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1 Introduction

Motivated from the Sting theory, the AdS/CFT correspondence has been conjectured as a

duality connecting two independent theories with providing a new paradigm to understand

strongly interacting conformal field theories (CFT) [1]. Recently, considerable attention

has been paid to its generalization called the gauge/gravity duality in order to apply the

holographic concepts to nuclear and condensed matter systems. According to the AdS/CFT

correspondence, the AdS geometry can be matched with a nongravitating quantum field

theory defined at the boundary of AdS. Furthermore, information about an operator of

the quantum field theory is encoded into the corresponding bulk fluctuation as long as the

AdS radius is sufficiently large. In this case, intriguingly, the nonperturbative properties

of strongly interacting systems can be represented as classical dynamics of bulk fields

in the dual asymptotic AdS space [1–4]. One of the main applications is to study the

linear response in hydrodynamics, which opened a new possibility to account for transport

coefficients of strongly interacting systems [5, 6]. This holographic study would be useful to

understand many mysterious physical phenomena of the condensed matter theory (CMT).

AdS/CMT has been intensively studied to construct a theoretical framework for figuring

out unexplained properties of strongly interacting systems [7].

However, it still remains as an open problem to account for the scaling behavior of

the conductivity relying on the frequency and temperature. In order to understand the

unknown features of the strange metal holographically, it would be important to know the

underlying structure of AdS/CMT more clearly [7]. Recently, there were attempts to ex-

plain the strange metallic behavior of cuprate with holographic models [8, 9]. As it has been

known that the presence of a translational symmetry leads to an infinite DC conductivity.

In order to obtain a finite conductivity, thus, one should break the translational symme-

try by introducing the lattice structure or impurity. To achieve this symmetry breaking

– 1 –



J
H
E
P
1
0
(
2
0
1
7
)
0
6
4

holographically, a variety of holographic models have been considered, for examples, inho-

mogeneous scalar field [10–13], Q-lattice [14–17] and nonlinear massive gravity [18–22]. One

of the simple models reproducing a finite DC conductivity is called the linear axions model

in which scalar fields linearly proportional to spatial coordinates were introduced [11]. It

is related to a massive gravity theory where the momentum relaxation is described by

Stüekelberg fields breaking the diffeomorphism of the gravity theory [11, 23].

In order to understand more realistic CMT phenomena, it would be important to

know how the coupling constant and the linear response rely on the external field. In the

Einstein-Maxwell-dilaton-axion theory which enjoy the SL(2, R) symmetry, it was found

that a pure charged black brane solution can generate the dyonic black brane solution [24–

27], which is quite helpful to study the Hall effects from holography [28, 29]. From the

field theory point of view, this SL(2, R) transformation can be represented as the change

in the coupling constant and the external electromagnetic field. In general, a condensed

matter system can show totally different behaviors relying on the strength of the coupling

constant. When varying the coupling constant and external electromagnetic field, the

SL(2, R) transformation provide some clues or intuitions to understand various phases of

the condensed matter systems although it is not clear whether there exists a real condensed

matter system exhibiting such an SL(2, R) symmetry.

In CMT, another important feature is a spatial anisotropy appearing in real materials.

This may be caused by the different lattice structure or the strength of the coupling constant

relying on the direction, which usually breaks the rotational symmetry. In the holographic

setup, such a breaking of the rational symmetry can be imitated by taking a different

momentum relaxation in each spatial direction [30–36]. In the Einstein-Maxwell-dilaton-

axion theory with SL(2, R) symmetry, the anisotropy black brane solution can also be

realized by the dilaton field in [30], but the anisotropy parameter will transform under

the SL(2, R) transformation. To avoid this inconvenience, in the present work, we include

the bulk massive gravity term to break the spatial translational symmetry, as well as to

induce the spatial anisotropy. The dilaton field and axion field can combine into a complex

coupling field, which could be distinguished from another scalar field called Stüekelberg

field of a massive gravity. A coupling between the coupling field and a gauge field whose

boundary value represents an external electromagnetic field on the dual field theory side.

Taking into account the linear response of the dual field theory, the change of the external

field can induce a current as well as the change of the coupling constant. As a consequence,

the conductivity of the present model can be represented as a function of the external field

and the coupling constant. When the coupling field and vector field transform by SL(2, R),

intriguingly, we find that a complex conductivity also transforms covariantly under the

SL(2, R) transformation. Furthermore, we investigate the AC conductivity and its Drude

behavior at low energy scale. We also discuss the cyclotron poles with comparing our

results to magnetohydrodynamics (MHD) studied in [37, 38].

The rest of this paper is organized as follows. In secion 2, we consider a dyonic

black hole with a spatial anisotropy and study how the SL(2, R) transformation is realized

at the equation of motion level. On the dyonic black hole background, we investigate

the conductivity of the dual theory by using the membrane paradigm in secion 3. After
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writing the DC conductivity in terms of the metric defined at the horizon, we study how

this conductivity changes under the SL(2, R) transformation. In secion 4, we study the

conductivity at the asymptotic boundary by using the Kubo formula, which enables us to

get more information about the linear response, for example, the AC conductivity beyond

the DC conductivity. We remark our results in secion 5.

2 Massive gravity with anisotropy

It has been known that a finite DC conductivity requires the explicit breaking of the spatial

translational symmetry. In the holographic model, there are several ways to break such

a translational symmetry. One is to take into account scalar fields linearly proportional

to spatial coordinates, which gives rise to a momentum relaxation [11, 36]. Another way

is to introduce a graviton mass to break the diffeomorphism invariance. In this work, we

concentrate on a massive gravity involving the SL(2, R) transformation and anisotropy.

Introducing additionally dilaton and axion fields to a massive gravity theory, the SL(2, R)

transformation can be easily realized in the massive gravity theory we consider. From now

on, we call dilaton and axion fields the coupling fields for convenience. Another important

feature we should note is that of the coupling field allows a coupling between electric

and magnetic fields, which leads to a nontrivial Hall conductivity on the dual field theory

side. In previous works on the massive gravity [18–22], a nontrivial coupling field was not

considered. In this work, we will investigate how physical quantity like a conductivity is

affected by the change of the coupling field and external field.

A massive gravity theory including the SL(2, R) transformation and anisotropy can be

described by the following action

S =

∫
d4x
√
−g
[
R+

6

L2
− 2(∇φ)2 − 1

2
e4φ(∇ã)2 − e−2φF 2 − ãF F̃

−p1[K]−p2
(
[K]2 − [K2]

) ]
, (2.1)

with dilaton field φ, axion field ã, and electromagnetic field F . Above p1 and p2 are constant

parameters, [K] indicates the trace of Kµν ≡
(√

g−1f
)µ
ν

and [K2] = gνµfµν , where fµν is

the reference metric breaking the diffeomorphism in x- and y-directions [18–20, 39–42],

fµν = diag
[
0, 0, k21H(z)2, k22H(z)2

]
. (2.2)

Here the Stüekelberg field leads to the breaking of the diffeomorphism. For H(z) = 1, in

addition, k1 and k2 correspond to the momentum relaxation. If k1 6= k2, the graviton mass

further breaks the rotational symmetry.

Einstein equations from the above action reads

Rµν −
1

2
Rgµν −

3

L2
gµν = Tµν , (2.3)
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with the energy-momentum tensor

Tµν = 2∇µφ∇νφ+
1

2
e4φ(∇µã∇ν ã)+2e−2φFµρFν

ρ − 1

2
gµν

(
2(∇φ)2 +

1

2
e4φ(∇ã)2+e−2φF 2

)
+

1

2
p1Kµν + p2

(
[K]Kµν −

(
K2
)
µν

)
− 1

2
gµν
(
p1[K] + p2

(
[K]2 − [K2]

))
. (2.4)

After massaging this Einstein equation, all equations of motion can be summarized as

Rµν = − 3

L2
gµν + 2∇µφ∇νφ+

1

2
e4φ(∇µã∇ν ã)

+ 2e−2φFµρFν
ρ − 1

2
gµνe

−2φF 2

+
1

2
p1

(
Kµν +

1

2
gµν [K]

)
+ p2

(
[K]Kµν −

(
K2
)
µν

)
, (2.5)

∇µ
(
e−2φFµν + ãF̃µν

)
= 0 , (2.6)

�φ− 1

2
e4φ(∇ã)2 +

1

2
e−2φF 2 = 0 , (2.7)

�ã+ 4∇µφ∇µã− FµνF̃µν = 0 . (2.8)

Notice that there is no F̃ term in Einstein equation because its definition already includes

1/
√
−g. In the case with a purely electric or magnetic field, the Chern-Simons term FF̃

vanishes. Due to this fact, the above equations reduce into simpler forms for a purely

electric or magnetic case and it is relatively easy to solve such equations than to solve

those of a general case involving nonvanishing electric and magnetic fields. First, assume

that we already know a solution only for a simple case. Despite this assumption, in general,

we should solve again more general equations to know a general solution. In the present

model, however, we can easily know a general solution from a simple solution without

solving general equations of motion. This is because the equations of the present model

is invariant under the SL(2, R) transformation. In other words, applying the SL(2, R)

transformation to a simple solution generates another general solution. This SL(2, R)

transformation is very useful to understand how physical quantities of a strongly interacting

system are affected by other external fields and coupling constant.

In order to see how the SL(2, R) transformation acts on the equations of motion, we

define the coupling and vector fields as complexified forms

λ = λ1 + iλ2 ≡ ã(z) + ie−2φ(z) , F± = F ± iF̃ . (2.9)

Denoting λ∗ as a complex conjugate of λ, the equations of motion in (2.5)–(2.8) can be

rewritten as [43]

Rµν = − 3

L2
gµν +

1

4λ22
(∇µλ∗∇νλ+∇νλ∗∇µλ)

+ 2λ2FµσFν
σ− 1

2
λ2gµνF

2 +
1

2
p1

(
Kµν +

1

2
gµν [K]

)
+ p2

(
[K]Kµν −

(
K2
)
µν

)
, (2.10)

∇µ
(
λFµν+ − λ∗F

µν
−
)

= 0 , (2.11)

2λ2∇µ∇µλ+ 2i(∇µλ)(∇µλ)− iλ32F 2
− = 0 , (2.12)
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where FµσFν
σ and F 2 = gαβFασFβ

σ can be reexpressed in terms of new variables

FµσFν
σ =

1

4

∑
i=±

∑
j=±

(Fi)µσ (Fj)ν
σ, (2.13)

where i and j mean + or −.

Now, let us check whether the above equations of motion are invariant under the

following SL(2, R) transformation

λ→ aλ+ b

cλ+ d
with ad− bc = 1,

Fµν → (cλ1 + d)Fµν − cλ2F̃µν . (2.14)

To do so, we first consider the shift of λ, which is one of fundamental generators for the

SL(2, R) transformation. The shift, λ→ λ+ b, is generated by the following matrix(
1 b

0 1

)
, (2.15)

and one can easily show that the equations of motion in (2.10)–(2.12) are invariant under

this shift. Another important ingredient of the SL(2, R) transformation is inversion which

is generated by the following traceless unitary matrix(
0 1

−1 0

)
. (2.16)

Under the inversion, the coupling fields transform as λ→ λ̄ = −1/λ and λ∗ → λ̄∗ = −1/λ∗

and the field strengths as

F+ → −λF+ , F− → −λ∗F− . (2.17)

When this inversion acts on the equations of motion, the equation of motion for the gauge

field in (2.11) is exchanged with the Bianchi identity, whereas the equation for the coupling

field in (2.12) is invariant. According to the prescriptions of ref. [24], one can also see that

Einstein field equation in (2.10) is invariant under the inversion. These properties confirm

that the equations of motion obtained in this model are invariant under the SL(2, R)

transformation. From now on, we focus on the case with p2 = 0 for simplicity.

Now, let us consider a metric ansatz for a dyonic black hole with spatial anisotropy

ds2 = ḡµνdx
µdxν =

L2

z2

(
−h(z)dt2 + h(z)−1dz2 + e2U1(z)dx2 + e2U2(z)dy2

)
, (2.18)

where the unknown functions should be determined by solving equations of motion. Here,

h(z) indicates a black hole factor which has a root at a certain finite value of z. After an

appropriate scaling, this root can be set to be 1. The existence of the root implies that the

above metric represents a black hole geometry and that the black hole horizon is located at

z = 1. Before solving equations of motion on this black hole geometry, we first think of some

– 5 –
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important features of the SL(2, R) transformation. In this model, there are two possible

sources which can generate anisotropy. One is the Stüekelberg field and the other is the

magnetic field strength. If we introduce a constant magnetic field strength, the anisotropy

of this model is governed by only the Stüekelberg field. In this case, the anisotropy of the

metric ansatz is directly related to that of Stüekelberg field. More precisely, since isotropy

is restored for k1 = k2, U1(z) and U2(z) could be reduced to the same function in that

case. This implies that the anisotropy of the metric ansatz is determined in terms of the

Stüekelberg field

eU1(z)−U2(z) = F

(
k1
k2

)
, (2.19)

where the function F satisfy F (1) = 1 in order to obtain the isotropic case correctly. From

the definition of K ( Kµ σKσ ν ≡ gµσfσν), we can absorb the anisotropy of the Stüekelberg

field into the metric. Then, the resulting Stüekelberg field becomes symmetric, so the

metric absorbing the anisotropy of the Stüekelberg field could also be isotropic, if k1 and

k2 are non-zero parameters. This fact requires the following relation

e−2U1(z)k21 = e−2U2(z)k22. (2.20)

This relation determines the anisotropy of the metric in terms of that of the Stüekelberg field

eU1(z)

eU2(z)
=
k1
k2
. (2.21)

This corresponding to a special class with a constant magnetic field strength. In the

section 4, we will show that there exists another type of numerical solution with a magnetic

field strength varying in the radial direction which allows a solution with an isotropy at

the boundary but with an anisotropic space at the horizon.

The SL(2, R) transformation is useful to generate a new solution from a known solution

without solving equations of motion, because of the invariance of equations of motion under

the SL(2, R) transformation. To see this, let us first consider a purely electrically charged

solution, whose gauge field has only the time component

Aµdx
µ = At(z)dt . (2.22)

Using the above metric ansatz, one can easily find a conserved electric charge, Q =

−eU1+U2−2φA′t, and then the electric field can be rewritten in terms of this conserved

electric charge

F = e−U1−U2(λ2)
−1Qdt ∧ dz . (2.23)

In a more general situation with nonvanishing electric and magnetic fields, the correspond-

ing field strengths are given by [28]

F̄ = (λ̄2)
−1e−U1−U2

(
Q̄e − λ̄1Q̄m

)
dt ∧ dz + Q̄mdx ∧ dy , (2.24)

where the bar indicates the quantities obtained in the general case with nontrivial electric

and magnetic fields. In the present model, the above two electromagnetic fields derived

from different situations can be connected to each other by the SL(2, R) transformation.

– 6 –
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After some calculation, it shows that the electromagnetic charges are related by the

SL(2, R) parameters Q̄e = aQ and Q̄m = cQ. From another viewpoint, if we know the

electromagnetic charges and the coupling constants of two different solutions, the SL(2, R)

parameters can be fixed by these quantities. In the above case,

a = Q̄e/Q ,

c = Q̄m/Q . (2.25)

The remaining SL(2, R) parameters can also be determined by regarding the transformation

of the coupling constants. For example, we can take the value of coupling fields either at

either boundary z = 0 or horizon z = 1, the SL(2, R) transformation gives rise to the

following relation [28]

d =
Q
(
Q̄e − Q̄mλ̄1

)(
Q̄e − λ̄1Q̄m

)2
+
(
Q̄mλ̄2

)2 ∣∣∣z→0
, (2.26)

From the constraint of the SL(2, R) transformation, ad− bc = 1, we finally obtain

b =
Q
(
Q̄eλ̄1 − Q̄m

(
λ̄21 + λ̄22

))(
Q̄e − λ̄1Q̄m

)2
+
(
Q̄mλ̄2

)2 ∣∣∣z→0
. (2.27)

Since a and c are determined in terms of background electromagnetic charges in (2.25),

solving the above relations in (2.26) and (2.27) can uniquely determines the remaining

parameters, b and d.

For the purely electric case the axion is decoupled from the vector field, so hereafter we

set λ1 = 0 for the purely electric case. Even in this case, the SL(2, R) transformation (2.14)

generates a nonvanishing axion and dilaton fields

λ̄1 =
acλ22 + bd

c2λ22 + d2
, λ̄2 =

λ2
c2λ22 + d2

. (2.28)

The most general cases can be obtained by applying the SL(2, R) transformation suc-

cessively. As shown in this example, the SL(2, R) symmetry plays an important role in

generating a new general solution. The transformed coupling fields, λ̄1 and λ̄2, are again

represented in terms of SL(2, R) parameters and the coupling field λ2 of the purely elec-

tric case. In the next section, we will further investigate how the SL(2, R) transformation

modifies the physical quantities like the conductivity.

3 Holographic DC and hall conductivities

In the holographic studies, there exist two methods to derive the conductivity of the dual

field theory. One is known as the membrane paradigm [44, 45] and the other uses the

Kubo formula [5, 6]. In the membrane paradigm, the DC conductivity is determined in

terms of the background metric at the black hole horizon. The membrane paradigm is

a useful method to investigate the DC conductivity because it enables us to write down

its analytic form exactly. When we investigate the AC conductivity, unfortunately, the

membrane paradigm is not helpful because it contains only information about the ω = 0

– 7 –
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limit. In order to study the AC conductivity, we can utilize the Kubo formula, instead of the

membrane paradigm, near the asymptotic boundary. Although it does not allow us to write

down the analytic form of AC conductivity in terms of the background metric, the Kubo

formula is useful to obtain the numerical values of the AC as well as DC conductivities. In

this case, the DC conductivity is obtained by taking the ω = 0 limit of the AC conductivity

and the Kubo formula leads to the same result derived from the membrane paradigm [45–

51]. In this section, we will investigate how the SL(2, R) transformation changes the DC

conductivity analytically. To do so, we will apply the membrane paradigm technique. Based

on the results obtained in this section, in the next section 4 we will further investigate the

AC conductivity numerically by using the Kubo formula.

3.1 DC and hall conductivities with electric and magnetic fields

In the previous section 2, we studied how the black hole solutions transform under the

SL(2, R) transformation. In this section, we will investigate how such changes modify

physical quantities by using the membrane paradigm. In order to study the DC conductiv-

ity on the general dyonic black hole geometry, we take account of the following background

gauge field

Ā = Āt(z)dt+ Āy(x)dy, (3.1)

where we denote the background fields with the bar symbol. In this case, the equation

of Āy(x) is simply reduced to ∂x∂xĀy(x) = 0, so we can take Āy(x) = Q̄mx where Q̄m
corresponds to the magnetic field. Comparing it with (2.24), moreover, it is equal to the

magnetic charge of the dyonic black hole.

In order to obtain the general DC conductivity involving the effects of the axion,

dilaton, and Chern-Simons term, let us first consider the relatively simple case with λ1(1) =

0 at the horizon and Q̄m 6= 0. This case can be easily achieved by applying the SL(2, R)

transformation to the purely electrically charged case. For example, we can take the

SL(2, R) parameters in (2.28) to be acλ22 + bd = 0 at the horizon. This condition removes

the axion and Chern-Simons term at least at the horizon and enables us to calculate

the DC conductivity more easily. If we further set φ = 0, or say, λ2 = 1, our model

becomes similar to the previous works up to anisotropy [52–56]. Applying the SL(2, R)

transformation successively, then we can obtain a more general result with nonvanishing

axion and Chern-Simons term (see the next subsection).

Turning on vector fluctuations of the metric and gauge field

δAidx
i = (Ax(z)− Ext) dx+ (Ay(z)− Eyt) dy , (3.2)

δgµνdx
µdxν =

2L2

z2
(
δgti(z) dtdxi + δgzi(z) dzdxi

)
, (3.3)

where i, j means 1 or 2 with
{
x1, x2

}
= {x, y}. Moreover, the ti-component yields Noting

that Ai behaves as Ai = −Ei/h + O(1 − z) near the horizon. Also, by using regular-

ity of Eddington-Finkelstein coordinate so that δgti ∼ h δgzi|z→1, we obtain asymptotic

– 8 –
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expression as [52–55]

δgti = −
4e2Uj

[
εijQ̄mEj

(
4Q̄2

m + p̃1kje
Us+Ui λ̄−12 + 4e2UsA′2t

)
+ p̃1kje

2Us+Uj λ̄−12 EiA
′
t

]
16Q̄4

m + 4Q̄2
me

Us λ̄−12 p̃1
(
eUjki + eUikj

)
+ e2Us

(
λ̄−22 eUs p̃21kikj + 16Q̄2

mA
′2
t

) ,

(3.4)

where εxy = −εyx = 1 and A′t is given in (2.24). For the equations in this paper, we make

the conversion that the lower indexes will not be summed. When i = x, we set j = y,

and vice verse. We combined U1 and U2 into symmetric and antisymmetric notations,

Us = U1 + U2 and Ua = U1 − U2, and introduced p̃1 = p1H(z) for convenience.

Varying the quadratic action with the vector fluctuations, the corresponding conserved

currents are given by

Ji = −he−εijUa λ̄2A
′
i + e−2UiQ̄mδgti − he−UsQ̄mλ̄2δgzj −

(
Ej + Q̄me

−2Uiδgti
)
λ̄1 , (3.5)

After substituting the fluctuation solutions into the current relations and comparing it with

the Ohm’s law (
Jx
Jy

)
=

(
σxx σxy
σyx σyy

)(
Ftx
Fty

)
, (3.6)

the membrane paradigm defined at the horizon leads to the following DC conductivity

σ̄ii =
Nii

D
, σ̄xy = −σ̄yx =

Nxy

D
, (3.7)

where

Nii = p̃1kje
Us+Uj

[
p̃1kiλ̄

−1
2 eUs+Uj + 4Q̄2

m

(
1 + λ̄21λ̄

−2
2

)
+ 4λ̄−22 Q̄e

(
Q̄e − 2Q̄mλ̄1

)]
Nxy = 4Q̄mQ̄e

[
p̃1λ̄
−1
2 eUs

(
k1e

U2 + k2e
U1
)

+ 4Q̄2
eλ̄
−2
2

]
+
(
p̃21k1k2e

3Us − 32(Q̄eQ̄m)2
)
λ̄−22 λ̄1

+ 16Q̄eQ̄
3
m

(
1 + λ̄21λ̄

−2
2

)
D = λ̄−12

[
4Q̄2

m

(
4λ̄−12 Q̄2

e + p̃1e
Us
(
k1e

U2 + k2e
U1
))

+
(
p̃21k1k2e

3Us − 32Q̄eQ̄
3
mλ̄1

)]
+ 16Q̄4

m

(
1 + λ̄21λ̄

−2
2

)
The above conductivities have several remarkable peoperties. Under x ↔ y, k1 ↔ k2 and

U1 ↔ U2, σxy is invariant and σxx and σyy are exchanged into each other. When k1 = k2,

furthermore, U1 = U2 and σxx = σyy, so the rotational symmetry is restored as expected.

This is consistent with our previous metric ansatz. When k1 = k2, this result exactly

reduces the one obtained in ref. [12]. If we use the special solution in (2.21), we can see

that the ratio of σ̄yy and σ̄xx relies only on the spatial components of the metric

σ̄yy
σ̄xx

= e2Ua(1). (3.8)

This further implies that the ratio of DC conductivities in different spatial directions is

equal to the square of anisotropy

σ̄yy
σ̄xx

=

(
k1
k2

)2

. (3.9)

Lastly, when the magnetic charge of the background black hole is absent, the Hall con-

ductivity disappears as expected. In this model, because of anisotropy, the Hall angles

in different directions, cot θx ≡ σ̄xx/σ̄xy and cot θy ≡ σ̄yy/σ̄xy, show different behaviors.

However, they satisfy the following relation, k22 cot θy = k21 cot θx.
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3.2 SL(2, R) transformation of a complex conductivity

In the previous section, we calculated DC and Hall conductivities by using the membrane

paradigm. In addition, we also found a new relation between DC conductivities, σ̄yy =

e2Ua σ̄xx. From the result obtained in the previous section, in this section, we explain how

we can obtain more general conductivities with the nonvanishing axion field λ̄1 at the

horizon by applying the SL(2, R) transformation. To do so, let us first introduce a complex

conductivity as the combination

σ± ≡ σ1 ± iGσ2 , (3.10)

where σ1 = σyx/4 and σ2 = σxx/4 and G = eUa . Then, we can see that this complex

conductivity transforms covariantly under the SL(2, R) transformation

σ± →
aσ± + b

cσ± + d
. (3.11)

In order to check this statement, let us recall that the dual currents can be represented as

the following forms

Jx = 4 (σ2Ftx − σ1Fty) = 4 (λ2Fzx − λ1Fty) , (3.12)

Jy = 4
(
σ1Ftx +G2σ2Fty

)
= 4 (λ2Fzy + λ1Ftx) . (3.13)

In each line, the terms after the first equal sign are nothing but the definition of the

linear response theory, while the terms after the second equal sign indicate the Noether

currents of vector fluctuations. These equalities are generally satisfied if we consider the

bulk fluctuations in (3.2), and it can be evaluated at both of the horizon z = 1 and the

boundary z = 0. We will see that the above relations have to be satisfied even after the

SL(2, R) transformation.

First, assuming the SL(2, R) transformation of σ± in (3.11), we can easily see that the

shift of λ and σ±, λ→ λ+ b and σ±+ b, does not break the equalities in (3.12) and (3.13).

Another transformation we should consider to confirm the SL(2, R) transformation is the

inversion. After the inversion, the last terms of (3.12) and (3.13) reduce to −Fty and

Ftx respectively. Under the assumption in (3.11), we can also see that the definitions of

the linear response in (3.12) and (3.13) reduce to the same values, −Fty and Ftx. As a

consequence, the relations in (3.12) and (3.13) are still satisfied under the covariant SL(2, R)

transformation of σ±, as it should do.

As mentioned before, the SL(2, R) transformation is important to generate a general

solution involving nonvanishing electromagnetic charges and a nontrivial coupling constant.

Similarly, the covariant SL(2, R) transformation of σ± is useful to know the conductivities

of such a complicated system. When turning on the axion field and Chern-Simons terms,

the resulting equations for fluctuations becomes more complicated because of the nontrivial

coupling with the axion field. In this case, we can easily obtain the conductivity by applying

the SL(2, R) transformation instead of solving the complicated equations. Starting the

case with λ1(1) = 0 and apply the SL(2, R) transformation, we can find the more general
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conductivities

σ̄xx =
16σxx

c2σxxσyy + (cσxy − 4d) 2
,

σ̄xy = −σ̄yx = −4acσxxσyy + 4 (aσxy − 4b) (cσxy − 4d)

c2σxxσyy + (cσxy − 4d) 2
,

σ̄yy =
16σyy

c2σxxσyy + (cσxy − 4d) 2
, (3.14)

where σij indicates the given conductivity and σ̄ij denotes the conductivity after the

SL(2, R) transformation. In particular, from the initial case with λ1 = 0, we can obtain

the nonvanishing axion and dilaton fields at the horizion

λ̄1(1) =
acλ22 + bd

c2λ22 + d2

∣∣∣
z=1

and λ̄2(1) =
λ2

c2λ22 + d2

∣∣∣
z=1

. (3.15)

As shown in this simple example, the SL(2, R) transformation is useful to obtain the

conductivity for the general case with a nonvanishing axion field and Chern-Simons term.

For example, if taking a = d = 1, c = 0 in (3.14) and (3.15), we have σ̄xy = σxy−4λ̄1|z=1 =

σxy−4ã|z=1, that the term linear in ã appear in the Hall conductivity, which matches with

the result in [55]. Furthermore, we found that the ratio of DC conductivities, σyy/σxx = G2,

is preserved even under the SL(2, R) transformation.

4 AC conductivity from the Kubo formula

In this section, we will study the holographic conductivity by using the Kubo formula.

Although the DC and Hall conductivities were studied in the previous section by using the

membrane paradigm, the Kubo formula is useful to get more information about the AC

conductivity. First, we briefly describe how one can obtain DC and AC conductivities by

using the Kubo formula and compare the resulting DC conductivity with that obtained by

the membrane paradigm for a purely electrically charged case. And then we discuss the

AC conductivity in more general cases with non-vanishing electromagnetic charges. Using

the metric ansatz in (2.18) and gauge field in (2.23), the equations of motion in (2.5)–(2.8)

reduce to

φ′2 +
1

4
e4φã′2 +

U ′2s
4

+
U ′2a
4

+
U ′′s
2

= 0 , (4.1)

1

4
p̃1e
−Us/2

(
k2e

Ua/2 − k1e−Ua/2
)

+
[
h
(
zU ′s − 2

)
+ zh′

] U ′a
2

+
hzU ′′a

2
= 0 , (4.2)

2zp̃1e
−Us/2

(
k1e
−Ua/2 + k2e

Ua/2
)
− 4z4Q2e2φ−2Us + 12

+
(
8zU ′s − z2U ′2s + z2U ′2a + 4z2φ′2 + z2e4φã′2 − 12

)
h+ 2z

(
2− zU ′s

)
h′ = 0 , (4.3)

Q2z3e2φ−2Us − 1

2
hze4φã′2 +

(
hzU ′s + zh′ − 2h

)
φ′ + hzφ“ = 0 , (4.4)[

h
(
zU ′s + 4zφ′ − 2

)
+ zh′

]
ã′ + hzã′′ = 0 . (4.5)
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If H(z) is a constant, the massive gravity theory with anisotropy becomes similar to another

momentum relaxation model represented by linear scalar fields [36]. In the present work,

thus, we consider a more general case with H(z) = z.

Note that equations of motion in (4.1)–(4.5) are invariant under the shift of scalar fields

φ→ φ− φ0 , Q→ eφ0Q , ã→ e2φ0 ã, (4.6)

and under the scaling of coordinates x, y and parameters k1, k2,

x→ e−(Us(0)+Ua(0))/2x , k1 → e−(Us(0)+Ua(0))/2k1 ,

y → e−(Us(0)−Ua(0))/2y , k2 → e−(Us(0)−Ua(0))/2k2 , (4.7)

where Us(0) and Ua(0) indicate the boundary values of spatial metric components at z = 0.

The existence of the horizon requires h(z) to be h(1) = 0 where the horizon is located at

z = 1. Due to the above scaling invariances, some variables at the horizon are determined

in terms of intrinsic parameters

φ′(1) =
2(k1 + k2 + 2k1k2) +Q2

κ
, ã′(1) = 0,

U ′s(1) =
2(κ+Q2)− (6 + k1 + k2 + k1k2)

κ
, U ′a(1) =

k2 − k1
2κ

, (4.8)

where κ = −h′(1) is associated with the Hawking temperature via κ = 4πT . When we

solve equations of motion numerically, these relations play a role of boundary conditions

at the horizon. In figure 1, we depict numerical solutions satisfying the above boundary

conditions and equations of motion. In the case with only an electric charge, a constant

axion field becomes the solution of (2.8) because the absence of the magnetic field, and we

simply choose ã = 0 for the pure electronic case.

In order to obtain DC and AC conductivities by using the Kubo formula, we turn on

vector and metric fluctuations on the above background numerical solution

A = Āt(z)dt+
(
Ãx(t, z)dx+ Ãy(t, z)dy

)
,

ds2 = gµνdx
µdxν +

2L2

z2

(
g̃ti(t, z)dtdxi + g̃zi(t, z)dzdxi

)
,

where Āt and gab indicate the background solutions in (2.18) (2.22), and the tilde symbol

was used to denote their fluctuations. We will use the Fourier mode expansion

Ãi(t, z) =

∫ ∞
−∞

dω

2π
e−iωtAi(z), g̃ti(t, z) =

∫ ∞
−∞

dω

2π
e−iωtgti(z) ,

g̃zi(t, z) =

∫ ∞
−∞

dω

2π
iωe−iωtgzi(z) .
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Figure 1. Plots of the functions in the metric and dilaton fields in terms of coordinate z , for

fixed p1 = 1, k1 = 0.1, κ = 1, with k2 = 0 (Green), 1 (Red-dashed), 2 (Black-dotted), and 4.8294

(Blue-dotted-dashed).

Considering the equations of motion (2.5)–(2.8), as well as (4.1)–(4.5) for the background,

the fluctuation equations are reduced to

0 =

(
−kip1QHe−3Us/2−εijUa/2+2φ

z

)
gzi +

(
ω2

h2
− 4Q2z2e−2Us+2φ

h

)
Ai

+

(
−εijU ′a +

h′

h
− 2φ′

)
A′i +A′′i , (4.9)

0 = −4Qz2e−UsAi −

(
ω2 − kip1Hhe

−Us/2−εijUa/2

z

)
gzi +

(
−U ′s − εijUa

)
gti + g′ti , (4.10)

0 =
gti
h2

+

(
H ′

H
− 3

z
+
h′

h
+
Us
2
− εij

Ua
2

)
gzi + g′zi , (4.11)

To solve these equations, let us first investigate solutions near the horizon. (4.9)–(4.11) are

singular at the horizon because h(1) = 0. In order to satisfy equations, fluctuations must

have appropriate singularity at the horizon. Introducing new variables with an appropriate

exponent γ,

Âi(z) ≡ h(z)A′i(z) , (4.12)

and

Ai(z) = (1− z)γai(z) , Âi(z) = (1− z)γ âi(z) ,

gti(z) = (1− z)γζti(z) , gzi(z) = (1− z)γζzi(z)/h(z). (4.13)
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the above equations reduce to four first-order differential equations near the horizon

0 = â′i −
(
εijU

′
a +

γ

1− z
+ 2φ′

)
âi +

(
ω2

h
− 4z2e2φ−2UsQ2

)
ai

+
1

z
p1kiHe

2φ−3Us/2−εijUa/2ζzi ,

0 = a′i −
γ

1− z
ai −

âi
h
,

0 = ζ ′zi +

(
H ′

H
+
U ′s
2
− εij

U ′a
2
− γ

1− z
− 3

z

)
ζti +

ζti
h
,

0 = ζ ′ti −
((
U ′s + εijU

′
a

)
+

γ

1− z

)
ζti −

(
ω2

h
− 1

z
p1kiHe

−(Us/2+εijUa/2)

)
ζzi

− 4z2Qe−Usai. (4.14)

Rewriting these equations as the eigenvalue equation form, we obtain
0 − ω2

h′(1) 0 0
1

h′(1) 0 0 0

0 0 0 − 1
h′(1)

0 0 ω2

h′(1) 0



âi
ai
ζzi
ζti

 = γ


âi
ai
ζzi
ζti

 . (4.15)

This eigenenvalue equation allows degenerated eigenvalues, γ = ± iω
h′(1) , and their eigenvec-

tors are given by [36, 57]

ψ1± =


0

0

±i/ω
1

 , ψ2± =


±iω

1

0

0

 . (4.16)

Here, two eigenvectors, ψ1− and ψ2− correspond to incoming solutions, whereas the others

describe outgoing solutions.

After picking the incoming solutions up, solving equations in (4.9)–(4.11) numerically

gives rise to information about boundary behaviors of fluctuations. Then, the Kubo for-

mula together with these numerical solutions determines numerical values of DC and AC

conductivities (see [13, 16, 17, 36] for more details). In figure 2, we plot DC conductiv-

ity obtained by the Kubo formula, which is well matched to the result obtained from the

membrane paradigm, as expected.

Unlike the membrane paradigm used in the previous section, the Kubo formula allows

us to get more information on the AC conductivity. Repeating the same calculation with

a nonvanishing frequency, we know at least numerically how the AC conductivity relies

on the frequency. For Q̄m = 0, in figure 3, we plot the real and imaginary parts of

the AC conductivity and the scaling behaviors in the low frequency regime with several

different values of k2. In the left hand side plots of figure 3, the AC conductivities in the

low frequency regime show a Drude-like behavior for small k2. In this case, the small k2
indicates a small anisotropy because we take k1 = 0.1. The numerical result shows that the
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Figure 2. The DC conductivity σyy in terms of parameter k2, for fixed p1 = 1, and k1 = 0.1.

The red dots are from Kubo formula, and they match to the result(blue curve) obtained from the

membrane paradigm in (3.7).

Drude-like peak becomes flattened as anisotropy increases and then at a certain critical

value the peak disappears. This becomes manifest in the left hand side of the bottom

figure in figure 3 because there is no Drude-like peak for a large anisotropy (or large k2).

We further find that the Drude-like peak disappears near k2 ≈ 4.82 for k1 = 0.1. The

similar behaviors in both normal and superconducting phases have also been observed at

low temperature [58–60]. In the right hand side figures of figure 3, we present the power-law

scaling behavior of the AC conductivity

|σyy| ∼ ω−α. (4.17)

The result shows that there exists such a power-law scaling behavior and that the scal-

ing exponent α becomes smaller as the anisotropy increases. At a certain critical value,

furthermore, it becomes zero and then changes the sign. This qualitative behavior is con-

sistent with the disappearance of the Drude-like peak mentioned before. It has been known

that the normal mode of cuprates and high-Tc superconductor shows a universal scaling

behaviors of the optical conductivity with α = 2/3 [61]. So it would be interesting to see

how the anisotropy affects such a universal scaling behavior in the future work.

Now, let us take into account more general situations having a nonvanishing magnetic

field as in (2.24). After adding a background magnetic field denoted by Q̄m and repeating

the previous calculations done without Q̄m, we can get numerical information about con-

ductivities of the dual field theory. On the other hand, the SL(2, R) transformation of the

conductivities in (3.14) can also be applied to the AC conductivities, with the parameters

being fixed from (2.25)–(2.27). In this case, due to the nonvanishing magnetic field, we

could generate the Hall conductivity as well as AC conductivity from the pure electric case

in figure 3.

In figure 4, we add the plots λ̄1(z) and λ̄2(z) for different values of Q̄m and Q̄e, along

with k1 = 0.1, k2 = 0.4. We have choosen the boundary condition λ̄2(0) = 1, such that the
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Figure 3. Left column: the real (solid) and imaginary (dashed) parts of the AC conductivities

σyy in terms of frequency ω, for k2 = 0.4 (top), 2 (middle) and 4.8295 (bottom), where we take

p1 = 1 and k1 = 0.1 and used ω̄ = ω/T . Right column: the Log-Log plots for |σyy| ∼ ω̄−α, where

|σyy| =
√

Re[σyy]2 + Im[σyy]2, and from top to down, α ' 2/3, 2/3,−2/3, respectively.

parameters in the SL(2,R) transformation can be fixed via (2.25)–(2.27). Then λ̄1(z) and

λ̄2(z) could be transformed by these parameters through (2.28).

In figure 5, we depict various AC and Hall conductivities relying on the frequency

with different values of Q̄m and fixed Q̄e. The result shows that the peaks of AC and

Hall conductivities move to the high frequency regime as the strength of the magnetic field

become strong.

In the case with a nonvanishing magnetic field, since we have AC and Hall conduc-

tivities, we can define a complex conductivity studied in (3.10). In figure 6, we plot such
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Figure 4. λ̄1(z) and λ̄2(z) for different values of Q̄m = 0.1 (black-solid) ,
√

2/2 (blue-dashed) , 0.9

(red-dotted) where we take k1 = 0.1, k2 = 0.4, and Q̄e = 0.1.
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Figure 5. The AC conductivities σ̄ii and Hall conductivities σ̄yx in terms of frequency ω, for

different values of Q̄m = 0.1 (black-solid) ,
√

2/2 (blue-dashed) , 0.9 (red-dotted) where we take

k1 = 0.1, k2 = 0.4, and Q̄e = 0.1. In the first two plots, we only indicate either σ̄xx or σ̄yy, the

accompanying lines are just theirs partners for σ̄yy or σ̄xx.

a complex conductivity depending on the frequency. As expected, the peak of the com-

plex conductivity is also shifted to the higher frequency regime as Q̄m increases. The

similar behaviors have also been found for the isotropic case with a nonvanishing mag-

netic field [13]. In the hydrodynamic limit (ω � T ) without a momentum relaxation, the

complex conductivity has the following analytic form [38]

g̃2σ+ = i
4iQ̃2 − 4B̃Q̃+ 3

4iB̃2 + 4Q̃B̃ + 3
, (4.18)
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Figure 6. The plots in first row show the AC conductivities σ̄+ in terms of ω̄ for fixed k1 = 0.1,

k2 = 0.4, and Q̄e = 0.1. With Q̄m = 0.1, 0.4,
√

2/2, 0.9 corresponding to black-solid, blue-dashed,

red-dotted, and green-dotted-dashed curves, respectively. For dotted data in the last two plots,

we show the trajectory of the pick ω∗, where k1 = k2 = 10−4 (Black) and k1 = 0.1, k2 = 0.4

(Red). Also, the solid blue curves in Re(ω∗) and Im(ω∗) shows the limit of hydrodynamic of (4.19)

for Q̄e = 0.1.

where Q̃2 ≡ Q̄2
e/ω, B̃2 ≡ Q̄2

m/ω and g̃2 indicates a field theoretic quantity, g̃−2 =√
2N3/2/6π. This complex conductivity allows a cyclotron frequency resonance at

ω∗ = −4

3
Q̄m

(
−|Q̄e|+ iQ̄m

)
. (4.19)

Note that this formula is only valid in the hydrodynamic limit without a momentum re-

laxation. Interestingly, the numerical result we found in figure 6 shows a similar cyclotron

frequency pole even beyond the hydrodynamic limit with a nontrivial momentum relax-

ation. In figure 6, the hydrodynamic limit corresponds to a small Q̄m because in this

case ω∗ � T . In the last two figures of figure 6, we find that the real part of cyclotron

frequency pole we found numerically is well matched to the analytic result in (4.19), while

imaginary part is modified by momentum relaxation [13]. Furthermore, our result shows

that the cyclotron frequency pole is still alive beyond the hydrodynamic limit but cannot

be explained by the hydrodynamic formula in (4.19).

In figure 7, we plot the complex conductivities of two special limits, large electric charge

with
{
Q̄e, Q̄m

}
=
{√

0.9,
√

0.1
}

and large magnetic charge with
{
Q̄e, Q̄m

}
=
{√

0.1,
√

0.9
}

.

For the electric case, the pole appears at ω∗ = 0 as shown by the hydrodynamic formula

in (4.19), whereas for the magnetic case which goes beyond the hydrodynamic limit, the

cyclotron frequency pole appears in the finite frequency regime. The right hand side plot
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Figure 7. Left plot: the AC conductivities |σ+| in terms of ω, with Q̄e =
√

0.9, Q̄m =
√

0.1

(red-dashed curve), Q̄e =
√

0.1, Q̄m =
√

0.9 (Blue-solid curve). Right plot: the AC conductivities

Reσ̄+ (Solid curves) and Imσ̄+ (Dotted-dashed curves) in terms of ω, for fixed k1 = 0.1, k2 = 0.4

(Green) and k2 = 1 (Red), with Q̄m =
√

0.9 and Q̄e =
√

0.1.

of figure 7 shows that as the anisotropy increases (or k2 increases) the amplitude of the

cyclotron frequency pole becomes smaller. This implies that, if the system has a sufficiently

large anisotropy, the cyclotron frequency pole cannot appear.

5 Conclusion

We have studied a massive gravity theory with scalar and vector fields which transform

under the SL(2, R) group. In this case, the graviton mass breaks the diffeomorphism

and generates a new physical degree of freedom represented as the Stüekelberg field. If the

Stüekelberg field is given by a constant, the massive gravity is equivalent to the momentum

relaxation model described by scalar fields with linear profiles. Furthermore, if we take the

Stüekelberg field having different values in different spatial directions, the massive gravity

we considered shows anisotropy due to the breaking of the rotational symmetry. In this

work, we have investigated transport coefficients of the field theory which is dual to the

anisotropic massive gravity including SL(2, R) transformation.

Intriguingly, we found that the equations of motion of the massive gravity are invari-

ant under the SL(2, R) transformation. This fact leads to useful and important features in

studying the transport coefficient because a more general solution can be easily found by

applying the SL(2, R) transformation without solving the complicated equations of motion.

After studying how a general solution can be generated from a simple solution through the

SL(2, R) transformation, we also investigated how the physical quantity like the DC con-

ductivity transforms under the same SL(2, R) transformation. We found interestingly that

the complex conductivity transforms covariantly. Using this fact, one can easily calculate

the DC and Hall conductivities of a general and complicated case. In addition, we also

showed that the ratio of DC conductivities in different spatial directions is equal to the

square of anisotropy.

We further investigate AC and Hall conductivities relying on the frequency by using

the Kubo formula. After showing that the Kubo formula leads to the same DC conductivity

obtained by the membrane paradigm, we studied the AC conductivity whose information
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cannot be obtained from the membrane paradigm. We found that the AC conductivity

has a Drude-like peak when anisotropy is small. For a system having a large anisotropy,

however, such a Drude-like peak disappears. When we take into account the case with a

nonvanishing magnetic field, the system has an AC conductivity as well as a Hall conduc-

tivity. Similar to the membrane paradigm, we can also define a complex conductivity as the

combination of AC and Hall conductivities. In the hydrodynamic limit without a momen-

tum relaxation, it has been known that the complex conductivity has a cyclotron frequency

pole. In this work, we showed that such a cyclotron frequency pole is still alive beyond the

hydrodynamic limit even with an anisotropic momentum relaxation. We showed that the

cyclotron frequency pole moves to the high frequency regime when the applied magnetic

field becomes strong. Furthermore, we also showed that the cyclotron frequency pole can-

not occur when anisotropy is sufficiently large. It would be quite interesting to find such a

cyclotron resonance in real experiments.
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Gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].

[24] A. Sen, Electric magnetic duality in string theory, Nucl. Phys. B 404 (1993) 109

[hep-th/9207053] [INSPIRE].

[25] K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys.

Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].

[26] N. Iizuka, Non-supersymmetric attractors, Nucl. Phys. Proc. Suppl. 171 (2007) 286

[INSPIRE].

– 21 –

https://doi.org/10.1088/1126-6708/2002/12/054
https://arxiv.org/abs/hep-th/0210220
https://inspirehep.net/search?p=find+EPRINT+hep-th/0210220
https://doi.org/10.1103/PhysRevD.75.085020
https://arxiv.org/abs/hep-th/0701036
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701036
https://doi.org/10.1007/JHEP07(2012)168
https://arxiv.org/abs/1204.0519
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0519
https://doi.org/10.1007/JHEP11(2012)102
https://arxiv.org/abs/1209.1098
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1098
https://arxiv.org/abs/0812.0530
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0530
https://doi.org/10.1007/JHEP05(2014)101
https://doi.org/10.1007/JHEP05(2014)101
https://arxiv.org/abs/1311.5157
https://doi.org/10.1103/PhysRevLett.114.021601
https://doi.org/10.1103/PhysRevLett.114.021601
https://arxiv.org/abs/1406.1659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1659
https://doi.org/10.1007/JHEP07(2015)027
https://arxiv.org/abs/1502.05386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05386
https://doi.org/10.1103/PhysRevD.89.026005
https://arxiv.org/abs/1308.0329
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0329
https://doi.org/10.1007/JHEP11(2013)006
https://arxiv.org/abs/1309.4580
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4580
https://doi.org/10.1007/JHEP11(2014)081
https://arxiv.org/abs/1406.4742
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4742
https://doi.org/10.1007/JHEP01(2015)035
https://arxiv.org/abs/1409.6875
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6875
https://arxiv.org/abs/1301.0537
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0537
https://doi.org/10.1103/PhysRevD.88.086003
https://doi.org/10.1103/PhysRevD.88.086003
https://arxiv.org/abs/1306.5792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5792
https://doi.org/10.1103/PhysRevD.88.106004
https://doi.org/10.1103/PhysRevD.88.106004
https://arxiv.org/abs/1308.4970
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4970
https://doi.org/10.1103/PhysRevD.91.046006
https://arxiv.org/abs/1411.3027
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3027
https://doi.org/10.1007/JHEP08(2015)067
https://arxiv.org/abs/1504.00535
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00535
https://doi.org/10.1007/JHEP02(2016)114
https://arxiv.org/abs/1510.09089
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.09089
https://doi.org/10.1016/0550-3213(93)90475-5
https://arxiv.org/abs/hep-th/9207053
https://inspirehep.net/search?p=find+EPRINT+hep-th/9207053
https://doi.org/10.1103/PhysRevD.72.124021
https://doi.org/10.1103/PhysRevD.72.124021
https://arxiv.org/abs/hep-th/0507096
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507096
https://doi.org/10.1016/j.nuclphysBPS.2007.06.030
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.Proc.Suppl.,171,286%22


J
H
E
P
1
0
(
2
0
1
7
)
0
6
4

[27] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black

Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

[28] K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi and A. Westphal, Holography of

Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

[29] A. Bayntun, C.P. Burgess, B.P. Dolan and S.-S. Lee, AdS/QHE: Towards a Holographic

Description of Quantum Hall Experiments, New J. Phys. 13 (2011) 035012

[arXiv:1008.1917] [INSPIRE].

[30] N. Iizuka and K. Maeda, Study of Anisotropic Black Branes in Asymptotically anti-de Sitter,

JHEP 07 (2012) 129 [arXiv:1204.3008] [INSPIRE].

[31] X.-H. Ge, Y. Ling, C. Niu and S.-J. Sin, Thermoelectric conductivities, shear viscosity and

stability in an anisotropic linear axion model, Phys. Rev. D 92 (2015) 106005

[arXiv:1412.8346] [INSPIRE].

[32] S. Jain, R. Samanta and S.P. Trivedi, The Shear Viscosity in Anisotropic Phases, JHEP 10

(2015) 028 [arXiv:1506.01899] [INSPIRE].

[33] S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A Strongly Coupled Anisotropic Fluid

From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

[34] D. Roychowdhury, On anisotropic black branes with Lifshitz scaling, Phys. Lett. B 759

(2016) 410 [arXiv:1509.05229] [INSPIRE].

[35] D. Roychowdhury, Holography for anisotropic branes with hyperscaling violation, JHEP 01

(2016) 105 [arXiv:1511.06842] [INSPIRE].

[36] S. Khimphun, B.-H. Lee and C. Park, Conductivities in an anisotropic medium, Phys. Rev.

D 94 (2016) 086005 [arXiv:1604.00156] [INSPIRE].

[37] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near

quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76

(2007) 144502 [arXiv:0706.3215] [INSPIRE].

[38] S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron

resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

[39] C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev.

Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

[40] K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671

[arXiv:1105.3735] [INSPIRE].

[41] R.-G. Cai, Y.-P. Hu, Q.-Y. Pan and Y.-L. Zhang, Thermodynamics of Black Holes in

Massive Gravity, Phys. Rev. D 91 (2015) 024032 [arXiv:1409.2369] [INSPIRE].

[42] L.-M. Cao, Y. Peng and Y.-L. Zhang, de Rham-Gabadadze-Tolley massive gravity with

degenerate reference metrics, Phys. Rev. D 93 (2016) 124015 [arXiv:1511.04967] [INSPIRE].

[43] A.D. Shapere, S. Trivedi and F. Wilczek, Dual dilaton dyons, Mod. Phys. Lett. A 6 (1991)

2677 [INSPIRE].

[44] M. Parikh and F. Wilczek, An Action for black hole membranes, Phys. Rev. D 58 (1998)

064011 [gr-qc/9712077] [INSPIRE].

[45] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane

paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

– 22 –

https://doi.org/10.1007/JHEP08(2010)078
https://arxiv.org/abs/0911.3586
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3586
https://doi.org/10.1007/JHEP10(2010)027
https://arxiv.org/abs/1007.2490
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2490
https://doi.org/10.1088/1367-2630/13/3/035012
https://arxiv.org/abs/1008.1917
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1917
https://doi.org/10.1007/JHEP07(2012)129
https://arxiv.org/abs/1204.3008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3008
https://doi.org/10.1103/PhysRevD.92.106005
https://arxiv.org/abs/1412.8346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8346
https://doi.org/10.1007/JHEP10(2015)028
https://doi.org/10.1007/JHEP10(2015)028
https://arxiv.org/abs/1506.01899
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01899
https://doi.org/10.1007/JHEP01(2015)005
https://arxiv.org/abs/1406.4874
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4874
https://doi.org/10.1016/j.physletb.2016.06.008
https://doi.org/10.1016/j.physletb.2016.06.008
https://arxiv.org/abs/1509.05229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05229
https://doi.org/10.1007/JHEP01(2016)105
https://doi.org/10.1007/JHEP01(2016)105
https://arxiv.org/abs/1511.06842
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06842
https://doi.org/10.1103/PhysRevD.94.086005
https://doi.org/10.1103/PhysRevD.94.086005
https://arxiv.org/abs/1604.00156
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00156
https://doi.org/10.1103/PhysRevB.76.144502
https://doi.org/10.1103/PhysRevB.76.144502
https://arxiv.org/abs/0706.3215
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3215
https://doi.org/10.1103/PhysRevD.76.106012
https://arxiv.org/abs/0706.3228
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3228
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://arxiv.org/abs/1011.1232
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1232
https://doi.org/10.1103/RevModPhys.84.671
https://arxiv.org/abs/1105.3735
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3735
https://doi.org/10.1103/PhysRevD.91.024032
https://arxiv.org/abs/1409.2369
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.2369
https://doi.org/10.1103/PhysRevD.93.124015
https://arxiv.org/abs/1511.04967
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.04967
https://doi.org/10.1142/S0217732391003122
https://doi.org/10.1142/S0217732391003122
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A6,2677%22
https://doi.org/10.1103/PhysRevD.58.064011
https://doi.org/10.1103/PhysRevD.58.064011
https://arxiv.org/abs/gr-qc/9712077
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9712077
https://doi.org/10.1103/PhysRevD.79.025023
https://arxiv.org/abs/0809.3808
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3808


J
H
E
P
1
0
(
2
0
1
7
)
0
6
4

[46] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group,

JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

[47] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[48] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[49] C. Park, Holographic Aspects of a Relativistic Nonconformal Theory, Adv. High Energy Phys.

2013 (2013) 389541 [arXiv:1209.0842] [INSPIRE].

[50] C. Park, Massive quasinormal mode in the holographic Lifshitz Theory, Phys. Rev. D 89

(2014) 066003 [arXiv:1312.0826] [INSPIRE].

[51] C. Park, Holographic renormalization in dense medium, Adv. High Energy Phys. 2014 (2014)

565219 [arXiv:1405.1490] [INSPIRE].

[52] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography,

JHEP 09 (2015) 094 [arXiv:1502.02631] [INSPIRE].

[53] M. Blake, Magnetotransport from the fluid/gravity correspondence, JHEP 10 (2015) 078

[arXiv:1507.04870] [INSPIRE].

[54] A. Amoretti, M. Baggioli, N. Magnoli and D. Musso, Chasing the cuprates with dilatonic

dyons, JHEP 06 (2016) 113 [arXiv:1603.03029] [INSPIRE].

[55] A. Donos, J.P. Gauntlett, T. Griffin, N. Lohitsiri and L. Melgar, Holographic DC

conductivity and Onsager relations, JHEP 07 (2017) 006 [arXiv:1704.05141] [INSPIRE].

[56] X.-H. Ge, Y. Tian, S.-Y. Wu and S.-F. Wu, Hyperscaling violating black hole solutions and

Magneto-thermoelectric DC conductivities in holography, Phys. Rev. D 96 (2017) 046015

[arXiv:1606.05959] [INSPIRE].

[57] J.-i. Koga, K. Maeda and K. Tomoda, Holographic superconductor model in a spatially

anisotropic background, Phys. Rev. D 89 (2014) 104024 [arXiv:1401.6501] [INSPIRE].
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