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Abstract: Memory effects in scattering processes are described in terms of the asymptotic

retarded fields. These fields are completely determined by the scattering data and the zero

mode part is set by the soft photon theorem. The dressed asymptotic states defining an

infrared finite S-matrix for charged particles can be defined as quantum coherent states

using the corpuscular resolution of the asymptotic retarded fields. Imposing that the net

radiated energy in the scattering is zero leads to the new set of conservation laws for

the scattering S-matrix which are equivalent to the decoupling of the soft modes. The

actual observability of the memory requires a non-vanishing radiated energy and could be

described using the infrared part of the differential cross section that only depends on the

scattering data and the radiated energy. This is the IR safe cross section with any number

of emitted photons carrying total energy equal to the energy involved in the actual memory

detection.
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Memory effects in gravitational scattering were first discussed in [1] and later on developed

in [2, 3]. Similar memory effects can be derived in classical electromagnetism (see [4, 5]

for a recent discussion). In a series of papers [6–8] a new understanding of memory effects

in connection with soft theorems [9–11] has been put forward. The main result is that

the infrared part of the Fourier transform of the classical memory effect is determined by

the soft photon or graviton theorems. In addition it was shown in [12] that soft photon

theorems can be interpreted as Ward identities relative to QED symmetries.

Related with this research the classic topic of infrared divergences in quantum field

theories has been revisited, see for instance [13] (the classic reference where the reader can

find most technical details is [14]). In theories like QED we have IR divergences due to

virtual photons. These divergences can be resummed and regulated. In addition we have

soft radiation and we can, at the level of the cross section, sum over amplitudes for different

number of soft emitted photons. These two contributions, namely the one associated with

virtual photons and the one coming from summing over different number of final infrared

soft photons lead to infrared divergent pieces that cancel each other in the final cross

section. What remains is an infrared finite cross section. The concrete form of this cross

section depends on an infrared scale ε. More precisely and using the notation of [14] the

final differential cross section factorizes into a pure infrared part that only depends on

the scattering data but not on the details of the scattering and a non-infrared part. This

factorization of the cross section depends on the infrared scale used to define the upper

limit on the energies for real infrared, measurable photons. The infrared part of the cross

section, after infrared divergences are cancelled, depends on the infrared scale ε in the

general form dσ
dε ∼ eG(ε) with G(ε) ∼ ln

(

E
ε

)

.

The former solution of the infrared problem is not defining an infrared finite S-matrix.

The definition of such S-matrix was first addressed in [15]. The key ingredient used in [15]

consisted in modifying the definition of asymptotic states. These are defined using a
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coherent state dressing operator determined by the asymptotic dynamics. Using these new

asymptotic states for charged particles you can define an IR finite S-matrix for scattering

processes with only charged particles in the in and out states. In this context it can

be easily observed that for the so-defined IR finite S-matrix soft photon modes are by

construction decoupled. This FK-decoupling has been discussed in [16–19]. Note that for

this scattering S-matrix, with only charged particles in the asymptotic states, conservation

of energy implies that no net amount of energy is radiated. This condition leads to a set of

conserved charges commuting with S which are equivalent to the decoupling of soft modes.

The physical meaning of these symmetries will be discussed in the next section.

In spite of its beauty the S-matrix formalism of [15] is not directly addressing the most

physical discussion on how to deal with real processes where some energy is radiated in the

form of real infrared photons.

How are electromagnetic memory effects related with this issue? The quick answer

to this question is the following. In scattering processes among massive charged particles

the charges and momentum of the in and out particles determine the non-radiative part of

the asymptotic retarded field. These in and out scattering data are enough to extract the

zero mode part of the interpolating retarded field and consequently they account for the

information contained in the soft photon theorems. In the IR finite S-matrix these zero

energy modes are decoupled and moreover they don’t lead to any observable (in a finite

amount of time) memory effect.

The scattering data, although enough to derive the soft photon theorem, are not enough

to fix the radiative component of the retarded field that depends on concrete information

on how the scattering process is actually taking place, in particular (in the classical case)

on the accelerations. This radiative part of the retarded field carries energy as well as

radiative modes with typical frequencies of the order of the inverse of the time scale on

which the scattering process is taking place. The observability of the memory effect using

a physical detector depends crucially on this radiated energy. In QED this information

is partially encoded in the infrared part of the differential cross section, namely on the

dependence on the infrared scale ε that we can take as equal to the energy involved in

the actual detection of the memory effect. In particular we shall associate to memory the

infrared part of the cross section that only depends on the scattering data and where we

consider an arbitrary number of emitted real infrared photons with total energy ε equal to

the energy involved in the memory detection.

In this note we shall reduce the discussion of memory to the electromagnetic case

and only at the end we will make few comments on similarities and differences with the

gravitational case.

1 Classical memory

For a given classical scattering where some initial charges qj with velocities vj lead to a

final state with charges qi and velocities vi the electromagnetic memory is determined by

the retarded field created by the currents jµ defined by these scattering data. In four

dimensions the retarded electromagnetic field at some observation point O = (x, t) is
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given by

Aµ(x, t) =

∫

jµ
(

x′, t− r
c

)

r
d3x′ (1.1)

with r2 = (x− x′)2. For small velocities we can Taylor expand the current and define the

retarded field as a series in 1/c. The field tensor Fµν generated by the moving charges can

be expanded in powers of 1/r. It contains a piece that goes like 1/r2 that only depends on

the velocities of the sources and a piece that goes like 1/r that accounts for the radiation

emitted during the scattering process.

For an idealised point-like scattering taking place at the origin the radiative part of the

retarded field has support on the u = 0 null hypersurface t = r
c
. This simply reflects the

fact that only at the origin the moving particles entering into the scattering are accelerated.

At large distances x ≫ x′ the retarded field is given by

Aµ(x) =
∑

out

θ(u)

r

qiv
µ
i

1− vi · x̂
+
∑

in

θ(−u)

r

qjv
µ
j

1− vj · x̂
(1.2)

where u is determined by the equation u = t− r, x̂ is the norm vector of x and from now

on c = 1.

The field tensor is then given by

Fµν =
∑

out

qiκ[µvν]i

καvαi

[

1

r

δ(u)

καvαi
+

1

r2
viβv

β
i

(καvαi )
2 θ(u)

]

+
∑

in

qjκ[µvν]j

καvαj






−
1

r

δ(u)

καvαj
+

1

r2
vjβv

β
j

(

καvαj

)2 θ(−u)






(1.3)

where

κµ = (1, x̂) and vµi = (1,vi) (1.4)

and indices are raised and lowered in cartesian coordinates by the metric ηµν =

diag(1,−1,−1,−1).

As we can see from the former expression the radiative 1/r part depends on the concrete

classical modelling of the scattering, in this simple case in the form of an instantaneous

change of the velocities taking place at the origin. The non-radiative part that goes as

1/r2 depends only on the in and out scattering data.

The classical memory effect associated with a given scattering process where we use as

data the in and out four-momenta of the scattered particles is given by the non-radiative

fields Fin and Fout. However the actual detection of the memory is determined by the

interaction of some charged detector with the interpolating radiative field. This effect on

the memory detector is non-vanishing and observable due to the fact that the interpolating

radiative field carries non-vanishing energy ε.
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1.1 Spectral resolution

For future convenience it would be important to work out the spectral decomposition of the

asymptotic retarded fields defined by the in and out set of free moving charged particles.

The Fourier modes of the retarded field are given by

Aµ(t,k) =
∑

out

4πqi

|k|
(

1 + k̂ · vi

)

pµi e
−i

k·pi
Ei

t

pαi kα

∣

∣

∣

∣

∣

t>0

+
∑

in

4πqj

|k|
(

1 + k̂ · vj

)

pµj e
−i

k·pj

Ej
t

pαj kα

∣

∣

∣

∣

∣

t<0

(1.5)

where pµi is the 4-momentum of the ith particle and kµ = (|k|,k).

The important thing to be noticed is that the Fourier components of the retarded

field created by a moving charge with constant velocity vi are waves with wave vector k

but frequency ωi = k · vi. These Fourier modes are obviously not real photons with the

exception of the soft k = 0 mode. Once we move into quantum field theory these modes

will define the quantum constituents of the coherent state dressing of free moving charged

particles.

1.2 Symmetries, Goldstones and energy conservation

Classically we can associate with a given scattering process among charged particles the

non-radiative retarded fields defined by the in and out scattering data i.e. by the charges,

masses and velocities of the incoming and outgoing particles. Let us generically denote

Ain and Aout these retarded fields. Associated with these data we can formally define a

transformation T : Ain → Aout. This transformation is not a gauge transformation since

Ain and Aout, although satisfying the condition

lim
r→∞

r(Fµν(Ain)− Fµν(Aout)) = 0 , (1.6)

have, at order 1/r2, different values of the corresponding stress tensor.

Let us now fix the asymptotic kinematical data for the incoming and outgoing charges

in such a way that energy and momentum are conserved i.e.
∑

inEj =
∑

outEi. In this

case conservation of energy will imply that the only possible radiated mode is a zero energy

zero mode. In classical electrodynamics this constraint is not easy to impose. Indeed if we

fix the scattering data and we use those kinematical data to derive the classical radiated

field we will only achieve total energy conservation if in addition we take into account the

backreaction of the radiated field i.e. the Abraham-Lorentz forces on the outgoing scattering

data. As it is well known this problem cannot be fully solved in classical electrodynamics.

We can however formally impose the conservation of energy on the scattering data for

the charged particles which is effectively equivalent to setting the net amount of radiated

energy to be equal to zero. To understand the physical meaning of this zero radiated energy

constraint it can be illustrative to recall the attempt of Wheeler and Feynman (WF) [20, 21]

to define in classical electrodynamics the radiative reaction on sources in the context of

the absorber theory. Indeed if we think that all the radiation emitted is absorbed leading
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to zero radiated energy we get that asymptotically we can impose the WF condition:

Fµν
ret = Fµν

adv (1.7)

for the radiative part of the total advanced and retarded fields.1 Generically, although in

Maxwell theory we have the advanced and retarded solution, only the retarded part of the

radiative field is actually considered as physical. Thus the former condition makes sense if

we have a formal absorber and no net radiation carrying non-zero energy is left unabsorbed.

In scattering language we can think of the advanced field as associated with some

incoming radiation and the retarded field as the outgoing radiation, so if we consider a

scattering with in state defined by a set of only charged particles (and zero radiation)

the former condition (1.7) only makes sense for the zero mode part that does not carry

any energy.

The equality between retarded and advanced fields (1.7) leads to a set of conservation

laws where the classical charges can be defined by the convolution of (1.7) with arbitrary

test functions [22]. The so called soft charges can be defined as those determined by the

zero mode part of the retarded and advanced fields.

In a scattering process among charged particles where we use as scattering data a set

of in and out momenta for the charged matter satisfying conservation of energy i.e. with no

net radiation, we can impose the condition (1.7) and these charges will act as symmetries

of the S-matrix. Since there is no radiation the only relevant piece is the zero mode soft

part. In this case any memory effect defined as the difference between the non-radiative

part of the retarded fields created by the incoming and outgoing particles is physically

unobservable. This unobservability becomes equivalent, in the S-matrix language, to the

decoupling of the radiative zero mode.

In summary the “new symmetries” of the QED S-matrix [12, 23] are a consequence

of imposing what we can call the WF condition or in more physical terms, the absence of

any loss of energy in the form of radiated infrared photons. This condition is naturally

implemented in any S-matrix formulation where in and out states are sets of charged

particles. However in order to have observable memory effects a certain amount of energy

should be radiated and in that case we need to work with the differential cross section.

Once some energy is actually radiated we cannot impose (1.7) since this energy is only

contained in the retarded part of the field.

In reality the probability that in a physical scattering we have zero net radiated energy

is indeed zero, so these symmetries of the IR finite S-matrix only account for the soft

theorem part. We can think of the symmetries for zero energy radiation processes as being

spontaneously broken with the k = 0 soft mode as a Goldstone boson. However we would

like to stress that whenever we have a real amount of energy radiated with no incoming

radiation, which is actually always the case, the condition (1.7) can only be imposed for

the zero mode part which is what, as we shall discuss in moment, you actually do in the

definition of the IR finite S-matrix.

1Note that the condition (1.7) allows us to define the WF field associated with a moving charge as

1/2(Fret + Fadv).
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2 Memory and infrared QED

2.1 IR finite S-matrix

As was already pointed out in [15] a prescription to define an IR finite S-matrix was partially

developed. The key ingredient in this construction was to use the asymptotic dynamics in

order to define new asymptotic states by dressing standard Fock matter states |i〉 with the

coherent state of photons sourced by the asymptotic current Jµ
as. We can represent this

dressing as

|i〉 → eR(Jµ
as)|i〉 (2.1)

We can now easily identify the operator R. Using the spectral decomposition of the re-

tarded field (1.5) created by the asymptotic free moving charges we can define the quan-

tum resolution2 of this field using as quantum constituents, quanta with momentum k and

frequency

ωi = k · vi. (2.2)

Denoting the creation and annihilation operators for these quanta bk and b†k the corre-

sponding coherent state will be defined by the operator

e

∫

d3k







∑ 4πqi

|k|(1+k̂·vi)

p
µ
i
e
−i

k·pi
Ei

t

pα
i
kα

b
†
kµ







(2.3)

acting on the vacuum defined by bk|0〉 = 0. If we want to use the creation and annihilation

operators ak and a†k of the Fock space of free photons with dispersion relation ω = |k| we

need to transform b modes into a photons. This leads to the FK expression derived from

the asymptotic dynamics, namely

e
∫

d
3k
k0

pµ

pαkα
e
i

(

pαkα

p0

)

t
a
†
kµ . (2.4)

By construction on these coherent states the expectation value of the field operator Â is

given by the classical retarded field. Note that these coherent states contain an infinite

number of k = 0 photons. If in the scattering process we impose zero energy radiated then

the total number of modes in the in and out states will be conserved.

We can consider a more complicated coherent state of photons describing the whole

radiative part of the retarded field and to think of this coherent state as a sort of domain

wall interpolating between the asymptotic in and out retarded fields. The soft photon

theorem accounts for the zero mode part of this domain wall. The radiated energy acting

on the potential memory detector is roughly what we can interpret as the mass of this

photonic domain wall.

The IR finite S-matrix is defined by

lim
t→∞

eR(−t)†SeR(t) (2.5)

2For other examples of the same technique see [24] and [25].
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where eR(t) = e

∫

dpd
3k
k0

pµ

pαkα

(

e
i

(

pαkα

p0

)

t
a
†
kµ

−h.c

)

ρ(p)
for ρ(p) =

∑

i δ(p − pi). This S-matrix

satisfies the decoupling of soft modes [17–19]3

lim
k→0

[S, ak] = 0 . (2.6)

The so-defined S-matrix is IR finite due to the fact that the former dressing factor cancels

the infrared divergences (after resummation) coming from the virtual photon self energies.

Note that in this S-matrix we are imposing the zero energy radiation condition (1.7)

and consequently the S-matrix commutes with the charges defined by convoluting (1.7)

with arbitrary test functions. These Ward identities are simply reflecting the kinematical

constraints we are imposing on the scattering states, namely vanishing net energy in the

form of radiation for in states without real photons and are fully equivalent to the decou-

pling of soft photons. Note also that, in this case, the so-called hard charges [12, 19, 23]

are absorbed in the dressing.

It is important to stress that the decoupling of soft modes should not be confused with

the absence of observable memory effects. Indeed as already stressed observable memory

requires a certain amount of energy in the retarded field to be radiated in the form of

infrared emitted photons and therefore does not satisfy the S-matrix matching condition

for the charged kinematical data.

2.2 QED measure of memory

Given a scattering process in QED we can associate, as a way to characterize the memory,

the differential cross section dσ
dε for ε the radiated energy in the form of infrared photons.

The dependence of the cross section on ε is well known in QED [14]. We shall be inter-

ested only in the infrared part of the cross section i.e. in the part that only depends on

scattering data.
dσ

dε

∣

∣

∣

∣

IR

∼ Aeln
E
ε (2.7)

with A being a finite coefficient depending only on the scattering data. This infrared part

of the cross section corresponds to having arbitrary number of emitted infrared photons

with total energy equal or less than ε, i.e. it is the cross section σ(2 → 2+ soft(Esoft ≤ ε))

and is an IR safe quantity.

The important message of these cross sections is the dependence on the energy radiated.

This is important for understanding the real nature of the memory. In fact we could think

of nullifying the memory by pushing ε → 0. In this case the only remnant will be the zero

mode part of the radiative mode that is actually decoupled. However the dependence of the

cross section on ε is telling us that such a formal limit cannot be taken or equivalently that

the actual probability to scatter without radiating is zero. The interpolating radiative field

measured by the memory detector contains energetic modes in addition to the Goldstone

zero mode piece. The actual interaction of the detector with these modes is what makes

the memory effect, in scattering processes, actually observable in a finite amount of time.

3For a more rigorous proof see [26].
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3 Summary and some comments on the gravitational memory

To summarise we have observed that although in an IR finite S-matrix of the type dis-

cussed in [15] the Goldstone part of the radiative mode is decoupled this does not nullify

electromagnetic memory effects. These effects are classically due to the non-vanishing en-

ergy carried by the radiative part of the retarded field created by the scattering process

and show up quantum mechanically already in the infrared dependence of the differential

cross section on the amount of energy radiated in the form of real infrared quanta. In this

sense memory is intimately connected with the infrared scale appearing in the standard

computation of differential cross sections in QED. Pushing formally this IR scale to zero

and working with the IR finite S-matrix satisfying the condition (1.7) nullifies memory as

an observable effect. Note also that memory accounts for the radiative backreaction on the

outgoing charged particles of the radiated energy.

Regarding gravity the discussion of classical gravitational memory is formally identical

to the electromagnetic case. Again in this case observable memory effects are associated

with the non-zero mode part of the interpolating radiative field. In quantum field theory

language we can extract the dependence of the differential cross section on the infrared

scale as we do in the electromagnetic case. This problem has been recently discussed for

graviton scattering in [27]. This construction can be used to define IR safe quantities to

be associated with gravitational memory.

A very attractive idea discussed in [28–30] suggests a connection between the gravita-

tional memory and the information paradox. The basic point of the idea is to extend the

gravitational memory associated with radiation going through the null infinity to the ana-

log problem for the black hole horizon itself. This extension is by no means straightforward

for a simple reason. While in the case of the null infinity the radiated energy (involved in

the memory) interpolates between two Minkowski asymptotic metrics (related by a super-

translation) in the case of the horizon any gravitational memory interpolates between two

black hole metrics with different mass. The zero mode part of this interpolating metric can

be formally used to define soft hair. However this zero mode part is effectively decoupled

and unobservable [17, 19]. The conservation laws associated with the gravitational gener-

alization of (1.7) can only deal, even in the presence of horizons, with the zero energy part

of the involved radiative modes and consequently does not lead to any observable effect.4

The observable gravitational memory, as it is the case with the electromagnetic memory,

is a radiative backreaction effect that can be only worked out quantum mechanically, in

other words the zero mode part which corresponds to no radiative backreaction (and can

be described in purely classical or semiclassical terms) is ineffective to solve the information

paradox. The quantum backreaction, as well as the relevant quantum hair, is O(1/N) for

N the black hole entropy [31, 32].

However, for a scattering process where some initial state leads to the formation of a

black hole that, by complete evaporation, leads to a pure final state of radiated particles, we

can ask, for the corresponding cross section, about the infrared gravitational memory. This

4From a purely historical point of view an interesting discussion on WF theory and gravity can be found

in [20].
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is a question about how much initial energy is radiated in the form of infrared gravitons

(i.e. with energies smaller than the IR scale). Part of the information on how the whole

process unitarizes could be encoded in these modes. Information about the radiated energy

is contained in the asymptotic non-radiative retarded fields. A natural question is if in the

case of gravity there exist a natural IR scale. A possible answer is to use the gravitational

radius of the center of mass energy. A related discussion can be found in [27] in connection

with the classicalization 2 → N approach [33] to black hole formation. We hope to come

back to this issue in a future publication.
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