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ther predicts sin δ . 0, now supported by recent results at ∼ 95% C.L., normally ordered

neutrino masses and atmospheric mixing angle in the first octant, best fit results in latest

global analyses. Extending a recent analytical procedure, we account for the mismatch

between the Yukawa basis and the weak basis, that in SO(10)-inspired models is described

by a CKM-like unitary transformation VL, obtaining a full analytical solution that provides

useful insight and reproduces accurately all numerical results, paving the way for future

inclusion of different sources of theoretical uncertainties and for a statistical analysis of

the constraints. We show how muon-dominated solutions appear for large values of the

lightest neutrino mass in the range (0.01–1) eV but also how they necessarily require a

mild fine tuning in the seesaw relation. For the dominant (and untuned) tauon-dominated

solutions we show analytically how, turning on VL ' VCKM, some of the constraints on the

low energy neutrino parameters get significantly relaxed. In particular we show how the

upper bound on the atmospheric neutrino mixing angle in the strong thermal solution gets
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NOνA, T2K and IceCube results.
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1 Introduction

The latest results from the LHC show no evidence for new physics at the TeV scale.

Analogously, negative results also come from direct dark matter, cLFV and electric dipole

moments searches. Potential manifestations of new physics are given by the long standing

muon g − 2 anomaly and by the recent anomalies reported in B decays [1] but more solid

evidence is required and they are indeed currently regarded as anomalies. On the other

hand robust motivations for extending the Standard Model come from neutrino masses and

mixing and from the cosmological puzzles. In the absence of new physics at the TeV scale

or below, it is reasonable to think that their solution is related to the existence of higher

energy scales. In particular a combined explanation of neutrino masses and mixing, from

a conventional high energy type I seesaw mechanism [2–7], and of the matter-antimatter

asymmetry of the Universe from (consequentially high energy scale) leptogenesis [8], should

be currently regarded as the simplest and attractive possibility.

Interestingly, latest neutrino oscillation experiments global analyses also seem to sup-

port CP violation in left-handed (LH) neutrino mixing (at 95% C.L. in [9] and at 70% C.L.

in [10]). Though this is not a sufficient condition for the existence of a source of CP viola-

tion for successful leptogenesis, if confirmed, it would be still an important result since it

would make quite plausible the presence of CP violation also in heavy right-handed (RH)

neutrino mixing, the natural dominant source of CP violation for leptogenesis (barring spe-

cial scenarios).1 In addition, the exclusion of quasi-degenerate light neutrino masses can

1Conversely, CP conservation in LH neutrino mixing would legitimately cast some doubts on it.

– 1 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
9

be also regarded as a positive experimental outcome for minimal scenarios of leptogenesis,

based on type I seesaw mechanism and thermal RH neutrino production, since the bulk of

solutions requires values of neutrino masses mi . O(0.1) eV [11–16], even when charged

lepton [17, 18] and heavy neutrino [19] flavour effects are taken into account.2 Therefore,

this current phenomenological picture certainly encourages further investigation on high

energy scale scenarios of leptogenesis.

On the other hand the possibility to test more stringently leptogenesis and even have

any hope to prove it, seems necessarily to rely on the identification of specific scenarios, pos-

sibly emerging from well motivated theoretical frameworks. This is in order to reduce the

number of independent parameters, increasing the predictive power and over-constraining

the seesaw parameter space. The sharper the predictions are, the lower the probability that

these are just a mere coincidence. This challenging strategy has been strongly boosted by

the measurement of a non-vanishing value of the reactor mixing angle, sufficiently large to

make possible the measurements of the unknown parameters in the leptonic mixing matrix:

CP violating Dirac phase, neutrino mass ordering and a determination of the deviation of

the atmospheric mixing angle from the maximal value.

The latest results from the NOνA long baseline experiment favour a ∼ 5◦ deviation

of the atmospheric mixing angle from maximal mixing [20], while the results from the

T2K long baseline experiment [21] and from the IceCube neutrino detector [22] do not find

evidence of such deviation so far, so that a mild tension exists but still within 90% C.L.

At the same time both experiments strengthen the support for negative values of sin δ.

Moreover they also show an emergence for a slight preference for normally ordered neutrino

masses. When all results are combined, two recent global analyses find that first octant for

atmospheric mixing angle with normally ordered neutrino masses (NO) emerges as a best

fit solution, though the preference over inverted ordered neutrino masses (IO), allowing

both first and second octant, is currently slight, at the level of ∼ 1.7σ [9] or even less [10].

Intriguingly, this emerging potential experimental set of results for the unknown neu-

trino oscillation parameters nicely supports the expectations from the so called strong ther-

mal SO(10)-inspired leptogenesis solution [23], indeed strictly requiring NO, atmospheric

mixing angle in the first octant and favouring negative values of sin δ for sufficiently large

values of the atmospheric mixing angle.3

This solution relies on two independent conditions and it is highly non trivial that

they can be satisfied simultaneously. The first one, on the model building side, is the

SO(10)-inspired condition [25–29], and it corresponds to assume that the Dirac neutrino

mass matrix is not too different from the up-quark mass matrix, a typical feature of dif-

ferent grand-unified models such as SO(10) models.4 The second assumption is dictated

2As we will discuss in detail, muon-dominated solutions in SO(10)-inspired leptogenesis are found for

mi as large as ∼ 1 eV, but these solutions suffer of some fine-tuning, as we will notice, and are certainly

less interesting than tauon-dominated solutions representing the bulk of solutions and respecting the upper

bound mi . O(0.1 eV).
3The solution also requires non-vanishing θ13 for large values of the initial pre-existing asymmetry

Np,i
B−L & 0.001, a result preliminarily presented in [24] before the discovery from nuclear reactors.

4As we will see in more detail, even without imposing the strong thermal condition, the SO(10)-inspired

condition already strongly favours NO and to less extent the atmospheric mixing angle in the first octant.
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purely by a cosmological requirement, the independence of the final asymmetry of the

initial conditions (the strong thermal leptogenesis condition). The latter, in the case of

hierarchical RH neutrino mass patterns, is satisfied only for quite a specific case, the tauon

N2-dominated scenario [30] and, as we said, it is highly not trivial that this is realised

within SO(10)-inspired models. If future data will confirm NO together with sin δ < 0 and

atmospheric mixing angle in the first octant, the statistical significance of the agreement be-

tween theoretical predictions and experimental results would be very interesting, since the

probability to find by chance such an agreement with the strong thermal SO(10)-inspired

leptogenesis solution is lower than ∼ 5% [23].

A full analytical description of SO(10)-inspired leptogenesis is greatly helpful in differ-

ent respects. First, it provides a useful analytical insight able to clarify different interesting

aspects of SO(10)-inspired leptogenesis, as we will discuss in detail. On more practical

grounds, the expected future improvement in the determination of the neutrino mixing

parameters clearly calls for an analogous improvement in the theoretical predictions with

a reduction of the theoretical uncertainties. To this extent, for an inclusion of more subtle

effects in the derivation of the low energy neutrino constraints, a full analytical calculation

of the final asymmetry allows a fast generation of solutions, something essential also for a

precise statistical derivation of the constraints, so far qualitatively derived just from scatter

plots. Driven by these motivations, in this paper we extend the analytic procedure of [31],

taking into account the mismatch between the Yukawa basis and the weak basis. This

will allow to reproduce with great accuracy all results obtained only numerically so far.5

The paper is organised as follows. In section 2 we review the seesaw type I mechanism

and current neutrino oscillation data. In section 3 we discuss SO(10)-inspired leptogenesis

extending the analytical procedure discussed in [31] taking into account the mismatch, de-

scribed by a unitary matrix VL, between the Yukawa basis, where the neutrino Dirac mass

matrix is diagonal, and the weak basis, where the charged lepton mass matrix is diagonal.6

In this way we obtain some general results that in section 4 we specialise to reproduce a

few different effects governed by the matrix VL including the application to strong thermal

leptogenesis showing how the upper bound on the atmospheric mixing angle gets relaxed.

Finally in section 5 we draw the conclusions.

2 Seesaw and low energy neutrino parameters

Augmenting the SM with three RH neutrinos NiR with Yukawa couplings h and a Majorana

mass term M, in the flavour basis, where both charged lepton mass matrix m` and M are

diagonal, one can write the leptonic mass terms generated after spontaneous symmetry

breaking as (α = e, µ, τ and i = 1, 2, 3)

− LM = αLDm` αR + ναLmDαiNiR +
1

2
N c
iRDM NiR + h.c. , (2.1)

5In the paper we will consider a non-supersymmetric framework. For a detailed discussion on the super-

symmetric extension we refer the reader to [32], where it has been shown that constraints get significantly

relaxed only at large values tan β & 15. The analytical results that we discuss here can be easily exported

to the supersymmetric case.
6We summarise in the appendix the set of expressions that allow a full general analytical calculation of

the asymmetry in SO(10)-inspired leptogenesis.
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where Dm` ≡ diag(me,mµ,mτ ), DM ≡ diag(M1,M2,M3) and mD is the neutrino Dirac

mass matrix. In the seesaw limit, M � mD, the mass spectrum splits into two sets

of Majorana eigenstates: a light set with masses m1 ≤ m2 ≤ m3 given by the seesaw

formula [2–7]

Dm = U †mD
1

DM
mT
D U

? , (2.2)

with Dm = diag(m1,m2,m3), and a heavy set with masses basically coinciding with DM .

The matrix U , which diagonalises the light neutrino mass matrix mν = −mDM
−1mT

D in

the weak basis, can then be identified with the PMNS lepton mixing matrix. For NO, this

can be parameterised in terms of the usual mixing angles θij , the Dirac phase δ and the

Majorana phases ρ and σ, as

U =

 c12 c13 s12 c13 s13 e
−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ c23 c13

 diag
(
ei ρ, 1, ei σ

)
.

(2.3)

For IO, since we are defining m1 ≤ m2 ≤ m3, this should be replaced by the column

permuted matrix

U (IO) = U (NO)

 0 1 0

0 0 1

1 0 0

 . (2.4)

However, in this paper we will focus on the NO case, since IO is only marginally allowed

imposing just successful SO(10)-inspired leptogenesis [33]7 and it is completely excluded

imposing in addition the strong thermal leptogenesis condition. In the case of NO, latest

neutrino oscillation experiments global analyses find for the mixing angles and the leptonic

Dirac phase δ, the following best fit values, 1σ errors and 3σ intervals [9]:

θ13 = 8.45◦ ± 0.15◦ [8.0◦, 9.0◦] , (2.5)

θ12 = 33◦ ± 1◦ [30◦, 36◦] ,

θ23 = 41◦ ± 1◦ [38◦, 51.65◦] ,

δ = −0.62π ± 0.2π [−1.24π, 0.17π] .

It is interesting that there is already an excluded interval δ 3 [0.17π, 0.76π] at 3σ and that

sin δ > 0 is excluded at 2σ favouring sin δ < 0 (in [10] a lower statistical significance is

found). Of course there are no experimental constraints on the Majorana phases. Neutrino

oscillation experiments also measure two mass squared differences, finding for the solar

neutrino mass scale msol ≡
√
m 2

2 −m 2
1 = (8.6±0.1) meV and for the atmospheric neutrino

mass scale matm ≡
√
m 2

3 −m 2
2 = (49.5± 0.05) meV [9].

There is no signal from neutrinoless double beta (0νββ) decay experiments that, there-

fore, place an upper bound on the effective 0νββ neutrino mass defined as

mee ≡ |mνee| = |U2
e1m1 + U2

e2m2 + U2
e3m3| . (2.6)

7It is allowed only at quite large values of m1 & 10−2+0.14 (52−θ23/◦) meV, so that for example using a

more aggressive upper bound from the same Planck collaboration
∑
i mi . 0.17 eV [34], translating into

m1 . 0.04 eV for IO, the allowed region is almost completely ruled out.
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Currently, the most stringent reported upper bound comes from the KamLAND-Zen col-

laboration finding, at 90% C.L., mee ≤ (61–165) meV [35], where the range accounts for

nuclear matrix element uncertainties.

Cosmological observations place an upper bound on the sum of the neutrino masses.

The Planck satellite collaboration obtains a robust stringent upper bound
∑

imi .
230 meV at 95%C.L. [34] that, taking into account neutrino oscillation experimental de-

termination of the solar and atmospheric neutrino mass scales, translates into an upper

bound on the lightest neutrino mass m1 . 70 meV.

3 SO(10)-inspired leptogenesis

The neutrino Dirac mass matrix can be diagonalised (singular value decomposition) as

mD = V †L DmD UR , (3.1)

where DmD ≡ diag(mD1,mD2,mD3) and where VL and UR are the two unitary matrices

transforming respectively the LH and RH neutrino fields from the flavour basis (where m`

and M are diagonal) to the Yukawa basis (where mD is diagonal).

If we parameterise the neutrino Dirac masses mDi in terms of the up quark masses,

(mD1,mD2,mD3) = (α1mu, α2mc, α3mt) , (3.2)

we can impose so called SO(10)-inspired conditions defined as:

- mD3 � mD2 � mD1 , implying αi = O(0.1–10) ,

- I ≤ VL . VCKM .

The latter should be read in a way that parameterising VL in the same way as the leptonic

mixing matrix U , the three mixing angles θL12, θL23 and θL13 cannot have values much larger

than the three mixing angles in the CKM matrix.8

Inserting the singular value decomposed form for mD eq. (3.1) into the seesaw formula

eq. (2.2), one obtains

M−1 ≡ URDM UTR = −D−1
mD

m̃ν D
−1
mD

, (3.3)

where M ≡ U?RDM U †R and m̃ν ≡ VLmν V
T
L are respectively the Majorana mass matrix

and the light neutrino mass matrix in the Yukawa basis. Diagonalising the matrix on the

RH side of eq. (3.3), one can express the RH neutrino masses and the RH neutrino mixing

matrix UR in terms of mν , VL and the three αi.

The analytical procedure discussed in [31], within the approximation VL ' I, gets

easily generalised for VL 6= I replacing mν → m̃ν [36] and in this case one finds for the

8Precisely we adopt: θL12 ≤ 13◦ ' θCKM
12 ≡ θc, θ

L
23 ≤ 2.4◦ ' θCKM

23 , θL13 ≤ 0.2◦ ' θCKM
13 . However, notice

that the validity of our analytical solution goes beyond these ranges of values for the mixing angles in the

VL. We will discuss this point in greater detail in the appendix.
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three RH neutrino masses9

M1 '
m2
D1

|m̃ν11|
, M2 '

m2
D2

m1m2m3

|m̃ν11|
|(m̃−1

ν )33|
, M3 ' m2

D3 |(m̃−1
ν )33|, (3.4)

and for the RH neutrino mixing matrix

UR '


1 −mD1

mD2

m̃?ν12
m̃?ν11

mD1
mD3

(m̃−1
ν )?13

(m̃−1
ν )?33

mD1
mD2

m̃ν12
m̃ν11

1 mD2
mD3

(m̃−1
ν )?23

(m̃−1
ν )?33

mD1
mD3

m̃ν13
m̃ν11

−mD2
mD3

(m̃−1
ν )23

(m̃−1
ν )33

1

 DΦ , (3.5)

where the three phases in Dφ ≡ diag(e−i
Φ1
2 , e−i

Φ2
2 , e−i

Φ3
2 ) are given by

Φ1 = Arg[−m̃?
ν11] , Φ2 = Arg

[
m̃ν11

(m̃−1
ν )33

]
− 2 (ρ+ σ)− 2 (ρL + σL) , Φ3 = Arg[−(m̃−1

ν )33] .

(3.6)

It should be noticed how the Majorana phases ρL and σL enter directly the expression for

the RH neutrino Majorana phases (more precisely in Φ2) independently of the values of

the mixing angles θLij . It will prove convenient to introduce a matrix

A ≡


1 − m̃?ν12

m̃?ν11

(m̃−1
ν )?13

(m̃−1
ν )?33

m̃ν12
m̃ν11

1
(m̃−1

ν )?23

(m̃−1
ν )?33

m̃ν13
m̃ν11

− (m̃−1
ν )23

(m̃−1
ν )33

1

 DΦ , (3.7)

such that the elements of UR can be written in the form

URij =
min[mDi,mDj ]

max[mDi,mDj ]
Aij . (3.8)

One can also derive an expression for the orthogonal matrix starting from its definition

Ω = D
− 1

2
m U †mDD

− 1
2

M [37] that, using eq. (3.1), becomes [38]

Ω = D
− 1

2
m U † V †L DmD URD

− 1
2

M . (3.9)

In terms of matrix elements this can be written as

Ωij '
1√
miMj

∑
k

mDl U
?
ki V

?
L lk URkj , (3.10)

9As pointed out in [31], the validity of these results relies on hierarchical RH neutrino masses, M3 �
M2 �M1 and breaks down in the close vicinity of crossing level solutions found in [36] where either |m̃ν11|
or |(m̃−1

ν )33| or both vanish. However, as we will point out, when |m̃ν11| or |(m̃−1
ν )33| vanish separately,

corresponding to M1 'M2 and M2 'M3 respectively, successful leptogenesis is not attained, and the case

when they both get very small, leading to a compact spectrum M1 ∼M2 ∼M3, necessarily implies a huge

fine-tuning in the seesaw formula since in this case the orthogonal matrix elements become huge, as we are

going to show. For this reason a hierarchical spectrum condition is not restrictive at all. We will be back

on this point.

– 6 –
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from which one finds10

Ω '


(m̃νW ?)11√
−m1 m̃ν11

√
m2 m3 (m̃−1

ν )33

m̃ν11

(
W ?

21 −W ?
31

(m̃−1
ν )23

(m̃−1
ν )33

)
ei (ρ+σ+ρL+σL) W ?

31√
m1 (m̃−1

ν )33

(m̃νW ?)12√
−m2 m̃ν11

√
m1 m3 (m̃−1

ν )33

m̃ν11

(
W ?

22 −W ?
32

(m̃−1
ν )23

(m̃−1
ν )33

)
ei (ρ+σ+ρL+σL) W ?

32√
m2 (m̃−1

ν )33

(m̃νW ?)13√
−m3 m̃ν11

√
m1 m2 (m̃−1

ν )33

m̃ν11

(
W ?

23 −W ?
33

(m̃−1
ν )23

(m̃−1
ν )33

)
ei (ρ+σ+ρL+σL) W ?

33√
m3 (m̃−1

ν )33

 ,

(3.11)

where we defined W ≡ VL U .

Let us now discuss the calculation of the asymmetry. Since in section 4 we will also

be interested in those solutions satisfying, in addition to successful leptogenesis, also the

strong thermal condition, we can write the final asymmetry as the sum of two terms,

N f
B−L = Np,f

B−L +N lep,f
B−L . (3.12)

The first term is the relic value of the pre-existing asymmetry, the second is the asymmetry

generated from leptogenesis. This of course would translate into a baryon-to-photon num-

ber ratio also given by the sum of two contributions, ηp
B and ηlep

B respectively. The typical

assumption is that the initial pre-existing asymmetry, after inflation and prior to leptoge-

nesis, is negligible. We also consider the possibility that some external mechanism might

have generated a large value of the initial pre-existing asymmetry, Np,i
B−L, between the end

of inflation and the onset of leptogenesis, i.e. a value that would translate, in the absence

of any wash-out, into a sizeable value of ηp
B. The strong thermal leptogenesis condition

requires that this initial value of the pre-existing asymmetry is efficiently washed out by

RH neutrinos wash-out processes in a way that the final value of ηB is dominated by ηlep
B .11

The predicted value of the baryon-to-photon number ratio is then entirely explained by

the contribution from leptogenesis,

ηlep
B = asph

N lep,f
B−L
N rec
γ

' 0.96× 10−2N lep,f
B−L , (3.13)

accounting for sphaleron conversion [40, 41] and photon dilution and where, in the last

numerical expression, we normalised the abundances NX of any generic quantity X in a

way that the ultra-relativistic equilibrium abundance of a RH neutrino N eq
Ni

(T �Mi) = 1.

Successful leptogenesis requires that ηlep
B reproduces the experimental value that, from

Planck data (including lensing) combined with external data sets [34], is given by

ηCMB
B = (6.10± 0.04) × 10−10 . (3.14)

For both two terms in eq. (3.12) we can give analytic expressions. The relic value of the

pre-existing asymmetry has to be calculated [23, 30, 42] as Np,f
B−L =

∑
α N

p,f
∆α

, with each

10This improves the analytical expression given in [39] where the approximation W ' U was used. We

checked that this analytic expression perfectly reproduces the numerical results. This expression shows

explicitly how approaching the crossing level solutions, for vanishing |m̃ν11| or |(m̃−1
ν )33|, the |Ω2

ij |’s become

huge and this corresponds to very fine-tuned cancellations in the seesaw formula.
11For definiteness we adopt a criterium ηp

B < 0.1 ηlep
B but in any case the constraints on low energy

neutrino parameters depend only logarithmically on the precise maximum allowed value for ηp
B/η

lep
B .
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flavour contribution given by

Np,f
∆τ

=
(
p0

pτ+∆ppτ

)
e−

3π
8

(K1τ+K2τ )Np,i
B−L, (3.15)

Np,f
∆µ

=
{(

1−p0
pτ

)[
p0
µτ⊥2

p0
pτ⊥2

e−
3π
8

(K2e+K2µ)+
(

1−p0
µτ⊥2

)(
1−p0

pτ⊥2

)]
+∆ppµ

}
e−

3π
8
K1µNp,i

B−L,

Np,f
∆e

=
{(

1−p0
pτ

)[
p0
eτ⊥2

p0
pτ⊥2

e−
3π
8

(K2e+K2µ)+
(

1−p0
eτ⊥2

)(
1−p0

pτ⊥2

)]
+∆ppe

}
e−

3π
8
K1eNp,i

B−L.

In this expression the Kiα’s are the flavoured decay parameters defined by

Kiα ≡
Γiα + Γiα
H (T = Mi)

=
|mDαi|2

Mim?
, (3.16)

where Γiα = Γ(Ni → φ† lα) and Γ̄iα = Γ(Ni → φ l̄α) are the zero temperature limit of

the flavoured decay rates into α leptons and anti-leptons in the three-flavoured regime,

m? ' 1.1 × 10−3 eV is the equilibrium neutrino mass, H(T ) =
√
gSM? 8π3/90T 2/MP is

the expansion rate and gSM? = 106.75 is the SM number of ultra-relativistic degrees of

freedom. Using the bi-unitary parameterisation eq. (3.1), the flavoured decay parameters

can be written as

Kiα =

∑
k,l mDkmDl VLkα V

?
Llα U

?
Rki URli

Mim?
. (3.17)

The quantities p0
pτ and p0

pτ⊥2
indicate the fractions of the pre-existing asymmetry in the

tauon flavour and in the flavour τ⊥2 , the electron and muon flavours superposition com-

ponent in the leptons produced by the N2-decays (or equivalently the flavour component

that is washed-out in the inverse processes producing N2) so that p0
pτ + p0

pτ⊥2
= 1. The two

quantities p0
ατ⊥2
≡ K2α/(K2e + K2µ) (α = e, µ) are then the fractions of α-asymmetry in

the τ⊥2 component, so that p0
eτ⊥2

+ p0
µτ⊥2

= 1.

The contribution from leptogenesis also has to be calculated as the sum of three con-

tributions from each flavour, explicitly

N lep,f
B−L = N lep,f

∆e
+N lep,f

∆µ
+N lep,f

∆τ
. (3.18)

The expression we derived for M1 from the SO(10) inspired conditions, the first of the

eqs. (3.4), implies M1 � 109 GeV and in this case the asymmetry produced from N1 decays

is negligible [46, 47]. On the other hand M2 can be sufficiently large12 for the asymmetry

produced from N2-decays to reproduce the observed asymmetry: for this reason SO(10)-

inspired conditions necessarily require a N2-dominated scenario of leptogenesis.13 Moreover

since just marginal solutions are found for M2 & 1012 GeV, where the production occurs

in the unflavoured regime, one has to consider a two-flavour regime for the asymmetry

production from N2 decays. In this case the three flavoured asymmetries can be calculated

12A lower bound M2 & 5× 1010 GeV was found in [33].
13In principle one should also consider the asymmetry produced from N3 decays occurring in the un-

flavoured regime since M3 � 1012 GeV. However the CP asymmetry ε3 is suppressed as M2/M3 compared

to ε2 and in the end it turns out that also the contribution to the asymmetry from N3 decays, as that one

from N1 decays, is negligible.
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using [16, 43–45]14

N lep,f
∆e
'

[
K2e

K2τ⊥2

ε2τ⊥2
κ
(
K2τ⊥2

)
+

(
ε2e −

K2e

K2τ⊥2

ε2τ⊥2

)
κ
(
K2τ⊥2

/2
)]

e−
3π
8
K1e ,

N lep,f
∆µ
'

[
K2µ

K2τ⊥2

ε2τ⊥2
κ
(
K2τ⊥2

)
+

(
ε2µ −

K2µ

K2τ⊥2

ε2τ⊥2

)
κ
(
K2τ⊥2

/2
)]

e−
3π
8
K1µ ,

N lep,f
∆τ
' ε2τ κ (K2τ ) e−

3π
8
K1τ , (3.19)

where ε2α ≡ −(Γ2α − Γ2α)/(Γ2 + Γ2) are the N2-flavoured CP asymmetries (α = e, µ, τ ),

with Γ2 ≡
∑

α Γ2α and Γ2 ≡
∑

α Γ2α, and simply ε2τ⊥2
≡ ε2e + ε2µ and K2τ⊥2

≡ K2e +

K2µ. For the efficiency factors at the production κ(K2α) we used the standard analytic

expression [47]

κ(K2α) =
2

zB(K2α)K2α

(
1− e−

K2α zB(K2α)

2

)
, zB(K2α) ' 2 + 4K0.13

2α e
− 2.5
K2α . (3.20)

This expression holds for an initial thermal abundance but since all solutions we found

are for strong wash-out at the production (either K2τ � 1 or K2τ⊥2
� 1 respectively for

tauon and muon-dominated solutions), the asymmetry does not depend on the initial N2

abundance anyway. Moreover in the strong wash-out regime the theoretical uncertainties

are within 20% [11–15, 48].15

The flavoured CP asymmetries can be calculated using [49]

ε2α ' ε(M2)

{
Iα23 ξ(M

2
3 /M

2
2 ) + J α23

2

3(1−M2
2 /M

2
3 )

}
, (3.21)

where we introduced

ε(M2)≡ 3

16π

M2matm

v2
, ξ(x) =

2

3
x

[
(1+x) ln

(
1+x

x

)
− 2−x

1−x

]
, (3.22)

Iα23≡
Im
[
m?
Dα2mDα3(m†DmD)23

]
M2M3 m̃2matm

and J α23≡
Im
[
m?
Dα2mDα3(m†DmD)32

]
M2M3 m̃2matm

M2

M3
,

(3.23)

14These equations for the calculation of the final asymmetry hold for 100 GeV . M1 . 109 GeV, in

the N2-dominated scenario. While the upper bound is basically always valid within given SO(10)-inspired

conditions, except for a very fine-tuned case corresponding to very small value of m̃ν11 (we will be back

on this case), the lower bound in principle could be violated if α1 . 0.1. In this case there is no wash-out

from the lightest RH neutrino and the exponentials would disappear and consequently all constraints on

low energy neutrino parameters. This scenario has been discussed in [32].
15Notice that since the constraints on the low energy neutrino parameters are determined mainly by

the vanishing of the K1α in the exponentials, these depend only logarithmically on the asymmetry and a

theoretical uncertainty of 20% on the asymmetry translates into a less than 1% theoretical uncertainty on

the constraints. In any case improvements in this direction will also be needed in future.
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with m̃2 ≡ (m†DmD)22/M2. Since M3 � M2, one can approximate ξ(M2
3 /M

2
2 ) ' 1 and

neglect the second term ∝ J α23 in the eq. (3.21).16 Using the singular value decomposition

eq. (3.1) for mD, one obtains

ε2α '
3

16π v2

|(m̃ν)11|
m1m2m3

∑
k,l mDkmDl Im[VLkα V

?
Llα U

?
Rk2 URl3 U

?
R32 UR33]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
, (3.24)

where in (m†DmD)22 =
∑

k m
2
Dk |URk2|2 we neglected the term k = 1, suppressed as

(mD1/mD2)2 compared to the others, and we have also approximated (m†DmD)23 '
m2
D3 U

?
R32 UR33.

Except for special points where ε2e ' ε2µ, one of the two (typically ε2µ) dominates

on the other and this implies that the terms in N lep,f
∆e

and N lep,f
∆µ

in round brackets, the

so called phantom terms [44, 45], are necessarily negligible and one obtains much simpler

expressions,17

N lep,f
∆e
' ε2e κ(K2e +K2µ) e−

3π
8
K1e ,

N lep,f
∆µ
' ε2µ κ(K2e +K2µ) e−

3π
8
K1µ ,

N lep,f
∆τ
' ε2τ κ(K2τ ) e−

3π
8
K1τ , (3.25)

where we wrote again N lep,f
∆τ

for completeness. In this way, using the analytic expression

eq. (3.5) for UR, eq. (3.24) for the ε2α’s and eq. (3.17) for the Kiα’s, and given an expression

for VL, one obtains a full analytical expression for the asymmetry depending on the low

energy neutrino parameters, on VL and on the αi’s.
18 In the appendix we summarise all

this set of analytic expressions that basically constitute the analytical solution we found.

If one adopts the approximation VL = I, from the eq. (3.24) one obtains for the

ε2α’s [31]

ε2α '
3m2

Dα

16π v2

mee

m1m2m3

Im[U?Rα2 URα3 U
?
R32 UR33]

|(m−1
ν )ττ |2 + |(m−1

ν )µτ |2
. (3.26)

From this one it is then easy to obtain explicitly

ε2τ '
3m2

D2

16π v2

mee

[
|(m−1

ν )ττ |2 + |(m−1
ν )µτ |2

]−1

m1m2m3

|(m−1
ν )µτ |2

|(m−1
ν )ττ |2

sinαL , (3.27)

ε2µ ' −
m2
D2

m2
D3

ε2τ ,

ε2e '
3m2

D1

16π v2

m2
D1

m2
D3

|mνeµ|
[
|(m−1

ν )ττ |2 + |(m−1
ν )µτ |2

]−2

m1m2m3

|(m−1
ν )eτ | |(m−1

ν )µτ |
|(m−1

ν )ττ |2
sinαeL ,

16This hierarchical approximation has been tested since we used the exact expression for ξ, able to

describe a resonant enhancement, and we did not neglect the term J α23 in the numerical results and we

checked that no new quasi-degenerate solutions are found for M1 . 109 GeV (i.e. within the N2-dominated

scenario) [23]. We will come back on this point when we will discuss theoretical uncertainties at the end of

this section.
17Like for the hierarchical approximation, we indeed also checked that phantom terms, that are kept in

numerical results, do not play any role and can be neglected in SO(10)-inspired leptogenesis.
18Notice however that the dependence on α1 and on α3 cancels out in physical solutions satisfying

successful leptogenesis [31, 33]).
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implying

εmax
2τ : εmax

2µ : εmax
2e ∼ 1 :

m2
D2

m2
D3

:
m2
D2

m2
D3

m4
D1

m4
D2

, (3.28)

where we maximised over the phase factors given by

αL = Arg [mνee]− 2 Arg[(m−1
ν )µτ ]− π − 2 (ρ+ σ) , (3.29)

and

αeL = Arg [mνeµ]−Arg[(m−1
ν )µτ ]−Arg[(m−1

ν )eτ ]− π − 2 (ρ+ σ) . (3.30)

The electron CP asymmetry is so strongly suppressed (more than fifteen orders of magni-

tude compared to the tauonic) that the corresponding contribution to the final asymmetry

is completely negligible. The muon CP asymmetry is also suppressed compared to the

tauonic CP asymmetry by about four orders of magnitude but it might be still large enough

to allow the existence of (marginal) muon-dominated solutions. However, when the wash-

out both at the production and from the lightest RH neutrino is also taken into account,

one finds that also the muon contribution to the final asymmetry is always much below

the observed value and one does not find any muon-dominated solution for VL = I [33].

Therefore, the electron and muon contributions are never able to reproduce the observed

asymmetry and the final asymmetry can be approximated just by the tauon contribution,

so that we can write [31, 32]

N lep,f
B−L

∣∣∣
VL=I

' 3

16π

m2
D2

v2

|mνee| (|m−1
νττ |2 + |m−1

νµτ |2)−1

m1m2m3

|m−1
νµτ |2

|m−1
νττ |2

sinαL (3.31)

× κ
(
m1m2m3

m?

|(m−1
ν )µτ |2

|mνee| |(m−1
ν )ττ |

)
× e−

3π
8
|mνeτ |2
m? |mνee| ,

where for the Kiα’s we used [31]

Kiα =
m2
Dα

Mim?
|URαi|2 , (3.32)

that can be easily derived from the eq. (3.17) for VL = I, obtaining

K1τ '
m2
D3

m?M1
|UR31|2 '

|mνeτ |2

m? |mνee|
(3.33)

and

K2τ '
m2
D3

m?M2
|UR32|2 '

m1m2m3

m?

|(m−1
ν )µτ |2

|mνee| |(m−1
ν )ττ |

. (3.34)

In figure 1 we show scatter plots of solutions for successful SO(10)-inspired leptogenesis

in the seesaw parameter space projected on planes for different choices of two low energy

neutrino parameters. We distinguish in yellow and orange the tauon-dominated solutions,

corresponding respectively to I ≤ VL ≤ VCKM and VL = I, and in green the muon-

dominated solutions realised only for I ≤ VL ≤ VCKM. The variation of the low energy
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neutrino parameters is within the indicated ranges.19 The plots have been obtained for

(α1, α2, α3) = (1, 5, 1). We have also used20 (mu,mc,mt) = (1 MeV, 400 MeV, 100 GeV) for

the values of the up quark masses at the leptogenesis scale TL ' (3–10) 1010 GeV [50].

We also show the subset of solutions satisfying in addition the strong thermal condition

(light blu for I ≤ VL ≤ VCKM and dark blue for VL = I) for an initial pre-existing

asymmetry Np,i
B−L = 10−3. The scatter plots have been obtained for an initial thermal

N2 abundance but, as we will discuss, the solutions do not depend on the initial value

of NN2 . We have also imposed MΩ ≡ maxi,j [|Ω2
ij |] = 100. With these conditions we

haven’t found any electronic-dominated solution, even for I ≤ VL ≤ VCKM, we will be

back on this point. Contrarily to α1 and α3 that cancel out in the final asymmetry, the

parameter α2 ≡ mD2/mc plays clearly a very important role since all N2 CP asymmetries

are proportional to the square of this parameter. We have set α2 = 5 as maximum reference

value. The dependence of the constraints on α2 was studied in detail in [33] where the

lower bound α2 & 1 was found. There is no of course upper bound from leptogenesis but

in realistic models this is never found too much larger than our reference value α2 = 5. For

example it is interesting that in the realistic fits found in [51] within SO(10) models one

has α2 . 6, very close to our reference maximum value.

Before concluding this section we want to comment on the approximations of our

results that might give rise to some corrections that should be therefore considered sources

of theoretical uncertainties in our calculation.

• We are using Boltzmann equations and for this reason we have imposed M2 .
1012 GeV, where a two-flavour regime is realised at the N2 production and Boltz-

mann equations can be used. If M2 � 1012 GeV the production would occur in the

unflavoured regime and the wash-out at production would be much higher and indeed

if one also calculates the asymmetry in this regime one finds very marginal points as

discussed in detail in [23]. One could therefore wonder whether in a density matrix

approach, describing the transition between the two regimes, one could find a sup-

pression of solutions already between 1011 GeV and 1012 GeV. However, we should

say that for α2 < 5 and MΩ < 100, as we are setting, in any case one does not find M2

to be much larger than 1011 GeV. Therefore, we do not expect much more stringent

constraints from a density matrix formalism for α2 . 5.

• We are using a hierarchical approximation M3 & M2. However checks in [23] have

found new quasi-degenerate solutions only at very large m1 values, m1 & 1 eV, any-

way cosmologically excluded. We are neglecting just the case of a compact spec-

trum M1 ∼ M2 ∼ M3 ∼ 1010 GeV realised when both |m̃ν11| and |(m̃−1
ν )33| get

19To be conservative we used 4σ intervals in eq. (2.5) and δ is allowed to vary in the whole range [−π, π].
20Since the final asymmetry ∝ m2

D2 = (α2 mc)2, for a given value of α2, the theoretical uncertainty in the

determination of the value of mc at the leptogenesis scale translates into a (doubled) theoretical uncertainty

in the determination of the final asymmetry: the value of the charm quark mass at the scale of leptogenesis

is then one of the most important sources of uncertainties.
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Figure 1. Scatter plots in the seesaw parameter space projected on different planes for NO and

(α1, α2, α3 = 1, 5, 1). All points satisfy (at ' 3σ) successful leptogenesis. The yellow points cor-

respond to tauon-dominated solutions for an initial vanishing pre-existing asymmetry (light yellow

for I ≤ VL ≤ VCKM and orange for VL = I) The blue points are the subset satisfying the additional

strong thermal condition for an initial value of the pre-existing asymmetry Np,i
B−L = 10−3 (dark blue

for I ≤ VL ≤ VCKM and light blue for VL = I). The green points correspond to muon-dominated

solutions. The solutions have been obtained for MΩ = 100 and imposing M3 > 2M2. The dashed

bands indicate the 3σ excluded ranges for the corresponding mixing parameters (see eq. (2.5)),

while for m1 and mee they indicate the 95%C.L. and 90%C.L. upper bounds from Planck and

KamLAND-Zen.
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sufficiently small.21 The conditions for this compact spectrum were studied in [36]

and more recently, including flavour effects and within a realistic model, in [52].

However, as already noticed in [31], this special case necessarily implies a huge fine-

tuning in the seesaw formula.22 In any case a compact spectrum solution gives rise

to a distinct set of constraints on low energy neutrino parameters [52], in particular

it predicts no signal in 0νββ experiments since mee . 1 meV, while in our case the

bulk of the solutions implies a detectable signal despite NO.

• We are neglecting the running of the parameters (including a precise evaluation of

the charm quark mass at the scale of leptogenesis). This is not expected to be able to

change significantly our results but of course in a not too far future, with an increase

of the experimental precision on θ23 and δ it might become necessary to include the

running from radiative corrections.

• Another approximation we are using, and that might be a source of theoretical un-

certainties, is that we are neglecting flavour coupling [44]. This generates new terms

in the asymmetry (though usually sub-dominant) that can open new solutions and

relax the constraints. An example was found in [39], though the solution was also

requiring some large amount of fine tuning in the seesaw formula. On the basis of

preliminary results, we can say that flavour coupling introduces only corrections to

the analytical expression we found or it adds solutions involving great amount of

fine-tuning in the see-saw formula [53].

Our analytic solution will be actually very useful for a future derivation of the con-

straints including these effects, since it provides a new tool to generate solutions in a much

faster way and likely also to understand analytically the impact of the various effects.

4 Decrypting the impact of VL ' VCKM

In this section we want to understand the impact of turning on VL ' VCKM using the

analytical expressions obtained in the previous section. Since VL is unitary, this can be

parameterised analogously to the leptonic mixing matrix as

VL =

 cL12 c
L
13 sL12 c

L
13 sL13 e

−iδL

−sL12 c
L
23−cL12 s

L
23 s

L
13 e

iδL cL12 c
L
23−sL12 s

L
23 s

L
13 e

iδL sL23 c
L
13

sL12 s
L
23−cL12 c

L
23 s

L
13 e

iδL −cL12 s
L
23−sL12 c

L
23 s

L
13 e

iδL cL23 c
L
13

 diag
(
eiρL ,1,eiσL

)
,

(4.1)

21The reason why solutions in the vicinity of the crossing level M2 ∼M3 ∼ 1013 GeV, realised when only

|(m̃−1
ν )33| tends to vanish is that in this case K2τ ∝ |(m̃−1

ν )33|−1 tends to become huge and together with it

of course K2 so that at the production one has a very strong wash-out and even the resonant enhancement

of the CP asymmetries does not help. Of course in addition in any case one would also have huge fine-

tuning in the seesaw formula. The crossing level for which M1 ∼M2 ∼ 107 GeV when |m̃ν11| vanish is also

excluded since in this case, even worse, K1τ ∝ |m̃ν11|−1. For this reason only a compact spectrum is left as

a (very fine-tuned) caveat to a hierarchical spectrum.
22It should be clear that the fine tuning is not only at the level of choosing the correct value of the

degeneracy to realise the right asymmetry, but also more seriously, as already noticed in the footnote 8,

from a comparison of the expressions eq. (3.4) with eq. (3.11) for Ω, at the level of the seesaw formula.
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having introduced three mixing angles θL12, θ
L
13 and θL23 (sLij ≡ sin θLij and cij ≡ cos θLij),

one Dirac-like phase δL and two Majorana-like phases ρL and σL. We want to understand

analytically the effects of non-vanishing θLij with values at the level of the respective angles

in VCKM (see footnote 1), effects that have been so far found only numerically.

As we said, we will focus on NO, since for IO the allowed regions, in the non-

supersymmetric framework we are considering and for α2 . 5, are marginal (in par-

ticular they require necessarily θ23 in the second octant and m1 & 10 meV implying∑
imi & 0.11 eV, slightly disfavoured by current cosmological observations) and they

completely disappear in the case of strong thermal leptogenesis.23 These effects can be

summarised as follows:

• Turning on VL ' VCKM enlarges the allowed region for tauon-dominated solutions

relaxing the constraint on the low energy neutrino parameters. There are two inter-

esting features that should be understood with an analytic description:

(i) Within tauon-dominated solutions, there is a subset of solutions satisfying also

the strong thermal condition [23, 31]. As one can see from the blue regions in

the top central panel in figure 1, this subset is characterised by an upper bound

on θ23 that for VL = I is given by θ23 . 41◦ and for I ≤ VL . VCKM relaxes

to θ23 . 44◦. The allowed range for δ also enlarges for a given value of θ23. In

the light of the current best fit value for θ23 ' 41◦ (see eq. (2.5)), this is an

interesting effect of turning on VL ' VCKM to be understood.

(ii) the lower bound mee & 10−3 eV strongly relaxes to mee & 5× 10−5 eV.

• While for VL = I there are only tauon-dominated solutions able to reproduce the

observed asymmetry [38], muon-dominated solutions appear for VL ' VCKM and

0.01 eV . m1 . 1 eV [23, 33], the largest possible m1 values in SO(10)-inspired

leptogenesis since tauon-dominated solutions are realised for m1 . 0.07 eV (just at

the edge of highest values allowed by cosmological observations). Thus they open a

new region in low energy neutrino parameter space though currently disfavoured by

the cosmological observations. We have not found electron-dominated solutions as in

the supersymmetric framework [32, 54].

These are the main effects induced by VL ' VCKM that we want to understand analytically

unpacking the solution we found.

4.1 CP asymmetries flavour ratio

We have seen that for VL = I the eq. (3.28) immediately shows how in this approximation

one cannot reproduce electron and muon-dominated solutions. This result changes turning

23In the supersymmetric case, for large tan β & 15, one can have solutions for successful strong thermal

leptogenesis even for IO [32].
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on VL ' VCKM. We can use these two approximations in the eq. (3.24)

m?
Dα2 =

∑
k

VLkαmDk U
?
Rk2 ' mD2 (VL2α U

?
R22 + VL3αA

?
32) , (4.2)

mDα3 =
∑
l

VLlαmDl URl3 ' mD3 V
?
L3α UR33 .

Notice that they give ε2e = ε2µ ' 0 for VL = I, something acceptable if one wants just to

describe solutions giving successful leptogenesis since as we have seen, for VL = I, there

are not electron and muon-dominated solutions since the CP asymmetries are too small.

Using these approximations, from the eq. (3.24) one obtains for the three CP flavour

asymmetries

ε2e '
3m2

D2

16π v2

|(m̃ν)11|
m1m2m3

Im[VL12 V
?
L13 U

2
R33 (A?32)2]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
, (4.3)

ε2µ '
3m2

D2

16π v2

|(m̃ν)11|
m1m2m3

Im[VL22 V
?
L23 U

?
R22 U

2
R33A

?
32]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
, (4.4)

ε2τ '
3m2

D2

16π v2

|(m̃ν)11|
m1m2m3

|VL33|2 Im[U2
R33 (A?32)2]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
,

implying

εmax
2τ : εmax

2µ : εmax
2e ' 1 : |VL23| : |VL21 VL31| , (4.5)

showing that this time, turning on the mixing angles in VL, the tauon-dominated solutions

are still favoured but potentially one can also have muon and even electron-dominated

solutions.24

4.2 Tauon-dominated solutions and strong thermal leptogenesis

Let us start from the tauon flavour contribution. As already pointed out, for VL = I this is

the only contribution that can reproduce the observed asymmetry [38] and, therefore, one

has the simplified result N lep,f
B−L

∣∣∣
VL=I

' N lep,f
∆τ

. A full analytic description was given in [31],

we already reviewed the analytic expressions for ε2τ (eq. (3.27)), for the flavour decay

parameters K1τ , K2τ (see eqs. (3.33) and (3.34)) and for the final asymmetry (eq. (3.31)).

In the left panels figure 2 we are plotting the behaviour of all these quantities for

a specific choice of the low energy neutrino parameters: we adopted the best fit values

for θ12 and θ13 and then θ23 = 42◦, δ = −0.6π. As one can see from the scatter plot

in figure 1 in the plane δ versus θ23, for this choice of values the observed asymmetry

cannot be reproduced for VL = I (light blue points) since θ23 is too large. The plots in the

bottom left panel of figure 2 confirm the result of the scatter plots. In the panels the thin

black lines are the analytic expressions and one can see that they perfectly reproduce all

numerical results.

24Notice also that turning on VL 6= I does not change the result that dominantly the ε2α ∝ m2
D2 = α2

2 mc
2

while they do not depend on α1 and α3.
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Figure 2. Example of (tauon-dominated) strong thermal solution. Left panels : VL = I,

(α1, α2, α3) = (5, 5, 5), (θ13, θ12, θ23) = (8.4◦, 33◦, 42◦), (δ, ρ, σ) = (−0.6π, 0.23π, 0.78π); Right pan-

els : same as for left panels but VL 6= I and (θL13, θ
L
12, θ

L
23) = (0.1◦, 9.5◦, 2.4◦) and (δL, ρL, σL) =

(1.2π, 0.02π, 1.15π). All thin black lines are the analytical expressions for each corresponding

quantity. The long-dashed coloured lines indicate the numerical results (same colour code as in

figure 1: yellow for tauon flavour, green for muon flavour and red for electron flavour, the orange

lines refer to the e+µ flavour).
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For VL ' VCKM all the expressions get generalised in the way we have seen. Let us

specialise them and make more explicit for the tauon-dominated case. First of all for the

tauonic CP asymmetry, considering only the dominant terms in the eq. (3.24) we find

ε2τ '
3m2

D2

16πv2

|(m̃ν)11|
m1m2m3

|(m̃−1
ν )23|

|(m̃−1
ν )33|

[|VL33|2(|(m̃−1
ν )23|/|(m̃−1

ν )33|)sinατAL +|VL33||VL23|sinατBL ]

|(m̃−1
ν )33|2+|(m̃−1

ν )23|2
,

(4.6)

where

ατAL = Arg [m̃ν11]−Arg[(m̃−1
ν )23]−Arg[(m̃−1

ν )33]− 2 (ρ+ σ)− 2 (ρL + σL) , (4.7)

ατBL = Arg [m̃ν11]− 2 Arg[(m̃−1
ν )23]− π − 2 (ρ+ σ)− 2 (ρL + σL) , (4.8)

that generalises the eq. (4.4) for VL 6= I. Notice that the second term is subdominant but

still gives an important correction if θL23 is not too small. This analytic expression produced

the black thin line in the second right panel in figure 2 and one can see that it perfectly

fits the numerical result.

For the flavour decay parameters K1τ and K2τ we find respectively

K1τ '
1

m?

(
|m̃ν13|2

|m̃ν11|
|VL33|2 + 2

VL23 V
?
L33

|m̃ν11|
Re [m̃?

ν12 m̃ν13] + |VL23|2
|m̃ν13|2

|m̃ν11|

)
(4.9)

and

K2τ '
m1m2m3

m?

|(m̃−1
ν )23|2

|m̃ν11| |(m̃−1
ν )33|

. (4.10)

These analytic expressions also very well agree with the numerical results as it can be seen

in the example of figure 2 in the right panels. In the case of K1τ one needs more accuracy

than for K2τ since it suppresses exponentially the asymmetry and one needs to add also

terms ∝ VL23 in order to get correctly the tauonic contribution to ηB, as one can see in the

last right panel of figure 2 where the analytic contribution (thin black line) nicely matches

the numerical results (yellow dashed line). There one can notice how the final asymmetry

gets enhanced25 by almost two orders of magnitude compared to the case VL = I and

the main reason is that turning on VL ' VCKM makes now possible to have K1τ � 1 at

larger values of θ23 and smaller values of δ something quite important considering that long

baseline experiments such as NOνA and T2K are right now testing these parameters and

in particular the deviation of θ23 from maximal mixing.

It is quite straightforward to extend the derivation of the upper bound on θ23 presented

in [31] for VL = I turning on VL ' VCKM, finding

θ23 . arctan

[
matm s13/

√
2

(m1 +msol) c13 c12 s12 − VL12 (matm −msol − s2
12m1)/

√
2

]
∼ 45◦ , (4.11)

where we took into account that 2σ − δ ' −π/4 and this yields the factor 1/
√

2 in the

numerator. In this case the largest angle θL12 gives the dominant effect.

25The reason why the peak of the asymmetry is just above the observed value is because we have delib-

erately chosen a solution at the border of the allowed region.
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We can also easily understand why the lower bound on mee gets strongly relaxed from

mee & 1 meV to mee & 0.1 meV considering that

|m̃ν11| ' | cos2 θL12mνeee
i ρL +

1

2
sin 2θL12mνeµ| . (4.12)

The lower bound |mee| & 1 meV that was holding for VL = I translates now, for VL ' VCKM,

into |m̃ν11| & 1 meV.26 It is then possible to have the second term in |m̃ν11| dominating and

saturating the lower bound while mνee � 1 meV. However, a lower bound still exists and

mee cannot be arbitrary small. It is interesting actually to see from the panel in figure 1

showing mee versus δ, that there seems to be values of δ for which the lower bound becomes

more stringent and that in any case the bulk of points is well above 1 meV and within reach

of future experiments. This is an interesting feature of SO(10)-inspired leptogenesis. For

the strong thermal points of course this is true even more stringently, since in this case

mee & 10 meV [23] and a signal should be in the reach of future experiments despite the

fact that neutrino masses are NO.

We also want to remind, in conclusion of this subsection, that tauon-dominated solu-

tions do not imply any fine-tuning in the seesaw formula, indeed the orthogonal matrix for

these solutions has all entries |Ωij | . 1, also for this reason they have then certainly to be

regarded as the canonical and most attractive solutions.

4.3 Muon-dominated solutions

For VL = I there are no muon-dominated solutions [33]. In the left panels of figure 3

we show the dependence of different quantities on m1 for VL = I, (α1, α2, α3) = (5, 5, 5)

and for the indicated set of values of the low energy parameters. In particular one can

notice how the CP flavoured asymmetries (second left panel from top) respect the strong

hierarchical pattern in eq. (3.28) and even though both the wash-out at the production

and, more importantly, from the lightest RH neutrino are negligible in the muon flavour,

the final asymmetry (last left panel) falls many orders of magnitude below the observed

value. Turning on VL ' VCKM, as we have seen in the scatter plots of figure 1, one does

obtain muon-dominated solutions. We want to show here analytically how this occurs and

derive an analytic expression that reproduces correctly the muon asymmetry.

First of all let us notice that the result in eq. (4.5) is well illustrated by the right panels

of figure 3. They are obtained for the same set of values as in the left panels except that

now VL 6= I, with the only non-vanishing angle θL23 = 2.4◦ ' θCKM
23 and also non-vanishing

values of the phases σL and ρL. One can see that the muon asymmetry now gets enhanced

compared to the right panel where θL23 = 0 while the electron asymmetry is unchanged.

This is in complete agreement with the result in eq. (4.5): for muon-dominated solutions

it is then crucial to have non-vanishing θL23.

The eq. (4.4) neglects a term ∝ |VL32|2 that for a more accurate result we now need to

add. Going back to the eq. (3.24), similarly to the tauon asymmetry, there are two terms

26This lower bound can be understood considering that K1τ ∝ |m̃ν11|−1 (see eq. (4.9)).
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Figure 3. Example of muon-dominated solution. Left panels : VL = I, (α1, α2, α3) = (5, 5, 5),

(θ13, θ12, θ23) = (8.4◦, 33◦, 41◦), (δ, ρ, σ) = (−0.3π, 0, 0.5π); Right panels : same as for left panels

except that θL23 = 2.4◦ and σL = −1.7π (the values of δL and ρL are irrelevant, since they cancel

out for θL12 = θL13 = 0). All thin black lines are the analytical expressions for each quantity. The

long-dashed coloured lines indicate the numerical results (same colour code as in figure 1: yellow

for tauon flavour, green for muon flavour and red for electron flavour, the orange lines refer to the

e+µ flavour).
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∝ m2
D2 and one obtains

ε2µ ' εVL2µ =
3m2

D2

16π v2

|(m̃ν)11|
m1m2m3

(4.13)

× |(m̃
−1
ν )23|

|(m̃−1
ν )33|

|VL22| |VL32| sinαµAL + |VL32|2 (|(m̃−1
ν )23|/|(m̃−1

ν )33|) sinαµBL
|(m̃−1

ν )33|2 + |(m̃−1
ν )23|2

,

where

αµAL = Arg [m̃ν11]−Arg[(m̃−1
ν )23]−Arg[(m̃−1

ν )33]− 2 (ρ+ σ)− 2 (ρL + σL) , (4.14)

αµBL = Arg [m̃ν11]− 2 Arg[(m̃−1
ν )23]− π − 2 (ρ+ σ)− 2 (ρL + σL) . (4.15)

This analytic expression for ε2µ perfectly matches the numerical result in figure 2 (respec-

tively the thin black line and the dashed green line). For completeness we also fit the muonic

asymmetry for very small or vanishing θL23, adding the following term (∝ m4
D2/m

2
D3)

εI2µ '
3m2

D2

16π v2

m2
D2

m2
D3

|m̃ν11|
m1m2m3

|(m̃−1
ν )23|2

|(m̃−1
ν )33|2

|VL22|2

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
sin α̃L , (4.16)

where

α̃L = Arg [m̃ν11]− 2 Arg[(m̃−1
ν )23]− 2 (ρ+ σ)− 2 (ρL + σL) , (4.17)

so that ε2µ ' εI2µ + εVL2µ . Like in the limit VL → I, this term is not sufficiently large to

reproduce the observed baryon asymmetry (not at least for α2 . 5), however by adding

this term we could also reproduce ε2µ in the case shown in figure 2, for a tauon-dominated

solution.

One can also understand why muon-dominated solutions exist only in the range

0.01 eV . m1 . 1 eV from the expressions eqs. (3.17) specialised for K1µ and K2µ. In

this case the deviations from VL = I give only corrections, as we will show explicitly, and

we can first consider the simplified expressions for VL = I. First of all we can write

K1µ =
m2
D2 |UR21|2

m?M1
=
|mνeµ|2

m?mee
(4.18)

=
c2

13

∣∣c12 s12 c23 (m2 −m1 e
2iρ)− s13 s23 e

2iσ
[
eiδ(m1 c

2
12 +m2 s

2
12)−m3 e

−iδ]∣∣2
m? |m1 c2

12 c
2
13 e

2iρ +m2 s2
12 c

2
13 +m3 s2

13 e
i (2σ−δ)|

.

From this general expression one can easily see that in the hierarchical limit m1 . msol

one has

K1µ → c2
12 c

2
23

msol

m?
' 3 , (4.19)

giving a too strong suppression in the hierarchical limit. On the other hand for m1 & msol

one has m1 ' m2 and the dominant term in the numerator cancels out for ρ ' nπ and

one can have K1µ . 1. However, for m1 & matm, in the quasi-degenerate climit, one has

K1µ → s2
23 s

2
13

m1

m?

∣∣∣1− e2i(σ−δ)
∣∣∣2 . (4.20)
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This can be still made small or even vanishing (for δ = σ). The wash-out at the production

is described by K2µ (since K2e ≪ K2µ) given by

K2µ =
m2
D2

m?M2
=
m1m2m3|(m−1

ν )ττ |
m?mee

, (4.21)

that in the quasi-degenerate limit becomes

K2µ →
m1

m?
|s2

23 + c2
23 c

2
13 e
−2iσ| . (4.22)

One can have a cancellation around σ = (2m + 1)π/2 but away from this condition, for

large values of m1, K2µ increases linearly with m1. The larger is m1, the sharper the

conditions ρ ' nπ and δ = σ = (2k + 1)π/2 have to be satisfied. This can be clearly

seen in the scatter plots in figure 1 (green points), while the linear increase of K2µ with

m1 can be clearly seen in the example shown figure 2. However, the phase αL → 4σ in

the quasi-degenerate limit and this leads to an upper bound on m1 . 1 eV, that however

is quite relaxed compared to the corresponding one holding for tauon-dominated solutions

discussed in detail in [31].

In the range 0.01 eV ' msol . m1 . 1 eV one can have a strong reduction of K2µ and

K1µ . 1 and at the same time a sizeable CP asymmetry and this explains why in this

range there are muon-dominated solutions that are now quite constrained by the current

cosmological upper bound on m1 and also by the upper bound on mee from 0νββ experi-

ments.

In order to reproduce accurately the numerical results on the Kiα’s vs. m1 shown in

the figure 2, one has to take into account corrections from VL ' VCKM, especially in the

case of K2µ. We can first specialise the general expression eq. (3.17) writing

K2µ =
m1m2m3|(m̃−1

ν )33|
m? m̃ν11

∑
k,l

VLkµ V
?
LlµA

?
k2Al2 , (4.23)

and then we arrive to the approximate expression

K2µ '
m1m2m3|(m̃−1

ν )33|
m? m̃ν11

×
(
|VL22|2 + |VL12|2

|m̃ν12|2

|m̃ν11|2
+ 2 sL23 Re

[
(m̃−1

ν )23

(m̃−1
ν )33

]
+ |VL32|2

|(m̃−1
ν )23|2

|(m̃−1
ν )33|2

)
, (4.24)

that perfectly reproduces (thin black line) the numerical result (dashed orange line) both in

figure 2 and in figure 3. We also derived an analogous expression for K1µ also reproducing

the numerical results in figure 2 and in figure 3.

There is another important aspect to be reported of muon-dominated solutions: they

necessarily rely on some amount of fine tuning in the seesaw formula as it can be understood

from the expression of the orthogonal matrix eq. (3.11). These solutions exist for values of

the parameters about the crossing level solution where M2 = M3. Even though one still

has M3 � M2, the value of M2 gets enhanced and correspondingly the value of ε2µ, this

is clearly visible in the panels of figure 3. This possibility relies on the value of (m̃−1
ν )33 in
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Figure 4. Scatter plots in the plane θ23 versus m1 as in figure 1 but for MΩ = 3, 10, 100 from left

to right.

the denominator of M2 to get reduced thanks to some mild phase cancellation. By itself

this is not a problem, however for small values of (m̃−1
ν )33 the second and third column in

the orthogonal matrix get correspondingly enhanced, as it can be seen from eq. (3.11) and

this necessarily implies a fine tuning in the seesaw formula at the level of 1/|Ω|2ij . These

analytical considerations are fully confirmed by the scatter plots obtained numerically. In

figure 4 in the left panel we compare scatter plots of solutions in the plane θ23 vs. m1

imposing the condition |Ωij |2 < 3, 10, 100 from left to right: one can notice how in the first

case all muon-dominated solutions, those at values m1 & 0.01 eV, completely disappear.

From this point of view it should be clear that tauon-dominated solutions, the bulk of

solutions within SO(10)-inspired leptogenesis, are the only completely untuned solutions.27

4.4 Electron-dominated solutions?

In the scatter plots shown in figure 1, for MΩ < 100 and M3 ≥ 2M2, we could not find

any electron-dominated solution.28 From the results in eq. (3.28) and eq. (4.5) we can

understand the reason: for VL = I the electron CP asymmetry is suppressed by more

than 15 orders of magnitude compared to the tauonic CP asymmetry and even turning on

VL ' VCKM is not enough since ε2e is still suppressed ∝ θL13 θ
L
12 compared to the tauonic

CP asymmetry ε2τ .

It is however still worth to give briefly analytic expressions for the three quantities

(ε2e, K1e, K2e) involved in the calculation of the electronic contribution to the asymmetry.

27Indeed constraints in figure 4 do not change increasing MΩ for tauon-dominated solutions (yellow and

orange points).
28The maximum asymmetry that an electron dominated solution can produce is ηB ' 3×10−10 for values

m1 ' 4 meV corresponding to have (m̃−1
ν )33 very small, in the vicinity of the crossing level M2 'M3. These

solutions involve, as stressed already a few times, a high fine tuning in the seesaw formula. The value of

M2 is necessarily capped below 1012 GeV since if it goes above, though the CP asymmetry would grow, the

wash-out at the production would occur in the unflavoured regime experiencing a very strong wash-out due

to a huge value of K2τ ' K2. In the supersymmetric case the double value of the CP asymmetries and

the fact that the transition to the unflavoured regime occurs at higher values M2 ' 1012 GeV (1 + tan2 β),

conspire in a way that sparse (very fine-tuned) electronic solutions do appear.
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The reason is that they can be easily extended to models or frameworks where there

might be some enhancement. For example either in SO(10)-inspired models that, for some

reason, have a large θL13, or to a supersymmetric framework where the CP asymmetry

doubles and the wash-out at the production can occur in the three-flavoured regime and be

greatly reduced and in both these cases one can have the appearance of electron-dominated

solutions. The third reason is that in this way we can extend our analytic description and

show agreement with the numerical results in the two examples of figure 2 and figure 3 also

for the quantities in the electron flavour (K1e, K2e, ε2e, η
(e)
B ). This is not just an aesthetic

reason but it provides yet another cross check making us confident of the accuracy of our

analytic solution.

Analogously to ε2µ the electron CP asymmetry can also be written as the sum of

two terms,

ε2e = εI2e + εVL2e . (4.25)

The first one is the non-vanishing one in the limit for VL → I and is very strongly sup-

pressed29 and given by

εI2e =
3m2

D2

16π v2

m4
D1

m4
D2

m2
D2

m2
D3

|m̃ν12|
m1m2m3

|(m̃−1
ν )13| |(m̃−1

ν )23|
|(m̃−1

ν )33|2
|VL11|2

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
sin α̃ILe ,

(4.26)

with

α̃ILe = Arg [m̃ν12]−Arg[(m̃−1
ν )23]−Arg[(m̃−1

ν )13]− π − 2 (ρ+ σ)− 2 (ρL + σL) . (4.27)

The second one dominates when VL ' VCKM and is given by

εVL2e =
3m2

D2

16π v2

|m̃ν11|
m1m2m3

|(m̃−1
ν )23|

|(m̃−1
ν )33|

|VL21| |VL31|
|(m̃−1

ν )33|2 + |(m̃−1
ν )23|2

sin α̃ILe , (4.28)

with α̃ILe = αALµ. For the flavoured decay parameters the following expressions accurately

reproduce the numerical results

K1e '
|m̃ν11|
m?

(
|VL11|2 − 2 |VL11| |VL21|Re[m̃ν12/m̃ν11] + |VL21|2 |m̃ν12|2/|m̃ν11|2

)
, (4.29)

while for all purposes K2e can be completely neglected in the wash-out at the production,

thus entirely dominated by K2µ. We conclude this subsection mentioning that in [39]

electronic solutions had been found including a term in the asymmetry generated by flavour

coupling. However these solutions require strong fine-tuning in the seesaw formula at the

level of 0.1%.

5 Conclusions

We obtained a full analytical description for the calculation of the baryon asymmetry in

SO(10)-inspired leptogenesis,30 generalising the results obtained in [31] accounting for the

29We are including it simply to describe ε2e correctly even when VL → I.
30The set of analytical expressions are summarised in the appendix.
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misalignment between the Yukawa basis and the flavour basis described by a unitary ma-

trix with mixing angles at the level of the mixing angles in the CKM matrix in the quark

sector. In this way we could provide an analytical insight into SO(10)-inspired leptogenesis

able to explain the relaxation of constraints, in particular the upper bound on the atmo-

spheric mixing angles in the case of strong thermal (tauon-dominated) solutions and the

appearance of muon-dominated solutions at large values of m1 & msol. We have shown how

the analytic solution we obtained does not just provide a qualitative understanding, but

in fact, within the given set of assumption, it reproduces accurately the asymmetry calcu-

lated numerically and can be basically confidently used for the calculation of the baryon

asymmetry in SO(10)-inspired leptogenesis without passing through the lengthy numerical

diagonalisation of the Majorana mass matrix in the Yukawa basis. This solution provides a

thorough analytic insight and paves the way for the account of different effects in the deriva-

tion of the constraints on the low energy neutrino parameters, including, importantly, their

statistical significance, a crucial step in light of the expected future experimental progress,

for the testability of SO(10)-inspired leptogenesis.
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A Compendium

In this appendix we summarise in a compact way all the set of analytical expressions that

constitute the solution of SO(10)-inspired leptogenesis we found. This set can be easily

plugged in to a simple code for a fast calculation of the asymmetry and the generation of

a big amount of solutions. This is the set of needed equations:

m̃ν ≡ VLmν V
T
L , (A.1)

Φ1 = Arg [−m̃?
ν11] , (A.2)

Φ2 = Arg

[
m̃ν11

(m̃−1
ν )33

]
− 2 (ρ+ σ)− 2 (ρL + σL) , (A.3)

Φ3 = Arg
[
−(m̃−1

ν )33

]
, (A.4)

Dφ ≡ diag
(
e−i

Φ1
2 , e−i

Φ2
2 , e−i

Φ3
2

)
, (A.5)
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UR '


1 −mD1

mD2

m̃?ν12
m̃?ν11

mD1
mD3

(m̃−1
ν )?13

(m̃−1
ν )?33

mD1
mD2

m̃ν12
m̃ν11

1 mD2
mD3

(m̃−1
ν )?23

(m̃−1
ν )?33

mD1
mD3

m̃ν13
m̃ν11

−mD2
mD3

(m̃−1
ν )23

(m̃−1
ν )33

1

 DΦ , (A.6)

M1 '
α2

1m
2
u

|(m̃ν)11|
, (A.7)

M2 '
α2

2m
2
c

m1m2m3

|(m̃ν)11|
|(m̃−1

ν )33|
, (A.8)

M3 ' α2
3m

2
t |(m̃−1

ν )33| , (A.9)

Kiα =

∑
k,l mDkmDl VLkα V

?
Llα U

?
Rki URli

Mim?
, (A.10)

ε2α '
3

16π v2

|(m̃ν)11|
m1m2m3

∑
k,l mDkmDl Im[VLkα V

?
Llα U

?
Rk2 URl3 U

?
R32 UR33]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
, (A.11)

N lep,f
∆e
' ε2e κ(K2e +K2µ) e−

3π
8
K1e , (A.12)

N lep,f
∆µ
' ε2µ κ(K2e +K2µ) e−

3π
8
K1µ , (A.13)

N lep,f
∆τ
' ε2τ κ(K2τ ) e−

3π
8
K1τ , (A.14)

Np,f
B−L =

∑
α

Np,f
∆α

, (A.15)

and finally

ηlep
B = asph

N lep,f
B−L
N rec
γ

' 0.96× 10−2N lep,f
B−L . (A.16)

Notice that all these expressions are valid for any VL, it indeed relies only on the first

assumption of SO(10)-inspired leptogenesis (hierarchical Yukawas) and not on the second,

small angles in VL. This can be checked easily simply taking as an example the extreme

case when all leptonic mixing comes from VL, in a way that VL = U † and UR = I. In this

case simply m̃ν = −Dm and simply M1 = m2
D1/m1, M2 = m2

D2/m2 and M3 = m2
D3/m3, as

it has to be considering that Ω = I. One can indeed also check that the analytic expression

for the Ω matrix eq. (3.11) reduces to Ω = I. This shows that the analytical expressions

are consistent with a choice of VL that is very different from VL ' VCKM. Notice, however,

that in this case it is not guaranteed that M1 . 109 GeV and so that the N2-dominated

scenario of leptogenesis holds. For this one needs also to impose I ≤ VL . VCKM. For small

mixing angles θLij one can extract the leading terms in the sums in eqs. (A.10) and (A.11)

obtaining the explicit analytic expressions we showed in the body text and that we do not

repeat here.
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