E1, L− E1 2

2 Ei, L− Ei − Ej 3

3 Ei, L− Ei − Ej 6

4 Ei, L− Ei − Ej 10

5 Ei, L− Ei − Ej , 2L− Ei − Ej − Ek − El − Em 16

6 Ei, L− Ei − Ej , 2L− Ei − Ej − Ek − El − Em 27

7 Ei, L− Ei − Ej , 2L− Ei − Ej − Ek − El − Em,
3L− 2Ei − Ej − Ek − El − Em − En − Eo

56

8 Ei, L− Ei − Ej , 2L− Ei − Ej − Ek − El − Em,
3L− 2Ei − Ej − Ek − El − Em − En − Eo,

4L− 2(Ei + Ej + Ek)−
5∑

a=1
Ema ,

5L− Ei − Ej − 2
6∑

a=1
Ema , 6L− 3Ei − 2

7∑
a=1

Ema

240

9 f = 3L−
9∑
i=1

Ei, and {ya} such that y2
a = −1, ya · f = 1 ∞

Table 2. The Mori cone generators for the del Pezzo surfaces dPr, r = 0, · · · , 8 and for the rational

elliptic surface dP9. The indices i, j, · · · ∈ {1, . . . , r} appearing in each generator are distinct.

It is clear that a similar approach will also yield information on surfaces of the form

As = P1 × P1 × dPs. Then

H, H̃ and L′, E′i′=1,...,s , (5.9)

label the divisors on Xs ⊂ As descending from those on P1 × P1 and dPs. Furthermore, as

in (5.7), the triple intersections d
(s)
mnp of Xs can be obtained from

d(s)
mnp ≡

∫
Xs

Jm ∧ Jn ∧ Jp =

∫
As

Jm ∧ Jn ∧ Jp ∧
(

2H + 2H̃ + 3L′ −
s∑

i′=1

E′i′

)
, (5.10)

where m,n, p label the h1,1(X) = s+ 3 (1, 1)-forms on Xs.

Finally, the Mori (and the Kähler) cones of Ar,s and As can also be straightforwardly

obtained from those of the individual del Pezzo factors (see table 2). Via Lemma 2.2 this

information can then be interpreted as the Kähler/Mori data of the Calabi-Yau threefold

Xr,s or Xs [41].

5.1.2 Classification of genus-one fibrations

Recall that any divisors obeying the conditions (4.1) represent a genus-one fibration. In

this subsection, we will classify such divisors for all the Calabi-Yau three-folds appearing

in table 1, which we label as

Xr,s ⊂ Ar,s and Xs ⊂ As , (5.11)

in terms of their four-fold ambient spaces, Ar,s = dPr × dPs and As = P1 × P1 × dPs.
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Let us start by analyzing Xr,s. Note first that divisors of Xr,s can be parameterized

as integer linear combinations,

D = aL−
r∑
i=1

aiEi + a′L′ −
s∑

i′=1

a′i′E
′
i′ , (5.12)

of the basis divisors L,E1, . . . , Er and L′, E′1, . . . , E
′
s. The triple intersection of D can then

be expressed as

∫
Xr,s

D3 =

∫
Ar,s

(
aL−

r∑
i=1

aiEi + a′L′ −
s∑

i′=1

a′i′E
′
i′

)3

∧
(

3L−
r∑
i=1

Ei + 3L′ −
s∑

i′=1

E′i′

)
(5.13)

= 3

(
a2 −

r∑
i=1

a2
i

)(
3a′ −

s∑
i′=1

a′i′

)
+ 3

(
a′2 −

s∑
i′=1

a′i′
2
)(

3a−
r∑
i=1

ai

)
. (5.14)

For the purpose of studying the geometries in table 1, let us restrict our analysis to 0 ≤
r, s ≤ 7 in particular.

Note that the first of the Kollár criteria (4.1) for the divisor D of Xr,s immediately

leads to constraints on the divisors D ≡ aL −
∑r

i=1 aiEi and D′ ≡ a′L′ −
∑s

i′=1 a
′
i′E
′
i′ of

dPr and dPs, respectively. For example, for D considered as a divisor of dPr, we should

have D · C ≥ 0 for all curves C in dPr.

We can, without loss of generality,9 consider the case when the effective divisor D
on Xr,s descends from an effective divisor on Ar,s. Since the first Chern class c1(dPr) =

3L −
∑r

i=1Ei is ample and D itself is to be a nef (and hence effective) divisor of dPr, we

have D · (3L−
∑r

i=1Ei) ≥ 0 and D ·D ≥ 0, which, respectively, lead to the inequalities,

3a−
r∑
i=1

ai ≥ 0 , (5.15)

a2 −
r∑
i=1

a2
i ≥ 0 . (5.16)

The situation where equality holds can then be described as follows (see appendix A.1 for

the derivation): the first inequality saturates only for the zero vector (a, a1, · · · , ar) = 0,

while the second exhibits a more complicated solution set. This set contains not only the

zero vector but also, depending on r, vectors of the form

(a, a1, · · · , ar) = αA(I)
r , with α ∈ Z>0 , I = 1, · · · , Nr , (5.17)

9Note that in general the cone of effective divisors on X (denoted Eff(X)) is larger than that of the

ambient space, Eff(A), even for anticanonical hypersurfaces in Fano fourfolds. However, in the case at

hand we are interested in divisors that are both effective and nef on X. That is the cone Nef(X) ∩ Eff(X).

For the hypersurfaces in consideration here this intersection is maximal and equal to Nef(X) which descends

fully from the ambient space Ar,s (see [43] for a review of these issues).
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where A
(I)
r are the following vectors of length r + 1:

A
(I)
1 = (1, 1), I = 1 ;

A
(I)
2 = (1, 1, 0), · · · , I = 1, 2 ;

A
(I)
3 = (1, 1, 0, 0), · · · , I = 1, 2, 3 ;

A
(I)
4 = (1, 1, 0, 0, 0), (2, 1, 1, 1, 1), · · · , 1 ≤ I ≤ 5 ; (5.18)

A
(I)
5 = (1, 1, 0, 0, 0, 0), (2, 1, 1, 1, 1, 0), · · · , 1 ≤ I ≤ 10 ;

A
(I)
6 = (1, 1, 0, 0, 0, 0, 0), (2, 1, 1, 1, 1, 0, 0), (3, 2, 1, 1, 1, 1, 1), · · · , 1 ≤ I ≤ 27 ;

A
(I)
7 = (1, 1, 0, 0, 0, 0, 0, 0), (2, 1, 1, 1, 1, 0, 0, 0), (3, 2, 1, 1, 1, 1, 1, 0),

(4, 2, 2, 2, 1, 1, 1, 1), (5, 2, 2, 2, 2, 2, 2, 1), · · · , 1 ≤ I ≤ 126 .

In (5.18), the ellipses represent all possible vectors obtained by permuting the a1, · · · , ar
from any of the preceding vectors explicitly presented; e.g., with r = 2, one obtains an

additional vector A
(2)
2 = (1, 0, 1) by permuting a1 and a2 from the A

(1)
2 = (1, 1, 0) presented

above. Note that the counting, Nr, of the vectors A
(I)
r for each r = 0, · · · , 7 is given as

N0 = 0, N1 = 1, N2 = 2, N3 = 3, N4 = 5, N5 = 10, N6 = 27, N7 = 126 . (5.19)

Similarly, on dPs, we also have

3a′ −
s∑

i′=1

a′i′ ≥ 0 , (5.20)

a′2 −
s∑

i′=1

a′i′
2 ≥ 0 , (5.21)

where the first inequality saturates only for the zero vector (a′, a′1, · · · , a′s) = 0, and the

second, for the zero vector as well as for

(a′, a′1, · · · , a′s) = α′A(I′)
s , with α′ ∈ Z>0 , I

′ = 1, · · · , Ns , (5.22)

where A
(I′)
s are the same length-(s+ 1) vectors as in (5.18).

Given the constraints (5.15), (5.16), (5.20), and (5.21), together with the aforemen-

tioned equality conditions for them, the triple intersection (5.14) can only be set to zero

in the following three cases.

Case 1: (a, a1, · · · , ar) = 0. Each (a′, a′1, · · · , a′s) 6= 0 with D′ nef in dPs and D′2 6= 0

represents a genus-one fibration, where the base manifold is either dPs or its blow down.

For a generic choice of (a′, a′1, · · · , a′s) the base is dPs and the fibration is an OGF of the

CICY configuration. For instance, in the configuration (5.3) with (r, s) = (4, 5), an OGF

with the base dPs=5 ∼
[
P4 2 2

]
is immediately found.

It should be noted that this same del Pezzo base can lead to other, related base

geometries through the process of blowing down. Intuitively, any exceptional divisor in the

del Pezzo base could be “grouped” with the fiber rather than the base geometry (leading
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to a non-flat fiber over this locus). This phenomenon will be illustrated explicitly for a

configuration matrix in Case 2 below. Such fibrations over the various blown-down bases

can also be described by non-generic choices of (a′, a′1, · · · , a′s), and these are not necessarily

represented by an OGF. More details on these dPs base geometries, the Kollár divisors (and

how they relate to rational curves in the del Pezzo surface), as well as the enumeration of

the distinct fibrations can be found in appendix C.

Case 2: (a′, a′
1, · · · , a′

s) = 0. Each (a, a1, · · · , ar) 6= 0 with D nef in dPr and D2 6= 0

represents a genus-one fibration, where the base is either dPr or its blow down. For a

generic (a, a1, · · · , ar) the base is dPr and the fibration is an OFG. For instance, again

in the configuration (5.3) with (r, s) = (4, 5), an OGF with the base dPr=4 ∼
[
P1 1

P2 2

]
is

immediately found.

This geometry provides an explicit illustration of the possible birational relationship

of bases within this case distinction. Consider the configuration matrix in (5.3), re-written

to make manifest the dP4 base:

X ∼

 P4 0 2 2 1

P1 1 0 0 1

P2 2 0 0 1

 . (5.23)

This same configuration can also be re-grouped to make clear the fiber/base structure with

a P2 base:

X ∼

 P4 0 2 2 1

P1 1 0 0 1

P2 2 0 0 1

 . (5.24)

Note that four exceptional divisors in the dP4 base in (5.23) are now part of the fiber in

(5.24). Consider the explicit form of the first defining equation associated to (5.24)

x0q1(y) + x1q2(y) = 0 (5.25)

where x, y denote coordinates of P1 and P2 respectively. Over four points in the P2 base,

the two quadratics q1 and q2 vanish, leading to a non-flat fiber over those points. In this

case, the two bases are related by blowing up/down 4 points in P2. In general, similar

base relationships can arise for any choice of blow-downs for a del Pezzo base, though not

all may be visible as OGFs. In addition, these relationships can be seen via non-generic

choices of the vectors (a, a1, . . . , ar) parameterizing Kollár divisors. Enumeration of all the

blown-down bases is worked out in appendix C.

Case 3: (a, a1, · · · , ar) 6= 0 and (a′, a′
1, · · · , a′

s) 6= 0. In this last case, D3 = 0 is

only achieved for D = Dr,s(α, I;α′, I ′) of the form (5.12) with

(a, a1, · · · , ar) = αA(I)
r , α ∈ Z>0 , I = 1, · · · , Nr , (5.26)

(a′, a′1, · · · , a′s) = α′A(I′)
s , α′ ∈ Z>0 , I ′ = 1, · · · , Ns ,

where A
(I)
r and A

(I′)
s are specified in (5.18). Regarding the counting of genus-one fibrations,

two important observations follow. Firstly, although there are infinitely many such divisors
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Dr,s(α, I;α′, I ′), one can show that different choices of α, α′ ∈ Z>0 for fixed I and I ′ lead

to the same genus-one fibration. This can be observed by considering the redundancy

criteria in section 1.1 and (1.12). In short, the fiber class D2 can be compared up to

scaling for each member of the family. By intersecting D2 with the basis elements Dm for

m = 1, · · · , h1,1(Xr,s) as in (1.13), one immediately observes that

D2
r,s(α, I;α′, I ′) = αα′D2

r,s(1, I; 1, I ′) , (5.27)

with D2
r,s(1, I; 1, I ′) 6= 0. Therefore, the fiber classes of the two possible fibrations are

proportional (see the discussion in section 1.1). Hence, the bases of these two fibrations

should differ only at non-generic points — for example, the two possible bases to the

fibration are birational to each other (i.e. related by blowups in the base). On the other

hand, it can also be shown that there are no curve classes which have a finite volume

for one choice of α and α′ but which shrink for another choice (see appendix A.2 for the

details). This rules out possible disagreement of the fibrations. Secondly, having restricted

ourselves to the divisors Dr,s(1, I; 1, I ′), one can prove that the NrNs such divisors all lead

to distinct genus-one fibrations. The following sufficient condition turns out to distinguish

all those fibrations:

• If two divisors D1 and D2 each obey the conditions (4.1) while D1 + D2 does not,

then D1 and D2 represent two distinct fibrations.

The above completes the classification of genus-one fibrations for all the CICYs in

table 1 except for the first five geometries. For these cases, the general divisors of Xs ⊂ As
are integer linear combinations of the form,

D = hH + h̃H̃ + a′L′ −
s∑

i′=1

a′i′E
′
i′ , (5.28)

where H and H̃ are the two hyperplane classes of the P1 × P1, appropriately pulled back

to the Calabi-Yau threefold. We can now go through exactly the same steps as we did for

Xr,s. Firstly, the triple intersection of D is given as∫
Xs

D3 =

∫
As

(
hH + h̃H̃ + a′L′ −

s∑
i′=1

a′i′E
′
i′

)3

∧
(

2H + 2H̃ + 3L′ −
s∑

i′=1

E′i′

)
(5.29)

= hh̃

(
3a′ −

s∑
i′=1

a′i′

)
+ 2(h+ h̃)

(
a′2 −

s∑
i′=1

a′i′
2
)
. (5.30)

As in the Xr,s cases, we can begin by assuming that each factor in the two terms of (5.30)

are non-negative:

h ≥ 0 , h̃ ≥ 0 , h+ h̃ ≥ 0, (5.31)

3a′ −
s∑

i′=1

a′i′ ≥ 0 , (5.32)

a′2 −
s∑

i′=1

a′i′
2 ≥ 0 , (5.33)
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where the equality conditions for the last two inequalities have been described in the text

around (5.22). It thus follows that the triple intersection of D can only be set to zero in

the following four cases.

Case 1: (h, h̃) = (0, 0). Each (a′, a′1, · · · , a′s) 6= 0 with D′ nef in dPs and D′2 6= 0

represents a genus-one fibration, where the base manifold is either dPs or its blow down.

Just as in the cases of Xr,s, for a generic (a′, a′1, · · · , a′s) the base is dPs and the fibration

is an OGF. Enumeration of all the blown-down bases is worked out in appendix C.

Case 2: (a′, a′
1, · · · , a′

s) = 0. Each (h, h̃) 6= 0 corresponds to the genus-one fibration

with the base P1 × P1. Such a fibration is an OGF.

Case 3: h = 0, h̃ > 0 and (a′, a′
1, · · · , a′

s) 6= 0. In this case, D3 = 0 is only achieved

for D = Ds(h = 0, h′;α′, I ′) of the form (5.28), with

(a′, a′1, · · · , a′s) = α′A(I′)
s , α′ ∈ Z>0 , I

′ = 1, · · · , Ns , (5.34)

where A
(I′)
s are specified in (5.18). Following exactly the same procedures as in the

Xr,s cases, we can confirm that Ds(0, h′;α′, I ′) represent the same genus-one fibration

as Ds(0, 1; 1, I ′).

Case 4: h > 0 and h̃ = 0 and (a′, a′
1, · · · , a′

s) 6= 0. In this case, D3 = 0 is only

achieved for D = Ds(h, h′ = 0;α′, I ′) of the form (5.28), again with

(a′, a′1, · · · , a′s) = α′A(I′)
s , α′ ∈ Z>0 , I

′ = 1, · · · , Ns . (5.35)

We can confirm that Ds(h, 0;α′, I ′) represent the same genus-one fibration as Ds(1, 0; 1, I ′).

Finally, restricting ourselves to the 2Ns divisors, Ds(0, 1; 1, I ′) and Ds(1, 0; 1, I ′), we

can prove, based on the aforementioned sufficient criterion for distinguishing fibrations,

that the 2Ns such divisors all lead to distinct genus-one fibrations.

The counting of distinct genus-one fibrations for Xr,s ⊂ Ar,s and Xs ⊂ As, with

r = 0, . . . , 7 and s = 3, . . . , 7, is summarized in table 3. We also provide in table 4 another

counting result that takes into account of some context-dependent potential redundancies

(the permutations of the exceptional divisors of the del Pezzo factors, as well as the permu-

tations of the two P1 factors in the Xs cases). Note, however, that such redundancies only

arise from the topological view point. For the purpose of string dualities, a more relevant

counting is the one given in table 3.

6 An infinite number of fibrations

In this section we analyze the CICY with Hodge numbers (19, 19) which has long been

known to have a number of unique and remarkable properties. This geometry proves to

be the only Kähler favorable CICY studied in this work which admits an infinite number
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Calabi-Yau Number of Fibrations

Space Case 1 Case 2 All Others Tot.

X3 18 1 6 25

X4 76 1 10 87

X5 393 1 20 414

X6 2764 1 54 2819

X7 27094 1 252 27347

X0,3 18 1 0 19

X0,4 76 1 0 77

X0,5 393 1 0 394

X0,6 2764 1 0 2765

X0,7 27094 1 0 27095

X1,3 18 2 3 23

X1,4 76 2 5 83

X1,5 393 2 10 405

X1,6 2764 2 27 2793

X1,7 27094 2 126 27222

X2,3 18 5 6 29

X2,4 76 5 10 91

X2,5 393 5 20 418

X2,6 2764 5 54 2823

X2,7 27094 5 252 27351

X3,3 18 18 9 45

X3,4 76 18 15 109

X3,5 393 18 30 441

X3,6 2764 18 81 2863

X3,7 27094 18 378 27490

X4,4 76 76 25 177

X4,5 393 76 50 519

X4,6 2764 76 135 2975

X4,7 27094 76 630 27800

X5,5 393 393 100 886

X5,6 2764 393 270 3427

X5,7 27094 393 1260 28747

X6,6 2764 2764 729 6257

X6,7 27094 2764 3402 33260

X7,7 27094 27094 15876 70064

Table 3. The statistics of distinct genus-one fibrations for all the Calabi-Yau threefolds in table 1,

where the Calabi-Yau hypersurfaces are embedded in the Fano fourfolds as Xr,s ⊂ dPr × dPs and

Xs ⊂ P1 × P1 × dPs, with r = 0, . . . , 7 and s = 3, . . . , 7. Case 1 and Case 2 denote those fibrations

with the base surface being the second and the first ambient factor, respectively (incl. all their blow

downs); this is consistent with the case distinctions in section 5.1.2.
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Calabi-Yau Number of Fibrations

Space Case 1 Case 2 All Others Tot.

X3 8 1 2 11

X4 13 1 4 18

X5 25 1 4 30

X6 51 1 6 58

X7 112 1 10 123

X0,3 8 1 0 9

X0,4 13 1 0 14

X0,5 25 1 0 26

X0,6 51 1 0 52

X0,7 112 1 0 113

X1,3 8 2 1 11

X1,4 13 2 2 17

X1,5 25 2 2 29

X1,6 51 2 3 56

X1,7 112 2 5 119

X2,3 8 4 1 13

X2,4 13 4 2 19

X2,5 25 4 2 31

X2,6 51 4 3 58

X2,7 112 4 5 121

X3,3 8 8 1 9

X3,4 13 8 2 23

X3,5 25 8 2 35

X3,6 51 8 3 62

X3,7 112 8 5 125

X4,4 13 13 3 16

X4,5 25 13 4 42

X4,6 51 13 6 70

X4,7 112 13 10 135

X5,5 25 25 3 28

X5,6 51 25 6 82

X5,7 112 25 10 147

X6,6 51 51 6 57

X6,7 112 51 15 178

X7,7 112 112 15 127

Table 4. The results from table 3 for genus-one fibrations for all the Calabi-Yau threefolds in

table 1, grouped into families to reflect the symmetries of the del Pezzo ambient spaces. Case 1 and

Case 2 denote those fibrations with the base surface being the second and the first ambient factor,

respectively (incl. all their blow downs); this is consistent with the case distinctions in section 5.1.2.

The families are defined by symmetries including: (a) for Case 1 and Case 2 the fibrations are only

counted up to permutations of the exceptional divisors of the del Pezzo factors; (b) for All Others,

up to the obvious permutation symmetries of the ambient space (i.e., permutations of the two P1

factors in the Xs cases and those of the two surface factors in the Xr,s cases with r = s); (c) in the

Xr,s cases with r = s, the numbers for Case 1 and Case 2 do not add up for the Total counting as

only one half of these is regarded as irredundant.
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of genus one fibrations.10 The existence of an infinite number of both genus one and

K3-fibrations in this geometry has been observed in several contexts previously [27, 55],

however we will provide here a new and explicit parameterization of one such infinite family.

6.1 The Schoen manifold

6.1.1 Topological data

As described in section D.1, of the 48 non-favorable configurations studied in section 5, there

are 15 with Hodge numbers (h1,1, h2,1) = (19, 19) and all can be proved to be equivalent to

one another via splittings/contractions. Each is manifestly a fiber product of two generic

rational elliptic surfaces (called dP9 in the physics literature) identified over a common P1.

Thus, they are all equivalent to the Schoen manifold.

One simple CICY configuration, similar in spirit to those studied in section 5 (i.e. a

hypersurface in an ambient product of two surfaces) provides a particularly straightforward

way to compute the topology — including all of the triple intersection numbers — of

this manifold:

XSchoen ∼


P1 0 1 1

P1 1 0 1

P2 0 3 0

P2 3 0 0

 . (6.1)

This configuration can be obtained by ineffectively splitting the configuration of the split

bi-cubic (number 14 in the original CICY list [3, 16]), P1 1 1

P2 0 3

P2 3 0

 . (6.2)

The configuration (6.1) describes the Schoen manifold as an anticanonical divisor of A9,9 =

dP9 × dP9, with

dP9 ∼

[
P1 1

P2 3

]
. (6.3)

As in the other del Pezzo surface cases, the second homology group H2(dP9,Z) of dP9

is spanned by the hyperplane class L in P2 as well as the, in this case 9, exceptional divisors

Ei=1,··· ,9. Their intersections and the first Chern class are as in (5.5) and (5.6). The twenty

ambient divisors of A9,9 restrict to the anti-canonical hypersurface (i.e. XSchoen) with one

linear relation that reduces the number of independent divisors to the expected 19. Despite

the fact that h1,1(A9,9) = 20 = 1 + h1,1(XSchoen), XSchoen is both favorable and (as we will

see below) Kähler favorable, since its Picard group, Kähler, and Mori cones descend directly

from A9,9, albeit in this case with a non-trivial redundancy.

The linear relationship reducing the 20 divisors of A9,9 to the 19 dimensional Picard

group of XSchoen can be seen in several ways. The first of these is to consider imposing

10Note, as discussed in previous sections, we are limited here to the study of Kähler favorable CICY

threefolds. There could of course exist other geometries, not in this class, which also admit an infinite

numbers of fibrations.
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the third defining equation (given by the last column in (6.1)) first. From the well-known

relation that [
P1 1

P1 1

]
∼ P1 , (6.4)

it is clear that two distinct divisors (the hyperplanes of the first two P1 factors of the

ambient space) are made linearly equivalent by imposing the third defining relation. Al-

ternatively, this same relation can be observed by considering the long exact sequence in

cohomology associated to the dual of the adjunction sequence:

0→ TXSchoen → TA9,9|XSchoen
→ N|XSchoen

→ 0 , (6.5)

where N|XSchoen
is the restriction of the normal bundle with the Chern class c1(N ) =

3L−
∑9

i=1Ei+3L′−
∑9

i′=1E
′
i′ . An explicit algebraic description of the following morphism

(using the tools of [38, 39])

φ : H1(XSchoen,N ∗XSchoen
)→ H1(XSchoen, TA∗9,9|XSchoen

) (6.6)

demonstrates that h1(XSchoen, TX
∗
Schoen) = dim(coker(φ)) = 19 with the same linear rela-

tionship as in (6.4) imposed. Choosing the obvious basis of divisors descended from the

ambient product of dP9’s:

L,Ei=1,...,9, and L′, E′i′=1,...,9 , (6.7)

the linear relationship takes the following form:

3L−
9∑
i=1

Ei = 3L′ −
9∑

i′=1

E′i′ . (6.8)

Having in mind of this redundancy, the Mori and the Kähler cones of XSchoen can be

immediately obtained by pulling back those of the ambient space A9,9 (though the argument

is distinct in this case from that used in Lemma 2.2 since the ambient space is not Fano.

Instead the same conclusion — that the Kähler and Mori cones descend from A9,9 — can be

obtained by the results of [56]). The Mori cone generators of dP9 are described in table 2.

With this favorable basis of divisors in hand, the triple intersection numbers of XSchoen

can be derived in the usual way as

dSchoen
mnp ≡

∫
XSchoen

Jm ∧ Jn ∧ Jp =

∫
A9,9

Jm ∧ Jn ∧ Jp ∧
(

3L−
9∑
i=1

Ei + 3L′−
9∑

i′=1

E′i′

)
. (6.9)

Here, m,n, p are the indices labeling the redundant (20-dimensional) basis of descended

harmonic (1, 1)-forms on XSchoen. Such a description of the intersection numbers is sym-

metric in the two dP9 factors. Note that the intersection numbers with the indices ranging

from 1 to 19 already form a complete dataset themselves, given the redundancy (6.8) within

the 20 (1, 1)-forms.
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6.1.2 A study of genus-one fibrations

In this section we will set-up a systematic study of the fibrations of XSchoen and demonstrate

that unlike the other cases investigated in section 5, the Schoen manifold manifestly admits

an infinite number of genus one fibrations. Remarkably, it is the only such manifold we

have encountered in the CICY list. We will not attempt to classify all such infinite classes

here, but will instead illustrate the phenomenon with one explicit infinite family.

In order to classify genus-one fibrations within the Schoen manifold, we will take

a similar approach to the one in subsection 5.1.2, based on Kollár’s criteria. Even in the

presence of the redundancy (6.8), the divisors of XSchoen can be integrally parameterized as

D = aL−
9∑
i=1

aiEi + a′L′ −
9∑

i′=1

a′i′E
′
i′ , (6.10)

whose triple intersection is given by

∫
XSchoen

D3 =

∫
dP9×dP9

(
aL−

9∑
i=1

aiEi + a′L′ −
s∑

i′=1

a′i′E
′
i′

)3

∧
(

3L−
9∑
i=1

Ei + 3L′ −
9∑

i′=1

E′i′

)
(6.11)

= 3

(
a2 −

9∑
i=1

a2
i

)(
3a′ −

9∑
i′=1

a′i′

)
+ 3

(
a′2 −

9∑
i′=1

a′i′
2
)(

3a−
9∑
i=1

ai

)
. (6.12)

In a search for fibrations, one of the Kollár criteria (4.1) says that D · C ≥ 0 for all

curves C in XSchoen. Given the description of the Mori and the Kähler cones of XSchoen in

the previous subsection, it follows that

(
aL−

9∑
i=1

aiEi

)
· C ≥ 0 and

(
a′L′ −

9∑
i′=1

a′i′E
′
i′

)
· C ′ ≥ 0 , (6.13)

is required for all curves C and C ′ of the two dP9 factors, respectively.

For simplicity, we will from now on denote the two pieces in D as

D = aL−
9∑
i=1

aiEi ,

D′ = a′L′ −
9∑

i′=1

a′i′E
′
i′ ,

and due to the complete symmetry in the two dP9 pieces, it is sufficient to analyze this

constraint for a single piece, say, D. Since the fiber class f = 3L−
∑9

i=1Ei is a Mori cone

generator and D must itself be a nef divisor of dP9, we have D · f ≥ 0 and D · D ≥ 0,
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which, respectively, lead to

3a−
9∑
i=1

ai ≥ 0 (6.14)

a2 −
9∑
i=1

a2
i ≥ 0 . (6.15)

In order to saturate (6.14), one must have

9a2 =

( 9∑
i=1

ai

)2

≤ 9

(∑
a2
i

)
≤ 9a2 , (6.16)

where the first inequality comes from the Cauchy-Schwarz inequality and the second,

from (6.15). Thus, both inequalities in (6.16) saturate, which can only happen when

(a, a1, · · · , a9) ∼ (3, 1, · · · , 1), i.e., when D is a positive multiple of f . However, since the

fiber classes f and f ′ on the two dP9 factors are identified on XSchoen, we may as well view

this as D = 0 by shifting D′ by f ′.

Thus, as in subsection (5.1.2), we are naturally lead to the following three cases.

Case 1: (a, a1, · · · , a9) = 0. In this case, (a′, a′1, · · · , a′9) 6= 0 so that D2 6= 0, and

each such divisor corresponds to the genus-one fibration with the base dP9 (or its blow

downs). Such a fibration is an OGF of the CICY configuration. For instance, in the

configuration (6.2) of CICY 14, an OGF with the base dP9 ∼
[
P1 1

P2 3

]
is immediately found,

where, for instance, the P2 is that in the second row of the threefold configuration matrix.

Case 2: (a′, a′
1, · · · , a′

9) = 0. In this case, (a, a1, · · · , a9) 6= 0 so that D2 6= 0, and each

divisor of this type corresponds to the genus-one fibration with the base being the other

dP9 (or its blow downs). Such a fibration is also an OGF. In the configuration (6.2), this

corresponds to the OGF with the base dP9 ∼
[
P1 1

P2 3

]
, where the P2 is now taken from the

third row of the threefold configuration.

Case 3: (a, a1, · · · , ar) 6= 0 and (a′, a′
1, · · · , a′

s) 6= 0. Note first that the cases

with D being a positive multiple of f and those with D′ being a positive multiple of f ′

for D′ have effectively been considered in the Case 2 and the Case 1 above, respectively.

Therefore, we may strengthen the constraint (6.14) so that (a, a1, · · · , a9) obey

3a−
9∑
i=1

ai > 0 , (6.17)

and (a′, a′1, · · · , a′9) obey the analogously strengthened constraint. For the triple intersec-

tion of D in (6.12) to vanish, we must thus have the inequality (6.15) saturated. Then,

from the Riemann-Roch theorem, it follows that

0 < D · f = D ·D − 2g + 2 = −2g + 2 ≤ 2 , (6.18)
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and hence, the last inequality has to saturate. Therefore, we only need to classify the

solutions to

3a−
9∑
i=1

ai = 2 , (6.19)

a2 −
9∑
i=1

a2
i = 0 , (6.20)

that describe certain rational curves of dP9. Note that these two constraints for D arose

from D · C ≥ 0 for particular curves C in dP9 and as such they do not guarantee the

inequality for every curve in dP9 (i.e. the nef criterion).

Once we require that D should be nef, a somewhat lengthy argument (see appendix B.1

for details) demonstrates that the solutions can be characterized as

D = y + z , (6.21)

where y, z ( 6= f) are any two (of the infinite number of) distinct Mori cone generators with

y · z = 1.

Given such a characterization, one can obtain a parametric family of infinitely many

solutions for D (as described in (B.28)) by making use of specific parameterizations of the

Mori cone generators of dP9 (see appendix B.2 for details). An analogous parameterization

is obtained for D′ (as described in (B.29)) and hence, one can parametrically describe

an infinite family of divisors D = D + D′ of XSchoen, each of which represents a genus-

one fibration. Here, for simplicity, we will present and analyze an infinite, one-parameter

subfamily11 with

D = 2(2 + k + k2)f + 3E1 − E2 + E3 + E4 + 2kE8 − 2(1 + k)E9 , (6.22)

D′ = 4f ′ + 3E′1 − E′2 + E′3 + E′4 − 2E′9 ,

where f = 3L−
∑9

i=1Ei and f ′ = 3L′−
∑9

i′=1E
′
i′ have been used for a simpler description

and k ∈ Z. It is straightforward to verify that D is nef (via the criteria in (4.1)) and

satisfies D3 = 0 and D2 6= 0 as required.

Finally, it remains to verify that for each value of k these are in fact inequivalent Kollár

divisors. For this we will utilize the criteria laid out in (1.12) (i.e. that two Kollár divisors

are equivalent if they lead to proportional fiber classes in X) in section 1.1. Using the

triple intersection numbers (6.9) of XSchoen, the fiber class (up to a proportional constant)

can be obtained as the following vector of length 19,

{D2 · Jm}10
m=1 = {48 + 3κ, 4 + κ, 20 + κ, 12 + κ, 12 + κ, 16 + κ,

16 + κ, 16 + κ, 16 + 8k2, 24 + κ+ 8k} (6.23)

{D2 · Jm}19
m=11 = {48, 4, 20, 12, 12, 16, 16, 16, 16} ,

11This subfamily is obtained by turning off all but one parameter k8 ≡ k from the 14-parameter family

described in (B.28), (B.29), and (B.31). See appendix B.2.
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where κ = 8k + 8k2 and the 19 (1, 1)-forms Jm are the first 19 of those in (6.7) except the

E′9. It is therefore obvious that the fibers can never be the same for different values of k

and hence, all of the divisors D described by (6.22) represent distinct genus-one fibrations.

Thus, D = D+D′ with (6.22) defines a true infinite family of genus one fibrations in XSchoen.

It may seem somewhat surprising that an infinite number of genus one fibrations can

arise for any CICY threefold. In addition, the fact that this infinite structure appears

to occur for only one geometry is also remarkable. However, the Schoen manifold has a

number of special features that set the stage for this infinite structure. First, as remarked

above, the Kähler and Mori cones of XSchoen are infinitely generated. This alone was

perplexing in the context of mirror symmetry and was the subject of a detailed study by

Morrison and Grassi in [56]. There they observed that although the Kähler cone of XSchoen

is infinitely generated, the action of the automorphism group of XSchoen on the Kähler

cone has a rationally polyhedral fundamental domain (Morrison has conjectured12 that

this must hold for any CY manifold with such an infinitely generated Kähler cone [57]).

Like our constructions above, the automorphism action descends from the two ambient

space copies of the rational elliptically fibered surface, dP9, and the associated action

on the Kähler/Mori cones of dP9. Although it is beyond the scope of the present work

to explore, it is reasonable to surmise that this automorphism action could collapse the

infinite families parameterized above into a finite (physically distinct) set.

Finally, realizing the Schoen manifold as the blow up of the toroidal orbifold T 6/Z2 ×
Z2 [27] has lead to the observation that XSchoen must contain an infinite number of both

elliptic and K3 fibrations (see [27] and [58] for details). Moreover, the physical consequences

of this infinite fibration structure for string dualities (in particular for heterotic/Type IIA

or heterotic/F-theory duality) were explored in [55], where an argument was made that

such infinite families could be realized as U-duality symmetries [59] in the dual pairs. It

would be interesting to find additional examples of such infinite fibration structures in

other constructions of CY manifolds and to more explicitly explore their consequences for

string dualities.

7 Conclusions and future directions

As summarized in section 1.2, the goal of this work was to undertake a comprehensive

survey of genus-one fibrations in the data set of CICY threefolds. We find that not only

do more than 99% of the 7890 configuration matrices in this dataset lead to a genus-one

fibered geometry, but that this simple set of CY manifolds yields a vast number (indeed an

infinite number) of distinct genus one fibrations. We have approached this survey using two

tools: 1) A study of so-called “obvious” fibrations manifestly realized in the algebraic form

of the manifolds and 2) An exhaustive search for genus-one fibrations using the Kollár

criteria outlined in section 1.1. We explicitly provide examples of geometries for which

these methods of enumerating fibrations agree (see section 4) and those for which OGFs

vastly undercount the possible fibration structures (see sections 5 and 6).

12For a more precise definition of the Morrison-Kawamata Cone Conjecture see [43] for a recent review.
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The Kollár criteria provides a means of classifying all genus-one fibrations within the

set of CICY threefolds. However, a complete classification is dependent on having explicit

descriptions of the full Kähler and Mori cones of each manifold. In general, tools to

determine this data had been lacking in the literature to date and we substantially expand

these methodologies here. By means of splitting/contracting configuration matrices as

outlined in section 2 we have found new, favorable descriptions of 2946 CICYs and moreover

determined the full Kähler/Mori cone structure of 4957 “Kähler favorable” geometries.

Thus, the survey completed here is a complete classification of genus-one fibrations for

4957 out of the 7868 CICYs that are not direct products. If new tools are developed to

complete the Kähler/Mori data of the remaining CICY geometries, the techniques outlined

here could be readily applied to the remainder of the CICY dataset. Such systematic scans

for Kollár divisors/fibrations in toric hypersurfaces could also be readily carried out. We

leave such explorations for future work.

The enhanced CICY list [3] described above now contains the full topology of each

manifold (the so-called “Wall’s theorem data” [60] that can be used to distinguish these

threefold geometries as real manifolds), and also, thanks to the OGF survey, many descrip-

tions of them as genus one fibered geometries. It is our expectation that this data will

provide a useful playground for the study of string compactifications, model building, and

string dualities. For example, this set of CY geometries has already provided a fruitful arena

for heterotic model building [32, 61–68] (see also toric approaches in [69–71]) and simple ge-

ometries in which to explore new approaches to moduli stabilization [38, 72–77]. The study

of fibration structures completed here could yield valuable new approaches to the study

of heterotic string and F-theory compactifications, as well as string dualities — including

providing novel backgrounds for 6-dimensional compactifications of F-theory. For exam-

ple, CICY threefolds have been observed to generically lead to higher rank Mordell-Weil

groups [2, 29] and have been used as compactification geometries for heterotic/F-theory

duality for N = 1, 4-dimensional solutions.

The results of the fibration survey completed here indicate that even existing data sets

of CY geometries may contain many more genus-one fibrations than previously realized.

Indeed, genus one fibrations have long provided intriguing structure that suggests a possible

route to classifying all CY threefolds. The work of [5, 7] establishing that the set of

all genus-one fibered CY manifolds is finite was motivated in no small part by the hope

that this result could be used to bound the number of all CY geometries. The essential

idea is as follows: many studies of CY threefold geometry have indicated that as h1,1

increases, the topology and triple intersection numbers of the threefold take on more specific

forms [78, 79]. This fact, coupled to the ubiquitous presence of genus-one fibrations at

large h1,1 in known data sets of CY threefolds, has lead to speculation that perhaps all CY

threefolds with large enough h1,1 admit an elliptic fibration — and hence their topology

may be bounded by the classification of [5] (see also [80–84] for a recent program of work

explicitly enumerating such fibrations). In that spirit, the results of this systematic survey

seem to provide more evidence for this conjecture (indeed every CICY threefold is fibered

for h1,1 > 4). We are hopeful that the approaches outlined here may be applied to further

these ideas and study fibration structures in CY geometries more generally in the future.
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A Details of the Diophantine system for del Pezzo surfaces

In this section we provide the details of the arguments leading to a complete fibration count

for the 68 CICY configurations analyzed in section 5, which correspond to an anticanonical

hypersurface in an ambient product of two del Pezzo surfaces (see table 1 for the CICY ID

numbers).

A.1 Saturation of the inequalities

Here, we will derive the equality conditions for the two inequalities (5.15) and (5.16),

3a−
r∑
i=1

ai ≥ 0 , (A.1)

a2 −
r∑
i=1

a2
i ≥ 0 , (A.2)

that should hold for a divisor D = aH −
r∑
i=1

aiEi of dPr obeying D · C ≥ 0 for all curves

C in dPr, where r = 0, · · · , 7. Without loss of generality, we may assume that ai’s are

ordered so that

a1 ≥ · · · ≥ ar ≥ 0 , (A.3)

where the last inequality can be seen from the fact that Er, being a Mori cone generator,

is effective. Further, when r ≥ 1, a ≥ a1 since L− E1 − E2 (or L− E1 in the r = 1 case)

is also effective as a Mori cone generator.

Let us start with the inequality (A.1). We will prove that a vanishes (and hence so

do ai’s) when it saturates, i.e., when 3a =
∑r

i=1 ai. This can easily be seen for each

r = 0, · · · , 7 as follows:

• r = 0: Vacuously true.

• r = 1: a1 = 3a ≥ a ≥ a1 (as L− E1 is effective) ⇒ a = 0.

• r = 2: a1 + a2 = 3a ≥ a ≥ a1 + a2 (as L− E1 − E2 is effective) ⇒ a = 0.

• r = 3:
∑3

i=1 ai = 3a ≥ 2a ≥ (a1 + a2) + (a1 + a3) (as L − Ei − Ej are effective)

≥
∑3

i=1 ai ⇒ a = 0.
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• r = 4:
∑4

i=1 ai = 3a ≥ 2a ≥ (a1 + a2) + (a3 + a4) (as L − Ei − Ej are effective)

≥
∑4

i=1 ai ⇒ a = 0.

• r = 5:
∑5

i=1 ai = 3a ≥ 2a ≥
∑5

i=1 ai (as 2L−
∑5

i=1Ei is effective) ⇒ a = 0.

• r = 6:
∑6

i=1 ai = 3a = 1
2(2a + 2a + 2a) ≥ 3

2

∑5
i=1 ai (as 2L −

∑5
i=1Ei is effective)

≥
∑5

i=1 ai + (1
2a1 + 1

2a2 + 3
2a6) ≥

∑6
i=1 ai ⇒ a1 = 0 ⇒ a = 0.

• r = 7:
∑7

i=1 ai = 3a = 1
2(2a + 2a + 2a) ≥ 3

2

∑5
i=1 ai (as 2L −

∑5
i=1Ei is effective)

≥
∑5

i=1 ai + (1
2a1 + 2

2a6 + 2
2a7) ≥

∑7
i=1 ai ⇒ a1 = 0 ⇒ a = 0.

Next, saturation of the second inequality (A.2) can be immediately analyzed on a

computer, for each r = 1, · · · , 7 (when r = 0, the inequality can not be saturated unless

a = 0). Practically, upon setting a = 1, we can show that g(ai) ≡
∑r

i=1 a
2
i ≤ 1 and

the maximum value 1 can only be achieved when ai’s take values from (5.18) (up to

an appropriate rescaling of a). Note that the region for the values of the r parameters

(1 ≥)a1 ≥ · · · ≥ ar(≥ 0) is further restricted by the Mori cone generators of table 2

as follows,

• r = 1: a1 ≤ 1

• r = 2, 3, 4: a1 + a2 ≤ 1

• r = 5, 6: a1 + a2 ≤ 1,
∑5

i=1 ai ≤ 2

• r = 7: a1 + a2 ≤ 1,
∑5

i=1 ai ≤ 2, a1 +
∑7

i=2 ai ≤ 3 ,

and the maximum of g may only occur at the critical points on the boundary of the

bounded region defined as such. A quick computer analysis based on this leads to the

aforementioned result.

A.2 Shrinking curves

To a divisor D of the Calabi-Yau threefold X ⊂ A obeying the criteria (4.1), there exists

a corresponding genus-one fibration π : X → B. Let us suppose that we are given another

such divisor D̃ and the corresponding fibration π̃ : X → B̃ such that cD2 = c̃D̃2 for some

c, c̃ ∈ Z>0. In general there is still a possibility of π and π̃ being a different projection with

B and B̃ being only birational.

In this subsection, we consider the divisors of a given Calabi-Yau threefold Xr,s ⊂ Ar,s,

D(α, α′) ≡ Dr,s(α, I;α′, I ′) , (A.4)

described in (5.26), for fixed I and I ′. They obey (5.27) and may in principle represent

different fibrations. The purpose of this subsection is to rule out such a possibility.

Let us begin by choosing one such divisor, D = D(α, α′), associated with the corre-

sponding fibration π : Xr,s → B. In the following, we will first characterize the Picard

lattice of B. Note that any pulled-back divisors DB = DB + D′B from the base B must

obey D2 · DB = 0 on Xr,s, where DB and D′B are the pieces pulled back from the dPr
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and dPs under their own projections, respectively. Similarly decomposing the divisor D as

D +D′, we thus have

0 =

∫
Xr,s

D2 ∧ DB

=

∫
Ar,s

(D +D′)2 ∧ (DB +D′B) ∧
(

3L−
r∑
i=1

Ei + 3L′ −
s∑

i′=1

E′i′

)
(A.5)

= 4α′
∫
dPr

D ∧DB + 4α

∫
dPs

D′ ∧D′B , (A.6)

where in the last step we have used the properties of D that D2 = 0 and D · (3L −∑r
i=1Ei) = 2α on dPr, as well as the analogous properties of D′ on dPs. Now, restricting

to those divisors DB that are pull-backs of ample divisors of B, we must have the two

integrals in (A.6) both non-negative since DB and D′B are effective curves of dPr and dPs,

in particular, and hence, each integral should vanish. In terms of the expansion coefficients

in D = aL−
∑r

i=1 aiEi and DB = bL−
∑r

i=1 biEi, we have∫
dPr

D ∧DB = ab−
r∑
i=1

aibi ≥ ab−
( r∑
i=1

a2
i

)1/2( r∑
i=1

b2i

)1/2

≥ 0 , (A.7)

where we have used the Cauchy-Schwarz inequality, as well as the intersections D·D = 0 (by

construction) and DB ·DB ≥ 0 (as DB is ample) on dPr. For the saturation of inequalities,

we conclude that DB is proportional to D, and similarly, D′B to D′. Thus, ample cone of

B, when pulled-back to Xr,s, should lie in the two-dimensional plane spanned by D and

D′. Therefore, the Picard lattice of B also lies in that plane, and effective curves C of B

can be expanded as C = λD+ λ′D′ for some rational numbers λ and λ′. Note that we are

not distinguishing the (1, 1)-forms in B from their pull-backs to Xr,s, having in mind of

the obvious injection.

For the rest of this subsection, we will show that there do not exist zero-volume effective

curves of B when Kähler forms are taken from the interior of the positive cone spanned by

D and D′. This, if proven, will guarantee that different choice of α and α′ still represents

the same genus-one fibration. For this purpose, let us consider a Kähler form J and an

effective curve C of the form,

J = µD + µ′D′ (µ, µ′ > 0) and C = λD + λ′D′ , (A.8)

in the base B and demand

Vol(C) = J · C = 0 . (A.9)

This, when pulled-back to Xr,s, implies the vanishing triple intersection,

J · C · e = 0 , (A.10)

in the threefold Xr,s where e is an arbitrary divisor of Xr,s, and hence, leads to

J · C · e ·
(

3L−
r∑
i=1

Ei + 3L′ −
s∑

i′=1

E′i′

)
= 0 , (A.11)
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in the fourfold Ar,s. Upon some algebras, this gives

λ : λ′ = µ : −µ′ , (A.12)

and hence,

C = cµD − cµ′D′ , (A.13)

where D = aL −
∑r

i=1 aiEi with (a, a1, · · · , ar) = αA
(I)
r and similarly, D′ = a′L′ −∑s

i′=1 a
′
i′E
′
i′ with (a′, a′1, · · · , a′s) = α′A

(I′)
s . Since C is an effective divisor of B, so is

its pull-back π∗C in Xr,s. Denoting the line bundle on Ar,s of degree cµD − cµ′D′ by L,

let us now consider the Koszul sequence,

0→ L⊗N ∗ → L → L|Xr,s → 0 , (A.14)

where N = O(3L −
∑r

i=1Ei + 3L′ −
∑s

i′=1E
′
i′). Using the explicit formulae for the line

bundle cohomologies on del Pezzo surfaces (see e.g. appendix of ref. [85]), one can then

show that H0(Ar,s,L) = 0 = H1(Ar,s,L ⊗ N ∗), and hence, that H0(Xr,s,L|Xr,s) = 0.

However, this contradicts the effectiveness of π∗C, and therefore, no zero-volume effective

curves exist in B for any Kähler forms. This completes the proof that the divisors D(α, α′)

of Xr,s represent the same fibration for any positive α and α′.

B Details of the Diophantine system for dP9

In this section we provide further details on the characterization of the infinite family of

genus one fibrations found for the Schoen manifold in section 6.

B.1 A non-trivial fact

Here, we will show that nef divisors D of rational elliptic surface dP9 (i.e., D · C ≥ 0 for

every curve C in dP9) that obey

D · f = 2 , (B.1)

D ·D = 0 , (B.2)

for the fiber class f , can be classified as

D = y + z , (B.3)

where y, z ( 6= f) are two distinct Mori cone generators with y · z = 1.

With the Mori cone generators described in table 2, D can be expanded as

D = c f +
∑
a

ca ya , (B.4)

where c and ca’s are non-negative integers. (B.1) then demands that at most two of the ca
can be non-zero and only leaves the two possibilities: (a) D = c f + 2 y for a Mori cone

generator y ( 6= f); (b) D = c f + y + z for distinct Mori cone generators y, z ( 6= f). In the

former case, D ·D = 4c− 4 = 0 and hence c = 1. For D to be nef, D · y′ = 2y · y′ + 1 ≥ 0
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for all the Mori cone generators y′, which implies that y · y′ ≥ 0 for all y′. Therefore, y also

has to be nef but this contradicts that y is a Mori cone generator itself. In the latter case,

D ·D = −2 + 4c+ 2y · z = 0 and hence y · z = 1− 2c. On the other hand, since y and z are

distinct irreducible effective curves, they must intersect non-negatively and hence y · z = 1

and c = 0.

Having derived the desired form (B.3), to complete the proof, let us now show that

such a divisor D is necessarily nef. Note first that the only non-nef irreducible effective

curves of dP9 are the rational (−1)-curves, i.e. the Mori cone generators ya described in

table 2 (see the argument of Donagi et al. in ref. [86]). Since D · D = 0, it is enough to

show that D is irreducible. For the rest of this subsection, therefore, we will show that

h0(dP9,O(y)) = 1 = h0(dP9,O(z)) , h0(dP9,O(y + z)) = 2 , (B.5)

which guarantee that D = y + z is indeed irreducible.

Note that the Mori cone generators ya with ya · ya = −1 and ya · f = 1 are sections

of the elliptic fibration and vice versa. We may thus rely on the Leray spectral sequence

to compute the line bundle cohomologies in (B.5); see e.g. appendix A of ref. [20] for a

self-contained description of the Leray spectral sequence.

Given the elliptic fibration,

π : dP9 → P1 , (B.6)

it is straightforward to demonstrate that the push-forward functors act on the trivial bun-

dle as

R0π∗(O) = OP1 , R1π∗(O) = OP1(−1) . (B.7)

Firstly, for a single section, y, the Koszul sequence,

0→ O → O(y)→ O(y · y)|y → 0 , (B.8)

can be push-forwarded to

0 → OP1 → R0π∗O(y)→ OP1(−1) (B.9)

→ OP1(−1)→ R1π∗O(y)→ 0 . (B.10)

This leads to

R0π∗O(y) = OP1 , R1π∗O(y) = 0 , (B.11)

and hence, h0(dP9,O(y)) = h0(P1,OP1) = 1. Similarly, for two distinct sections y and z

with y · z = 1, we can twist the Koszul sequence (B.8) as

0→ O(z)→ O(y + z)→ O((y + z) · y)|y → 0 , (B.12)

which can be push-forwarded to

0 → OP1 → R0π∗O(y + z)→ OP1 (B.13)

→ 0→ R1π∗O(y + z)→ 0 . (B.14)

This leads to

R0π∗O(y + z) = O⊕2
P1 , R1π∗O(y + z) = 0 , (B.15)

and hence, h0(dP9,O(y + z)) = h0(P1,O⊕2
P1 ) = 2.
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B.2 An infinite family of solutions

From the specific form (B.3) of the general solutions, we are led to classify pairs of distinct

sections,

y = aL−
9∑
i=1

aiEi , (B.16)

z = bL−
9∑
i=1

biEi , (B.17)

with

y · z = ab−
9∑
i=1

aibi = 1 . (B.18)

In this subsection, instead of attempting a complete classification, we will impose an ad-

ditional (rather artificial) constraint a = b and will solve the corresponding restricted

Diophantine system.

Note first that

9∑
i=1

(ai−bi)2 =

9∑
i=1

a2
i+

9∑
i=1

b2i−2

9∑
i=1

aibi = (a2+1)+(b2+1)−2(ab−1) = (a−b)2+4 , (B.19)

where y · y = z · z = −1 as well as (B.18) have been used. Under the additional constraint

that a = b, we thus have
9∑
i=1

(ai − bi)2 = 4 , (B.20)

which leads to the two possibilities: (a) |ai − bi| is 2 for one i and 0 for the others; (b)

|ai − bi| is 1 for four i’s and 0 for the others. On the other hand, since a = b,( 9∑
i=1

ai

)
−
( 9∑
i=1

bi

)
= z · f − y · f = 0 , (B.21)

and hence, case (a) is ruled out and case (b) is further restricted to the condition that

|ai − bi| is 1 for two i’s, −1 for another two i’s, and 0 for the others. Upon permutation of

the exceptional divisors, we may assume that

b1,2 = a1,2 + 1 , b3,4 = a3,4 − 1 , bi = ai for i = 5, . . . , 9 . (B.22)

Since z is a section, we must have

−1 = z · z = b2 −
9∑
i=1

b2i

= a2 −
9∑
i=1

a2
i + 2(a3 + a4 − a1 − a2)− 4

= −1 + 2(a3 + a4 − a1 − a2)− 4 , (B.23)
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where in the last step y · y = −1 has been used. Therefore, for any section y = aL −∑9
i=1 aiEi such that

a1 + a2 + 2 = a3 + a4 , (B.24)

we can construct another section,

z = aL− (a1 + 1)E1 − (a2 + 1)E2 − (a3 − 1)E3 − (a4 − 1)E4 − a5E5 − · · · − a9E9 , (B.25)

and D = y + z is the general solution to the restricted Diophantine system.

Let us now use the following result for the classification of sections y in terms of 8

integer parameters ki, i = 1, . . . , 8 (see ref. [87] for the details),

• a ≡ 0 (mod 3): a = 3d, ai = d− ki for i = 1, . . . , 8, and a9 = d+ s− 1

• a ≡ 1 (mod 3): a = 3d+4+9s, ai = d−k1 +1+3s for i = 1, . . . , 8, and a9 = d+4s+3

• a ≡ 2 (mod 3): a = 3d + 32 + 18s, ai = d − ki + 10 + 6s for i = 1, . . . , 8, and

a9 = d+ 7s+ 15

where

d =

8∑
i=1

k2
i +

∑
1≤i<j≤8

kikj −
8∑
i=1

ki and s =

8∑
i=1

ki . (B.26)

Here, we will choose y from the first category with a ≡ 0 (mod 3) (one can proceed in

exactly the same way for the other two categories). The only constraint that y is required

to obey is (B.24). Thus, k1 + k2 − 2 = k3 + k4 and the general solution for D is give as

D = y + z

= 2aL− (2a1 + 1)E1 − (2a2 + 1)E2 − (2a3 − 1)E3 − (2a4 − 1)E4

−2a5E5 − · · · − 2a9E9 ,

= α−
9∑
i=1

αiEi , (B.27)

where

α = 6d , αi=1,2 = 2d− 2ki + 1, αi=3,4 = 2d− 2ki − 1 ,

αi=5,...,8 = 2d− 2ki , α9 = 2d+ 2s− 2 . (B.28)

Here, s and d are again functions of ki’s as in (B.26) and k1 = k3 + k4 − k2 + 2 is to be

substituted so that the solutions (B.28) actually form a seven-parameter family of divisors

with arbitrary integer parameters, k2, · · · , k8 ∈ Z.

Similarly, the restricted Diophantine system can also be solved for the other dP9 factor

and leads to the following parameterization for D′ = α′L′ −
∑9

i′=1 α
′
i′E
′
i′ with

α′ = 6d′ , α′i′=1,2 = 2d′ − 2li′ + 1, α′i′=3,4 = 2d′ − 2li′ − 1 ,

α′i′=5,...,8 = 2d′ − 2li′ , α′9 = 2d′ + 2s′ − 2 , (B.29)
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where d′ and s′ are defined as

d′ =
8∑

i′=1

l2i′ +
∑

1≤i′<j′≤8

li′ lj′ −
8∑

i′=1

li′ and s′ =
8∑

i′=1

li′ . (B.30)

Here, as for the ki’s, l1 = l3 + l4 − l2 + 2 is to be substituted and l2, · · · , l8 are the seven

free integer parameters. Combining (B.28) and (B.29), we thus obtain an infinite family

of divisors

D = D +D′ = α−
9∑
i=1

αiEi + α′ −
9∑

i′=1

α′i′E
′
i′ , (B.31)

meeting the criteria of Kollár’s, in terms of the 14 free integer parameters, k2, . . . , k8 and

l2, . . . , l8.

C Enumerating the blow-downs of del Pezzo surfaces

In this section, we provide our methodology for enumerating various blow downs of del

Pezzo surfaces. The enumeration result is used in counting Kollár divisors in section 5.

For an illustration, let us consider blowing down dP3, which is the simplest del Pezzo

surface with a non-simplicial Kähler cone. Note first that the (non-simplicial) Kähler cone

of dP3 is spanned by the following 5 generators,13

K = 〈L,L− E1, L− E2, L− E3, 2L− E1 − E2 − E3〉 , (C.1)

which can be seen as the dual description of the Mori cone in table 2 (see [44] for the

complete list of Kähler cone generators for all del Pezzo surfaces). We will now consider

possible chains of blow downs of the irreducible exceptional curves, E1, E2, E3, L−E1−E2,

L− E2 − E3 and L− E3 − E1.

If the curve E1 is blown down first, we may delete the generators of K(dP3) that do

not intersect with E1 and are led to the following three-dimensional boundary component,

KE1 = 〈L,L− E2, L− E3〉 , (C.2)

where the subscript denotes the blown down curve. The cone KE1 should thus be seen as

the Kähler cone of dP2. Next, all of its two-dimensional boundaries,

KE1,E2 = 〈L,L− E3〉 , (C.3)

KE1,E3 = 〈L,L− E2〉 , (C.4)

KE1,L−E2−E3 = 〈L− E2, L− E3〉 , (C.5)

can be approached by a further blow down. Here, the first two are the Kähler cones of dP1

surfaces, which can be further blown down to P2 with the Kähler cones,

KE1,E2,E3 = 〈L〉 = KE1,E3,E2 , (C.6)

13In this appendix, we phrase the blown down bases in terms of their Kähler cone generators. One

can consider a generic divisor positively spanned by those generators and pull it back to the Calabi-Yau

three-fold. That way, a divisor of the three-fold is reconstructed from the Kähler cone information.
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while the third is the Kähler cone of P1× P1, which cannot be blown down any further. A

similar analysis can be made for the cases where E2 or E3 is blown down first. Taking into

account of all such blow downs, one ends up with the following descriptions of the base

surfaces in terms of their Kähler cones,

dP2 : 〈L,L− Ei, L− Ej〉 , (C.7)

dP1 : 〈L,L− Ei〉 , (C.8)

P1 × P1 : 〈L− Ei, L− Ej〉 , (C.9)

P2 : 〈L〉 , (C.10)

where i and j are distinct indices from {1, 2, 3}.
If the curve L− E1 − E2 is first blown down on the other hand, a different pattern is

found for the resulting Kähler cones. At the first step, we obtain a dP2 surface with the

Kähler cone,

KL−E1−E2 = 〈L− E1, L− E2, 2L− E1 − E2 − E3〉 , (C.11)

of which boundaries can be approached as

KL−E1−E2,E3 = 〈L− E1, L− E2〉 , (C.12)

KL−E1−E2,L−E2−E3 = 〈L− E2, 2L− E1 − E2 − E3〉 , (C.13)

KL−E1−E2,L−E3−E1 = 〈L− E1, 2L− E1 − E2 − E3〉 . (C.14)

Of these three, the first is the Kähler cone of P1 × P1, which cannot be blown down any

further, while the other two are the Kähler cones of dP1 surfaces, which can be further

blown down to P2 with the Kähler cones,

KL−E1−E2,L−E2−E3,L−E3−E1 = 〈2H − E1 − E2 − E3〉 = KL−E1−E2,L−E3−E1,L−E2−E3 .

(C.15)

A similar analysis can be made for the cases where L− E2 − E3 or L− E3 − E1 is blown

down first and one ends up adding to the list in (C.7)–(C.10) the following new types of

base surfaces:

dP2 : 〈L− Ei, L− Ej , 2L− E1 − E2 − E3〉 , (C.16)

dP1 : 〈L− Ei, 2L− E1 − E2 − E3〉 , (C.17)

P2 : 〈2L− E1 − E2 − E3〉 , (C.18)

where, once again, i and j are distinct indices from {1, 2, 3}.
This completes the classification of the blown down bases. In summary, we have a total

of 18 different base surfaces: (a) the dP3 with which we start; (b) 6 types of dP2 surfaces

in (C.7) and (C.16); (c) 6 types of dP1 surfaces in (C.8) and (C.17); (d) 3 types of P1× P1

in (C.9); (e) 2 types of P2 in (C.10) and (C.18).

Along the same line, we have classified all the blown down bases by starting from each

of the del Pezzo base surfaces dPr, r = 0, · · · , 7, that are relevant to this work. In table 5,

we summarize the counting of different types of blown down bases. We also provide in

table 6 another counting result that takes into account of the permutation redundancies

of the exceptional divisors of the del Pezzo factors, although, for the purpose of string

dualities, a more relevant counting is the one given in table 5.
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r dP0 P1 × P1 dP1 dP2 dP3 dP4 dP5 dP6 dP7 Tot.

0 1 — — — — — — — — 1

1 1 — 1 — — — — — — 2

2 1 1 2 1 — — — — — 5

3 2 3 6 6 1 — — — — 18

4 5 10 20 30 10 1 — — — 76

5 16 40 80 160 80 16 1 — — 393

6 72 216 432 1080 720 216 27 1 — 2764

7 576 1974 4025 12104 3745 3857 756 56 1 27094

Table 5. The statistics of different blow downs of the dPr surfaces, r = 0, · · · , 7. The numbers

in parentheses count the fibrations up to permutations of the exceptional divisors of the del Pezzo

factors.

r dP0 P1 × P1 dP1 dP2 dP3 dP4 dP5 dP6 dP7 Tot.

0 1 — — — — — — — — 1

1 1 — 1 — — — — — — 2

2 1 1 1 1 — — — — — 4

3 2 1 2 2 1 — — — — 8

4 2 2 3 3 2 1 — — — 13

5 3 3 5 6 4 3 1 — — 25

6 5 6 9 12 9 6 3 1 — 51

7 10 12 18 24 18 16 9 4 1 112

Table 6. A redundancy removed version of the statistics of different blow downs of the dPr surfaces,

r = 0, · · · , 7; here, the blow downs are counted up to permutations of the exceptional divisors of

the del Pezzo factors.

D A class of CICY redundancies via base surface splittings/contractions

In this section, we give a brief overview of a simple method for identifying equivalent CICY

threefold configurations. Suppose that a given configuration matrix can be written, upon

row and column permutations, in the following block form,

X ∼

 A1 0 F
A2 B T
A3 C 0

 , (D.1)

where the 0’s are zero matrices of appropriate sizes and the upper-right corner,

F ∼
[
A1 F

]
, (D.2)

represents a curve of complex dimension one. Given that X is a Calabi-Yau threefold,

one observes the obvious genus-one fibration (OGF) structure [1], in which F necessarily

represents an elliptic curve fibered over the surface base,

B ∼

[
A2 B
A3 C

]
, (D.3)

with the twist described by T .
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Let us now consider varying the configuration (D.1) via a chain of splittings and

contractions [16], so that A3 may lose and/or gain some projective space factors together

with the associated rows of the configuration matrix, while the columns involving F and

T are kept intact. In the end, the chain will relate the two configurations,

X ∼

 A1 0 F
A2 B T
A3 C 0

 ! X ′ ∼

 A1 0 F
A2 B′ T
A′3 C′ 0

 . (D.4)

The observation to made here is that all such splittings and contractions are ineffective [16];

in particular, the two configurations in (D.4) are equivalent.

To see this, note first that it is sufficient to show the equivalence for a single split-

ting/contraction transition and we may restrict to the case where A3 is a single projective

space. For example, suppose that A3 = P1 and dimCA2 = 3 (the generalization to the

cases with A3 = Pn and dimCA2 = m is straightforward) and consider the P1 contraction,

X ∼

 A1 0 0 F
A2 u v T
P1 1 1 0

  X ′ ∼

[
A1 0 F
A2 u+ v T

]
. (D.5)

X is guaranteed to be smooth, given a generic complex structure, and we denote the two

defining equations of X associated to the first two columns of its configuration by(
P Q

R S

)(
a0

a1

)
=

(
0

0

)
, (D.6)

where P , Q, R, and S are generic polynomials in A2 with degP = degQ = u, degR =

degS = v and (a0 : a1) are the homogeneous coordinates of P1. The first defining equation

of X ′ can then be written as

PS −QR = 0 . (D.7)

It is then immediately seen that as long as at least one of P , Q, R, and S is non-vanishing

so that

rk

(
P Q

R S

)
= 1 , (D.8)

there exists a local isomorphism between X and X ′, and hence, the only source of singular-

ities in X ′ is the locus where P = Q = R = S = 0. For a generic complex structure of X,

however, there is no solution to such a simultaneous vanishing since dimCA2 = 3. There-

fore, the P1 contraction, (D.5), does not involve singularities and is necessarily ineffective.

Note that such a redundancy for the configurations of CICY threefolds, (D.4), arises

essentially from those of the base surfaces,

B ∼

[
A2 B
A3 C

]
! B′ ∼

[
A2 B′

A′3 C′

]
, (D.9)

and can easily be spotted by comparing the latter. We will thus call the CICY threefold

redundancies of this type a surface redundancy.
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D.1 Illustration

An example of this CICY configuration matrix redundancy can be illustrated with the

following example of two configurations, P1 1 1

P2 0 3

P2 3 0

 and

 P1 1 1 0 0

P2 3 0 0 0

P4 0 1 2 2

 , (D.10)

labelled respectively as #14 and #16 in the original CICY threefold dataset [16]. We

first permute the rows and columns of each configuration appropriately so that the two

configurations are written respectively as P2 0 3

P1 1 1

P2 3 0

 and

 P2 0 0 0 3

P1 1 0 0 1

P4 1 2 2 0

 . (D.11)

Such permutations only correspond to an appropriate relabeling of the defining equations

as well as the ambient homogeneous coordinates and hence never affect the geometry. Here,

the horizontal and the vertical lines have been added to manifestly distinguish the six blocks

as in (D.4). Note that the two configurations (D.11) are exactly of the form (D.4) and the

following is a relevant chain of base surface equivalences,

[
P1
x 1

P2
y 3

]
a
!
sp.

 P1
x 1 0

P2
y 2 1

P1
a 1 1

 b
!
sp.


P1
x 1 0 0

P2
y 1 1 1

P1
a 1 0 1

P1
b 1 1 0

 y
!
cont.

 P1
x 1

P1
a 2

P1
b 2



w
!
sp.


P1
x 1 0 0 0 0

P1
a 0 1 1 0 0

P1
b 0 0 0 1 1

P4
w 1 1 1 1 1

 b
!
cont.

 P1
x 1 0 0 0

P1
a 0 1 1 0

P4
w 1 1 1 2

 (D.12)

a
!
cont.

[
P1
x 1 0 0

P4
w 1 2 2

]
.

Here, the bold subscripts for the projective spaces label their homogeneous coordinates

and the symbol “sp.” (resp., “cont.”) below each arrow indicates that the configuration

on the right is obtained by splitting (resp., by contracting) the one on the left along the

projective space with homogeneous coordinates denoted above the arrow. This then leads

to the equivalence between the two CICY threefold configurations (D.10) according to the

arguments in the previous subsection.

In fact, there are total of 15 configurations in the original dataset that are shown to

be equivalent exactly for the families of surfaces described above (numbers 14; 16, . . . , 21;

23, . . . , 30). They all represent the Schoen manifold, in particular. See section 6 for further

details on this geometry.
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D.1.1 The complete network of base surface splitting/contraction redundan-

cies

It is possible to search for such redundancies in the entire dataset of 7890 CICY threefolds.

In turns out that this class of redundancies arise only with the base surfaces, dP3, dP5 and

dP9.14 The statistics for each of the three base types can be summarized as follows.

• dP3: there arise 16 pairs involving the surface equivalence,

[
P2 1 1

P2 1 1

]
!


P2 1 0 1 0

P2 0 1 0 1

P1 0 0 1 1

P1 1 1 0 0

 , (D.13)

as well as 15 pairs involving

 P1 1

P1 1

P1 1

 !


P1 1 0 0

P1 0 1 0

P1 0 0 1

P2 1 1 1

 . (D.14)

Thus, total of 62 configurations are grouped into 31 classes. The pair of CICY

configurations in each class are equivalent.

• dP5: total of 666 configurations are grouped into 119 classes via the surface equiva-

lence,  P1 1

P1 1

P1 2

 !
 P1 1 0

P1 0 1

P2 1 2

 . (D.15)

The maximal number of equivalent threefold configurations in a class is 24.

• dP9: the 15 configurations discussed in the previous subsection are all that involves

a dP9 surface redundancy; they are grouped into a single class that describes the

Schoen manifold.

E A guide to the new CICY data set and fibration data

The new favorable CICY configurations, and their obvious fibrations, are publicly available

and can be found here: www1.phys.vt.edu/cicydata. The website includes two files. The

first is a new version of the CICY list, with as many configuration matrices replaced by

favorable examples as possible. The second contains the obvious fibrations of the CICYs.

An example of the format of the entries of the CICY list is given in figure 4. The first

entry gives the number labeling the CICY, which are compatible with the numbers in the

original CICY list [16] obtainable here. The next two entries specify the Hodge data of the

14We believe that this is an artifact of the particular algorithm based on which the original dataset of

CICY threefolds was generated in [16].
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{��� → ����� ��� → �� ��� → ��� �� → {��� ��� ��� ��� ��}�

���� → {{�� �� �� �� �� �}� {�� �� �� �� �� �}� {�� �� �� �� �� �}� {�� �� �� �� �� �}�

{�� �� �� �� �� �}}� ������ → ����� ��������� → ������ ��������� → �����}

Figure 4. An example entry in the new maximally favorable CICY list.

threefold. The fourth entry gives the second Chern class of the manifold. The format here

is as follows. Express the second Chern class in the form

c2(TX) = CijJi ∧ Jj (E.1)

where the Ji are the Kähler forms of the projective space factors restricted to the Calabi-

Yau and the C’s are some numerical coefficients. One can then contract the C’s with

the intersection form for the manifold to get the numbers given (no information is lost in

performing this operation). The fifth entry in the list is simply the configuration matrix.

In this case we have the following.

X7732 =


P1 1 1 0 0 0 0

P2 0 1 1 0 1 0

P1 0 0 1 1 0 0

P2 1 0 0 1 0 1

P3 0 0 0 0 3 1

 (E.2)

The sixth entry says whether the description provided is favorable, the seventh says whether

the naive ambient space Kähler cone descends to give that of the Calabi-Yau and the final

entry indicates whether the configuration matrix describes a direct product manifold.

The obvious fibrations of the maximally favorable CICY list described above are pro-

vided in a second download file available at [3]. In this instance a list of 7868 cases is

provided, one for each CICY threefold excluding manifolds that are direct products (i.e.

those for which “IsProduct → True” in the above CICY list). Each list entry has four

components. The first entry is simply the relevant CICY number. The second entry lists

the obvious genus one fibrations of the configuration, the third entry lists the obvious K3

fibrations of the configuration and the final entry describes how the K3 and torus fibrations

are nested.

The list of torus fibrations for each configuration contains one entry per fibration. An

example for CICY 7732 is the following (this is the first genus one fibration listed).

{{5}, {5, 6}} (E.3)

This means that the fiber in this example is described by the 5th row and 5th and 6th

columns, with reference back to the configuration provided in the maximally favorable

CICY list. Referring back to the configuration matrix (E.2), we see that the fibration (E.3)
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can be presented in our usual format as follows.

X ′7732 =


P3 0 0 0 0 3 1

P1 1 1 0 0 0 0

P2 0 1 1 0 1 0

P1 0 0 1 1 0 0

P2 1 0 0 1 0 1

 (E.4)

This abbreviated formatting is used to keep the fibration list to a manageable size.

The list of K3 fibrations in the third entry for each configuration follows the same

format. So for example, for CICY 7732, the first entry in the K3 fibration list is the

following.

{{1, 2, 4, 5}, {1, 2, 3, 4, 5, 6}} (E.5)

This corresponds to the following K3 fibration in our usual notation (again referring back

to (E.2)).

X ′′7732 =


P1 1 1 0 0 0 0

P2 0 1 1 0 1 0

P2 1 0 0 1 0 1

P3 0 0 0 0 3 1

P1 0 0 1 1 0 0

 (E.6)

As mentioned above, the fourth and final entry in the list provided for each configu-

ration matrix describes how these fibrations are nested. Each case in this fourth entry is

a list of two numbers. The first number specifies a K3 fibration from the previous list and

the second a genus one fibration from the second entry for that configuration matrix. If

a given pair exists, then those two fibrations are compatible (that is, the genus one fibers

are also fibers of the K3 of the K3 fibration). For example, in the case of CICY 7732, the

first case we have is simply the following.

{1, 1} (E.7)

This just states that the first genus one fibration (E.4) is nested in the first K3 fibra-

tion (E.6) in a compatible way. This can be confirmed by performing row and column

permutations on those two matrices that are compatible with both fibration structures.

That is, we only consider permutations that do not mix the matrix blocks of the form (3.1).

In the case at hand, we can obtain the following in this manner.

X ′′′7732 =


P3 0 0 0 0 3 1

P1 1 1 0 0 0 0

P2 0 1 1 0 1 0

P2 1 0 0 1 0 1

P1 0 0 1 1 0 0

 . (E.8)
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