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1 Introduction

Ever since its discovery [1], the seven-dimensional duality between M-theory compactified

on K3 and the heterotic string compactified on T 3 has played an essential role in our

understanding of string theory. In its most prosaic usage, this duality, together with its

F-theory counterpart [2], have been used to produce and study many dual pairs of theories.

The simplest way to generate such pairs is to compactify the resulting seven-dimensional

theory on some common geometry; however, a much richer class of theories can be obtained

by performing a fiber-wise duality. A classic example of this correspondence is between

M-theory on K3 × K3 and heterotic flux vacua with target space a principal T 3 bundle

over K3 [3]. Depending on the choice of G-flux on the M-theory side, these may have an

F-theory lift with a corresponding heterotic vacuum that is a principal T 2 bundle over K3.

The latter have been the focus of much attention, e.g. [4–7], and remain the sole compact

examples of heterotic flux vacua.

The class of four- or three-dimensional vacua just discussed is particularly simple, and

with a sufficient amount of supersymmetry, it should be possible to work out the duality

map in some detail. However, these solutions are by no means exhaustive. Surprisingly,
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there are many M-theory vacua on K3×K3 that are more challenging to describe from a het-

erotic perspective. The main aims of this work are to present these vacua, describe their ba-

sic features, and to point out the challenges in finding corresponding heterotic descriptions.

Given that the M-theory geometry M8 = K3 × K3 is so simple, the reader will not

be surprised that it is the choice of G-flux that is responsible for the extra complications.

It is possible, while preserving N = 1, 2, 3 three-dimensional super-Poincaré invariance,1

to choose G with a component that threads the volumes of the two K3 factors. Such a

volume-threading flux automatically obstructs a lift to M-theory on K3×R
1,6, so that we

cannot apply a standard duality with heterotic string on T 3 × R
1,6.

On the other hand, given that we do have the 3d solutions with this sort of volume-

threading flux, it is clear that there exists a supergravity theory in seven dimensions

obtained by reducing M-theory on K3 surface X with a volume-threading flux G ⊃

const × dVol(X) that has supersymmetric vacua of the form R
1,2 × X̃, where X̃ is a

second K3. This seven-dimensional theory does not have Minkowski vacua, and, as we will

argue, necessarily involves a spacetime potential and cosmological constant. The volume-

threading flux will obstruct any lift to F-theory, and it will lead to a puzzle with any

potential geometric heterotic dual: briefly stated, the Bianchi identity for the H-flux of the

putative seven-dimensional heterotic dual theory would seem to involve a term of the form

dH = ∗H + · · · , where · · · refer to the familiar heterotic curvature terms; the ∗H term is

not present in standard formulations of the heterotic string.

This is a strong indication that there is no conventional dual description of M-theory

on K3 with a volume-threading flux. We sharpen this statement as follows. First, we

demonstrate in some detail that in M-theory on X × X̃ it is possible to have solutions

that preserve three-dimensional N = 3 super-Poincaré invariance. These sorts of vacua are

interesting in themselves, since they lie between the challenging N = 2 and the reasonably

well-understood N = 4 vacua. We show that these solutions necessarily involve volume-

threading flux, and this is why they have not been previously encountered in the literature

(for instance, they certainly do not have an F-theory lift). We next turn to the heterotic

string, and we prove that every geometric compactification with N = 3 invariance in fact

preserves N = 4.2

This work should be viewed as an exploration of the general structure of duality be-

tween M-theory and the heterotic string. Consider a compactification of M-theory based

on an 8-dimensional Ricci-flat manifold M8. Compactification geometries with extended

supersymmetry are conveniently summarized by the following famous table.3 The maxi-

mum number of supersymmetries Nmax = Â(M8), where Â(M8) is the value of the Dirac

index on M8.

1The N counts the two-component Majorana spinors of R1,2.
2By a geometric compactification we mean a solution (perhaps with some formal α′ expansion [7] with

a smooth seven-dimensional geometry X7 equipped with some gauge bundle, dilaton, and H-flux.
3Like Kodaira’s list of singularities, the M-theory part of the table can be found in many string theory

papers; we adapt it from [8].
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M-theory Nmax 1 2 3 4

M8 holonomy Spin(7) ⊃ SU(4) ⊃ Sp(2) ⊃ Sp(1)× Sp(1)

Heterotic ∪ ∪ ⊆

X7 structure G2 ⊃ SU(3) ⊃ ??? Sp(1)

The lower line of the table can also be taken to indicate the holonomy of an internal eight-

manifold in M-theory compactifications M8, rather than the structure group of X7 on the

heterotic side. For all of these the 8d spinors are not chiral, and Â(M8) = 0. Moreover, the

internal flux G vanishes. The amount of 3d supersymmetry changes as N = 2, 4, 8 as one

moves right along the line. N = 16 corresponds to M8 with trivial holonomy. All these

theories have natural lifts to four dimensions, since M8 will necessarily involve at least one

trivial circle. In this work we will not consider such flux-free M-theory compactifications.

The table, while specifying the geometry, does not describe the conditions on the flux

of M-theory or the choice of gauge bundle of heterotic compactifications. For each class

of M8 it may be possible to choose G to preserve the maximal Nmax supersymmetry; we

know many examples of this form, and for a very large class of solutions (in particular

those with an F-theory lift), we have conjectured (and in examples tested) dual pairs of

M-theory/heterotic theories.

The solutions with N = 3 are certainly the least familiar in the list, and we conclude

our introduction by making two general points about them. First, we have a rather poor

understanding of M-theory vacua based on M8 with Sp(2) holonomy. This is in part due

to a dearth of examples of hyper-Kähler manifolds; a primary example is a resolution of

the symmetric product, S2(K3), of two K3 surfaces.4 However, as our heterotic no-go

result shows, as far as duality goes, the issue appears to be deeper: there are no candidates

for dual heterotic geometries. Second, although general Sp(2) manifolds may be of our

reach, there does not appear to be much of a difference from the perspective of the R
1,2

spacetime theory between M8 with Sp(2) holonomy or M8 = X × X̃ with an appropriate

choice of flux; so, even with existing geometric technology there are many N = 3 vacua to

be explored. We will discuss their most basic properties below.

The rest of this paper is organized according to the table of contents. Seven-

dimensional dualities are discussed in section 2. Sections 3 and 4 are devoted to M-theory

on K3×K3 and heterotic three-dimensional compactifications respectively. We end with a

brief discussion of our results and future directions. An appendix contains some technical

details.

2 M-theory in seven dimensions

Let X be a K3 equipped with a hyper-Kähler metric. We denote the triplet of hyper-Kähler

forms by ja, a = 1, 2, 3, and we normalize them by

ja ∧ jb = 2δabvE , (2.1)

4An analysis of flux choices for this case, using orbifold techniques, can be found in [3].
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where v is the volume of X and E is the generator of H4(X,Z). In addition, we have the

19 anti-self-dual forms ωα, α = 1, . . . , 19 that satisfy

ωα ∧ ja = 0 , ωα ∧ ωβ = −2δαβvE . (2.2)

In what follows we will often suppress the explicit ∧ when there is no possibility of confusion.

These conditions are invariant with respect to SO(3)×SO(19) rotations that act on the

ja and ωα in the obvious fashion. The triplet ja defines an SU(2) structure; in particular,

the ja determine the metric in the following way: a combination of two of them, say

j2+ ij3, determines an integrable complex structure, and then the orthogonal complement,

in this case j1, becomes a corresponding Kähler form. There are SO(3)/U(1) = S2 ways

of picking a complex structure and, evidently, every SO(3) rotation of ja yields exactly the

same Einstein metric. The double cover SU(2) of this SO(3) turns out to be the SU(2)

R-symmetry of the 7-dimensional theory.

2.1 Dualities between massive theories

We are interested in the physics of M-theory compactified on X with volume v. In the

absence of any flux, this background is famously dual to the heterotic or type I string

compactified on T 3. This is a strong-weak duality with

eφ7 = v3/4, (2.3)

where eφ7 is the 7-dimensional heterotic string coupling. For elliptic X with section, this

background has an 8-dimensional F-theory limit, corresponding to decompactifying a circle

of the heterotic T 3.

We would like to ask whether a volume threading flux, G ⊃ const × dVol(X), which

is compatible with Lorentz invariance in 7 dimensions, admits a dual description. Kaluza-

Klein reduction on this background was first studied in [9, 10]. At first sight, the question

itself might appear strange. The background with flux is not a solution of the equations of

motion with an R
1,6 Minkowski spacetime. This is easy to see for an unwarped spacetime

metric from the M-theory equations of motion,

Rµν = −
1

6
ηµν |G|2, (2.4)

since the spacetime Ricci tensor, which should vanish, is sourced by the flux. For a warped

background, we consider the metric Ansatz

ds2 = e2ωη + ds2X , (2.5)

where η denotes the usual Minkowski metric, and ω is the warp factor. For warp factors

that do not depend on the spacetime coordinates, the Ricci tensor takes the form

Rµν = −
1

5
ηµνe

−5ω∇2e5ω. (2.6)

However on a compact space like X, the equation

∇2e5ω =
5

6
e5ω|G|2 (2.7)
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has no solution. Therefore there are no Minkowski vacua for M-theory reduced on X with

volume threading G. Indeed, it is easy to extend this argument to see that there are

no solutions for any maximally symmetric spacetime: this background cannot be realized

as an on-shell solution in string theory without breaking maximal spacetime symmetry.

Alternately, it can appear as an intermediate massive theory en route to a static Minkowski

or AdS solution in lower dimension.

Regardless, we can still perform a Kaluza-Klein reduction on such a background and

some theory must determine the set of quantum corrections to the classical spacetime

effective action. From this latter perspective, it is still reasonable to ask whether a weakly

coupled description might control the physics of small volume v, while eleven-dimensional

supergravity together with higher derivative corrections controls the perturbative physics

of large v. A natural guess based on the flux-free duality might be that the heterotic string

on T 3 with a volume threading flux H ⊃ const×dVol(T 3) provides such a description. The

gauged massive supergravities that arise from toroidal compactifications of the heterotic

string with backgrounds fluxes have been studied in [11]. In both cases, decompactification

to 8 dimensions is obstructed by the quantized flux.

However, there are immediate issues with such a proposed duality. To construct a

macroscopic heterotic string, we usually wrap an M5-brane on X. The M5-brane world-

volume supports a self-dual 3-form field strength h3, which obeys a Bianchi identity:

dh3 = G. (2.8)

This obstructs wrapping X without some added ingredient to satisfy the Gauss law charge

constraint; for example, stretched M2-branes which realize self-dual strings on the world-

volume of the M5-brane. However, any such ingredient breaks additional Lorentz invariance

beyond the breaking introduced by the stretched macroscopic string.

Another immediate issue is seen by examining the form of the Bianchi identity for the

heterotic H-flux, derived from M-theory. In the flux-free duality, we identify

H = ∗7G, (2.9)

where the Hodge dual is taken in 7 dimensions; the Bianchi identity for H follows from the

equation of motion for G. Since these are the only propagating 3-forms in 7 dimensions,

any proposed duality would need some identification between them. However the case with

flux threading X produces a new coupling in the heterotic Bianchi identity:

∫

X
d ∗G = −

1

2

∫

X
G ∧G =⇒ dH ∼ ∗7H + . . . . (2.10)

The omitted terms involve both gauge-fields from the Kaluza-Klein reduction of G on 2-

forms of X, and gravitational couplings from higher derivative interactions in M-theory.

The new coupling involving ∗7H in (2.10), which is proportional to the amount of flux

through X, has no obvious realization in geometric heterotic compactifications.

On its own, these pieces of evidence might not be convincing. It might be the case that

heterotic compactified on T 3 with H-flux simply admits no macroscopic string solutions,
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and perhaps there is some subtle modification of the Bianchi identity to evade (2.10). There

is a more direct approach. To dualize M-theory on X to a type I/heterotic background,

start with an orbifold limit where X = T 4/Z2. The first step in the duality chain is to

reduce on a circle of X to a type IIA orientifold:

T 3/ΩZ2. (2.11)

The G-flux through X implies a volume threading H-flux in this type IIA background. Ar-

riving at a type I background requires T-dualizing all three directions of the T 3. While one

or two T-dualities can be performed in this background without great difficulty, dualizing

all three directions is difficult to understand. Each T-duality requires a potential for H,

but any trivialization of H breaks one isometry of T 3. For more discussion of what such a

resulting heterotic theory might possibly look like, see, for example, [12]. This obstruction

looks difficult to evade, and each known duality chain that leads to a heterotic or type I

dual description meets this same issue in one guise or the other.

On the other hand, heterotic on T 3 with volume threading H-flux does admit a dual

description, which can be seen as follows: consider heterotic on T 2. There are 2 periodic

scalars (τ1, ρ1) associated to the complex structure of T 2 and to the volume threading

B2-flux. Let us focus on this latter scalar. Under the duality to the type IIB orientifold

T 2/Ω(−1)FLZ2 described in [13], this scalar maps to the type IIB axion C0. Now compactify

on a further S1 and permit both ρ1 of heterotic and C0 of type IIB to depend linearly on

the circle coordinate. On the one side, we have heterotic on T 3 with volume threading H.

The dual description is type IIB compactified on

T 2/Ω(−1)FLZ2 × S1 (2.12)

with constant quantized RR F1 field strength in the S1 direction. This is a dual pair.

The usual route to find a lift to M-theory involves T-dualizing on the S1 direction. This

maps F1 to F0 and we arrive at a massive type IIA background [14].5 The Romans mass

obstructs a lift to M-theory. The dual description is actually given by either the type IIA

or type IIB 7-dimensional orientifold background, depending on the size of S1. This story

can be extended to a more general F-theory setting by identifying both periodic scalars

(τ1, ρ1) in the geometry of an elliptic X [16, 17], and allowing them to depend on the S1

coordinate, along the lines described in [18].

The bigger picture suggested by this example is a collection of dualities between lower-

dimensional massive supergravity theories, induced from higher-dimensional more conven-

tional dual pairs. Interestingly, there is no obvious candidate for a dual description of

M-theory on X with volume threading G. Like the Romans theory in ten dimensions, it

might simply exist without a relation to other known massive backgrounds.

3 M-theory vacua on K3 × K3

In the previous section we discussed M-theory compactifications to seven dimensions with

a G-flux threading the K3. We saw that such theories do not have R1,6 vacua; on the other

5The interpretation of massive theories from the perspective of M-theory and F-theory has been

described in [15].
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hand, it is possible to compactify further and obtain R
1,2 vacua. In this section we explore

the resulting theories in some detail. We will find familiar examples of three-dimensional

N = 1, N = 2 and N = 4 supersymmetric theories, but we will also find solutions that

are a bit more exotic and realize N = 3.

The interest in these solutions is two-fold. First, we will be able sharpen the puzzles

of “non-duality,” because, as we will see in the section that follows, there are no geometric

N = 3 heterotic compactifications. Second, we will see that the choice of flux allows the

rather simple geometry of K3×K3 to realize the features of more sophisticated solutions

with Spin(7), SU(4) or Sp(2) structures.

3.1 M-theory on M8

We begin with a brief review of M-theory compactification of the form R
1,2 ×M8. This is

determined by a choice of a warped metric g and flux G on M8. The latter needs to obey

two topological conditions: the flux is quantized according to [19]

1

2π
G−

1

4
p1(M8) ∈ H4(M8,Z) ,

and it satisfies the tadpole equation for C3 [20, 21]. A necessary and sufficient condition

for that is
1

2

∫

M8

G

2π
∧

G

2π
=

χ(M8)

24
−N(M2) . (3.1)

Here χ(M8) is the Euler number of M8, while N(M2) is the number of space-filling M2-

branes. In this paper we will be interested in solutions with N(M2) = 0.

Minimal supersymmetry requires M8 to admit a Spin(7) holonomy metric and also

imposes a condition on G. H4(M8,R) can be decomposed according to representations of

Spin(7) [8], and we must have G ∈ H4
+27

(M8,R). That is, the flux is self-dual and in the

27 [22].

3.2 M-theory on K3 × K3 and N = 1, 2, 3, 4 examples

We consider M-theory on M8 = X × X̃, where X and X̃ are both K3 surfaces. Minkowski

R
1,2 vacua with this compactification geometry are labeled by a choice of Einstein metric

on M8 and a choice of G obeying the integrality and supersymmetry conditions. In our

case p1(M8) = p1(X) + p1(X̃) is divisible by 4, so the integrality condition on G is simply

that 1
2πG ∈ H4(X,Z). We have the identification

H4(M8,Z) = H2(X,Z)⊗H2(X̃,Z)⊕H4(X,Z)⊕H4(X̃,Z) . (3.2)

In much of the work on this compactification, e.g. [3, 23], the flux does not involve any

components in the last two terms. However, as has been observed more recently [24],

minimal supersymmetry allows a more general flux.

Consider now X × X̃. The two components X and X̃ have self-dual forms ja and ̃ȧ
and anti-self-dual forms ωα, ω̃α̇ in an obvious extension of the notation from section 2 .

We denote the generators of H4(X,Z) and H4(X̃,Z) by, respectively, E and Ẽ; similarly

X and X̃ have volumes v and ṽ. With this notation, we can state the general result [24]:
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up to an SO(3)×SO(3) rotation, the most general form of the G-flux on X × X̃ consistent

with N = 1 supersymmetry in R
1,2 is

G = jaMaȧ̃ȧ + (4A− 2C)
[
vE + ṽẼ

]
+ fαα̇ωαω̃α̇ , (3.3)

and the 3× 3 constant matrix M has the form

M =




C D1 D2

D1 A+B1 B2

−D2 −B2 B1 −A


 . (3.4)

The last term in G with the 19×19 constant matrix f just involves the anti-self-dual forms

ω and ω̃. G should also satisfy the integrality and tadpole constraints.

We can now give some examples of solutions that preserve different amounts of super-

symmetry.

1. The most familiar way to satisfy (3.3) is to set M = 0; this also eliminates the

“volume-threading” term. In this case G is invariant under SO(3)× SO(3) rotations

and corresponds to an N = 4 vacuum. We can think of this as two statements: the

underlying manifold has SU(2)× SU(2) structure, and the flux respects this:

ja ∧G = 0 , ̃ȧ ∧G = 0 . (3.5)

2. We can reduce supersymmetry by taking M = λ13, so that

G = λ(j1̃1 + j2̃2 + j3̃3)− 2λ
[
vE + ṽẼ

]
+ fαα̇ωαω̃α̇ . (3.6)

G is invariant under a diagonal SO(3) ⊂ SO(3) × SO(3) action; in fact it respects

an Sp(2) structure on the underlying manifold and therefore leads to N = 3 in R
1,2.

The Sp(2) structure is generated by the three 2-forms6

Ja = ja + ̃a , (3.7)

and for all a

Ja ∧G = 0 . (3.8)

3. To obtain N = 2 symmetry we demand that G only preserved by U(1) ⊂ SO(3) ⊂

SO(3)× SO(3). For instance, following [3] we can take

G = λ(j1̃1 + j2̃2) + fαα̇ωαω̃α̇ . (3.9)

This flux respects an SU(4) structure of X × X̃: we set

J = J1 , Ω =
1

2
(J2 + iJ3)

2 , (3.10)

and G is (2,2) and primitive with respect to this SU(4) structure. That is the familiar

condition for preserving N = 2 supersymmetry [21].
6That is, the Ja are three non-degenerate two-forms that satisfy the defining cubic and quartic relations

3JaJbJc = δabJ
3

c + δcaJ
3

b + δbcJ
3

a and JaJbJcJd = 8dVol8 [δabδcd + δcaδbd + δbcδad] [25].
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3.3 Structures and extended supersymmetry

As we have seen, for particular choices of flux we obtain vacua with various amounts of

extended supersymmetry. In this section we will make a more systematic study of the

constraints that lead to N = 2, 3, 4, and we will also explore the massless spectrum of

these theories. To start, we note that every Sp(2) structure on X× X̃ compatible with the

product metric takes the form

JA = RAaja + R̃Aȧ̃ȧ , (3.11)

where R and R̃ are 3×3 SO(3) matrices; it is an easy matter to check that these satisfy the

defining relations of Sp(2) structure (see footnote 6). To show that every Sp(2) structure

takes this form, we just note that by raising an index on the JA with the metric we should

obtain the triplet of complex structures satisfying the familiar quaternionic algebra; that

fixes the JA in the form shown.

Similarly, the most general SU(4) structure on X × X̃ takes the form

J = yAJA , Ω =
1

2
(uAJA)

2 . (3.12)

Here yA is a real vector and uA is a complex vector such that the 3× 3 matrix


Re(u1) Im(u1) y1
Re(u2) Im(u2) y2
Re(u3) Im(u3) y3


 ∈ SO(3) .

In particular, yTu = 0, 2yT y = u†u = 2, and uTu = 0. Setting x = yTR, t = uTR, and

similarly for x̃ and t̃, and using (3.11), we can write the most general SU(4) structure on

X × X̃ as

J = xaja + x̃ȧ̃ȧ , Ω = tat̃ȧja̃ȧ , (3.13)

where x and t, as well as x̃ and t̃ satisfy the same conditions as y, u.

N ≥ 2 supersymmetry. Having taken care of the preliminaries, the analysis of the

supersymmetry conditions is now straightforward. To preserve at leastN = 2 we know that

G must be a primitive (2,2) form [21] with respect to some SU(4) structure. In other words,

J ∧G = 0 , Ω ∧G = 0 , (3.14)

and G has no (1,3) or (3,1) components. Applying the first two conditions to the general

flux in (3.3), we obtain

J ∧G = 0 ⇐⇒ Mx̃+ (2A− C)x = 0 and xTM + (2A− C)x̃T = 0 ,

Ω ∧G = 0 ⇐⇒ tTMt̃ = 0 . (3.15)

To ensure no (1,3) or (3,1) components in G we note that the harmonic (3, 1) forms on

X × X̃ with respect to the chosen SU(4) structure are all linear combinations of

taja ∧ x̃ȧ̃ȧ , taja ∧ ωα̇ , xaja ∧ t̃ȧ̃ȧ , ωα ∧ t̃ȧ̃ȧ . (3.16)

– 9 –
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So, our final requirement is that G is annihilated by each of these terms. This leads to

the conditions

tTMx̃ = 0 , xTMt̃ = 0 . (3.17)

The vectors x,Re(t), Im(t) form an orthonormal basis, as do x̃,Re(t̃), Im(t̃), and by taking

real and imaginary parts of (3.15), (3.17), we find that in order for G to be compatible

with some SU(4) structure the matrix M must be expressible as

M = ST



C − 2A 0 0

0 α β

0 −β α


 S̃ , (3.18)

where S and S̃ are SO(3) matrices. This implies

MMT = ST



(C − 2A)2 0 0

0 α2 + β2 0

0 0 α2 + β2


S , (3.19)

so that MMT has (C − 2A)2 as an eigenvalue, and MMT has at least two equal

eigenvalues. These requirements can be easily translated into polynomial conditions on

the parameters A,B1, B2, C,D1, D2 that appear in (3.3) .

N ≥ 3 supersymmetry. The flux will be compatible with an Sp(2) structure if and

only if JA ∧G = 0 for A = 1, 2, 3. Using the JA in (3.11), this leads to

M = (C − 2A)RT R̃ , (3.20)

so that MMT = (C − 2A)213. Finally, to be compatible with Sp(1) × Sp(1) structure

and therefore N = 4 supersymmetry, the condition on M has to be true for all R, R̃ in

SO(3)× SO(3). This forces M = 0.

Note that the volume-threading term in the G-flux is proportional to (C − 2A). This

means that every N ≥ 3 vacuum without a volume-threading term necessarily has M = 0,

so that it is actually preserving N = 4.

It is not obvious that we can choose an integral G-flux that both takes the N = 3 form

and satisfies the Bianchi identity without M2-branes. Appendix B shows this to be the case.

3.4 Massless spectrum

Like the existence of the vacuum, the massless spectrum also correlates nicely with the

structure preserved by the flux. We will not go into a detailed study of the interactions

and, for example, explicit expressions for the moduli space metric; this has been carried out

at the supergravity level for the most general flux compatible with minimal supersymmetry

in [26]. Instead, we will just point out how the counting of massless degrees of freedom

correlates with the structure.
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Metric moduli. The 58-dimensional space of first-order deformations of an Einstein

metric on X can be parametrized in terms of a scalar parameter x that corresponds to

rescaling the total volume, as well as a 3× 19 matrix Xaα:

δja = xja + Xaαωα , δωα = xωα − jaXaα , δv = 2xv . (3.21)

It is easy to see that this preserves the defining conditions:

δ (jajb − 2δabvE) = 0 , δ (jaωα) = 0 , δ (ωαωβ + 2δαβvE) = 0 .

We have analogous expressions for the other K3 X̃, except for tildes and dots.

Not all of these geometric deformation parameters correspond to three-dimensional

massless modes: a necessary condition is that the integral (and therefore rigid) flux G

satisfies the same conditions with respect to the deformed and undeformed ja and ̃ȧ.

Since we parametrized G in terms of the basis of self-dual and anti-self-dual forms on X

and X̃, this amounts to finding δM and δf in (3.3) such that under (3.21) δG = 0. Plugging

all of the variations into G and demanding δG = 0, we obtain the following conditions:

δM = −(x+ x̃)M , δf = −(x+ x̃)f , (3.22)

and

(2A− C)(x− x̃) = 0 , X TM = f X̃ T , M X̃ = Xf . (3.23)

The first two equations merely determine δM and δf and do not lead to interesting con-

straints. On the other hand, the remaining three are interesting. First, we see that if

2A 6= C then x = x̃, so that while the overall volume modulus of X × X̃ remains massless,

it is not possible to tune the volumes of X and X̃ separately. Thus, 2A = C is a necessary

condition to be able to lift the vacuum to 7 dimensions.

The remaining conditions are covariant with respect to the obvious O(3) × O(3) ×

O(19) × O(19) action on the ja, ̃ȧ and ωα, ω̃α̇. This means we can use singular value

decomposition to bring M and f to canonical form:

M = diag(µ1, µ2, µ3) , f = diag(φ1, φ2, . . . , φ19) , (3.24)

where the µa and φa are all non-negative (they are positive square roots of the eigenvalues

of, respectively, MMT and ffT .). In this form the conditions on X and X̃ are written as

µaXaα = X̃aαφα , µaX̃aα = Xaαφα , no sum on a or α. (3.25)

Generically these require X = X̃ = 0, but if some of the eigenvalues of M match those of

f , there are more solutions. The number of independent parameters is given by

n(X , X̃ ) = 2 dimkerM dimker f +
∑

a,α |µa 6=0

δ(µa − φa) ,

= dimkerM dimker f +
∑

a,α

δ(µa − φa) , (3.26)
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where δ(µa − φα) = 1 if µa = φα and is zero otherwise. To understand this, note that the

second line follows trivially from the first. The first line merely says that if µa = 0 then

the equations require that Xa and X̃ȧ both belong to ker f ; if for a fixed a µa 6= 0, then

X̃aα is determined by Xaα, and the latter satisfies (µa − φα)Xaα = 0.

Including the constraints on the x, x̃, we find that the massless metric moduli are

counted by

#(metric moduli) =

{
2 + n(X , X̃ ) , 2A = C ,

1 + n(X , X̃ ) , 2A 6= C .
(3.27)

Massless vectors. Fluctuations of C give rise to massless vectors in three dimensions:

C = · · ·+V IΩI , where the V
I are three-dimensional vectors with field strengths F I = dV I ,

and the ΩI are harmonic forms on X × X̃. Inserting this into the M-theory action leads

to a Chern-Simons mass term for the V I proportional to

∆L3 = V IF J

∫

M8

GΩIΩJ . (3.28)

To explore the kernel of this mass term we write out

V IΩI = V a
+ja + V α

−ωα + Ṽ ȧ
+ ̃ȧ + Ṽ α̇

− ω̃α̇ (3.29)

and combine these components into a 44-dimensional vector

V
T = (V T

+ Ṽ T
+ V T

− Ṽ T
− ) , (3.30)

and similarly for the field-strengths, which are packaged in a vector F. With a little bit of

algebra we find

∆L3 = 4vṽVT
MF , (3.31)

where

M =

(
M+ 0

0 M−

)
, (3.32)

and

M+ =

(
(2A− C)13 M

MT (2A− C)13

)
, M− =

(
(C − 2A)119 f

fT (C − 2A)119

)
. (3.33)

So, the number of massless vectors is dimkerM+ + dimkerM−. The latter depend on the

value of (2A− C):

dimkerM+ =

{
2 dimkerM 2A = C

dimker(MTM − (2A− C)213) 2A 6= C
,

dimkerM− =

{
2 dimker f 2A = C

dimker(fT f − (2A− C)2119) 2A 6= C
, (3.34)
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Summary for N = 2, 3, 4. We now combine the previous results with the constraints

on M and N found in the previous section. In each case we will find a result consistent

with the three-dimensional multiplet structure for the particular N .

1. N = 4. This requires M = 0 and therefore leads to

#(metric moduli) = 2 + 6dimker f ,

#(massless vectors) = 6 + 2dimker f . (3.35)

Recall that the massless vector and hyper multiplets of N = 4 each contain 4 scalar

degrees of freedom; this is consistent with the total number of massless scalars ob-

tained here (which is in fact divisible by 8). We do not expect quantum corrections

to lift any of these massless degrees of freedom.

2. N = 3. In this case µa = |2A− C| 6= 0 for a = 1, 2, 3, and therefore

#(metric moduli) = 1 + 3dimker{fT f − (2A− C)2119} ,

#(massless vectors) = 3 + dimker{fT f − (2A− C)2119} . (3.36)

Since the massless supermultiplets for N = 3 have exactly the same structure as the

more familiar N = 4 multiplets [27], we expect that the total number of scalars is di-

visible by 4, and indeed it is. The moduli space of N = 3 theories is quaternionic [27],

and we suspect but have not checked that, as in the N = 4 case, supersymmetry is

sufficient to rule out quantum corrections that might lift these degrees of freedom.

3. N = 2. In this case we expect quantum corrections to lift some of the classically

massless fields, so our results are merely upper bounds on the massless spectrum.

The content of N = 2 chiral and vector multiplets easily follows by reduction from

d = 4 N = 1 multiplets, and each massless multiplet contains two scalar degrees of

freedom. Based on the analysis above, we find the following massless spectrum; in

each case we do find the expected even number of scalars.

(a) The generic case is when µ1 = |2A− C| 6= 0 and 0 < µ2 = µ3 6= µ1.

#(metric moduli) = 1 + dimker{fT f − µ2
11}+ 2dimker{fT f − µ2

21} ,

#(massless vectors) = 1 + dimker{fT f − µ2
11} . (3.37)

(b) A less generic possibility µ1 = |2A− C| 6= 0 and µ2 = µ3 = 0 leads to

#(metric moduli) = 1 + 4dimker f + dimker{fT f − µ2
11} ,

#(massless vectors) = 1 + dimker{fT f − µ2
11} . (3.38)

(c) The final possibility, µ1 = |2A− C| = 0 and 0 < µ2 = µ3, leads to

#(metric moduli) = 2 + 2dimker f + 2dimker{fT f − µ2
21} ,

#(massless vectors) = 2 + 2dimker f . (3.39)
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4 Heterotic 3d compactifications

The preceding sections identified and studied a large class of M-theory vacua based on

the relatively simple geometry of K3×K3. In this section we will consider potential dual

heterotic descriptions of these vacua in three dimensions. There are many examples of

dual pairs based on the 7-dimensional duality between a heterotic string on T 3 and M-

theory on K3. For instance, we expect to be able to find M-theory descriptions of heterotic

backgrounds satisfying the following two conditions:

1. the three-dimensional gauge group is abelian;

2. the compactification manifold X7 is a principal T 3 fibration over K3, with the bundle

obtained by a combination of Wilson lines and a pull-back of a bundle from the base

K3 geometry.

These geometries have a lift to 7 dimensions, and fiberwise duality with M-theory on K3

should make sense.

On the other hand, as we already saw, M-theory solutions with G-flux that threads the

volumes of the K3s do not have simple heterotic duals. We outlined some of the challenges

of finding the duality in terms of the massive 7-dimensional theory in section 2. We will

now consider the problem directly in 3 dimensions, and we will show that there are no

heterotic geometries that lead to exactly N = 3 supersymmetry in three dimensions: a

solution with 6 supercharges actually preserves 8 or 16 supercharges.

4.1 Review of heterotic G2 geometry

Consider a three-dimensional compactification of the heterotic string with N ≥ 1 on a

seven-dimensional compact manifold X7. In order to discuss spinors and their properties

on X7 let us first fix a basis for the Clifford algebra.7

Clifford algebra on X7. We choose the Γi, i = 1, . . . , 7 to be a pure imaginary anti-

symmetric basis satisfying

{Γi,Γj} = 2gij .

The matrices {1, iΓijk} are real symmetric, while {iΓi,Γjk} are real anti-symmetric. To-

gether they span the Clifford algebra: given a non-zero real spinor ǫ0 a basis of spinors is

{ǫ0, iΓiǫ0}. That is, we have the completeness relation

Γiǫ0ǫ
t
0Γi + ǫ0ǫ

t
0 = 18 . (4.1)

In the usual way we define Γi1···ik = 1
k!Γ

[i1Γi2 · · ·Γik], and we lower and raise the (co)tangent

space indices with the metric gij and its inverse gij .

7A thorough and readable review of G2-structure compactification is given in [28]; we follow it in a

number of conventions, including that for the spinors.
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Minimal supersymmetry requirements. Minimal supersymmetry requires that the

geometry satisfies the following conditions.8

1. The gauge bundle P → X7 has structure group in Spin(32)/Z2 or E8×E8 and satisfies

the heterotic Bianchi identity in integral cohomology.

2. The vanishing of the gravitino variation requires thatX7 admits a∇−-constant spinor

ǫ0. The ∇− connection is the Levi-Civita connection twisted by the 3-form H:

(
Γ−

)l
jk

= gli
(
1

2
[gji,k + gki,j − gjk,i]−

1

2
Hijk

)
= Γl

jk −
1

2
H l

jk .

This means X7 has G2 structure.

3. The vanishing of the dilatino variation requires

[
∂iϕΓ

i −
1

12
HijkΓ

ijk

]
ǫ0 = 0 . (4.2)

Here ϕ is the dilaton field.

4. The gauge curvature F annihilates the spinor: FijΓ
ijǫ0 = 0.

5. The Bianchi identity has a solution in the formal α′ expansion [7].

Conditions 2,3, and 4 will be sufficient for our purposes, but any putative solution must

satisfy all of these necessary conditions.

The existence of a ∇−-constant spinor ǫ0 implies the existence of ∇−-constant asso-

ciative and co-associative forms

Φijk = iǫT0 Γijkǫ0 , Ψijkl = ǫT0 Γijklǫ0 . (4.3)

The metric g relates these two by ∗gΦ = Ψ, and Φ ∧ ∗gΦ = 7dVolg(X7). Moreover, we

have the helpful relations

Γijǫ0 = −iΦijkΓ
kǫ0 , iΓijkǫ0 = Φijkǫ0 − iΨijklΓ

lǫ0 . (4.4)

The Φ and Ψ obey a number of useful relations summarized in appendix A of [28]. We will

find use for two of these:

ΨijnmΦklm = 6δ
[k
[i Φ

l]
jn] , ΦijkΦ

k
lm = gilgmj − gimglj −Ψijlm . (4.5)

Turning the construction around, suppose X has a G2 structure, i.e. a non-degenerate

3-form Φ that in a local orthonormal frame {ei}i=1,...,7 with respect to metric g has the

canonical form

Φ = e246 − e235 − e145 − e136 + e127 + e347 + e567 ,

∗Φ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457 . (4.6)

8The general result goes back to [29]; applications to X7 may be found in, for instance, [25, 30].
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We use a condensed notation, where we omit the wedge symbol when it is unlikely to cause

confusion, and we collapse labels on products of 1-forms; thus, e246 = e2 ∧ e4 ∧ e6, etc.

The necessary and sufficient conditions to satisfy conditions 2 and 3 are that, in addi-

tion to the algebraic conditions of (4.6), we also have the differential conditions

Φ ∧ dΦ = 0 , d
[
e−2ϕ ∗ Φ

]
= 0 , ∗H = e2ϕd

[
e−2ϕΦ

]
. (4.7)

Note that the last one determines the torsion H, and the last two involve the dilaton ϕ.

4.2 Extended supersymmetry: conditions on X7

In order to have extended supersymmetry in d = 3, X7 must admit additional linearly

independent∇−-constant spinors. Suppose there are p+1 such linearly independent spinors

{ǫ0, ǫ1, . . . , ǫp}. Let A = 1, . . . , p index the “extra” spinors. Since {iΓiǫ0, ǫ0} are a complete

basis, we can find vector fields V i
A and functions uA so that

ǫA = iV i
AΓiǫ0 + uAǫ0 (4.8)

for each A. Covariant constancy of ǫ0 requires ∇−VA = 0 and ∇−uA = 0; the latter means

that the uA are just constants; we can set uA = 0 without loss of generality [31].

We conclude that extended supersymmetry requires X7 to admit of ∇−-constant vec-

tor fields. Conversely, given p linearly-independent ∇−-constant vector fields VA, we can

construct p additional spinors ǫA. We can take the VA to be orthonormal.9

The reader may recall that any compact G2 structure manifold admits 3 nowhere

vanishing vector fields which reduce the structure further to SU(2) [32]. However, we stress

that the supersymmetry conditions are stronger: the vectors must be annihilated by ∇−.

Constraints on the number of vectors. Suppose that X7 satisfies the minimal super-

symmetry conditions and admits exactly p linearly independent ∇−-constant vectors VA.

We will now show that the number of vectors VA, A = 1, . . . , p can only take on specific

values: p ∈ {0, 1, 3, 7}. Realizations of each of these cases are well known.

1. p = 0 corresponds to an irreducible X7 — this is minimally supersymmetric and

exemplified by, for example, one of Joyce’s manifolds of G2 holonomy [8] (standard

embedding for the gauge bundle is a standard solution of the other supersymmetry

constraints).

2. p = 1, which leads to N = 2 in three dimensions, is also familiar: for instance we can

take X7 = X6×S1, where X6 is a Calabi-Yau 3-fold; more generally, we can take X7

to be a principal circle bundle over X6.

3. p = 3, which leads to N = 4 in three dimensions can be obtained from X7 = K3×T 3;

again, it is easy to make more general solutions by fibering the T 3 over K3.

4. p = 7, which leads to N = 8 in three dimensions can be obtained by taking X7 = T 7.

9It is not hard to show that the VA are Killing vectors; moreover their commutator is determined by a

pairwise contraction with the torsion H.
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Two vectors imply a third. Suppose we have two vectors VA, A = 1, 2. Given these,

we can construct the dual 1-forms ΘA, and we can also find a third 1-form

Θ3 = V1xV2xΦ . (4.9)

The x denotes contraction of the vector field into the form: given a k-form ω =
1
k!ωi1···ikdx

i1 · · · dxik , the k − 1-form V xω is

V xω =
1

(k − 1)!
V i1ωi1i2···ikdx

i2 · · · dxik .

By construction Θ3 is ∇−-constant and annihilated by V1 and V2. Hence, if Θ3 6= 0, its

dual V3 will be a third ∇−-constant vector linearly independent from V1 and V2.

To show that Θ3 is non-zero, we compute its norm:

‖Θ3‖2 = V i
1V

j
2 ΦijkV

l
1V

m
2 Φlmng

km = V i
1V

l
1V

j
2 V

m
2 ΦijkΦ

k
lm . (4.10)

Using (4.5) we find (recall that the VA are orthonormal by assumption)

‖Θ3‖2 = ‖V1‖
2‖V2‖

2 = 1 . (4.11)

Thus, if X7 has p ≥ 2 ∇−-constant vectors, then p ≥ 3.

From 4 to 7 vectors. We will now show that if p ≥ 4, then p = 7. Suppose that we

have exactly p ∇−-constant vectors V A and their dual 1-forms ΘA. We can choose all

of these to be orthonormal and in any patch complete the basis with some 1-forms eα,

α = 1, . . . , 7− p. The Hodge star then decomposes as ∗7 = ∗p∗7−p, and the 3-form Φ is

Φ = Φ(3) +Φ
(2)
A ΘA +

1

2
Φ
(1)
ABΘ

AB +
1

3!
Φ
(0)
ABCΘ

ABC , (4.12)

where the Φ(s) are s-forms constructed from the eα:

Φ
(0)
ABC = ΘABC

xΦ ,

Φ
(1)
AB = ΘAB

xΦ−
1

2
Φ
(0)
ABCΘ

C ,

Φ
(2)
A = ΘA

xΦ− Φ
(1)
ABΘ

B −
1

2
Φ
(0)
ABCΘ

BC , (4.13)

and Φ(3) is found by taking the difference of these terms with Φ. Clearly the Φ(s) are

∇−-constant. In particular, the dual Φ(1), if non-zero, would yield an additional vector

that is linearly independent from the ΘA. So, we set Φ(1) = 0 and work with

Φ = Φ(3) +Φ
(2)
A ΘA +

1

3!
Φ
(0)
ABCΘ

ABC ,

∗Φ = (∗7−pΦ
(3))(∗p1) + (∗7−pΦ

(2)
A )(∗pΘ

A) +
1

3!
(∗7−pΦ

(0)
ABC)(∗pΘ

ABC)

Ψ = Ψ(4−p)(∗p1) + Ψ
(5−p)
A (∗pΘ

A) +
1

3!
Ψ

(7−p)
ABC (∗pΘ

ABC) . (4.14)
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Since Ψ = ∗Φ, the last line is merely convenient notation for the contents of the second one.

By the same arguments as above, the Ψ(7−p−s) are ∇−-constant and linearly independent

from the ΘA.

Now consider the possibility p = 4. This requires Φ
(2)
A = 0, since otherwise Ψ

(1)
A yields

an additional 1-form. On the other hand, since ∧3
R
4 = R we can write Φ

(0)
ABC = ǫABCDY

D

for some constants Y D, but this contradicts non-degeneracy of Φ because Φ is annihilated

by
∑

A Y AVA.

Similarly, p = 5 is not compatible with a non-degenerate metric. To see this, recall

that Φ determines the metric as

gij =
1

144
ǫklmnpqrΦiklΦjmnΦpqr . (4.15)

If p = 5, then Φ is given by

Φ = e12kAΘ
A +Φ

(0)
ABCΘ

ABC , (4.16)

and a moment’s thought shows the contradiction: on one hand we assumed without loss

of generality that {e1, e2,Θ1, . . . ,Θ5} is an orthonormal basis, but on the other hand from

the explicit formula for g we have g11 = 0.

Finally, p ≥ 6 implies p = 7 because otherwise Φ is annihilated by the dual of e1.

4.3 A no-go theorem

As we just argued, the geometry of X7 admits exactly p ∇−-constant vectors VA only if p ∈

{0, 1, 3, 7}. Naively such X7 lead to N = {1, 2, 4, 8} supersymmetry in three dimensions.

Of course this requires that the remaining supersymmetry conditions are obeyed with ǫ0
replaced by the corresponding ǫA, and it may be that this only holds for some k < p

spinors. This would lead to extended supersymmetry with N = k + 1. We will now prove

the following no-go result: if p > 1 then k > 2, so that a solution with N ≥ 3 necessarily

has N ≥ 4. Similarly, N ≥ 5 implies N = 8.

To get started, we note that (4.2) holds if and only if

ΦxH = 0 , 2dϕ = −HxΨ . (4.17)

To show this we apply the completeness relation (4.1) to (4.2), which shows the latter to

be equivalent to

0 = ǫT0

[
∇iϕΓi −

1

12
H ijkΓijk

]
ǫ0 , 0 = ǫT0 Γm

[
∇iϕΓi −

1

12
H ijkΓijk

]
ǫ0 .

Since Γi is antisymmetric, the first equation is the statement ΦxH = 0; using (4.4) the

second condition leads to 2dϕ = −HxΨ.

Similarly, applying (4.4) to the gaugino variation, we learn that

F ijΓijǫ0 = 0 ⇐⇒ FxΦ = 0 ⇐⇒ F = FxΨ . (4.18)

The third relation follows from the second by contracting FxΦ into (the non-degenerate)

Ψ and using (4.5) . With these preparations in hand, we assume minimal supersymmetry,

and we turn to extended supersymmetry.
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The gravitino variation for ǫA. The existence of the spinors ǫA yields extra G2 struc-

tures:

ΦA
ijk = iǫTAΓijkǫA , ΨA

ijkl = ǫTAΓijklǫA . (4.19)

Using ǫA = iV n
AΓnǫ0 we can also write this as

ΦA
ijk = iV m

A V n
A ǫT0 ΓmΓiΓjΓkΓnǫ0 . (4.20)

By commuting the Γm through ΓiΓjΓk, we obtain an elegant form for ΦA:

ΦA = 2ΘA ∧ (VAxΦ)− Φ . (4.21)

In other words, to obtain ΦA from Φ we write out Φ in a Θ expansion, and we flip the

sign of every term that does contain ΘA. The ΦA will be ∇−-constant since Φ and ΘA are

∇−-constant. Note that

∇−ΘA = 0 =⇒ dΘA = V A
xH . (4.22)

The dilatino variation for ǫA. The dilatino variation will vanish for ǫA provided that

V m
A

(
∇iϕΓi −

1

12
H ijkΓijk

)
Γmǫ0 = 0 . (4.23)

Since it vanishes for ǫ0, we can replace this with the anti-commutator

V m
A

{(
∇iϕΓi −

1

12
H ijkΓijk

)
,Γm

}
ǫ0 = 0 , (4.24)

and some Clifford algebra manipulations, together with (4.4), reduce this to

VAxdϕ = 0 , (VAxH)xΦ = 0 . (4.25)

The gaugino variation for ǫA. Finally, we have

F ijΓijǫA = iV m
A F ij [ΓiΓj ,Γm]ǫ0 = 4iV m

A F ijgjmǫ0 . (4.26)

So, the vanishing of the gaugino variation for ǫA reduces to

VAxF = 0 . (4.27)

N ≥ 3 implies N ≥ 4. Suppose that all of the supersymmetry conditions are satisfied

by ǫ0 and ǫA for A = 1, 2. We will call these the N = 3 supersymmetry conditions. From

the results above we know that there exists a third ∇−-constant spinor

ǫ3 = iV m
2 Γmǫ1 = iV m

3 Γmǫ0 , V m
3 = V i

2V
j
1 Φ

m
ij . (4.28)

We will now show that ǫ3 also yields a supersymmetry.

Let us start with the gaugino variation. Minimal supersymmetry requires F = FxΨ, so

V m
3 Fmn =

1

2
V k
2 V

l
1Φ

m
kl F ijΨijmn = −

1

2
Θ2

kΘ
1
lF

ijΨijnmΦklm . (4.29)
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Using (4.5) we then obtain

V m
3 Fmn = −Θ2

kΘ
1
lF

ij
(
δ
[k
[i Φ

l]
jn] + δ

[k
[jΦ

l]
ni] + δ

[k
[nΦ

l]
ij]

)
= 0 . (4.30)

The last equality follows because every term in the sum is proportional to either V1xF ,

V2xF , or to FxΦ, and all of these are zero by the N = 3 conditions.

Next, we consider the term V3xdϕ that arises from the dilatino variation. Using mini-

mal supersymmetry we have

− 2V3xdϕ = V3x(HxΨ) . (4.31)

In components we have

− 2V3xdϕ =
1

2
Θ2

pΘ
1
q

1

3!
H ijkΨijkmΦpqm , (4.32)

and (4.5) allows us to rewrite this as

− 2V3xdϕ =
1

2
V1x[(V2xH)xΦ]−

1

2
V2x[(V1xH)xΦ] = 0 . (4.33)

The last equality follows because each square bracket is zero by N = 3 conditions.

Finally, we need to show that (V3xH)xΦ = 0. This requires more details on the

structure of Φ and H.10 The first ingredient is the form of Φ with p = 3 vectors. As we

show in the appendix, we have

Φ = ω1Θ
1 + ω2Θ

2 + ω3Θ
3 +Θ123 , (4.34)

where ωA = 1
2MAije

i ∧ ej are three self-dual 2-forms that satisfy the SU(2) structure

relations ωA ∧ ωB = 2δABe
1234. This implies that Ψ is given by

Ψ =
1

2
ωAǫABCΘ

BC + e1234 . (4.35)

Next, we obtain constraints on H. The H flux has a general expansion

H = H(3) +H
(2)
A ΘA +

1

2
H

(1)
ABΘ

AB +H(0)Θ123 , (4.36)

and minimal supersymmetry requires

0 = HxΦ = H
(2)
A xωA +H(0) . (4.37)

A short computation shows that the N = 3 supersymmetry conditions imply H
(1)
AB = 0 for

all A and B, while

H
(2)
A xωB = −δABH

(0) A = 1, 2, B = 1, 2, 3 . (4.38)

10At the level of representation theory the comparative difficulty can be traced to the fact that H has

components in both 27 and 7 of ∧3T ∗

X under the G2 structure decomposition.
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There are further constraints on H from the minimal supersymmetry conditions. First,

since H determines dΘA via

dΘA = VAxH = H
(2)
A +

1

2
H(0)ǫADEΘ

DE (4.39)

we see that

dΦ = ωAH
(2)
A + {terms with at least one Θ} . (4.40)

Therefore, Φ ∧ dΦ = 0 implies11

H
(2)
A ωA = 0 ⇐⇒ H

(2)
A xωA = 0 . (4.41)

Combining this result with (4.37), we conclude that H(0) = 0, so that VAxH = H
(2)
A .

For our last machination we note that since HxΨ = −2dϕ, and V A
xdϕ = 0, HxΨ

cannot have any Θ components. On the other hand, we have

HxΨ = H(3)
xe1234 −H

(2)
A xωBǫABCΘ

C . (4.42)

The latter terms vanish if and only if

H
(2)
A xωB = H

(2)
B xωA (4.43)

for all A,B. But, combining this with (4.38) and H(0) = 0, we finally have

H
(2)
A xωB = 0 (4.44)

for all A and B. So, at last, (VAxH)xΦ = 0 for all A, and, as promised, N ≥ 3 implies

N ≥ 4.

Incidentally, H(0) = 0 also implies that all three vectors VA commute, so the N = 4

solutions are all of the form of a T 3 bundle over a hyper-Hermitian surface. Just as in

the analogous case of d = 4 N = 2 compactifications [6], we expect that the most general

geometric solution of this form is indeed a T 3 bundle over a K3.

N ≥ 5 implies N = 8. Finally, we show that a compactification with N ≥ 5 nec-

essarily preserves maximal supersymmetry. By assumption of N ≥ 5, we have ǫ0 and

ǫA = iV m
A Γmǫ0, with A = 1, 2, 3, as well as ǫ4 = iV m

4 Γmǫ0 that solve the supersymmetry

constraints. We also know that X7 admits three more independent ∇−-constant vectors

Ṽa, with a = 5, 6, 7. Without loss of generality we take the Ṽa orthonormal and orthogonal

to the VA; we define their dual forms Θ̃a.

From above we know that for N ≥ 4 Φ takes the form

Φ = ωAΘ
A +Θ123 ,

where the ωA are self-dual and satisfy ωA∧ωB = 2δABΘ
4Θ̃567. The conditions on ωA imply

that

ωA = UAa

[
Θ4Θ̃a +

1

2
ǫabcΘ̃bΘ̃c

]
, (4.45)

11The second condition follows from the first because ωA = ∗ωA.
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with UAaUBa = δAB. Hence Θ′A = Θ4
xωA are three orthonormal ∇−-constant 1-forms

that are also orthogonal to Θ1, . . . ,Θ4. The dual vectors V ′
A complete the VA to a basis for

TX . Moreover, we have

Θ′A = VAx(V4xΦ) , (4.46)

and therefore the arguments we gave in the previous section guarantee that the spinors ǫ′A
constructed using the vectors V ′

A satisfy all of the supersymmetry conditions and generate

three additional supersymmetries.

5 Discussion

Let us now summarize our findings and some follow-up directions of the questions raised

here. First, we have seen that M-theory compactification on the product K3×K3 offers a

simple route to construct R1,2 vacua with N = 1, 2, 3, 4 supersymmetry — we merely need

to pick the G-flux to preserve an appropriate subgroup of the Sp(1)×Sp(1) symmetry asso-

ciated to the geometry. While this is not entirely trivial due to the integrality constraints,

especially for the N = 3 solutions, solutions exist for all N . For each N we computed

the massless spectrum and checked that the dimension of the moduli space is consistent

with supersymmetry requirements. It would be interesting to investigate the structure of

these vacua in more detail. For instance, is it indeed the case that the N = 3 moduli

are not lifted by quantum corrections? If so, what can be said about the corrections to

two-derivative and higher BPS couplings? Are these computable?

The existence of these vacua also indicates a very rich structure of massive seven-

dimensional supersymmetric theories that correspond to M-theory compactifications on a

K3 with volume-threading flux. So far, we do not know much about these, except to say

that they have vacua of the form R
1,2 ×K3. To our knowledge there is no work on gauged

supergravity theories based on a 3-form formulation, and this may be a useful first step to

describing the theories in more detail.

Finally, we showed that the K3-vacua with volume threading flux do not have con-

ventional heterotic duals. Quite generally, there is no simple generalization of the usual

M-theory/heterotic duality in seven dimensions due to the unconventional form required

for the heterotic Bianchi identity. Moreover, N = 3 vacua cannot be obtained from any

heterotic supergravity description. Recently, this result has also been extended to gen-

eral perturbative heterotic string constructions [33]. The large amount of supersymmetry

preserved suggests that we may have a hope of identifying non-perturbative heterotic in-

gredients of a possible dual to the M-theory constructions. Any progress here is likely to

uncover some new general features of M-theory/heterotic duality. Non-duality may lead

back to duality after all.
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A Three vectors on X7 and constraints on G2 form

We argued in section 4.2 that with p nowhere vanishing vectors VA we must have

Φ = Φ(3) +Φ
(2)
A ΘA +

1

3!
Φ
(0)
ABCΘ

ABC . (A.1)

When p = 3 we need Φ(3) = 0, since otherwise ∗4Φ
(3) will yield an additional vector. So,

we have

Φ = ωAΘ
A + kΘ123 . (A.2)

We can take k ≥ 0, since the sign of k can be changed by redefining ΘA → −ΘA and

ωA → −ωA. This is just a convenient choice of orientation on X7.

We assume that {e1, e2, e3, e4,Θ1,Θ2,Θ3} is an orthonormal basis for T ∗
X and check

the compatibility of this with the metric obtained from Φ via

gij =
1

144
ǫklmnpqrΦiklΦjmnΦpqr . (A.3)

A bit of algebra and (A.2) show that

144gij = 3ǫABCǫαβγδ(ΦiABΦjαβ +ΦiαβΦjAB)ΦCγδ

− 12ǫABCǫαβγδΦiAαΦjBβΦCγδ + ǫABCǫαβγδΦiαβΦjγδΦABC . (A.4)

This can be unpacked into various components. Taking Eα to be the dual vectors to ea,

we have the following results:

g(Eµ, VA) = 0 ,

g(VD, VE) =
k

8
ǫαβγδΦDαβΦEγδ ,

g(Eµ, Eν) = −
1

12
ǫABCǫαβγδΦAµαΦBνβΦCγδ . (A.5)

Starting with the general form of Φ, we write ωA = 1
2MAαβe

α ∧ eβ , so that ΦAαβ =

MAαβ . Finally, setting

(∗M)Aαβ =
1

2
ǫαβγδMAγδ , (A.6)

we obtain a simple form for the metric components:

g(VD, VE) = −
k

4
Tr(MD(∗ME)) , g(Eµ, Eν) = −

1

6
ǫABC(MA(∗MB)MC)µν . (A.7)

Since we already verified g(Eµ, VA) = 0, we now just need to check that

δDE = −
k

4
Tr(MD(∗ME)) , 14 = −

1

6
ǫABC(MA(∗MB)MC) . (A.8)
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Reduction of parameters by SO(4) action. Since (A.8) is invariant under SO(4)

rotations MA → RTMAR we can bring the anti-symmetric matrices MA to a canonical

form. Without loss of generality we set

M1 =

(
x1ρ 0

0 y1ρ

)
, (A.9)

where ρ = iσ2 and x1 ≥ 0, y1 ≥ 0.12 This is stabilized by an SO(2)× SO(2) action, which

allows us to bring M2 to the form

M2 =

(
x2ρ P2

−P T
2 y2ρ

)
, P2 =

(
0 b2
c2 0

)
, (A.10)

with c2 ≥ 0. Finally, M3 takes the general form

M3 =

(
x3ρ P3

−P T
3 y3ρ

)
, P3 =

(
a3 b3
c3 d3

)
. (A.11)

Solution of the constraints. We now have a system of 16 equations in (A.8) that

depend on 13 parameters: 12 of these are in the reduced MA, and k is the last one. The

equations have a unique solution, with

M1 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 , M2 =




0 0 0 1

0 0 1 0

0 −1 0 1

−1 0 0 0


 , M3 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 , (A.12)

or in terms of Pauli matrices

M1 = 12 ⊗ iσ2 , M2 = iσ2 ⊗ σ1 , M3 = iσ2 ⊗ σ3 . (A.13)

These satisfy

∗MA = MA , MAMB = −δAB14 + ǫABCMC . (A.14)

Thus,

Φ = ωAΘ
A +Θ123 , (A.15)

and the ωA are non-degenerate, self-dual, and satisfy ωA ∧ ωB = 2δABe
1234 .

B An integral flux for N = 3 supersymmetry

The case of the N = 3 vacuum on X × X̃ is exotic enough that it is worthwhile to check

that it can be obtained by some choice of integral flux and no space-filling M2-branes.13

12The σi are the Pauli matrices.
13We thank Dave Morrison for stressing the importance of this point and for discussions regarding the

solution presented here and its possible generalizations.

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
0
5
3

Let x = (2A − C), and write fαα̇ = xφαα̇. To obtain exactly N = 3 supersymmetry,

we take x 6= 0 and the flux must be

G = −xja̃a + 2x[vE + ṽẼ] + xωαφαα̇ω̃α̇ . (B.1)

This flux is integral if and only if

1

2π
[−xja̃ȧ + ωαfαα̇ω̃α̇] ∈ H4(X × X̃,Z) and

xv

π
∈ Z ,

xṽ

π
∈ Z . (B.2)

While the implications of the first of these are not immediately obvious, the last two are

readily solved: there are non-zero integers m, m̃ such that

v =
mπ

x
, ṽ =

m̃π

x
. (B.3)

The integrated Bianchi identity now becomes

mm̃

2

[
5 + tr(φTφ)

]
= 24−N(M2) . (B.4)

We will now demonstrate that we can choose m, m̃ and φ so that the flux is integral and

N(M2) = 0.

Our Ansatz for the flux is motivated by the counting of massless moduli for N = 3

vacua: we see that at best, the number of geometric moduli preserved is that of a single

K3 geometry, so that it is not unreasonable to tie the geometries of X and X̃ together. In

fact, we will take X and X̃ to be identical.

Let us explain a little bit more what this means. We fix an integral basis

{e1, e2, . . . , e22} for H2(X,Z) such that

eIeJ = DIJE , (B.5)

where D = (−E8)
⊕2 ⊕H⊕3 is the standard metric of signature (3, 19). Since H2(X,Z) is

unimodular, we have the key fact that D−1, with components denoted by DIJ is also an

integral matrix. There is a corresponding set of forms ẽİ on X̃ that have identical structure.

The ja and ωα can be written in terms of the integral basis:

ja = EaIe
I , ωα = EαIe

I . (B.6)

The coefficients obey

EaID
IJEbJ = 2δabv , EaID

IJEαJ = 0 , EαID
IJEβJ = −2δαβv . (B.7)

There is also a useful completeness relation for the vielbeins E :

EaIEaJ − EαIEαJ = 2vDIJ . (B.8)

We now describe our Ansatz for the flux.
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1. We assume that X has an integral −4 class that is orthogonal to all of the ja. That

is, there exists ξ ∈ H2(X,Z) that is annihilated by the ja and satisfies ξ∧ξ = ξ ·ξE =

−4E. It is easy to construct smooth K3 geometries with this property at low Picard

number.

Without loss of generality we can take ξ to be the direction of one of the anti-self-dual

forms. More precisely, we set

ω1 =

√
v

2
ξ . (B.9)

2. Once we choose this data for X, we use the same EaI and EαI to prescribe the ̃ȧ and

ω̃α̇, i.e. the geometry of X̃:

̃a = Eaİ ẽ
İ , ω̃α = Eαİ ẽ

İ . (B.10)

This implies that v = ṽ, and therefore m = m̃ as well; we also have a form ξ̃ as a

special −4 class on X̃.

3. We take the φαα̇ to be diagonal: φαα̇ = φαδαα̇.

With these assumptions the flux takes the form

G

2π
= −

x

2π
[ja̃a − ωαω̃α] +

x

2π
(φα − 1)ωαω̃α

= −mDIİe
I ẽİ +

x

2π
(φα − 1)ωαω̃α , (B.11)

where in the second line we used the completeness relation (B.8).

The reason this works nicely is that the first term is automatically integral, and we

just need to choose the φα appropriately so that the last term is integral as well. We

accomplish this by setting φα = 1 for all α > 1, so that now

G

2π
= −mDIİe

I ẽİ +
m(φ1 − 1)

4
ξξ̃ . (B.12)

Choosing φ1 = 5 leads to an integral flux.

For this choice of integral flux the Bianchi identity becomes

m2

2

[
5 + 52 + 18

]
= 24−N(M2) , (B.13)

and setting m = 1, we find the desired N(M2) = 0.

We have shown that there is a choice of flux that leads to exactlyN = 3 supersymmetry

without space-filling M2 branes. The choice leaves many moduli; indeed, the number of

massless scalars is smaller than the maximum allowed by just one N = 3 “hypermultiplet.”

It is not so easy to generalize this solution. If one stays with the “completeness”

relation trick above and simply modifies the φαα̇ it is quite likely there are no others with

N(M2) = 0.14

14There is at least one solution with N(M2) 6= 0; if we set m = m̃ = 1 and choose φα = 1 for all α, then

we obtain N(M2) = 12.
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