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1 Overview and motivation

Solving string theory on generic curved backgrounds is indeed a difficult task in itself.

Under such circumstances, integrability allows us to choose certain sub-sectors of the theory

for which one might at least hope to find out some solution in the same spirit as that with

the usual flat space. Except for some special circumstances [1, 2], it is in general hard

to determine whether the given string theory is integrable on generic curved backgrounds

under consideration. The key reason for this rests over the fact that there is no generic

method and/or prescription for determining Lax pairs on generic curved spaces. However,

during the last few years there have been some progress along this particular direction

based on both numeric as well as analytic techniques [3]–[18].

The key idea associated with the above analytic path rests over the usual notion of in-

tegrability in the context of classical Hamiltonian dynamics [7, 8]. The steps are in general

quite straightforward namely, (1) choose an invariant plane in the phase space, (2) obtain

the so called normal variational equation (NVE) corresponding to that invariant plane and

(3) check whether the NVE admits simple analytic solutions (namely the Liouvillian solu-

tions1) using Kovacic’s algorithm [19, 20]. The Hamiltonian system is said to be integrable

in case the corresponding NVE admits Liouvillian solutions.

For the familiarity of the reader, in the following we outline Kovacic’s method in brief.

Consider a second order differential equation of the following form,

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = 0 (1.1)

1The Liouvillian solutions are essentially simple analytic functions of exponentials, logarithms, simple

algebraic expressions involving their integrals [19, 20].

– 1 –



J
H
E
P
1
0
(
2
0
1
7
)
0
5
6

where, a, b, c are all rational functions namely, a, b, c ∈ C(x) where, C(x) is the space

of rational functions which could be complex in general. It turns out that the above

equation (1.1) is equivalent to the differential equation of the following form [19, 20],

ξ′′(x) = r(x)ξ(x) (1.2)

with, r(x) = (2b′a−2ba′+b2−4ac)
4a2

.

Following Kovacic’s algorithm [19, 20], the original differential equation (1.1) possess

a Liouvillian solution if and only if the solution corresponding to the second equation (1.2)

could be expressed as [19, 20],

ξ = e
∫
ωdx (1.3)

where the function ω(x) is algebraic of degree 1, 2, 4, 6 or 12 over C(x) [19, 20]. The other

way to put this algorithm is to say that the solution (1.3) exists if and only if the function

ω(x) satisfying the Ricatti equation,

ω′(x) + ω2(x) = r(x) (1.4)

possesses a solution that is algebraic of degree 1, 2, 4, 6 or 12 over C(x) [19, 20].

The purpose of the present article is to apply Kovacic’s algorithm to various classical

stringy configurations defined over the recently discovered η-deformed [21]–[29] as well as

λ-deformed backgrounds [30]–[38] and to check the integrability conditions associated with

the dynamics of classical string motions over these special classes of target spacetimes

those are supposed to preserve integrability in their ground (vacuum) state. As classical

strings (are dual to single trace operators in the dual gauge theory at strong coupling) are

considered to be excitations above these vacua, therefore the present analysis would give

us some indications whether the corresponding operator spectrum (above its ground state)

in the dual gauge theory is integrable or not.

The organization for the rest of the paper is the following: in section 2, we discuss

various stringy configurations both for the η as well as the λ model. In particular, we

consider some specific sub-sectors of the full target spacetime and apply Kovacic’s algorithm

in order to solve stringy dynamics associated with those subspaces. Finally, this article is

concluded in section 3 with some further remarks.

2 Results

2.1 Bosonic strings in (AdS3 × S3)η

We begin our discussion with a formal introduction to the bosonic η-deformed AdS3 × S3

background that could be obtained as a consistent 6D reduction of the full 10D solution

with the vanishing B field [26],

ds2AdS3×S3 = ds2AdS3

⊕
ds2S3

=
[
−h(%)dt2 + f(%)d%2 + %2dψ2

]⊕[
h̃(θ)dϕ2 + f̃(θ)dθ2 + cos2 θdφ2

]
(2.1)
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together with the individual metric functions,2

h =
1 + %2

(1− κ2%2)
, f =

1

(1 + %2)(1− κ2%2)

h̃ =
sin2 θ

(1 + κ2 cos2 θ)
, f̃ =

1

(1 + κ2 cos2 θ)
. (2.2)

2.1.1 Strings in (R× S3)η

In this section, we focus on specific stringy configurations such that strings are sitting at

the centre of the AdS3 (% = 0) with non trivial dynamics associated with the deformed S3.

We choose the following ansatz corresponding to the classical string configuration that we

are interested in,

t = t(τ), θ = θ(τ), ϕ(σ, τ) = α1σ + q(τ), φ = α2σ (2.3)

where, (τ, σ) are the so called world-sheet coordinates. Here αis are constant coefficients

that characterise the winding of the string along angular directions.

The corresponding Polyakov Lagrangian could be formally expressed as,3

LP = ṫ2 − θ̇2

1 + κ2 cos2 θ
+

(α2
1 − q̇2) sin2 θ

1 + κ2 cos2 θ
+ α2

2 cos2 θ. (2.4)

The non trivial set of equations that readily follow from (2.4) could be expressed as,

θ̈(1 + κ2 cos2 θ) + κ2θ̇2 sin θ cos θ + (α2
1 − q̇2)(sin θ cos θ(1 + κ2 cos2 θ) + κ2 sin3 θ cos θ)

−α2
2 sin θ cos θ(1 + κ2 cos2 θ)2 = 0

q̈ sin2 θ(1 + κ2 cos2 θ) + 2q̇θ̇(sin θ cos θ(1 + κ2 cos2 θ) + κ2 sin3 θ cos θ) = 0.

(2.5)

With the above equation (2.5) in hand, we consider θ, θ̇ → 0 limit of the second

equation in (2.5). In order to do that, we first set,

θ ∼ θ̇ ∼ ε (2.6)

such that |ε| � 1. This eventually defines our invariant plane {θ ∼ 0, pθ ∼ 0} in the phase

space [7, 8].

Substituting (2.6) into (2.5) and taking the limit, ε→ 0 we finally obtain,

q̈ + 2q̇ ≈ 0 (2.7)

which possesses a classical solution of the form, q = qs(τ) = e−2τ .

Our next task would be to explore whether small perturbations around this special so-

lution is integrable in the sense of Kovacic’s algoritm [19, 20] of finding Liouvillian solution.

2Notice that, here we have introduced a new deformation parameter κ which is related to the original

deformation parameter η as, κ = 2η
1−η2 [23]. Therefore, in the subsequent analysis we would always refer

the deformation parameter as being κ.
3We have set, 2πα′ = 1.
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The corresponding NVE is obtained by considering small fluctuations, θ ∼ η(τ), |η| � 1

around the above solution which for the present case yields,

η̈ + (α2
1 − q̇2s − α2

2(1 + κ2))η = 0. (2.8)

In order to check Kovacic’s algorithm, we consider the following change of variables

namely,

z = e−4τ . (2.9)

Using (2.9), we finally obtain,

z2η′′(z) + zη′(z) + K(z)η(z) = 0 (2.10)

where, K(z) =
(α2

1−4z−α2
2(1+κ

2))
16 .

Clearly, the above equation (2.10) is a simple homogeneous linear second order dif-

ferential equation with Polynomial coefficients which thereby allows us to check Kovacic’s

algorithm [19, 20] directly. For generic values of the parameters, the solution could be

formally expressed as,

η(z) = C1(−1)−
1
4

√
α2

2(κ
2+1)−α2

1Γ

(
1− 1

2

√
α2
2(κ2 + 1)− α2

1

)
I− 1

2

√
α2

2(κ
2+1)−α2

1

(√
z
)

+ C2(−1)−
1
4

√
α2

2(κ
2+1)−α2

1i
√
α2

2(κ
2+1)−α2

1Γ

(
1

2

√
α2

2(κ2 + 1)− α2
1 + 1

)
I 1

2

√
α2

2(κ
2+1)−α2

1

(√
z
)

(2.11)

where, Ia(x) is the modified Bessel’s function of the first kind and Γ(n) is the usual Gamma

function.

Following the Kovacic’s algorithm [19, 20], an equivalent equation corresponding

to (2.8) could be formally expressed as,

ξ′′(z) =

(
−α2

1 + α2
2

(
κ2 + 1

)
+ 4z − 4

16z2

)
ξ(z) = r(z)ξ(z). (2.12)

The solution corresponding to (2.12) turns out to be,

ξ(z) =
C1
2
i
√
z(−1)−

1
4

√
α2

2(κ
2+1)−α2

1Γ

(
1−1

2

√
α2
2(κ2+1)−α2

1

)
I− 1

2

√
α2

2(κ
2+1)−α2

1

(√
z
)

+
C2
2
i
√
z(−1)−

1
4

√
α2

2(κ
2+1)−α2

1i
√
α2

2(κ
2+1)−α2

1Γ

(
1

2

√
α2
2(κ2+1)−α2

1+1

)
I 1

2

√
α2

2(κ
2+1)−α2

1

(√
z
)
.

(2.13)

If we now demand that the above equation (2.12) has a solution which is of the form,

ξ(z) = e
∫
ω(z)dz (2.14)

then the corresponding function ω(z) turns out to be,

ω(z) =
N (z)

4zD(z)
(2.15)
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where each of the individual functions could be formally expressed as,

N (z) = Γ
(

1− n

2

)
2
√
zI1− n

2

(√
z
)
− (n− 2) I− n

2

(√
z
)

+2e
iπn
2

(√
zI 1

2
(n+2)

(√
z
)

Γ
(n

2
+ 1
)

+ Γ
(n

2
+ 2
)
I n

2

(√
z
))

(2.16)

D(z) = Γ
(

1− n

2

)
I− n

2

(√
z
)

+ inΓ
(n

2
+ 1
)
I n

2

(√
z
)

(2.17)

n =
√
α2
2 (κ2 + 1)− α2

1. (2.18)

It turns out that for generic n and |z| < 1 (2.9), the function ω(z) is indeed a Polynomial

of the following form,

ω(z) =
C1(n)

z
+
C2(n)

z1−
n
2

+
C3(n)

z1−n
+ . . . (2.19)

where, Cis are some complex coefficients in general.

As a special case, for n = 0 (which in turn fixes, κ2 =
α2
1−α2

2

α2
2

) we find,

ω(z) =
1

2z
+

1

4
− z

32
+

z2

192
+ . . . (2.20)

Finally, after a straightforward computation, it turns out that the corresponding Ri-

catti equation [19, 20] is also satisfied,

ω′(z) + ω2(z) = r(z). (2.21)

For the special case with, n = 0, eq. (2.20) is the corresponding (Polynomial) solution

to the Ricatti equation (2.21). From the above analysis it is therefore quite evident that

the original NVE (2.8) we started with does not possess Liouvillian solution and therefore

the corresponding stringy configuration (2.3) (and hence the dual field theory) is non-

integrable.

2.1.2 Pulsating strings in (AdS3)η

The purpose of this section is to check integrability conditions for classical pulsating strings

over κ-deformed AdS3 [39],

ds2 = − cosh2 %

1− κ2 sinh2 %
dt2 +

d%2

1− κ2 sinh2 %
+ sinh2 %dψ2. (2.22)

We now wish to check the integrability corresponding to the ansatz of the following form,

t = t(τ), % = %(τ), ψ = ασ. (2.23)

Next, we note down the corresponding non trivial equations of motion that readily

follow from (2.23),

ẗ cosh2 %+ %̇ṫ sinh 2%

(
1 +

κ2 cosh2 %

1− κ2 sinh2 %

)
= 0

2%̈(1− κ2 sinh2 %) + sinh %(α2(1− κ2 sinh2 %)2 + κ2%̇2 + ṫ2(1 + κ2)) = 0. (2.24)

– 5 –
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The invariant plane in the phase space is set by the following ansatz,

% = %̇ = 0 (2.25)

which yields,

t = γτ. (2.26)

As usual, our next task would be to consider fluctuations (δ% ∼ |ϑ(τ)| � 1) normal to

the plane (2.25) explore NVE in the sense of Kovacic’s algorithm [19, 20]. The NVE for

the present example turns out to be,

2ϑ̈+ (α2 + γ2(1 + κ2))ϑ = 0 (2.27)

which is nothing but the equation corresponding to a simple harmonic oscillator and hence

the original stringy configuration is trivially integrable [7]. This seems to be the only

configuration that might preserve integrability.

2.1.3 Spiky strings in (AdS3)η

The purpose of this section is to study the integrability conditions associated with the

spiky string configurations [40, 41] over κ-deformed AdS3 (2.2). The configuration that we

are interested in is the following,

t = τ, % = %(τ), ψ(σ, τ) = βσ + s(τ). (2.28)

The corresponding Polyakov Lagrangian could be formally expressed as,

LP =
(1 + %2)

(1− κ2%2)
− %̇2

(1 + %2)(1− κ2%2)
+ %2(β2 − ṡ2) (2.29)

which yields the following set of non trivial equations,

%̈(1 + %2)(1− κ2%2)− %̇2%(1− κ2 − 2κ2%2) + %(1 + κ2)(1 + %2)2

+2%(1 + %2)2(1− κ2%2)2(β2 − ṡ2) = 0

%s̈ + 2%̇ṡ = 0. (2.30)

The invariant plane in the phase space is fixed by the following ansatz,

{%, %̇} ≈ 0 (2.31)

which yields,

s(τ) = sc = e−2τ . (2.32)

The corresponding NVE takes the following form,

ϑ̈+ (1 + κ2 + 2(β2 − ṡ2c))ϑ = 0. (2.33)

– 6 –
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As a next step of our analysis, we set,

z = e−4τ (2.34)

which yields,

z2ϑ′′(z) + zϑ′(z) + G(z)ϑ(z) = 0 (2.35)

where, G(z) = (1+κ2+2β2−8z)
16 . Clearly, the above equation (2.35) possesses remarkable sim-

ilarity to that with the previously obtained equation (2.10) which thereby sort of guarantee

the non-integrability corresponding to the above stringy configuration (2.28).

2.2 Bosonic strings in (AdS3 × S3)λ

The target space metric corresponding to λ deformations could be formally expressed

as [34],

2πk−1ds2 =
1

1 + 2b2
(
−dt2 + J2 + coth2 ξK2 − 4b2(1 + b2)(cosh2 ξ(dt−K)2 − J2)

)
+

1

1 + 2b2

(
dϕ2 + J̃2 + cot2 ζK̃2 + 4b2(1 + b2)(cos2 ζ(dϕ+ K̃)2 + J̃2)

)
(2.36)

where the individual metric functions could be formally expressed as,

J = csc(2t)(sin(2ψ)dξ − coth ξ(cos(2t)− cos(2ψ))dψ)

K = csc(2t)(tanh ξ(cos(2t) + cos(2ψ))dξ − sin(2ψ)dψ)

J̃ = csc(2ϕ)(sin(2φ)dζ + cot ζ(cos(2ϕ)− cos(2φ))dφ)

K̃ = csc(2ϕ)(tan ζ(cos(2ϕ) + cos(2φ))dζ + sin(2φ)dφ). (2.37)

Here, the parameter b is related to the original deformation parameter λ as [34],

b2 =
λ2

1− λ2
, λ2 ∈ [0, 1]. (2.38)

2.2.1 Strings in (R× S2)λ

To check integrability, we would consider a simple (sub)sector of the theory namely, we

would be considering strings moving in (R × S2)λ. The corresponding stringy ansatz in

the bulk turns out to be,

t = τ, ξ = ξc, ψ = ψc, ζ = ζc =
π

4
, ϕ = ϕ(x), φ = φ(x) (2.39)

where, the coordinate x stands for either of the worldsheet coordinates (τ, σ).

With the above choice (2.39), the corresponding metric simplifies to,

2πk−1ds2 = gttdt
2 + gϕϕdϕ

2 + gφφdφ
2 + 2gφϕdφdϕ (2.40)

– 7 –
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where the individual metric functions could be formally expressed as,4

gtt = −(1 + 4b2(1 + b2) cosh2 ξc)

gϕϕ = (1 + 2b2(1 + b2))

gφϕ = 2b2(1 + b2) csc(2ϕ) sin(2φ) (2.41)

and,

gφφ = csc2(2ϕ)(1 + 2b2(1 + b2))(cos2 2ϕ− 2 cos 2ϕ cos 2φ+ 1)

+2b2(1 + b2) csc2(2ϕ)(cos 2ϕ− cos 2φ)2. (2.42)

The corresponding Polyakov Lagrangian could be formally expressed as,5

LP = gϕϕϕ̇
2 + gφφφ̇

2 + gϕφϕ̇φ̇ (2.43)

which yields the following set of non trivial equations,

• ϕ equation:

(1+2b2(1+b2))ϕ̈+2φ̇2csc2(2ϕ)
((
b4+b2

)
cos(4φ)+7

(
b4+b2

)
+2
)

+φ̇2csc2(2ϕ)
(

cot(2ϕ)−
(
2b2+1

)2
(cos(4ϕ)+3)csc(2ϕ)cos(2φ)

)
+b2(1+b2)φ̈csc(2ϕ)sin(2φ) = 0

(2.44)

• φ equation:

gφφφ̈+ 2 csc(2ϕ) sin(2φ)
((

2b2 + 1
)2

cot(2ϕ)− 2b2
(
b2 + 1

)
csc(2ϕ) cos(2φ)

)
φ̇2

+b2(1 + b2)ϕ̈ csc(2ϕ) sin(2φ) = 0.

(2.45)

We set the invariant plane in the phase space with the ansatz,

φ = 0, φ̇ = 0 (2.46)

which yields,

ϕ(x) = ϕc = cx. (2.47)

The corresponding NVE turns out to be,

η̈ ≈ 0 (2.48)

where, as usual η(x) is the corresponding fluctuation in the direction normal to the invariant

plane (2.46) in the phase space. Eq. (2.48) is remarkably simple and admits simple analytic

(Liouvillian) solution,

η(x) = x (2.49)

which thereby (unlike the case for the η-deformations) preserves the integrability of the

corresponding stringy configuration (2.39).

4We ignore the overall scaling factor, 1
1+2b2

.
5Here, the dot corresponds to derivative w.r.t. the worldsheet coordinate x which could be τ or σ.

– 8 –
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2.2.2 Strings in (AdS2)λ

We now aim to explore integrability for strings moving in another subsector of the full

theory namely the λ-deformed AdS2. We choose the following ansatz for the stringy con-

figuration,

t = t(τ), ψ = ψ(τ), ξ = ξc = coth−1 1. (2.50)

With the above ansatz (2.50), the corresponding metric (ignoring all the overall scale

factors) simplifies to,

ds2 = −dt2 + gψψdψ
2 (2.51)

where, the corresponding metric function could be expressed as,

gψψ = csc2(2t)(cos2(2t)− 2 cos(2t) cos(2ψ) + 1) + 4b2(1 + b2) csc2(2t)(cos(2t)− cos(2ψ))2.

(2.52)

The corresponding Polyakov action turns out to be,

LP = ṫ2 − gψψψ̇2 (2.53)

which yields the following set of equations of motion,

ẗ+ csc2(2t)
((

2b2 + 1
)2

(cos(4t) + 3) csc(2t) cos(2ψ)
)
ψ̇2

−4 csc2(2t) cot(2t)
((
b4 + b2

)
cos(4ψ) + 3

(
b4 + b2

)
+ 1
)
ψ̇2 = 0 (2.54)

and,

gψψψ̈ + 2 csc(2t) sin(2ψ)
(
4
(
b2 + 1

)
b2 csc(2t)(cos(2t)− cos(2ψ)) + cot(2t)

)
ψ̇2 = 0. (2.55)

In the following we look for an invariant plane in the phase space which is obtained by

setting up an ansatz of the following form namely,

ψ = ψ̇ = 0 (2.56)

which yields,

t(τ) = τ. (2.57)

Finally, the corresponding NVE associated with the fluctuations, δψ ∼ ϑ(τ) tuns out

to be extremely simple,

ϑ̈ ≈ 0 (2.58)

which clearly admits Liouvillian solution and hence the corresponding stringy configura-

tion (2.50) is trivially integrable.

– 9 –
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3 Summary and final remarks

We now summarize our analysis. The purpose of the present analysis was to explore the

integrability conditions corresponding to classical stringy configurations defined over the

newly discovered η as well as λ-deformed backgrounds. In our analysis, we stick to the

bosonic sector of the full super-string target space and rather than considering the dynamics

over the full background geometry, we consider strings moving in various sub-sectors of the

full target space.

Our analysis reveals that the stringy motion over η-deformed backgrounds are non-

integrable. On the other hand, the classical string configurations defined over λ-deformed

backgrounds turn out to be integrable. Since classical strings correspond to single trace

operators in the dual gauge theory, therefore our analysis imposes severe constraints on

the corresponding operator spectrum at strong coupling. Our analysis corresponds to the

fact that the excitations (above the ground state) associated with the gauge theory dual to

η-deformations do not preserve any integrable structure, whereas on the other hand, the

corresponding operator spectrum turns out to be integrable for λ-deformations.
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