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hydrostatic partition functions is also presented. Special emphasis is given to the forced

collective mode equations that arise in type IIA/B and eleven-dimensional supergravities,

where besides the standard Lorentz force couplings our analysis reveals additional cou-

plings to the background, including terms that arise from Chern-Simons interactions. We

also present a general overview of the blackfold approach and some of the key conceptual

issues that arise when applied to arbitrary backgrounds.
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1 Introduction

Hydrodynamics has proven to be a powerful universal description of the low energy effective

dynamics of interacting quantum systems at finite temperature, valid in the regime where

fluctuations have sufficiently long wavelength. Modern developments have revealed a close

connection between hydrodynamics and gravity, in particular black holes, starting with the

pioneering work in AdS/CFT [1, 2] and the discovery of fluid/gravity duality [3, 4] (see [5]

for a review). In the latter case the fluid lives on the AdS boundary, but more general fluid

dynamical descriptions of black brane dynamics in diverse asymptotic spacetimes (including
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flat space) have also been found in the context of the blackfold approach [6–8]. The relation

between AdS fluid/gravity and flat space blackfolds in the context of D3-branes has been

considered in [9].

In hydrodynamics the dynamical equations of a system are captured by the combined

set of a few conservation equations (typically, the conservation equations of the stress-

energy tensor and some abelian currents) and a set of constitutive relations that reduce

the number of independent degrees of freedom. Important modifications to these equations

arise when external forces are applied, or when the symmetries underlying the conservation

equations are anomalous. Although the standard formulation of hydrodynamic equations

refers to long-wavelength deformations of finite temperature homogeneous configurations,

general hydrodynamic systems can exhibit a variety of interesting extensions. These ex-

tensions can include, for instance, the presence of anisotropies, symmetries associated to

higher spin currents, or the propagation of the fluid on dynamical hypersurfaces. In this

paper we will encounter ideal, non-anomalous, forced hydrodynamic systems with many of

these extensions.

The hydrodynamic systems that will be considered in this paper are derived from

the classical long-wavelength dynamics of black holes and branes in general (super)gravity

theories in the spirit of the general connection between fluids and gravity outlined above.

Forced fluids have been discussed in the context of AdS black hole solutions and the fluid-

gravity correspondence in several papers in the past, see for instance [10]. The extension

beyond AdS along the lines of the blackfold formalism introduces new ingredients and new

technical complications. Let us quickly summarize some of these issues.

Forced blackfold equations in (super)gravity. In blackfold generalizations of the

fluid/gravity correspondence the long-wavelength expansion of the (super)gravity equations

around black brane solutions is an affair that combines the fluid dynamical nature of black

hole physics [7–9, 11, 12] with the extrinsic (elastic) dynamics [7, 13–25] of hypersurfaces

in ambient spacetimes that is characteristic of D-brane physics. Unfortunately, even the

case of black holes in flat space is sufficiently complicated and it has not yet been studied

systematically beyond the first order in the derivative expansion. The case of black holes in

asymptotic spacetimes with arbitrary curved geometry and other non-trivial fluxes, which

is the main case of interest in this paper, clearly involves an even more demanding technical

treatment. Some of the main conceptual and technical issues that arise in this context are

summarized in the discussion of section 5. In this paper we will not attempt to address

a complete solution of these issues. Our main focus will remain on the leading order

perturbations in supergravity aiming to isolate and determine the generic features of the

effective fluid dynamical description that arise at this order.

One of the new ingredients that blackfolds introduce, and whose implications we want

to emphasize here, is the simultaneous presence and interplay of different higher spin cur-

rents and background abelian gauge fields. Black holes and branes can be coupled electri-

cally, magnetically or dyonically with respect to these gauge fields. The long-wavelength

analysis of the dynamics of such solutions in arbitrary backgrounds leads to forced effective

fluids with external forces that involve a variety of different couplings between the higher
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spin currents and the background gauge fields. The structure of these couplings is uniquely

determined from the action of the underlying (super)gravity theory. We will perform a gen-

eral analysis of this structure at the leading order of the long-wavelength expansion.

The precise identification of this structure is not only interesting as an academic exer-

cise in fluid dynamics, it is also one of the first steps towards a systematic long-wavelength

analysis of black hole solutions in general backgrounds. For example, it can be useful in

problems that involve black holes in the background of curved geometries, e.g. black holes in

the vicinity of other black holes, problems that involve extremal, and non-extremal, brane

solutions in backgrounds with fluxes in the context of string theory (describing the grav-

itational backreaction of massive configurations of D/M-branes), and problems with real

time dynamics where the background is forcing a black hole solution to evolve dynamically

in time.

In the context of the blackfold formalism, most of the developments have focused so far

on black hole solutions in flat spacetimes [16, 26, 27]. Preliminary aspects of black brane

solutions in AdS spacetimes have been studied in [14, 19, 28, 29] (see also [15]). For specific

AdS flux backgrounds, thermal probe brane techniques based on the blackfold approach

have been applied in [28, 29] to construct thermal giant gravitons. However, a general

treatment of blackfolds in general backgrounds with fluxes in (super)gravity theories has

not been performed and part of our motivation is to initiate such study.

Another motivation for this work is the recent proposal [30] (see also [31] for related

independent work building on [17, 32, 33]) that the effective hydrodynamic description of

black brane solutions in the blackfold formalism is connected to the underlying microscopic

description of D/M-branes in string/M-theory via a general open/closed string duality that

works in many cases in gravity as a tomographic principle. In the proposal of ref. [30]

the abelian hydrodynamic blackfold equations are conjectured to be effective equations

of singleton dynamics. They provide a strong-coupling description of the effective long-

wavelength dynamics of the abelian, center-of-mass degrees of freedom of D/M-branes. In

accordance with this expectation it was demonstrated in specific examples in [30] that the

leading order blackfold equations of extremal p-brane configurations in string theory are

equivalent to the DBI equations that describe long-wavelength dynamics of D-branes.

The formulation of the blackfold equations in backgrounds with arbitrary fluxes, that

we venture here, will allow us to probe this conjecture further, in more detail and in more

generic situations. As an immediate forthcoming task one can test the expected equivalence

of the extremal forced blackfold equations derived in this paper with the full set of well-

known open-closed string couplings in the DBI action. The proof of this equivalence would

provide a pure supergravity derivation of the complete DBI action (including all open-

closed string couplings). A similar exercise could be performed in M-theory to re-derive

from supergravity the PST action of M5-branes [34], which is a theory of a self-dual 3-form

field. Earlier related work in this direction has appeared in [23, 35].

Brief summary of technical results and outline of the paper. The main task of

this paper is to provide a general treatment of the leading order collective mode equations

of p-brane solutions in arbitrary backgrounds for generic (super)gravity theories. We follow
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the general strategy of the blackfold approach and work in a long-wavelength derivative

expansion around an exact or an approximate solution of the supergravity equations of

motion (see section 5 for an explicit discussion of this distinction).

In the (super)gravity analysis of the blackfold approach one attempts to construct a

perturbatively deformed black hole solution in a scheme of matched asymptotic expansions

(MAEs). A separate perturbative analysis of the gravity equations is performed in the far-

zone (near the fixed asymptotic background), and in the near-zone (in the vicinity of the

black hole horizon). At the end the solutions in the two zones are matched order-by-order

in the perturbative expansion. Explicit applications of MAEs in the context of blackfolds

can be found in [11–13, 22], to which we refer the reader for further details.

In section 2 we discuss how an arbitrary asymptotic background affects the constraint

equations (and associated conservation equations) in the far-zone analysis. Working in

the linearized approximation, in this region we describe the leading order modifications

of the asymptotic geometry in the presence of a bulk source. As such, this treatment

is very general and conceptually straightforward. On its own, it applies to very general

black hole solutions and requires no assumptions of a long-wavelength expansion. The

obtained conservation equations, which arise as Bianchi identities in gravity and abelian

gauge theory, are exact and valid for generic configurations with arbitrary derivatives, in

space and/or in time. We formulate them in terms of generic currents without reference

to specific black holes and specific constituent relations. The key elements of the analysis

are exhibited first in a simplified model of an Einstein-dilaton theory with a (q + 1)-form

gauge field. Then, the logic is applied in more general settings that include the ten-

dimensional type-IIA/B, and eleven-dimensional supergravity theories to obtain the general

forced blackfold equations in string/M-theory. Besides the standard Lorentz coupling of

the schematic form F · J between background gauge field strengths F and currents J ,

as well as their electromagnetic duals, one can also see, in the forced equations of the

stress-energy tensor, couplings of the schematic form F · C · J arising from Chern-Simons

interactions in the supergravity theory. One can also see explicitly the corresponding

background-dependent modifications of the conservation equations of the abelian currents.

In section 3 we initiate the study of the same equations in the near-zone region. At

this point we need to be very specific about the type of solution that we consider. We

can only proceed in a systematic way by setting up a perturbative expansion scheme.

This is the point where the separation of scales and the small derivatives (inherent in the

blackfold approach) are most needed to set up the matched asymptotic expansion that

will allow us to extend the solution in the near-horizon region and to incorporate the

full non-linearities of gravity beyond the linearized approximation. Generalizing earlier

results for neutral black p-brane solutions, we consider the cases of charged black branes in

Einstein-dilaton theories and Dp-F1 bound states in type II supergravity. We focus on the

constraint equations of gravity that lead to the corresponding effective blackfold equations.

The Dp-F1 case is particularly interesting because it demonstrates very explicitly how

couplings between currents of different spin and background fields arise simultaneously in

the force terms. Of course, in all cases we reproduce the results of the asymptotic linearized

treatment of section 2. The added benefit of the near-zone analysis is that it gives us a first
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taste of the ansätze that need to be implemented to find the near-zone deformations of the

supergravity solutions. Eventually these solutions should be matched to the solutions of

the far-zone analysis.

In section 4 we present yet another derivation of the forced blackfold equations by

studying how external couplings arise in hydrostatic partition functions. After a general

discussion we focus on the cases of solutions with Maxwell charge and top-form charged

black p-brane solutions. This approach is based on the analysis of the on-shell gravitational

action. It applies only to stationary configurations and leads to a natural connection with

standard relations in thermodynamics. The forced blackfold equations arise in this case,

in a standard fashion, as Ward identities of the on-shell gravitational action.

Finally, in section 5 we conclude with a general overview of the approach and a sum-

marizing discussion of some of the key conceptual issues that can arise in generic long-

wavelength treatments of black holes in non-trivial background geometries. We point out

that in ideal situations (that we dub the ‘exact brane’ application of blackfolds) one has

exact information about a specific (leading order) homogeneous black brane configuration

that is subsequently perturbed in small derivatives along the homogeneous directions. Since

such exact information is mostly absent in situations with arbitrary asymptotic geometries

we highlight the role that is usually played by parallel expansions of the leading order order

solution. These are expansions in small numbers that are typically ratios of quantities of

the leading order order solution over quantities characterizing the background. The disad-

vantage of this approach is the implementation of further approximations; the advantage

is the possibility of a wider, more flexible application of the method. We briefly comment

on the open-closed string interpretation of these additional approximations in the context

of the proposal [30]. We conclude section 5 with a list of interesting open problems that

could be treated in a natural continuation of this work.

We provide four appendices. In appendix A, we give the form notation that we employ

throughout the paper. In appendix B, we provide the equations of motion and probe

brane equations derived in section 2 for the special case of type II A/B supergravity and in

appendix C, we provide the effective charges and currents for the brane solutions considered

in sections 3 and 4. Finally, in appendix D an entropy current analysis of the forced fluids

considered in section 4.3 is given.

Notation. Throughout this paper we will use Greek letters, µ, ν, . . ., to denote the D-

dimensional spacetime directions xµ, and small Latin letters, a, b, . . ., to express the p+ 1

(worldvolume) directions σa, along which a p-brane solution is infinitely extended. The

Minkowski metric is denoted by ηµν , G is Newton’s gravitational constant and ? denotes

the D-dimensional Hodge star operator. Further details on our notation can be found in

appendix A.

2 Far-zone analysis

In this section we concentrate on the asymptotic region far from the black hole horizon

at radial distances r � rH , where rH is the location of the black hole horizon. In this
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region the gravitational fields are small deformations, weighted by positive powers of the

small ratio rH/r, of the asymptotic solution. In the asymptotic solution the gravitational

field (and any other matter field) are assumed arbitrary. In particular, at this point, no

assumption of weak field or small derivatives is made. The leading deformations induced

by the black hole in the bulk can be studied in this region by analyzing the linearized

Einstein equations

(Gµν − 8πGTMµν) |linear = 0 , (2.1)

where TMµν denotes the stress-energy contribution of any sources of energy/matter that

are present in the gravitational theory. The subscript linear in (2.1) is there to remind

that the Einstein equations are linearized around the asymptotic background.

The method of equivalent sources1 allows us to replace the complicated details of the

bulk with an effective stress-energy tensor Tµν localized in the bulk

(Gµν − 8πGTMµν) |linear = 8πGTµν , (2.2)

where Tµν , which is supported on a (p+1)-dimensional hypersurface for a p-brane solution,

is sourcing the gravitational field of interest at large distances. Solving (2.2) for all r and

extracting the result for r � rH is equivalent to solving (2.1). Using the Bianchi identity

∇µGµν = 0 in (2.2) we find that the total stress-energy tensor is conserved, namely

∇µTµν = −∇µTµν
M . (2.3)

In what follows we will use the full set of gravitational equations to re-express the r.h.s.

of this equation in terms of the asymptotic profile of the gravitational fields and other

currents characterizing the source. At the end, the r.h.s. will be recast as a force term

driven by the non-trivial asymptotic profiles of the gravitational fields.

The equations derived in this way from (2.3) are equations describing a probe brane

in the asymptotic background. For example, when Tµν is the stress-energy tensor of a

charged point particle, and Tµν
M is the stress-energy tensor of a U(1) gauge field, eq. (2.3)

provides a derivation of the Lorentz force acting on the particle [39]. Similar modified

conservation equations of other currents will be derived from the Bianchi identities of bulk

gauge fields.

In the rest of this section, we will use this strategy to derive the equations of motion

of generic probe branes in Einstein-dilaton theory with a (q + 1)-form gauge field, type

IIA/B and eleven dimensional supergravity. The results cover the most general type of

brane bound states that can be encountered in string theory.

The above derivation based on the linearized approximation (2.2) is (in a sense)

straightforward, yet it turns out to provide very general expressions with very few as-

sumptions. This will be most appreciated in the next section when we try to track Tµν

in the bulk of the solution away from the asymptotic region. The same Tµν (and other

currents) with the same modified conservation equations will arise there as constraint equa-

tions of the non-linear Einstein equations. Nevertheless, the treatment of the solution at

1See for example [36] and [37, 38].

– 6 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
4

finite radius r will be much harder and a systematic analysis will require more assumptions

and more case-specific data.

It is also worth stressing that from the point of view of the full solution across the

whole spacetime, the effective currents and their conservation equations are not merely

probe data and probe equations, in fact, they are describing a full-fledged backreacted

solution of the gravitational equations (see section 3).

2.1 Einstein-dilaton theory with a (q + 1)-form gauge field

We start with the simplest system of Einstein-dilaton theory with a (q + 1)-form gauge

field with action

I =
1

16πG

∫
MD

[
?R− 1

2
dφ ∧ ?dφ− 1

2
eaqφFq+2 ∧ ?Fq+2

]
, (2.4)

where the dilaton coupling aq is arbitrary. We wish to couple a probe brane to field

configurations which are solutions to the equations of motion that arise from (2.4). We

consider a probe brane carrying an electric current Jq+1, a magnetic current JD−q−3 and

a dilaton current jφ coupled to the fields of the theory (2.4). The presence of the magnetic

current modifies the Bianchi identity for the (q + 2)-form field strength Fq+2 so that

dFq+2 = 16πG ?JD−q−3 , Fq+2 = dCq+1 + 16πG ? DD−q−2 , (2.5)

where DD−q−2 is the Dirac brane defined by ?JD−q−3 = d ? DD−q−2. The equations of

motion for the gauge field Cq+1 and the dilaton φ for the theory (2.4) coupled to sources are

d ?
(
eaqφFq+2

)
= (−1)D+q2−116πG ? Jq+1 ,

�φ− aq
2
eaqφ ? (Fq+2 ∧ ?Fq+2) = −16πGjφ .

(2.6)

In order to evaluate the r.h.s. of eq. (2.3) we require the explicit form of the en-

ergy/matter contributions to Tµν
M . Splitting Tµν

M as Tµν
M = Tµν

(F ) + Tµν
(φ) we obtain the bulk

stress-energy tensor for the (q + 1)-form gauge field and the dilaton

16πGTµν
(F ) =

eaqφ

(q + 1)!

(
F
µµ1...µq+1

q+2 Fq+2
ν
µ1...µq+1

− 1

2(q + 2)
gµνF 2

q+2

)
,

16πGTµν
(φ) = ∂µφ∂νφ− 1

2
gµν∂λφ∂

λφ .

(2.7)

Inserting these expressions into the r.h.s. of eq. (2.3) we find

16πG∇µTµν
M =

1

(q+1)!
F
νµ1...µq+1

q+2 ∇µ
(
eaqφFµq+2µ1...µq+1

)
− eaqφ

(q+2)!
F
µ1...µq+2

q+2 dF νq+2µ1...µq+2

+
(
�φ− aq

2
eaqφ ? (Fq+2 ∧ ?Fq+2)

)
∂νφ . (2.8)

This result simplifies further by using the equations of motion (2.6). Inserting the final

expression into (2.3) leads to the modified conservation equation

∇µTµν =
1

(q + 1)!
F
νµ1...µq+1

q+2 Jq+1µ1...µq+1

+
(−1)qD+1eaqφ

(D − q − 3)!
F
νµ1...µD−q−3

D−q−2 JD−q−3µ1...µD−q−3
+ jφ∂

νφ ,

(2.9)
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where we have defined the dual field strength via the relation FD−q−2 = ?Fq+2. In the case

of a non-dilatonic electrically charged point-particle (q = 0), eq. (2.9) yields the Lorentz

force. In general, eq. (2.9) describes the electric coupling to the field strength Fq+2 and

to its dual FD−q−2. In addition, we obtain from general principles the force due to the

presence of background dilaton fields, which is proportional to the gradient of φ. This

type of force has been encountered previously, for example, in the context of forced fluid

dynamics [10] in the fluid/gravity correspondence.

The conservation equations for the currents Jq+1 and JD−q−3 can be obtained similarly

as Bianchi identities from the first equation in (2.5) and (2.6). They yield

d ? Jq+1 = 0 ,

d ?JD−q−3 = 0 .
(2.10)

The dilaton current jφ does not obey any conservation equation, as can be seen from its

equation of motion (2.6).

The dilaton in the case above (and all others considered in this paper) describes pri-

mary hair. We remark that in some setups there can be extra equations, that do not

originate from conservation equations, but as a consequence of boundary conditions. This

is for example the case in forced superfluid dynamics considered in [40] where the con-

servation equations are supplemented by an extra equation coming from requiring AdS

asymptotics, which in the dual fluid description becomes the zero curl condition on the

superfluid velocity.

Equations for localized stress-energy tensor and currents. The equations of mo-

tion (2.9)–(2.10) were obtained for arbitrary stress-energy tensor and currents. However, in

most of this work we are interested in localized stress-energy tensor and currents describing

a (p+ 1)-dimensional probe. In this particular case,

Tµν = Tµν δ̃(n+2)(xµ −Xµ) , Jq+1 = Jq+1δ̃
(n+2)(xµ −Xµ) ,

JD−q−3 = JD−q−3δ̃
(n+2)(xµ −Xµ) , jφ = jφδ̃

(n+2)(xµ −Xµ) ,
(2.11)

where δ̃(n+2)(xµ − Xµ) is the reparametrization invariant delta function localized in the

(n+ 2) = (D − p− 1)-transverse directions, xµ are spacetime coordinates and Xµ the set

of mapping functions describing the position of the object in the ambient spacetime with

metric gµν . All indices in (2.11) are tangential to the probe’s worldvolume Wp+1, e.g.,

Tµν = T ab∂aX
µ∂bX

ν where ∂aX
µ acts as a projector onto the worldvolume. Projecting

eq. (2.9) along the worldvolume one obtains

∇aT ab =
1

(q + 1)!
F ba1...aq+1

q+2 Jq+1a1...aq+1

+
(−1)qD+1eaqφ

(D − q − 3)!
F ba1...aD−q−3

D−q−2 JD−q−3a1...aD−q−3
+ jφ∂

bϕ ,

(2.12)

expressing the conservation of the stress-energy tensor along the worldvolume. Here, and in

the following, we have introduced Fq+2, ϕ to denote the pull-back of the background fields

– 8 –
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Fq+2, φ onto the worldvolume of the brane. Defining the transverse projector niµ onto the

transverse (n+ 2)-dimensional space such that niµ∂aX
µ = 0 we can project eq. (2.9) along

the transverse direction to obtain

T abKab
i =

1

(q + 1)!
F ia1...aq+1

q+2 Jq+1a1...aq+1

+
(−1)qD+1eaqφ

(D − q − 3)!
F ia1...aD−q−3

D−q−2 JD−q−3a1...aD−q−3
+ jφ∂

iϕ ,

(2.13)

where Kab
i = niµ∇a∂bXµ is the extrinsic curvature of the worldvolume. Eq. (2.13) expresses

the mechanical balance of forces on the worldvolume.

Finally, the current conservation equations (2.10) lead to

∇a1J
a1...aq+1

q+1 = 0 , ∇a1J
a1...aD−q−3

D−q−3 = 0 , (2.14)

which express the conservation of electric and magnetic currents along the worldvolume.2

So far we do not assume any specific form for the currents. In section 3 we will present

explicit cases of these equations that arise as constraint equations for perturbations of

particular types of black brane solutions.

2.2 Type IIA/B supergravity

Next we consider the slightly more non-trivial cases of type IIA/B supergravity. Both

of these cases can be treated in the same framework using the democratic formulation

introduced in [41], in which the number of degrees of freedom of the RR sector are doubled.3

The action for the bosonic sector of ten-dimensional supergravity in the Einstein frame can

be written as [41],

I =
1

16πG

∫
M10

[
?R− 1

2
dφ ∧ ?dφ− 1

2
e−φH3 ∧ ?H3 −

1

4

∑
q

eaqφF̃q+2 ∧ ?F̃q+2

]
, (2.15)

where the dilaton coupling aq is given by aq = (3 − q)/2 and D = 10. Here the index q

runs over the values q = 0, 2, 4, 6 for type IIA4 and the values q = −1, 3, 5, 7 for type IIB.

In this theory, we consider a brane probe with electric current j2, which sources the

NSNS field strength H3, and a set of electric currents Jq+1, which source the RR field

strengths F̃q+2. We also assume that the brane is characterized by a dilatonic current jφ
and several magnetic currents, namely, a non-zero magnetic current j6, which modifies the

Bianchi identity for H3, and a set of magnetic currents JD−q−3, which modify the Bianchi

identities for the RR fields, i.e.,

dH3 = 16πG ? j6 ,

dF̃q+2 −H3 ∧ F̃q = 16πG (?JD−q−3 − (?j6 ∧ Cq−1)) .
(2.16)

2We have not assumed the existence of any boundaries ∂Wp+1. In case they are present these equations

must be supplemented by the boundary conditions T abηa = J
a1...aq+1

q+1 ηa1 = J a1...aD−q−3

D−q−3 ηa1 |∂Wp+1 = 0.
3One may consider the more general case in which the degrees of freedom of the NSNS sector are also

doubled [42, 43], however, these formulations introduce several new structures which are not required for

the purposes of this paper.
4We are not including here the case q = 8, however, the results presented in this section could be easily

generalized to include this case.
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This implies that the field strengths H3 and F̃q+2 are given by the expressions

H3 = dB2 + 16πG ?D7 , F̃q+2 = Fq+2 −H3 ∧ Cq−1 , (2.17)

where we have defined Fq+2 = dCq+1 + 16πG ? DD−q−2. We have introduced the Dirac

brane D7 satisfying ?j6 = d?D7, as well as the Dirac branes DD−q−2 satisfying ?JD−q−3 =

d ?DD−q−2 . One may now couple the currents of the charged probe brane to the fields of

the theory (2.15) via the sourced equations of motion

d

(
?(e−φH3)−

∑
q

1

2!
eaqφ

[
?F̃q+2 ∧ Cq−1

])
= −16πG ? j2 ,

d ? (eaq F̃q+2) + (−1)qeaq+2φ
[
?F̃q+4 ∧H3

]
= (−1)q16πG ? Jq+1 ,

�φ+
1

2
e−φ ? (H3 ∧ ?H3)−

∑
q

aq
4
eaqφ ? (F̃q+2 ∧ ?F̃q+2) = −16πGjφ .

(2.18)

We note that the second equation in (2.18) is in fact a set of equations, one for each q

present in (2.15). As noted in [41], the action (2.15) is a pseudo-action and the equations

of motion (2.18) must be supplemented by the duality relations

F̃q+2 = (−1)[q/2]+1e−aqφ ? F̃D−q−2 , (2.19)

in order to account for the correct number of degrees of freedom. Once imposing (2.19),

the equations of motion for the higher-form fields F̃q+2 with q = 4, . . . , 7 yield the Bianchi

identities (2.16) for the lower form fields q = −1, . . . , 3, while the Bianchi identities for the

higher-form fields yield the equations of motion for the lower form fields. This means that

the 8 currents (4 electric and 4 magnetic) associated with the higher-form fields are given

in terms of the currents associated with the lower form fields, i.e.,

?JD−q−3 = (−1)q+1+[q/2] (?JD−q−3 − (?j6 ∧ Cq−1)) ,

?Jq+1 = (−1)[q/2] (?J q+1 − (?j6 ∧ CD−q−5)) , q = 4 . . . , 7 ,
(2.20)

and furthermore, due to the self-duality relation F̃5 = ?F̃5 we also have that

? J4 = − (?J 4 − (?j6 ∧ C2)) . (2.21)

Using the explicit form of the stress-energy tensor contributions (2.7), with appropriate

factors,5 one may readily derive as before the equations of motion of a probe brane in type

5The stress-energy tensor for the RR fields in the action (2.15) is given by 1/2 of (2.7) due to the 1/4

factor in the action (2.15) for the RR fields.
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IIA/B supergravity. The final expression is

∇µTµν =
1

2!
Hνµ1µ2

3 j2µ1µ2 +
e−φ

6!
Hνµ1...µ6

7 j6µ1...µ6 + jφ∂
νφ

+
∑
q

1

(q + 1)!

(
F̃
νµ1...µq+1

q+2 + (−1)q+1 q(q + 1)

2!
Hνµ1µ2

3 C
µ3...µq+1

q−1

)
Jq+1µ1...µq+1

+
∑
q

eaqφ

(q̃ + 1)!

(
F̃
νµ1...µq̃+1

q̃+2 + (−1)q̃+1 q̃(q̃ − 1)

2!
Hνµ1µ2

3 C
µ3...µq+1

q̃−1

)
J q̃+1µ1...µq̃+1

+
1

4!

(
F̃ νµ1...µ45 + 3Hνµ1µ2

3 Cµ3...µ42

)
J4µ1...µ4

−
∑
q

eaqφ

(q + 2)!
F̃
µ1...µq+2

q+2 [?j6 ∧ Cq−1]νµ1...µq+2
, (2.22)

where we have introduced the dual of H3 via the relation H7 = ?H3 and the duals F̃D−q−2 =

?F̃q+2. The sums over q take values only over q = −1, . . . , 2 and we have introduced

q̃ = D − q − 4. Note that since we have imposed the duality conditions (2.19) we assume

in (2.19) that Cq = 0 for q ≥ 3. The type of force terms involved here include Lorentz

forces due to the presence of H3, H7, Fq+2 and F̃q̃+2, the force term due to the non-trivial

dilaton as well as several force term originating from Chern-Simons terms.

One can also obtain the conservation equations for the remaining currents using

eqs. (2.16) and (2.18). They are

d ? Jq+1 + (−1)q+1 ? Jq+3 ∧H3 + (−1)q+1eaq+2φ ? F̃q+4 ∧ ?j6 = 0 , q = 0, . . . , 3

d ?JD−q−3 = 0 , q = −1, 0 , d ?JD−q−3 = H3 ∧ ?JD−q−1 , q = 1, 2 ,

d ? j2 = 0 , d ? j6 = 0 .

(2.23)

The dilaton current jφ does not obey any conservation equation neither does the cur-

rent J(0).

The reader can find the more specific form of the above expressions for each of the

type IIA/B cases explicitly in appendix B.

2.3 Eleven-dimensional supergravity

Finally we consider probe branes coupled to field configurations which are solutions of the

eleven-dimensional supergravity action [44]6

I =
1

16πG

∫
M11

[
?R− 1

2
F4 ∧ ?F4 −

1

6

∫
C3 ∧ F4 ∧ F4

]
. (2.24)

The probe branes are assumed to carry an electric current J3 and a magnetic current J 6.

The presence of the magnetic current modifies the Bianchi identity for the field strength

F4 so that

dF4 = 16πG ?J 6 , F4 = dC3 + 16πG ? D7 , (2.25)

6It is possible, instead, to use the democratic formulation of eleven-dimensional supergravity [45] but

this necessitates introducing auxiliary variables. While such endeavor might be of interest, it goes beyond

the purposes of this paper.
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where we have introduced the Dirac brane D7 satisfying ?J 6 = d ? D7. The electric

coupling modifies the supergravity equations of motion

d ? F4 +
1

2
(F4 ∧ F4) = −16πG ? J3 . (2.26)

Repeating the procedure of the previous sections, we deduce the following modified

conservation equations

∇µTµν =
1

3!
F νµ1µ2µ33 J3µ1µ2µ3 +

1

6!
F νµ1...µ67 J 6µ1...µ6 ,

d ? J3 + ?J 6 ∧ F4 = 0 ,

d ?J 6 = 0 ,

(2.27)

where we have defined the dual field strength F7 such that F7 = ?F4. In contrast with the

type IIA/B cases, here the force equations (2.27) include only the Lorentz force terms.

3 Near-zone analysis

We are now in position to move to the more involved part of our analysis. Our main task is

to study the gravitational equations in the bulk near the horizon of the putative solution,

and to identify there the role of the modified conservation equations of the previous section.

This entails concrete information about the form of the bulk solution and the physics near

the horizon. In order to proceed systematically it is convenient to restrict the scope of the

exercise in two ways.

First, it is useful to consider solutions that are long-wavelength deformations of a

leading order homogeneous solution (with the proper asymptotics at infinity). If R is the

characteristic length scale of the deformation, then, by assumption, we consider the long-

wavelength regime rH � R where rH is the smallest scale associated to the brane (such as

the horizon size).7 The near-zone analysis focuses on the region r � R. In the discussion

of section 5 we refer to this long-wavelength expansion as the ‘exact brane’ application

of blackfolds. This expansion assumes an exact (partially) homogeneous solution of the

gravitational equations with the required large-r asymptotics.

Since an exact leading order solution is not always known it is frequently useful to resort

to a further parallel expansion of the leading order solution in powers of the small ratio rH/L,

where L is the characteristic length scale of the background. In this regime, rH � R, L,

the perturbative expansion assumes small derivatives not only of the black brane solution

we are searching for, but also small derivatives of the asymptotic background solution. At

leading order in rH/L we can approximate the leading order solution in the near-zone region

by a black p-brane solution in flat space. That is the basis of a concrete ansatz for the

gravitational fields in the near-zone region. Further qualitative features of the above two

expansions are reviewed and re-discussed in the section 5.

7More precisely, in order to determine the regime of validity of these long-wavelength deformations, it

is required that the magnitude of all scalar invariants (including scalars associated with the background)

appearing in an effective action at a given perturbative order is much smaller than those of the preceding

orders. Specific details for stationary perturbations and uncharged branes can be found in [26].
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In this section we proceed with the assumption of the double-perturbative regime
rH/R� 1, rH/L� 1, and determine the role of the modified conservation equations at lead-

ing order in the perturbation. We show in specific examples that equations like (2.9) arise

as constraint equations in gravity in exact analogy to the derivations in the fluid/gravity

correspondence. Conservation equations of the type (2.12) and (2.14) arise from worldvol-

ume (intrinsic) perturbations of the brane solution, while the equilibrium equations (2.13),

that determine Xµ, arise from elastic-type (extrinsic) perturbations which break the sym-

metries of the transverse space to the worldvolume. We consider separately both types

of perturbations.

Extending the analysis of [22] for neutral branes we treat in this section the case of

perturbations of dilatonic black p-branes charged under a (p+ 1)-form gauge potential and

the Dp-F1 bound state in type II string theory, both in the presence of external background

fields. These two representative cases serve as illustrative examples, which can be further

extended to more complicated brane configurations and/or to theories with additional

matter fields.

3.1 Constraint equations for charged black branes

We start by considering the example of charged p-brane solutions in theories of gravity

with spacetime action (2.4) with q = p. Besides the metric, the theory includes a dilaton

and a (p+1)-form gauge field. We focus on the class of charged dilatonic p-brane solutions

to the equations of motion that arise from (2.4) obtained in [46]. Incorporating a boost

velocity ua on the worldvolume, the metric, dilaton φ and the (p+1)-form gauge field Cp+1

of the corresponding charged p-brane take the form

ds2 = H−
Nn
D−2 (Pab − fuaub) dσadσb +H

N(p+1)
D−2

(
f−1dr2 + r2dΩ2

(n+1)

)
,

φ =
apN

2
logH , Cp+1 =

√
N cothα

(
H−1 − 1

)
?(p+1) 1 .

(3.1)

Here Pab = ηab + uaub is the projector on the worldvolume in directions orthogonal to the

constant unit timelike vector ua, while ?(p+1)1 = dt∧dx1 ∧ . . .∧dxp is the induced volume

form on the worldvolume. The functions f ≡ f(r) and H ≡ H(r) are given by

f(r) = 1−
(r0

r

)n
, H(r) = 1 +

(r0

r

)n
sinh2 α . (3.2)

The dilaton coupling constant is arbitrary and related to N, p,D through

n = D − p− 3 , a2
p =

4

N
− 2(p+ 1)n

D − 2
. (3.3)

The effective currents and charges for this particular solution are given in appendix C.1.

We have also introduced the induced metric on the worldvolume ηab = ηµν ∂aX
µ∂bX

ν

with trivial embedding scalars Xµ, such that ∂aX
µ = δµa . If the embedding scalars Xµ,

which determine the position of the worldvolume geometry, are non-trivial, they will induce

a spontaneous breaking of the isometry group of the asymptotic background solution. In

the case of flat space we have the breaking

SO(1, D − 1)→ SO(1, p)× SO(n+ 2) .
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Leading order ansatz in the presence of background fields. Starting from the

exact solution above, we wish to construct classes of solutions to the action (2.4) that

asymptote at large r to a given background solution

ds2 = gµν(x)dxµdxν , φ(x) , Cp+1(x) . (3.4)

Here, the asymptotic background fields gµν , φ and Cp+1 are a priori arbitrary profiles. We

now assume that we put a brane in this background with embedding coordinates Xµ(σ) and

that the (shortest) length scale L characterizing the background is much larger than the

(largest) length scale rH that enters the black brane solution (3.1), i.e. rH � L. Thus to

leading order we can ignore the variations of the background fields close to the brane. Given

the brane with embedding coordinates Xµ(σ) and a foliation in the transverse coordinates,

which we denote collectively by y, we can parametrize the spacetime with coordinates

Xµ(σ, y) where we choose Xµ(σ, 0) = Xµ(σ). This means that in the overlap region, i.e.

the asymptotic region of the brane, the background can be approximated as

ds2 ' γab(σ, y) dσadσb + dr2 + r2dΩ2
(n+1) , φ ' ϕ(σ, y) , Cp+1 ' Cp+1(σ, y) . (3.5)

Here

γab(σ, y) = ∂aX
µ∂bX

νgµν(X(σ, y)) , ϕ(σ, y) = φ(X(σ, y)) , Cp+1(σ, y) = Cp+1(X(σ, y))

(3.6)

are the pull-backs of the background fields (3.4) onto the foliated hypersurfaces spanning

the spacetime. In particular for suitable chosen transverse coordinates (see below) at y = 0

these expressions are the pull-back onto the worldvolume Wp+1 of the brane.

To leading order we can make an ansatz for the full solution that at short distances

is described by (3.1) and at large distances by (3.4). This can be achieved by considering

perturbations to the exact solution (3.1) in which we promote the free constant parameters

r0, α, u
a, ∂aX

µ to slowly varying functions of the worldvolume coordinates σa, providing

the leading order ansatz

ds2 = H−
Nn
D−2 (Pab(σ, y)− fua(σ)ub(σ)) dσadσb +H

N(p+1)
D−2

(
f−1dr2 + r2dΩ2

(n+1)

)
,

Cp+1 = Cp+1(σ, y) + e−apϕ(σ,y)/2
√
N cothα(σ)

(
H−1 − 1

)
?(p+1) 1 , (3.7)

φ = ϕ(σ, y) +
apN

2
logH .

Here Pab(σ, y) = γab(σ, y) + ua(σ)ub(σ) and γab(σ, y), Cp+1(σ, y), ϕ(σ, y) are the pull-backs

of the background fields given in (3.6). We also note that the functions f and H depend on

σ through their dependence on r0, α. Furthermore, we have only kept the σ-dependence in

ua(σ), absorbing possibly y-dependent terms into higher order corrections to the metric.

This ansatz has the property that it asymptotes at large r to the background (3.5)

in the overlap region and, moreover it solves the equations of motion with constant γab =

ηab, Cp+1, u
a, ϕ, r0, and α as it essentially reduces to (3.1). To see this, note first

that we can always add a constant Cp+1 to the gauge field Cp+1 as it corresponds to a

gauge transformation and second that we can always shift the dilaton with a constant ϕ
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if we also rescale the field strength with a constant factor e−apϕ/2. Indeed, both of these

transformations correspond to symmetries of the action (2.4).

Once the brane parameters are promoted to functions of σa as is done in the

ansatz (3.7), it is necessary to add corrections to all of the fields, which are determined

by solving the equations of motion of the action. In a derivative expansion, these correc-

tions can be of two types: intrinsic and extrinsic. To first order, intrinsic corrections are

derivative corrections in the brane parameters r0, α, u
a, ϕ. Denoting λ as the minimum

length scale associated with fluctuations of these fields, we introduce the small expansion

parameter ε = rH/λ� 1 which controls intrinsic perturbations.

Extrinsic perturbations, in turn, are fluctuations in the extrinsic geometry of the brane

worldvolume. To first order they appear due to the non-zero extrinsic curvature Kab
i of

the induced metric. Denoting R as the length scale associated to such fluctuations we

introduce the expansion parameter ε̃ = rH/R � 1 which controls extrinsic perturbations.

In general, the corrections appear as a multipole expansion in the transverse sphere S(n+1).

For example, for the metric perturbation, we can write to first order in derivatives

hµν(r, θ) = εfµν(r) + ε̃ cos θ dµν(r) + . . . , (3.8)

where fµν(r) is the monopole part and purely intrinsic and dµν(r) is the dipole part and

purely extrinsic. Thus at first order intrinsic and extrinsic deformations decouple, which

will be used below. To higher orders the two types of perturbations couple generically. It

is important to stress that our focus will not be to determine the corrections hµν (and the

corresponding ones for the gauge field and dilaton), but instead to extract the subset of

field equations that are exactly independent of these corrections.

Intrinsic equations. We first consider the intrinsic perturbations fµν , which do not

break the symmetries of the transverse space, i.e. ∂aX
µ = δµa so that the induced metric

becomes trivial. It follows that the leading order background metric (3.5) in the overlap

region is given by

ds2 = ηab dσadσb + dr2 + r2dΩ2
(n+1) , φ = ϕ(σ) , Cp+1 = Cp+1(σ) , (3.9)

and we proceed by considering the derivative expansion of the leading order solution (3.7).

Because the background fields only depend on the worldvolume coordinates σa, the intrinsic

perturbations do not couple to extrinsic perturbations. The analysis of these perturbations

is very similar to that of the well-known fluid/gravity correspondence [10] (see also [47, 48]

which treats the case for charged branes).

The expansion is controlled by the parameter ε which is assumed to be of the order of

the inverse length scale of the variation of the fields ua, ϕ, r0, and α over the length scale

λ of the fluctuations. We can then write, up to first order, the expansions

ds2 = ds2
(0) + εfµνdxµdxν , φ = φ(0) + εφ(1) , Cp+1 = C

(0)
p+1 + εC

(1)
p+1 , (3.10)

where we regard (3.7) as the first term in the expansion, i.e., as ds2
(0), φ

(0), and C
(0)
p+1 and

the (intrinsic) fields ua, ϕ, r0, and α are expanded at a given point P such that

ua(σ) = ua|P + εσb∂bu
a|P +O(ε2) , ϕ(σ) = ϕ|P + εσa∂aϕ|P +O(ε2)

r0(σ) = r0|P + εσa∂ar0|P +O(ε2) , α(σ) = α|P + εσa∂aα|P +O(ε2) .
(3.11)
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We note that since Cp+1 does not depend on the transverse space coordinates it simply

corresponds to a gauge transformation. It therefore plays an irrelevant role for flat extrinsic

geometry. The expansions (3.10) are then inserted into the field equations that arise from

the action (2.4) with the stress-energy tensor for the energy/matter fields given in (2.7).

The resulting equations are regarded as “ultralocal” in the worldvolume coordinates and

are as such simply linear ordinary differential equations for radial fluctuations of the metric,

dilaton, and gauge field in the background (3.7).

It is interesting to note that the first order source terms appearing in the ODE’s for

the metric do not involve derivatives of the background scalar ϕ. The first order metric

corrections fµν are therefore not altered by the non-trivial background to first order. In

fact, they were determined in [12]. The constraint equations constitute a subset of the

field equations, coming from the (rb) component of the metric EOM and the (a1 . . . ap)

component of the gauge field EOM. To first order they take the form

∇aT ab = jφ∂
bϕ , ∇aJ

aa1...ap
p+1 = 0 , (3.12)

where we have introduced the modified current and dilaton current

Jp+1 = ?(p+1)

(
eapϕ/2Qp

)
, jφ =

ap
2

ΦpQp . (3.13)

The stress-energy tensor T ab, the total electric charge Qp and electric potential Φp are

given in appendix C.1. The equations (3.12) are valid for all values of r up to first order

in derivatives. One could now proceed order-by-order in the expansion, but since we

are interested in simultaneously considering extrinsic perturbations of the worldvolume

geometry we truncate at first order.

Extrinsic equations. We now repeat the same steps as in the analysis for the extrinsic

perturbations performed for neutral branes8 in [22], but with a non-trivial background.

To consider the extrinsic perturbations it is useful to introduce Fermi normal coordinates

adapted to the worldvolume Wp+1. In these coordinates, the metric is parametrized by

the coordinates (σa, yi) where yi = 0 denotes the position of the worldvolume Wp+1 in the

transverse (n+ 2)-dimensional space. Thus we have that δX i(σ, y) = yi for the transverse

scalars around the flat embedding ηab and under the variation Xi → Xi + δX i one finds

that the induced metric transforms as δγab = −2Kab
iδXi = −2Kab

iyi.

The perturbations along any of the coordinates yi decouple [49] and therefore we

restrict the analysis to a given i = î. Introducing the direction cosine yî = r cos θ and

noting that r2 = yiy
i, a curved worldvolume metric γab to first order in derivatives in these

coordinates can then be expanded as

γab = ηab − 2K î
ab r cos θ +O(ε̃2) , (3.14)

8As noted in [22] the analysis of that paper still holds for charged branes and/or backgrounds with

a non-trivial metric. The generalization below thus pertains mainly the fact that we allow for further

non-trivial background fields.
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where Kab
î is a one-derivative term of O(ε̃). This means that the leading order background

metric (3.5) in the overlap region is given by

ds2 =
(
ηab − 2Kab

î r cos θ
)

dσadσb + dr2 + r2
(

dθ2 + sin2 θ dΩ2
(n)

)
,

Cp+1 = Cp+1(y) , φ = ϕ(y) .
(3.15)

Note that in this case we only allow the background fields to have dependence on the

transverse coordinates y, so that the extrinsic perturbations are decoupled from the intrinsic

ones. We also remark that we can assume that the background field strength is non-zero

only in the singled-out direction yî. In principle, Fp+2 = dCp+1 could have non-zero

components in two or more transverse directions, however, it is not difficult to realize

that such components do not play a role to leading order and only become important at

higher orders.

We now consider a dipole-type perturbation to first order in ε̃ and write the expansion

of the fields as

ds2 = ds2
(0) + ε̃ cos θdµν(r)dxµdxν , φ = φ(0) + ε̃φ(1) , Fp+2 = dC

(0)
p+1 + ε̃dC

(1)
p+1 , (3.16)

where we regard (3.7) as the first term in the expansion (denoted by subscript (0)), and

we note that dyî = (cos θdr − r sin θdθ). Analogous to [22] we focus on the large r region

of the near-zone solution. In this region, the metric takes the form

ds2 =

(
ηab − 2Kab

î r cos θ +
16πG

nΩ(n+1)

(
Tab(σ)− T (σ)

D − 2
ηab

)
1

rn

)
dσadσb

+

(
1− 16πG

Ω(n+1)

1

D − 2

T (σ)

rn

)
dr2 + r2

(
dθ2 + sin2 θ dΩ2

(n)

)
+ ε̃ cos θ dµν(r)dxµdxν +O(ε̃2) +O(T 2

ab/r
2n) ,

(3.17)

while the field strength and dilaton are given by

Fp+2 = F
(M)
p+2 + ε̃Fp+2 +O(ε̃2) +O

(
T 2
ab/r

2n
)
,

dφ = dφ(M) + ε̃dϕ+O(ε̃2) +O
(
T 2
ab/r

2n
)
.

(3.18)

The first order corrections dC
(1)
p+1 and dφ(1) drop out as they appear at higher order in the

large r expansion. This also means that only the monopole part - by definition of order

O(Tab/r
n) - of dC

(0)
p+1 and dφ(0) plays a role, which we denote by F

(M)
p+2 and dφ(M) and are

given by

F
(M)
p+2 = −e−apϕ/2 16πG

Ω(n+1)

Qp
rn+1

dr ∧ ?(p+1)1 , dφ(M) = − 16πG

Ω(n+1)

apΦpQp
2rn+1

dr . (3.19)

and are thus determined by the current source (3.13) of the brane.

In the presence of non-trivial background fields, we therefore see that the bulk stress

tensor TMµν does not vanish at large r distances. Indeed, from (3.18) the stress-energy
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tensor consists of a simple pole-dipole term and in particular does not involve the metric

and background field perturbations. The combination

(n+ 1) csc θ (Grθ − 8πGTMrθ)− r sec θ (Grr − 8πGTMrr) = 0 , (3.20)

is therefore still a constraint equation9 with TMµν = T
(F )
Mµν + T

(φ)
Mµν and takes the modi-

fied form
n+ 2

rn
8πG

Ω(n+1)

(
T abK î

ab −F î
)

= 0 , (3.21)

where F î is the induced force term given by the pole-dipole interaction term

F î =
Ω(n+1)

n+ 2
rn ((n+ 1)csc θTMrθ − r sec θTMrr) . (3.22)

To evaluate the force term (3.22) we use the expressions (2.7) for the stress-energy tensor,

insert the expansion (3.18) keeping only the pole-dipole contribution and then use (3.19)

along with (3.13). Covariantizing the result for any i = î, we arrive at the following

constraint equation

T abK i
ab = niµ

(
1

(p+ 1)!
Fµµ1...µp+1

p+2 Jp+1µ1...µp+1 + jφ∂
µϕ

)
, (3.23)

where the currents Jp+1 and jφ are given by eq. (3.13). We emphasize that the quantities ap-

pearing in the constraint equation (3.23) are evaluated in the region rH � r � min(R, L).

Together (3.12) and (3.23) are in agreement with eqs. (2.12)–(2.14) for a localized stress-

energy tensor and current.

3.2 Constraint equations for the Dp-F1 bound state

We now apply the same procedure to the non-extremal Dp-F1 bound state, which will

exhibit some new features. The non-extremal Dp-F1 bound state in the Einstein frame has

the metric [50]

ds2 = D
1−p
8 H

p−7
8 (−fuaub + vavb) dσadσb +D

9−p
8 H

p−7
8 ⊥ab dσadσb

+D
1−p
8 H

p+1
8
(
f−1dr2 + r2dΩ2

8−p
)
,

(3.24)

where ua is a normalized timelike vector (the boost velocity), va is a normalized spatial

vector characterizing the direction of the F1-string satisfying the orthogonality condition

uava = 0 and the projector onto the worldvolume directions orthogonal to the string is

⊥ab≡ δab + uaub − vavb. The dilaton is given by

e2(φ−ϕ) = D
p−5
2 H

3−p
2 , (3.25)

and the gauge fields are10

B2 = e−aF1ϕ/2 sin ξ
(
H−1 − 1

)
cothα u ∧ v , (3.26)

Cp−1 = (−1)p e−ap−2ϕ/2 tan ξ
(
DH−1 − 1

)
?(p+1) (u ∧ v) , (3.27)

Cp+1 = (−1)p e−apϕ/2 cos ξ
(
H−1 − 1

)
cothα ?(p+1) 1 , (3.28)

9When no background fields are present (TMµν = 0), the constraint equation (3.20) was obtained in [22].
10Beware of the solution in ref. [50] which has a typo in the Cp+1 field that has been correct in ref. [33]

for the D3-F1 solution.
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where B2 is the NSNS two-form, and Cp−1 and Cp+1 are the (p−1)-form and (p+1)-form RR

fields, respectively. The dilaton coupling constants are aq = (3− q)/2 and aF1 = −1. The

Hodge star operator ?(p+1) is defined with respect to the (p+ 1)-dimensional worldvolume

metric. The structure functions f ≡ f(r), D ≡ D(r) and H ≡ H(r) are

f(r) = 1− rn0
rn
, H(r) = 1 +

rn0
rn

sinh2 α , D−1(r) = cos2 ξ +H−1 sin2 ξ , (3.29)

with n = 7 − p. The solution depends on three real parameters; r0 > 0, α, and the angle

ξ ∈ [0, 2π[. For ξ = 0, the solution reduces to the p-brane solution (3.1) in ten dimensions.

Following the previous subsection, we have already included in the expressions above the

redundant shift ϕ of the dilaton to make this particular symmetry of the action manifest.

The field strengths are11

H3 = dB2 , Fp = dCp−1 , F̃p+2 = dCp+1 −H3 ∧ Cp−1 . (3.30)

For the F̃p+2 to be invariant under the gauge transformation δCp−1 = dΛp−2, the (p+ 1)-

form potential should transform as δCp+1 = dΛp−2 ∧ B2. The (p + 2)-form is invariant

under the gauge transformation δCp+1 = dΛp. The effective currents and charges are given

in appendix C.

Ansatz and background fields. The perturbation ansatz is constructed from the

bound-state solution (3.24)–(3.30) by promoting the parameters ua, va, r0, α, ξ to func-

tions of the worldvolume coordinates σa, as well as promoting the worldvolume metric

ηab → γab(σ). In addition, we now include the general background gauge fields B2, Cp−1,

Cp+1 and dilaton ϕ in the overlap region (cf. (3.6)). Explicitly, they enter through the

associated field strengths

H3 = dB2 , Fp = dCp−1 , F̃p+2 = dCp+1 −H3 ∧ Cp−1 . (3.31)

In analogy with (3.7), the ansätze for the field strengths are thus composed by taking

H3 → H3 +H3 , Fp → Fp + Fp and F̃p+2 → F̃p+2 + F̃p+2 . (3.32)

In this way, the background fields do not affect the solution at leading order in the derivative

expansion and the ansatz asymptotes at large r to the pull-back of the background fields

H3 = H3(σ, y) , Fp = Fp(σ, y) , F̃p+2 = F̃p+2(σ, y) , φ = ϕ(σ, y) . (3.33)

The asymptotic charges are altered accordingly

QF1 = eaF1ϕ/2QF1 + (−1)peapϕ/2QpCp−1 , Qp−2 = eap−2ϕ/2Qp−2 , Qp = eapϕ/2Qp ,

(3.34)

where the charge densities QF1, Qp−2 and total charge Qp are given by eq. (C.11) and the

currents take the expected form

j2 = QF1 u ∧ v , Jp−1 = Qp−2 ?(p+1) (u ∧ v) , Jp+1 = Qp ?(p+1) 1 . (3.35)

In the following we consider the intrinsic and extrinsic perturbations separately.

11For p = 3, the composite five-form field strength F̃5 should be made self-dual.
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Intrinsic equations. We restrict the dependence of the background fields to the world-

volume coordinates σa and consider each field in a derivative expansion analogous to

eq. (3.10) allowing in principle for the construction of a multi-charged bound state so-

lution order-by-order. We note that since the fields are restricted to worldvolume coor-

dinate dependence only, the background field Cp+1 simply corresponds to a pure gauge

transformation analogous to section 3.1.

We are interested in the subset of field equations eqs. (B.2) (and (B.6)) that constitute

the set of constraint equations. Taking particular combinations of the constraint equa-

tions, which we list in appendix C.4, these can be expressed as stress-energy and current

conservation equations on the worldvolume

∇aT ab =
1

(p− 1)!

[
F ba1...ap−1
p Jp−1a1...ap−1 + (−1)p+1 1

2
Hba1a23 Ca3...ap+1

p−1 Jp+1a1...ap+1

]
+

1

2
Hba1a23 j2a1a2 + jφ∂

bϕ ,

∇ajab2 = 0 , ∇aJ
ab1...bp−2

p−1 =
1

3!
H3abcJ

abcb1...bp−2

p+1 , ∇aJ
ab1...bp
p+1 = 0 ,

(3.36)

where the dilaton current is related to the charges such that

jφ =
1

2
(aF1QF1ΦF1 + apQpΦp) . (3.37)

These are worldvolume equations and are satisfied for all values of r up to first order in

derivatives. The stress-energy tensor is given in eq. (C.8) and the currents in eq. (3.35).

Extrinsic equations. For the extrinsic perturbations we restrict the dependence of the

background fields to the transverse space spanned by the coordinates yi and consider the

perturbation to first order in a single direction yî = r cos θ. The r-asymptotics of the

near-zone field strengths therefore follow a similar form as (3.18), explicitly

H3 = H
(M)
3 +ε̃H3+O(ε̃2)+O(T 2

ab/r
2n) , Fp = F (M)

p +ε̃Fp+O(ε̃2)+O(T 2
ab/r

2n) ,

(3.38)

F̃p+2 = F̃
(M)
p+2 +ε̃F̃p+2+O(ε̃2)+O(T 2

ab/r
2n) , dφ = dφ(M)+ε̃dϕ+O(ε̃2)+O

(
T 2
ab/r

2n
)
,

while the asymptotic metric is again of the form given by eq. (3.17). The monopole parts

of the leading order fields are

H
(M)
3 = −e−aF1ϕ/2

16πG

Ω(n+1)

QF1

rn+1
dr ∧ u ∧ v ,

F (M)
p = (−1)p+1e−ap−2ϕ/2 16πG

Ω(n+1)

Qp−2

rn+1
dr ∧ ?(p+1)(u ∧ v) ,

F̃
(M)
p+2 = (−1)p+1e−apϕ/2

16πG

Ω(n+1)

Qp
rn+1

dr ∧ ?(p+1)1 , dφ(M) = − 16πG

Ω(n+1)

jφ
rn+1

dr ,

(3.39)

where jφ is given by eq. (3.37).

The constraint equations can again be extracted through the combination of the bulk

stress-energy tensor given by eq. (3.20), where the force terms arising from the presence of
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the background fields are given by eq. (3.22). In particular, the individual covariantized

contributions are

FµH =
1

2
Hµµ1µ23

(
j2µ1µ2 + (−1)p+1 1

(p− 1)!
Cµ3...µp+1

p−1 Jp+1µ1...µp+1

)
,

FµFp =
1

(p− 1)!
Fµµ1...µp−1
p Jp−1µ1...µp−1 ,

Fµ
F̃p+2

=
1

(p+ 1)!
F̃µµ1...µp+1

p+2 Jp+1µ1...µp+1 , Fµφ = jφ∂
µϕ .

(3.40)

We note that the currents j2, Jp−1 and Jp+1 are given by eq. (3.35) in terms of the modified

charges. The extrinsic equations thus take the form

T abK i
ab = niµ

(
FµH + FµFp + FµFp+2

+ Fµφ
)
. (3.41)

This is exactly the stress-energy tensor conservation equation in the perpendicular direc-

tions to the worldvolume.

Finally, we note that the intrinsic equations (3.36) together with the extrinsic equa-

tions (3.41) are in agreement with the far-region analysis (2.22) for localized stress-energy

tensor and currents (see appendix B) once we replace in those expressions the fields with

their pull-back onto the worldvolume (analogous to the discussion at the end of section 2.1),

i.e. F̃q → F̃q for all q and also φ → ϕ. Notice that in this procedure it is understood

that both the fields and their derivatives are pulled-back onto the worldvolume, so e.g.

∂iϕ = [∂iφ(Xµ(σ, y))]|y=0.

It was shown in [30] that the combined set of equations (3.36), (3.41) in a trivial flat

space background at extremality are equivalent to the equations of motion of the (p+ 1)-

dimensional DBI action with an electric field constraint (see eq. (7.34) in [30]). It would

be interesting to extend the analysis of [30] to non-trivial backgrounds using the general

form of (3.36), (3.41) derived here.

4 External couplings from hydrostatic partition functions

In this section we consider another method by which one can derive the couplings to back-

grounds fields and their consequences in the form of the equations of motion. This method

relies on obtaining the hydrostatic partition function from the Euclidean on-shell action for

black holes and requires local measurements of temperature and chemical potentials as well

as the measurement of stress-energy, electric and dilaton currents. As is well-known, the

existence of a hydrostatic partition function requires the existence of a timelike Killing vec-

tor field along which the fluid velocity is aligned [7].12 Therefore, throughout this section

we focus on fluids in stationary equilibrium. Nevertheless, the final form of the equations of

motion that arise from the partition function, including force terms, is completely general.

We begin with general considerations on gravitational partition functions and then derive

12It may be possible to relax the requirement of stationarity or, more generally, of non-dissipative flows,

as advertised in [51, 52], by doubling the number of degrees of freedom.
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the external couplings for black p-branes carrying Maxwell charge as well as for black p-

branes charged under a p-form gauge field. The method can be applied to any bound state

such as the Dp-F1 analyzed in the previous section and we leave this longer endeavor for

future work.

4.1 General considerations on partition functions

In a semi-classical approximation, the partition function Z for a given black hole solution

can be obtained by evaluating the Euclidean on-shell action IE for that particular solution

such that [53]

lnZ = iIE , (4.1)

where we have Wick rotated the time coordinate t → it. In this approximation, the

Euclidean action yields the Gibbs free energy of the black hole, which takes the generic form

iIE = β (M − TS − ΩJ − ΦHQp) , (4.2)

where β = T−1 is the radius of the time circle, T is the global temperature, M the total

energy, Ω the angular velocity, J the angular momentum, ΦH the global chemical potential

and Qp the total electric charge of the black hole. The generic form of (4.2) is a consequence

of stationarity. Therefore, the partition function obeys the relation

d (T lnZ) = SdT + JdΩ +QpdΦH , (4.3)

consistent with the first law of thermodynamics, which leads to the following thermody-

namic identities

S =
∂ (T lnZ)

∂T
, J =

∂ (T lnZ)

∂Ω
, Qp =

∂ (T lnZ)

∂ΦH
. (4.4)

In the following, we will consider the partition function of a generic black p-brane with

a definite temperature, chemical potential (or equivalently horizon radius r0 and charge

parameter α), boost velocity ua and boundary values of the external gauge fields Cq+1 and

dilaton field ϕ. Furthermore, due to stationarity, we assume that the boost velocity is

aligned with a worldvolume Killing vector field ka such that ua = ka/k with k being its

norm. Due to the translational invariance of the partition function along the worldvolume

Wp+1, the partition function must factorize,

Z =
∏
Wp+1

ZVp , (4.5)

where ZVp denotes the partition function of the arbitrarily small p-dimensional volume.

We now consider perturbing the black brane to a new stationary solution by allowing the

black brane parameters to depend on the worldvolume coordinates σa. In this case, the

partition function takes the form

Z =
∏
Wp+1

ZVp(σ) +O (ε, ε̃) , (4.6)
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where the derivative corrections of order O (ε, ε̃) are evaluated from solving the equations

of motion for a given theory and determining the corresponding perturbations. However,

in order to derive the constraint equations obtained in the previous sections, it is not

necessary to consider higher-order corrections. Therefore, in what follows we will restrict

the analysis to the leading order case for which the partition function of the leading order

solution takes the form

lnZ =

∫
Wp+1

?(p+1) lnZ0[γab,k
b, X i, Cq+1, ϕ] , (4.7)

where lnZ0 denotes the partition function of the uncorrected p-brane as a function of

the external background sources. Here, the worldvolume Killing vector field ka should be

understood as the pull-back of a background Killing vector field kµ and Xi the transverse

embedding scalars denoting the position of the worldvolume in the ambient space. The

external gauge field and dilaton in (4.7) should be understood either as the pull-back onto

the worldvolume of the external fields or as the components of the external fields projected

and evaluated on the worldvolume.

Except for possible gauge or gravitational anomalies, the partition function (4.7) must

be invariant under diffeomorphisms and gauge transformations. Under worldvolume diffeo-

morphisms the induced metric transforms as δ||γab = 2∇(aξb), the gauge field transform as

δ||Cq+1 = ξa∇aCq+1µ1...µq+1 +∇µ1ξνCq+1νµ2...µq+1 + . . .+∇µq+1ξ
νCq+1µ1µ2...ν and the dilaton

transforms as δ||ϕ = ξa∂aϕ. The Killing vector is held fixed, due to stationarity, as well

as the transverse scalars since we are performing a Lagrangian type variation.13 Assuming

that no boundaries are present, this leads to the variation of the partition function

δ|| lnZ =

∫
Wp+1

?(p+1)

(
∇aT ab −

1

(q + 1)!
F bq+2a1...aq+1

J
a1...aq+1

q+1 − jφ∂bϕ
)
ξb , (4.8)

where we have used the fact that invariance of (4.7) under gauge transformations δCq+1 =

dΛq leads to the current conservation equation

∇a1J
a1...aq+1

q+1 = 0 . (4.9)

In (4.8) we have introduced the worldvolume stress-energy tensor, electric current and

dilaton current via the expressions

T ab = − 2

β
√
−γ

δ lnZ
δγab

, J
a1...aq+1

q+1 = − 1

β
√
−γ

δ lnZ
δCq+1a1...aq+1

, jφ = − 1

β
√
−γ

δ lnZ
δϕ

. (4.10)

Since (4.8) must hold for arbitrary ξb we find that we must have

∇aT ab =
1

(q + 1)!
F bq+2 a1...aq+1

J
a1...aq+1

q+1 + jφ∂
bϕ . (4.11)

13Lagrangian type variations are variations in which the worldvolume position, characterized by the

transverse scalars Xi, is held fixed and the background metric is displaced. Alternatively, one may consider

a variational scheme in which the background metric is held fixed and the transverse scalars are displaced.

These two types of variations are equivalent, even to higher order in derivatives [54].
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Analogously, considering a diffeomorphism in the directions orthogonal to the worldvolume

the induced metric transforms as δ⊥γab = −2Kab
iξi and one finds the equation of motion

T abKab
i =

1

(q + 1)!
F iq+2 a1...aq+1

J
a1...aq+1

q+1 + jφ∂
iϕ . (4.12)

Once the partition function (4.7) is given in terms of the background sources, one may just

use (4.10) to obtain the stress-energy tensor and currents while under direct variation with

respect to Xi one obtains the equation of motion (4.12) and hence the non-trivial form of

the force terms.

It is interesting to note that the partition function (4.7) can be written as a localized

integral over the spacetime, i.e.

lnZ =

∫
MD

? lnZ0[γab,k
b, X i, Cq+1, ϕ]δ̃(n+2)(xi −Xi) , (4.13)

where xi are spacetime coordinates and δ̃(n+2) the reparametrization invariant delta func-

tion in the transverse (n+ 2)-dimensional space. Written in this form, one can extract the

spacetime stress tensor, which takes the general form

Tµν = − 2√
−g

δ (T lnZ)

δgµν
= T ab∂aX

µ∂bX
ν δ̃(D−p−1)(xi −Xi) , (4.14)

where T ab is the worldvolume stress-energy tensor obtained using (4.10) and ∂aX
µ is a

projector along the worldvolume directions. Here, Xµ is the set of mapping functions which

includes the (p + 1)-worldvolume directions besides the transverse scalars Xi. Therefore,

to leading order, spacetime stress-energy tensors that arise from (4.7) represent localized

objects in the ambient background with metric gµν .

We note that even though stationarity will impose some restrictions on the form of

the currents or configurations that solve (4.11)–(4.12), the form of the equations of mo-

tion (4.11)–(4.12), obtained by demanding diffeomorphism and gauge invariance of the

partition function, is completely general and matches exactly those obtained in (2.12)

and (2.13) derived from (2.9) for a stress-energy tensor of the form (4.14) as well as with

localized electric and dilaton currents and without a magnetic current.

4.2 External couplings for black branes carrying Maxwell charge

In this section we consider the case of black p-branes carrying Maxwell charge, which were

not analyzed in the previous sections. These are also solutions to the action (2.4) but with

a two form field strength F2 (q = 0) and for simplicity we consider the case where no

dilaton field is present. The metric and gauge field can be found in [11] and read

ds2 = HN−2
((
Pab −H−Nfuaub

)
dσadσb + f−1dr2 + r2dΩ2

(n+1)

)
,

C1 =

√
N

H

(r0

r

)n
sinhα coshα uadσ

a , N =
2(n+ p+ 1)

n+ p
,

(4.15)

where the functions f and H were given in (3.2). Here r0 and α are the horizon radius

and charge parameter, respectively. In order to evaluate the Euclidean on-shell action we
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need to add appropriate boundary counter-terms to the action (2.4). Using the fact that

on-shell (for general q) one has

? R =
1

2
dφ ∧ ?dφ+ eaqφ

(
1

2
− q + 1

D − 2

)
Fq+2 ∧ ?Fq+2 , (4.16)

the Euclidean action over a D-dimensional region Y with boundary ∂Y for q = 0 and

aq = 0 becomes

IE =
1

8πG

∫
∂Y
?[K]− 1

16πG

1

(D − 2)

∫
∂Y
C1 ∧ ?F2 , (4.17)

where the boundary ∂Y is chosen to be a constant radial slice at infinity in the geometry

of (4.15) and where [K] denotes the difference between the extrinsic curvature of a constant

radial slice in (4.15) and the analogous radial slice in flat spacetime written in the same

coordinates as in (4.15) but with an appropriate temperature redshift at infinity.

Analogous to the case considered in section 3.1 of p-branes with a top-form, we con-

struct the leading order ansatz by adding a constant gauge field C1 to C1 via a local

gauge transformation such that, without loss of generality, the boosted gauge field (4.15)

is given by

C1 → C1 + C1bu
buadσ

a . (4.18)

However, such gauge transformation does not affect the evaluation of (4.17). This is because

in order to evaluate the Euclidean action one must require the gauge field to be regular at

the horizon by subtracting its value at the horizon as in [53]. In practice, this means that

we must perform the shift C1 → C1 − (Φp + C1bu
b)uadσ

a via a local gauge transformation

and therefore removing potential contributions due to C1. Given this, explicit evaluation

of (4.17) leads to the Euclidean on-shell action

IE = −iβ
Ω(n+1)

16πG

∫
Bp
?(p)r

n
0 , (4.19)

where we have taken the worldvolume geometry to be Wp+1 = R × Bp with Bp being the

spatial part and ?(p)1 =
√
−γdσ1∧. . .∧dσp (see appendix A). We note that (4.19) is simply

proportional to the pressure P as written explicitly in appendix C.2 and that it must be

extremized at fixed global temperature and chemical potential.

The integrand in (4.19) is a local version of the Gibbs free energy of the brane. In

order to obtain the partition function one must re-express it in terms of the background

sources as in (4.7) for stationary configurations. In order to do so, we must demand gauge

invariance, which from (4.9) implies that the electric current must be conserved ∇aJa1 = 0.

Furthermore, we must also demand worldvolume diffeomorphism invariance which, in this

case, using (4.11), requires that

∇aT ab = F b2aJ
a
1 , (4.20)

where both the stress-energy tensor and electric current are given in appendix C.2. The

projection of this equation along the fluid flows ua is automatically satisfied due to the

fact that the r.h.s. vanishes by symmetry while the l.h.s. vanishes due to the fact that the

– 25 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
4

electric current is conserved and assuming the existence of a conserved entropy current

Jas = sua. The projection of eq. (4.20) perpendicular to the fluid flows leads to

T sP cb
(
∂b ln T + ab

)
+Q(Φp − C1au

a)P cb

(
∂b ln(Φp − C1au

a) + ab
)

= 0 , (4.21)

where ab = ua∇aub is the fluid acceleration. Here we have assumed that the fluid velocity

ua is aligned with a worldvolume Killing vector field ka with modulus k, that is, ua = ka/k

and furthermore that for any stationary configuration one must have that LkT = 0 for an

arbitrary tensor T. Eq. (4.21) is solved by requiring the local temperature T and chemical

potential Φp to satisfy

T = kT , ΦH = k (Φp − C1au
a) , (4.22)

where T is the constant global temperature and ΦH the constant global chemical potential.

When the background gauge field C1 vanishes, this reduces to the solution found in [18].

Using the relation between local temperature, horizon radius and chemical potential

given in eqs. (C.3) and (C.5) in appendix C.1 together with (4.22) and (4.19), the partition

function (4.7) takes the form

lnZ = β
Ω(n+1)

16πG

( n

4πT

)n ∫
Bp
?(p)k

n

(
1−

Φ2
H

Nk2 −
(C1au

a)2

N

)Nn
2

, (4.23)

where we have used (4.22) to replace terms containing Φp. For consistency we note that,

using (4.23), we can easily extract the electric current, i.e.,

Ja1 = −∂ lnZ
∂Φp

∂Φp

∂C1a
= Qua , (4.24)

and also the correct perfect fluid stress-energy tensor

T ab = Pγab + (nP +QΦp)u
aub = Pγab + (ε+ P )uaub , (4.25)

in agreement with appendix C.2. The equations of motion that follow from varying (4.23)

by an arbitrary diffeomorphism are exactly those of (4.11) and (4.12) for q = 0.

Finally, we consider changing to another ensemble that resembles the usual coupling of

charged point particles moving in an external electric field where the total electric charge

is held constant. This can be done by performing a global Legendre transformation by

adding a term of the form Q1ΦH to (4.23) with Q1 being the total electric charge given by

Q1 =

∫
Bp
Quana , na =

ξa
R0

, (4.26)

where ξa∂a is the worldvolume Killing vector associated with time translations and R0 its

norm. The partition function (4.23) becomes

lnZ = β

(
−
∫
Bp
?(p)P +Q1ΦH

)
= β

(∫
Bp
?(p)(ε− T s) +

∫
Bp
?(p)QuaC1a

)
, (4.27)

where the energy density ε, temperature T and entropy density s are given in eqs. (C.7)

and (C.3). The partition function (4.27) yields the same equations of motion as (4.23) as

long as variations are taken at constant global electric charge Q1.
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4.3 External couplings for black branes carrying q = p-brane charge

In this section we focus on the more complicated case of black brane solutions (3.1) to the

action (2.4) with external sources of gauge Cq+1 and dilaton field ϕ. In order to evaluate

the Euclidean on-shell action we consider the general result (4.16) for q = p. In such case

the Euclidean action over a D-dimensional region Y with boundary ∂Y becomes

IE =
1

8πG

∫
∂Y
?[K]− 1

16πG

(p+ 1)

(D − 2)

∫
∂Y
eapφCp+1 ∧ ?Fp+2 , (4.28)

where the boundary ∂Y is chosen to be a constant radial slice at infinity in the geometry

of (3.1). Since this case is qualitatively different than the previous example, we first

consider the situation for which no background gauge or dilaton fields are present, i.e.,

Cq+1 = ϕ = 0. In order to evaluate (4.17) we consider the gauge field and its field strength

near infinity using (3.1),

Cp+1 =

(
−16πGQp

nrn
− Φp

)
?(p+1) 1 +O

(r0

r

)2n
,

Fp+2 = 16πG
Qp

r(n+1)
dr ∧ ?(p+1)1 +O

(r0

r

)2n+1
,

(4.29)

where we have shifted the gauge field, via a gauge transformation, by subtracting the hori-

zon chemical potential Φp =
√
N tanhα so that the gauge field is regular at the horizon [46]

as in the example of the previous section.

Direct evaluation of (4.17) and using (4.29) leads to the same form of the Euclidean

on-shell action (4.19) as in the previous example. In this case, the integrand of (4.19) is

identified with the local Gibbs free energy G of the brane and not with the pressure (see

eq. (C.2)). In order to re-express it in terms of the background sources as in (4.7), we

demand gauge invariance and worldvolume diffeomorphism invariance. The former implies

that the electric current Jp+1 as given in (C.1) is conserved which in turn implies that the

total dipole charge Qp is constant on the worldvolume, i.e.,

∂aQp = 0 . (4.30)

This condition suggests that the thermodynamic ensemble of the Euclidean action (4.19)

at fixed global temperature and global chemical potential is not the appropriate one in

order to directly deal with the worldvolume conservation equations. For this reason, one

changes to a new ensemble where the total charge Qp is held constant instead of the global

chemical potential. As in [20], we perform a local Legendre transformation by adding ΦpQp
to the Gibbs free energy G. By doing so, the Euclidean action (4.19) at fixed Qp, which we

refer to as ĨE, is given by

ĨE = −iβ
∫
Bp
?(p)

(
Ω(n+1)

16πG
rn0 + ΦpQp

)
= −iβ

∫
Bp
?(p)P , (4.31)
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where the pressure P is given in eq. (C.2) of appendix C.1. However, since (4.31) must

hold globally, we readily identify the global chemical potential ΦH as14

ΦH =

∫
Bp
?(p) Φp . (4.32)

We now turn to the requirement of worldvolume diffeomorphism invariance, which in the

absence of external backgrounds fields is given by (4.11), i.e., ∇aT ab = 0. Assuming the

conservation of the entropy current Jas = sua, this set of equations is solved by

T = kT , ua =
ka

k
. (4.33)

We note that Φp is not a local degree of freedom of the fluid because it is completely

determined by the condition (4.30) and therefore does not contribute to the solution (4.33).

Given the solution (4.33) and using the relation between the local temperature T of the

black brane (3.1) in terms of the horizon radius r0 and chemical potential Φp (eqs. (C.3)

and (C.5) in appendix C.1) the partition function (4.7) takes the form

lnZ = β
Ω(n+1)

16πG

( n

4πT

)n ∫
Bp
?(p)k

n

(
1−

Φ2
p

N

)Nn
2
(

1 +
nΦ2

p

1− Φ2
p

N

)
, (4.34)

and should be extremized at fixed T and Qp.
15 Alternatively, since we have identified

the global chemical potential (4.32) one may perform the inverse Legendre transformation

of (4.31) in order to obtain a variational principle at fixed T and ΦH as in [20].

Adding external background fields. We now consider introducing background values

for the dilaton and gauge fields. As explained in section 3.1, a constant shift in the dilaton

field is a symmetry of the action (2.4) and leads to a rescaling of the gauge field, i.e.,

φ→ φ+ ϕ , Cp+1 → e−
ap
2
ϕCp+1 . (4.35)

In turn this implies that the chemical potential and the electric charge are rescaled accor-

ding to

Φp = e−
ap
2
ϕΦp , Qp = e

ap
2
ϕQp (4.36)

such that the product ΦpQp = ΦpQp remains invariant. We then add a constant gauge field

Cq+1 such that Cp+1 → Cp+1 + Cq+1. Analogously to the previous case, constant shifts of

the gauge field do not affect the evaluation of the Euclidean on-shell action while constant

shifts of the dilaton only modify the result via (4.36). This is expected since both these

shifts are symmetries of the action (2.4). Therefore, once again, the Euclidean on-shell

action is given by (4.19).

14Since in order to obtain the global chemical potential one must integrate over the local one, Φp is

better understood as a density of chemical potential on the brane, analogously to the energy density ε or

the entropy density s.
15It may not be evident from (4.34) but the correct perfect fluid stress-energy tensor (C.1) follows

from (4.34) using (4.10) and noting that (δ lnZ/δΦp)|T,Qp = 0.
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The presence of background fields, however, changes significantly the analysis. De-

manding gauge invariance now implies that the modified charge is conserved along the

worldvolume, i.e., ∂aQp = 0 since the electric current is now given by (3.13). As in the

case where no external background fields were present, one should now change to a new

ensemble where Qp is held constant instead of the global chemical potential but prior to

do so we will consider the requirement of diffeomorphism invariance (4.11) which in this

case reads

∇aT ab = jφ∂
bϕ , (4.37)

where jφ is given in (3.13). We note that there is no Lorentz force because Cp+1 is a top-form

from the worldvolume point of view. As we will see below, this implies that the background

field Cp+1 will not affect the requirements due to worldvolume diffeomorphism invariance

but it will contribute to changes in the global chemical potential. We now proceed and try

to find a stationary solution to (4.37) for arbitrary background sources. Projecting (4.37)

along ub leads to a vanishing l.h.s. assuming the conservation of the entropy current and

therefore we obtain the condition ua∂aϕ = 0. This condition suggests that one must, as in

the previous cases, choose ua = ka/k and in fact we demonstrate in appendix D that this

must indeed be the case in order to have a fluid configuration that does not dissipate. On

the other hand, the projection of (4.37) perpendicular to the fluid flows leads to

T sP cb
(
∂b ln T + ab

)
= jφP

c
b∂
bϕ . (4.38)

We see that the driving force due to a spatially varying dilaton must be compensated by

a modification of the local temperature T compared to (4.33) since the dilaton current jφ
is non-vanishing at leading order. Note that this case is qualitatively different than the

case considered in [10] since there jφ appears at first order in derivatives and hence plays

no role at leading order. In order to solve (4.38) we denote the m worldvolume directions

perpendicular to ua collectively by σ̃ = {σ̃1, . . . , σ̃m} and make the ansatz

T =
T

k
f(σ̃) , (4.39)

for constant global temperature T and for some function f(σ̃) to be determined. Introduc-

ing this ansatz into (4.38) leads to16

T s∂c ln f(σ̃) = jφ∂cϕ(σ̃) . (4.40)

It is now imperative to note that the product T s, as well as the dilaton current jφ, is a

function of the temperature T and the global charge Qp for the specific case that we are

considering. Obtaining the dependence of these quantities in terms of T is not straight-

forward as it demands obtaining Φp in terms of Qp. This can be done analytically in

appropriate small or large charge limits as in [28, 29] and for specific values of n. Nev-

ertheless, the final result is always dependent on T and therefore from (4.39) and (4.40)

the function f(σ̃) will always depend non-trivially on the global temperature T . When

16Note that ϕ can also depend on the transverse scalars Xi without affecting the analysis that we are

carrying out.
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such dependence is introduced in the partition function (4.7) then direct evaluation of the

entropy using (4.10) would lead to modifications to the entropy current Jas = sua which

are not present at leading order.17 This forces us to conclude that there are no stationary

solutions to (4.37) with current jφ as given in (3.13) and with a spatially varying dilaton

ϕ(σ̃) along the worldvolume directions. In turn, we conclude that there are no regular sta-

tionary black holes constructed from fluid-type deformations of (3.1) with a spatial varying

dilaton background field along worldvolume directions, though it can depend non-trivially

on the transverse scalars Xi. Therefore, the solution (4.33) still holds with the further

requirement that ∂aϕ = 0 when the temperature T is non-zero. At extremality (T = 0)

the result is different. In this case, the stress-energy tensor becomes T ab = −e−apϕ/2Qpγ
ab

and therefore (4.37) is automatically satisfied.

Given the stationary solution at finite temperature just obtained, we have all the

necessary ingredients to write the partition function in terms of the background sources.

However, as mentioned earlier, the presence of a background top-form gauge field does

not affect (4.33) but can contribute to changes in the global chemical potential (4.32).

We parametrize this ignorance by considering an additional contribution Φ̃p to the global

chemical potential (4.32) such that

ΦH =

∫
Bp
?(p) Φp +

∫
Bp

Φ̃p . (4.41)

We now consider performing a global Legendre transformation in the Euclidean ac-

tion (4.19) by adding a term of the form QpΦH. The partition function becomes

lnZ = β

(∫
Bp
?(p)G + ΦHQp

)
= −β

∫
Bp

(
?(p)P −QpΦ̃p

)
. (4.42)

Since the background gauge field Cp+1 did not affect (4.33), the pressure P has no depen-

dence on Cp+1. Therefore, demanding consistency with (4.10) we must require that

J
a1...ap+1

p+1 = − 1

β

δ lnZ
δCp+1a1...ap+1

= −Qp

δΦ̃p

δCp+1a1...ap+1

= Qpε
a1...ap+1 , (4.43)

where εa1...ap+1 is the Levi-Civita tensor on the (p+1)-dimensional worldvolume. Eq. (4.43)

has a unique straightforward solution, namely, Φ̃p = −P[Cp+1] where P[Cp+1] is the pull-

back of the gauge field onto the worldvolume. Finally, using the relations between local

temperature and chemical potential in appendix C.1, the solution (4.33), ∂aϕ = 0 and

Φ̃p = −P[Cp+1] we obtain the partition function in terms of the background sources

lnZ = −β
∫
Bp

(
?(p)P + QpP[Cq+1]

)
, (4.44)

where the pressure P is given by

P = −
Ω(n+1)

16πG

( n

4πT

)n
kn

(
1−

eapϕΦ2
p

N

)Nn
2

1 +
neapϕΦ2

p

1− eapϕΦ2
p

N

 . (4.45)

17Besides this general argument, we have not been able to find solutions to (4.40) even in simple cases of

constant driving forces.
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When no background dilaton fields are present, the partition function (4.44) was the one

used in [28, 29] to study giant graviton configurations at finite temperature. As a consis-

tency check, consider obtaining the dilaton current from (4.44) using (4.10), one finds18

jφ = −δ lnZ
δϕ
|T,Qp

=
ap
2
QpΦp , (4.46)

in agreement with (3.13).

The extremal limit. The partition function (4.44) must reduce to the DBI action in

the presence of a background dilaton and gauge field once the extremal limit T → 0 is

taken. This limit requires that r0 → 0, α →∞ and T → 0 while keeping the total charge

Qp fixed. Therefore, at extremality, we find the following limiting behavior for the fluid

pressure P → −e−apϕ/2Qp. Identifying Qp with the brane tension Tp such that Qp = Tp
we obtain the DBI action in the form

S = − 1

β

∫
dt lnZ = −Tp

∫
Wp+1

dp+1σ e−apϕ/2
√
−γ + Tp

∫
Wp+1

P[Cq+1] , (4.47)

as expected. We note that this action is valid for arbitrary background dilaton field ϕ(σ,X i)

contrary to the finite temperature case where ϕ cannot have any dependence on the coor-

dinates σ in stationary equilibrium.

5 Conclusions

The ultimate objective of this work is a systematic construction of black hole solutions in

appropriate long-wavelength expansion schemes in arbitrary (super)gravity theories. In the

present paper we continued work in this direction in the context of the blackfold formalism

to include generic effects of the asymptotic background that arise from curvature, and/or

fluxes of general matter fields. Focusing on the constraint equations of the gravitational

system at first order in the long-wavelength expansion we derived an effective hydrody-

namic description that involves fluids propagating under the influence of external forces.

The resulting equations are the dynamical equations of forced blackfolds. These equations

describe a part of the full dynamics of the putative complete (super)gravity solution. We

conclude with a few remarks on the (super)gravity problem, the regimes of the sought-after

perturbative expansions, and some of the key issues that arise in the presence of generic

asymptotic backgrounds (that are less elaborated upon in the existing literature).

5.1 Comments on the long-wavelength expansions of the blackfold approach

Elements and formulation of the (super)gravity problem. The specific problem

that we want to consider in (super)gravity starts with the following ingredients:

(a) We are given an arbitrary gravitational action in D spacetime dimensions (D > 4).

Besides the metric, this action may involve a variety of other fields, e.g. matter fields

and abelian gauge fields that are common in supergravities.

18Note that by consistency we also find ΦH = −(∂ lnZ/∂Qp)|T where ΦH is given in (4.41) with Φ̃p =

−P[Cp+1].
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(b) An exact (black) p-brane solution of the equations of motion of this action with

specified, but arbitrary asymptotics, is known. We assume that the p-brane solution

has Killing isometries along m ≤ p + 1 non-compact worldvolume directions, and is

characterized by ` independent free parameters, e.g. thermodynamic parameters like

the mass, or other charges. The m symmetries of the solution are a subset of the

symmetries of the asymptotic background. To avoid potential backreaction issues

to the asymptotic background we also assume that the codimension of the p-brane

solution is appropriately high, typically greater than two, D − p− 1 > 2.

Our goal is to construct a larger class of inhomogeneous p-brane solutions with the same

asymptotics, where the m symmetries of the solution in (b) are broken. The new solutions

are continuous deformations of the (partially) homogeneous solution in point (b).

Long-wavelength deformations. The m non-compact symmetric directions imply the

potential existence of symmetry-breaking deformations in a long-wavelength regime. A

natural subclass of such deformations can be attacked with semi-analytic methods that

promote the ` free parameters of the leading order exact solution (b) to arbitrary slowly-

varying functions of the m spacetime coordinates along which we seek to break the sym-

metry. With an appropriate ansatz for the (super)gravity fields based on an order-by-order

deformation of the leading order solution one aims to construct less symmetric solutions

perturbatively in a scheme of small derivative expansions. The best studied and most suc-

cessful application of this logic in gravity has focused on large AdS black holes, where it

leads to the fluid/gravity correspondence. Applications in a wider setting constitute the

basis of the blackfold formalism.

Clearly, the extent of the gravitational dynamics that can be captured in the above

analysis depends on the form of the leading order solution and the ansatz that is employed

to study deformations around it.

The ansätze that were described in the main text and are usually employed in the

context of the blackfold formalism may not cover in general the full set of available long-

wavelength dynamics. In [30] it was emphasized that the blackfold approach captures

the effective long-wavelength dynamics of abelian singleton degrees of freedom, and may

contain only partial information about long-wavelength dynamics of the microscopic non-

abelian degrees of freedom. From a gravitational point of view, a better understanding

of the degrees of freedom that dominate the long-wavelength dynamics can be obtained

by studying the spectrum of quasinormal modes of the black brane solution. A complete

analysis of quasinormal modes of black branes in general spacetimes is currently missing.

‘Exact brane’ applications of the blackfold approach. The (super)gravity problem

that was formulated above provides from the start two exact gravitational solutions: a

solution that fixes the asymptotic spacetime (background solution), and a p-brane solution

with a suitable codimension (leading order solution of the subsequent expansion scheme).

The leading order solution asymptotes to the background solution at large distances along

a radial direction. In general, the two solutions have different symmetries and are char-

acterized by different characteristic scales. Let us call L the characteristic scale of the
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background solution, and rH the characteristic scale of the leading order solution. rH is

a characteristic horizon scale, e.g. it can be the charge radius of a charged p-brane (the

AdS radius for a solution with an AdS near-horizon region), or the Schwarzschild radius

for a black p-brane at finite temperature.19 Carrying out the long-wavelength deformation

analysis exactly in the ratio rH/L will be dubbed the ‘exact brane’ application of blackfolds.

In this exercise the deformation of the leading order solution that we seek introduces

a third scale into the problem: the scale R of deformations. Since we are interested in

long-wavelength deformations, by definition we require the hierarchy of scales

rH � R . (5.1)

Notice that the background scale L does not enter in this inequality, because the leading

order solution is exactly known for all values of rH and L.

The perturbative construction of long-wavelength deformations of the leading order

solution can be pursued with the use of a suitable scheme of matched asymptotic expansions

(MAEs) (see refs. [11–13, 22] for concrete applications of this method in the context of

blackfold constructions). In a MAE the (super)gravity equations are solved separately in

a near-zone region (r � R), and a far-zone region (r � rH). The large hierarchy of

scales (5.1) guarantees the existence of a large intermediate overlap region (rH � r � R)

where the integration constants of the near- and far-zone solutions are matched.

In this context, part of the gravitational equations (constraint equations) result nat-

urally to a (p + 1)-dimensional effective hydrodynamic description of the collective mode

dynamics of the resulting p-brane solution. This description, which was the main theme in

this paper, is formulated as a set of conservation equations for appropriate currents.

These currents are evaluated in the overlap zone, deep in the asymptotic region where

one can position the screen of the effective description. In general, they depend non-trivially

on the details of the background solution and its scale L. As one proceeds order-by-order

in the derivative expansion these currents receive higher-derivative corrections, but the

conservation equations are always formulated as equations of a (p + 1)-dimensional fluid

on a dynamical (elastic) hypersurface propagating in the fixed asymptotic supergravity

background that does not get any corrections in the expansion.

‘Exact brane’ applications and open/closed string duality. Ref. [30] recently ar-

gued that this effective description of collective mode dynamics in gravity is related holo-

graphically to the effective description of a dual non-gravitational higher-spin theory (open

string field theory in the case of D-branes) via a general open/closed string duality. For

extremal p-brane solutions in flat space, it was further anticipated that the derivative cor-

rections of the effective hydrodynamic equations in gravity are dual at all orders to the

higher-derivative corrections of the abelian Dirac-Born-Infeld (DBI) action, which can be

computed independently in classical open string theory.

19The generic situation may involve further characteristic scales with a more complicated pattern of

regimes. We will shortly address such an example below. For the moment we keep a minimum number of

scales to exhibit clearly the basics of the construction.
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Three interesting practical aspects of this connection are the following. First, it is

interesting that gravitational solutions in asymptotically flat space are carrying information

about the higher-spin degrees of freedom of the dual open string field theory. Second,

exact solutions in gravity or the dual open string theory are providing non-perturbative

completions of the hydrodynamic blackfold derivative expansion. Third, when the exercise

is performed in curved/fluxed asymptotic backgrounds in the ‘exact brane’ application (i.e.

exactly in rH/L), the effective long-wavelength description of the collective mode dynamics

is expected to provide an interesting deformation of DBI-like actions that incorporates

information about open-closed string couplings beyond the standard ones in weak coupled

open string theory. Finite temperature corrections are producing further deformations of

DBI-like actions.

Multiple expansions and further approximations in the blackfold approach.

Frequently, in practical applications one has to deal with complicated gravitational config-

urations where some of the exact solution prerequisites of the above (super)gravity problem

are not known. For example, the exact leading order solution is not a priori known, and

has to be constructed from scratch. In that case we cannot proceed with the ‘exact brane’

application of the blackfold formalism that was outlined above. Instead, one can attempt

to employ a secondary parallel expansion scheme that reconstructs the leading order so-

lution perturbatively around a solution in a different asymptotic background [7]. As an

illustration, let us consider two examples emphasizing the interplay of different scales and

the multiple expansions associated with them.

As a first concrete example consider the construction of a black string solution in AdS.

In this case the background characteristic scale is the radius L of the asymptotic AdS

solution. Since an exact leading order black string solution in AdS is not known it was

pointed out in [14] that one could proceed perturbatively in the limit

rH � min(R, L) . (5.2)

Besides the derivative expansion in the limit rH/R � 1, (5.1), which is characteristic of

the ‘exact brane’ application of the blackfold formalism, the inequality (5.2) allows us to

implement a second parallel expansion in the small ratio rH/L. At first order in this second

expansion the leading order solution of the blackfold expansion can be approximated locally

(in the transverse space) by the well-known uniform black string solution in flat space. From

the point of view of the leading order blackfold equations, in this regime one describes how a

black string probe propagates on the AdS background. For details of this approximation we

refer the reader to refs. [14, 19]. More generally, the cases that we considered in section 3 are

of this type, since the charged black brane solutions we use as input are asymptotically flat.

As another example consider the case of a double-centered D3-brane solution in ten-

dimensional type IIB supergravity. Viewing one of the centers as the background spacetime

we can ask whether it is possible to add perturbatively the second center to obtain general

solutions describing how two stacks of D3-branes interact in supergravity. We note imme-

diately that this is a case where the single-centered D3-brane solution cannot be viewed as
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a proper asymptotic background according to the definition of the problem posed in the

beginning. It is clear that the second center backreacts to deform the first center.

In the ‘exact brane’ application of the blackfold formalism in this example the true

background solution is the asymptotic flat space, and one would have to begin with an ex-

act double-centered leading order solution. For example, extremal solutions could be con-

structed perturbatively around the planar double-centered supersymmetric solution with

harmonic function

H = 1 +
L4

|~x− ~∆|4
+
r4
H

|~x|4
. (5.3)

In this expression, we call L the near-horizon AdS radius of the first center at ~x = ~∆, and

rH the near-horizon AdS radius of the second center at |~x| = 0. ~x is a 6-vector parame-

terizing the six-dimensional space transverse to the planar D3-brane worldvolumes of the

leading order solution. The blackfold derivative expansion would proceed by promoting

the scales L, rH , and the vector of relative positions ~∆ to slowly varying functions of the 3-

brane worldvolume coordinates. For this expansion we would simply require the hierarchy

of scales

L, rH , |~∆| � R . (5.4)

It is clear from (5.3) that in regions where |~x| � |~∆| (the vicinity of the second center)

we can approximate the leading order solution in terms of a single-centered uniform 3-brane

in flat-space. In the region rH � |~x| � |~∆| the space asymptotes to the background of the

first center. Then, in the spirit of (5.2) we could employ a multiple expansion in the limit

rH � |~∆| , (5.5a)

rH � min(R, L) . (5.5b)

At first order in the power-series expansion in terms of the small ratios rH/|~∆| and rH/L

we can phrase the blackfold expansion (namely the expansion in powers of rH/R) in terms

of a deformed flat-space D3-brane (representing the second center) that propagates in the

background of the first center. However, unlike the case of the inequality (5.2), at higher

orders of rH/|~∆| and rH/L the backreaction of the second-center D3-blackfold to the first

center background has to be included.

Multiple expansions versus open + closed string theory. As we mentioned pre-

viously, in the case of an exactly known leading order solution and the single expansion

in (5.1), the collective mode (blackfold) equations are phrased as a lower-dimensional the-

ory on a screen propagating in a fixed background. This lower-dimensional theory has a

conjectured open string dual [30]. The open and closed string pictures are complementary

equivalent descriptions of the same dynamics.

In contrast, the above-mentioned multiple expansions, e.g. when (5.2) holds, have a

closer resemblance to an interacting system of both open and closed strings. In the associ-

ated derivative expansion schemes in gravity, the effective theory on the lower-dimensional

screen interacts order-by-order with a dynamical gravitational theory in the bulk. The

dynamics of the ‘open/closed string’ couplings in the gravity-induced effective description
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are expressing the parallel expansion in R/L and the associated backreaction effects of the

probe to the bulk. It would be very interesting to understand better how such multiple

expansions proceed in gravity, and how the bulk-boundary interactions are encoded in the

effective long-wavelength description. From a purely effective field theory point of view,

when the backreaction effects are included one has to deal with related self-gravity effects.

Typically, such effects lead to divergences. Since in the context of the expansions of the full

gravitational equations one has a concrete underlying system of equations that characterize

well-defined gravity solutions, it is natural to expect that a proper understanding of the

gravity-induced effective description knows how to deal properly with such divergences. It

is interesting to examine this aspect in detail. We emphasize again, that no backreaction

effects are expected in the ‘exact brane’ application of the blackfold formalism where the

asymptotic gravity solution is fixed and non-dynamical at all orders in the long-wavelength

derivative expansion.

5.2 Open problems

Let us conclude with the summary of a few interesting open problems that constitute a

natural continuation of the work presented in this paper.

Effective actions for arbitrary background field configurations. In section 4 we

have derived, using diffeomorphism and gauge invariance, the general form of the constraint

equations of systems coupled to a background gauge field Cq+1 and a dilaton ϕ. This,

however, does not exhaust in any way the possible types of couplings and force terms

that have been derived in section 2. In certain cases, it is straightforward to extend the

analysis of section 4 to include further couplings. For example, in the case of type IIA/B

supergravity, one may consider background solutions with H3 6= 0 and probes without

magnetic currents. In these cases, the hydrostatic partition function is easily generalized

by adding further gauge fields of different ranks. However, once magnetic currents are

turned on, it is necessary to consider couplings to the several Dirac branes involved as

in [45]. Furthermore, if H3 is non-vanishing, further work will be necessary in order to

obtain force terms of the schematic form H.C.J . It would be of great interest to understand

such examples in detail since they would allow us to study, for example, the DBI action

and the PST action [34] at finite temperature in an arbitrary background in the spirit

of [17, 23, 28, 29, 32, 33, 55–59].

Effective actions at extremality and new supergravity solutions. The construc-

tion of new extremal supergravity solutions is particularly opportune technically, especially

if some amount of supersymmetry is present. It was pointed out in [35] that a perturba-

tive construction of supersymmetric solutions in a long-wavelength regime may lead to an

interesting framework of G-structure deformations where the Killing spinor version of the

constraint equations is related to κ-symmetry conditions.

It was further pointed out in [30], as we emphasized above, that the long-wavelength

treatment of extremal (but not necessarily supersymmetric) p-brane solutions leads natu-

rally to the DBI equations, well-known from open string theory. It would be interesting to

extend this connection beyond the examples of [30] to include general open-closed string
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couplings of the DBI. It would also be interesting to explore what kind of deformations of

the DBI action are induced in the supergravity-derived blackfold effective action in ‘exact

brane’ applications of blackfolds where one goes beyond the usual probe equations derived

from the use of approximations based on flat space p-brane solutions.

Further development of this formalism in supergravity could be useful in many appli-

cations that require the construction of complicated extremal supergravity solutions. A

particular problem of interest, is the construction of new solutions describing the gravita-

tional backreaction of massive configurations of D/M-branes. Recent applications to brane

intersections in string/M-theory in flat space include [17, 23, 28, 29, 33, 55–57]. Solutions

in supergravity backgrounds with fluxes have not been studied in this manner and it would

be interesting to do so. For example, it would be interesting to examine the backreaction of

anti-brane configurations in backgrounds with fluxes along the lines of recent work in this

direction (see, for instance [60–62]). For example, one can ask about extremal D3-D5 black-

fold constructions in the Klebanov-Strassler background [63] (in analogy to [60, 64, 65]),

or anti-M2 blackfolds at the tip of Stenzel space in M-theory (in analogy to [66–68]). In

all these cases, the real problem, which is also the central issue in the recent literature, has

to do with the construction of the leading order solution (in the language of the previous

subsection). The combination of recent results in the literature of anti-brane backreaction

with MAE techniques frequently used in the blackfold formalism might be fruitful.

More examples of ‘exact brane’ applications; similarities with the tachyon-DBI

derivation. In the formulation of the general supergravity problem in the beginning

of subsection 5.1 we purposely included the case of leading order p-brane solutions with

m < p + 1 symmetric worldvolume directions. In such cases the leading order solution is

already inhomogeneous in p + 1 −m directions. For example, it could be time-dependent

in a time-independent background. It would be interesting to find and examine an explicit

example of this type. At this point one cannot help but notice the analogy of such a case

with S-brane and rolling tachyon solutions in string theory [69, 70] and the corresponding

derivation of the tachyon-DBI action as an open string long-wavelength effective field theory

around the rapidly changing rolling tachyon solution [71].

Forcing and time-dependence. In the presence of a curved/fluxed background the

typical solutions will be non-stationary solutions with a small number of symmetries, with

the non-stationarity being driven by the external forcing. These effects will be manifested

in the exact leading order solution and/or in the forced blackfold equations in multiple

expansions. It is interesting to understand further the physics of such effects, and their

implications in the construction of perturbative time-evolving black brane solutions in

explicit cases; for example, in cases of black brane solutions moving in the vicinity of other

black hole solutions.

Higher order corrections to effective actions. The type of effective actions consid-

ered in this paper were derived at leading order in a long-wavelength expansion. At higher

orders, one must take into account derivative corrections due to fluid and elastic deforma-

tions. These corrections can be taken into account in a systematic way following [54, 72, 73]
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and it would be extremely interesting to consider these in the case of multi-charged bound

states in the presence of external backgrounds fields as well as in the presence of boundaries

as in [74]. As advertised in [25], these corrections would account for the polarization prop-

erties of relativistic fluids encoded in the form of the electric and magnetic susceptibilities

in the stress-energy tensor and electric/magnetic currents besides the Young modulus [21]

and the piezoeletric moduli [24]. Of considerable interest would be to consider corrections

due to possible quantum anomalies for theories with higher-form gauge fields.

We also note that to compute the response coefficients corresponding to such higher

order corrections, one needs to have access to the full first-order corrected solution, i.e.

solve all the field equations in the near-zone to first order (and not the subset of constraint

equations considered in section 3 for particular examples). Performing this analysis (which

was done for various types of blackfold constructions in e.g. [9, 11–15, 22]), even though

challenging, would be interesting in its own right in order to fully show that to this order

a solution exists that is regular on the horizon.

First law of thermodynamics in arbitrary background fields. The effective actions

studied in this paper can be used to construct new stationary black hole solutions by solving

the constraint equations in the presence of background fields for specific configurations. As

exemplified in [75], if the resulting solutions are characterized by length scales associated

with the background spacetime, these can be allowed to vary leading to new terms in the

first law of thermodynamics involving integrated brane tensions - the dual thermodynamic

quantities to the background length scales. However, here we have generalized these actions

to also include background gauge and dilaton fields, which can in principle be characterized

by several non-trivial length scales, e.g. as in the case of a non-trivial black hole solution

playing the role of the background field configuration. These length scales can now be

allowed to vary leading to new terms in the first law for which their dual thermodynamic

quantities may be of interest to study.
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A Notation and conventions

In this section we collect the notation and convention used throughout this paper. We

define a generic p-form with components A(p)µ1...µp and its Hodge dual as

A(p) =
1

p!
A(p)µ1...µpdx

µ1 ∧ . . . ∧ dxµp ,

?A(p) =
1

p!(D − p)!
εµ1...µD−p

ν1...νpA(p)ν1...νpdx
µ1 ∧ . . . ∧ dxµD−p .

(A.1)

Furthermore, the wedge product of a p- and q-form is defined as

A(p) ∧B(q) =
1

p!q!
A(p)[µ1...µpB(q)ν1...νq ]dx

µ1 ∧ . . . ∧ dxµp ∧ dxν1 ∧ . . . ∧ dxνq , (A.2)

while the exterior derivative of a p-form is given by

dA(p) =
(p+ 1)

p!
∇[µ1A(p)µ2...µp+1]dx

µ1 ∧ . . . ∧ dxµp+1 . (A.3)

We define the square of the D-dimensional ? operator acting on a p-form in space-times

with Lorentzian signature as

?2 = (−1)p(D−p)+1 . (A.4)

We also introduce the star operator on the worldvolume ?(p+1) such that ?(p+1)1 =√
−γdσ0 ∧ . . . ∧ dσp as well as the star operator ?(p) on the spatial part of the world-

volume Bp such that ?(p)1 =
√
−γdσ1 ∧ . . . ∧ dσp. We also assume that the worldvolume

topology is Wp+1 = R × Bp and hence that the determinant of the induced metric on the

worldvolume can be decomposed as
√
−γdσ1∧ . . .∧dσp = R0dV(p) where R0 is the modulus

of the Killing vector field ξa∂a associated with worldvolume time translations.

B Explicit form of type IIA/B probe brane equations

In this appendix we restrict the equations of motion (2.18)–(2.19) and the probe brane

equations (2.22)–(2.23) to the type IIA/B cases individually.

Type IIA supergravity. We consider type IIA supergravity by restricting the equations

of motion (2.18)–(2.19) to q = 0, 2, 4, 6. When all currents vanish, these equations can be

obtained from the action20

I =
1

16πG

∫
M10

?R− 1

2
dφ ∧ ?dφ− 1

2
e−φH3 ∧ ?H3 −

1

2

∑
q=0,2

eaqφF̃q+2 ∧ ?F̃q+2


− 1

32πG

∫
M10

C3 ∧H3 ∧ F4 ,

(B.1)

20We are using the conventions of [44] but we used the equivalence of Chern-Simons terms
∫
B2∧F4∧F4 =∫

C3 ∧H3 ∧ F4 up to boundary terms.
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while in the presence of sources the equations of motion become21

d

(
e−φ ? H3 − eφ/2 ? F̃4 ∧ C1 −

1

2
C3 ∧ F4

)
= −16πG ? j2 ,

d
(
e3φ/2 ? F2

)
+ eφ/2H3 ∧ ?F̃4 = 16πG ? J1 ,

d
(
eφ/2 ? F̃4

)
+H3 ∧ F̃4 = 16πG ? J3 .

(B.2)

In turn, the equations of motion for the probe brane can be obtained by restricting (2.22)

and hence we obtain

∇µTµν =
1

2!
Hνµ1µ2

3 j2µ1µ2 +
e−φ

6!
Hνµ1...µ6

7 j6µ1...µ6 + jφ∂
νφ

+ F νµ12 J1µ1 +

(
1

3!
F̃ νµ1...µ34 − 1

2!
Hνµ1µ2

3 Cµ31

)
J3µ1...µ3

+ eφ/2
(

1

5!
F̃ νµ1...µ56 − 1

2 · 3!
Hνµ1µ2

3 Cµ3...µ53

)
J 5µ1...µ5

+
e3φ/2

7!
F̃ νµ1...µ78 J 7µ1...µ7 −

eφ/2

4!
F̃µ1...µ44 [?j6 ∧ C1]νµ1...µ4 ,

(B.3)

where we have defined F̃6 = ?F̃4 and F̃8 = ?F̃2, while the current conservation equa-

tions (2.23) lead to

d ? J1 − ?J3 ∧H3 − eφ/2 ? F̃4 ∧ ?j6 = 0 ,

d ? J3 − ?j6 ∧ F4 −H3 ∧ ?J 5 = 0 ,

d ? j2 = 0 , d ? j6 = 0 , d ?J 5 = H3 ∧ ?J 7 , d ?J 7 = 0 .

(B.4)

Type IIB supergravity. We now consider restricting the equations of motion (2.18)–

(2.19) to q = −1, 1, 3. The resulting equations of motion can be obtained from the action22

I =
1

16πG

∫
M10

?R− 1

2
dφ ∧ ?dφ− 1

2
e−φH3 ∧ ?H3 −

1

2

∑
q=−1,1

eaqφF̃q+2 ∧ ?F̃q+2


− 1

16πG

∫
M10

[
1

4
F̃5 ∧ ?F̃5 +

1

2
C3 ∧H3 ∧ F4

]
,

(B.5)

21We note that before coupling sources to the equations of motion, which can be obtained from (B.1),

we use the Bianchi identities dH3 = dF̃q+2 = 0 , q = 0, 2 in vacuum in order to simplify them. This

simplification is such that the equations of motion for type IIA are those which can be obtained from (2.18)

by taking all current sources to be zero and restricting to q = 0, 2, 4, 6. We proceed similarly for type IIB.
22We are following the conventions of [44] but have redefined C4 → C4 − (1/2)B2 ∧ C2 for convenience.
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supplemented with the self-duality relation F̃5 = ?F̃5. In the presence of sources, the

equations of motion read

d

(
e−φ ? H3 − eφ ? F̃3 ∧ C0 −

1

2
? F̃5 ∧ C2 +

1

2
C4 ∧ F3

)
= −16πG ? j2 ,

d
(
e2φ ? F1

)
+ eφH3 ∧ ?F̃3 = −16πG ? J0 ,

d
(
eφ ? F̃3

)
+H3 ∧ ?F̃5 = −16πG ? J2 ,

d
(
?F̃5

)
−H3 ∧ F3 = −16πG ? J4 .

(B.6)

The equations of motion for the probe brane can be obtained by restricting (2.22) take

the form

∇µTµν =
1

2!
Hνµ1µ2

3 j2µ1µ2 +
e−φ

6!
Hνµ1...µ6

7 j6µ1...µ6 + jφ∂
νφ

+ F ν1 J0 +
1

2!

(
F̃ νµ1...µ23 +Hνµ1µ2

3 C0

)
J2µ1µ2 (B.7)

+
1

4!

(
F̃ νµ1...µ45 + 3Hνµ1µ2

3 Cµ3...µ42

)
J4µ1...µ4 (B.8)

+ eφ
(

1

6!
F̃ νµ1...µ67 +

1

2 · 4!
Hνµ1µ2

3 Cµ3...µ64

)
J 6µ1...µ6 (B.9)

+
e2φ

8!
F̃ νµ1...µ89 J 8µ1...µ8 −

eφ

3!
F̃µ1...µ33 [?j6 ∧ C0]νµ1...µ3 ,

where we have defined F̃7 = ?F̃3 and F̃9 = ?F̃1, while the current conservation equa-

tions (2.23) lead to

d ? J2 +H3 ∧ ?J4 + ?j6 ∧ F̃5 = 0 ,

d ? J4 − ?j6 ∧ F3 + ?J 6 ∧ F̃5 = 0 ,

d ? j2 = 0 , d ? j6 = 0 , d ?J 6 = H3 ∧ ?J 8 , d ?J 8 = 0 .

(B.10)

Note that the magnetic force associated to F5 in (B.7) was exchanged by a Lorentz type

force as a consequence of the self-duality relation (2.21). Also note that there is no conser-

vation equation associated with J0.

C Effective currents, charges and constraint equations

In this appendix we provide the effective currents and charges for the several black brane

solutions used in the main text.

C.1 Black branes carrying q = p-brane charge

The asymptotic stress-energy tensor and current of the charged black p-brane solution (3.1)

take the form

Tab = ε uaub + PPab , Jp+1 = Qp ?(p+1) 1 . (C.1)
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The stress-energy tensor is of the form of a perfect fluid with the energy density and

(negative) pressure given by

ε =
Ω(n+1)

16πG
rn0 (n+ 1 + nN sinh2 α) , P = −

Ω(n+1)

16πG
rn0 (1 + nN sinh2 α) , (C.2)

while the charge density and conjugate electric potential are

Qp =
Ω(n+1)

16πG
n
√
Nrn0 coshα sinhα , Φp =

√
N tanhα . (C.3)

Alternatively, we can express the stress-energy tensor as [20]

Tab = T s
(
uaub −

1

n
γab

)
− γabQpΦp , (C.4)

with the temperature and entropy density

T =
n

4πr0(coshα)N
, s =

Ω(n+1)

4G
rn+1

0 (coshα)N . (C.5)

C.2 Black branes carrying Maxwell charge

The asymptotic stress-energy tensor and current of the charged black p-brane given with

Maxwell charge (4.15) take the form

Tab = ε uaub + PPab , Ja1 = Qua , (C.6)

where the energy density and pressure are given by

ε =
Ω(n+1)

16πG
rn0 (n+ 1 + nN sinh2 α) , P = −

Ω(n+1)

16πG
rn0 , (C.7)

while the charge density, chemical potential, temperature and entropy density are the same

as in (C.3) and (C.5), respectively.

C.3 Dp-F1 bound state

In this appendix we briefly review the effective currents and charges of the Dp-F1 bound

state solution considered in section 3.2. For convenience we will take ϕ = 0. The stress-

energy tensor can be expressed in the form [18]

Tab = ε uaub + Pvavb + P⊥ ⊥ab , (C.8)

where ⊥ab= ηab + uaub − vavb and the energy density and pressures are

ε =
Ω(n+1)

16πG
rn0 (n+ 1 + n sinh2 α) ,

P = −
Ω(n+1)

16πG
(1 + n sinh2 α) , P⊥ = −

Ω(n+1)

16πG
(1 + n sinh2 α cos2 ξ) .

(C.9)

Furthermore, we have the currents

j2 = QF1 u ∧ v , Jp−1 = Qp−2 ?(p+1) (u ∧ v) , Jp+1 = Qp ?(p+1) 1 , (C.10)
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where the string and top charges are given by

QF1 = sin ξQ , Qp = cos ξQ , with Q =
Ω(n+1)

16πG
nrn0 coshα sinhα , (C.11)

and electric potentials (conjugate to the charges) are

ΦF1 = sin ξΦ , Φp = cos ξΦ , with Φ = tanhα . (C.12)

The charge associated with the (p−1)-current Jp−1 can be expressed in terms of the above

Qp−2 = ΦpQF1 = ΦF1Qp . (C.13)

We note that for ξ = 0, the effective currents and charges reduces to the one given in

appendix C.1 (in ten dimensions where N = 1). Introducing the worldvolume metric

γab and the projector hab = −uaub + vavb, we can alternatively express the stress-energy

tensor as [20]

Tab = T s
(
uaub −

1

n
γab

)
− habQF1ΦF1 − γabQpΦp , (C.14)

with the temperature and entropy density

T =
n

4πr0 coshα
, s =

Ω(n+1)

4G
rn+1

0 coshα . (C.15)

C.4 Dp-F1 constraint equations

Let the components of the Einstein equations be denoted by Eµν = Gµν − 8πGTµν and let

the components of the l.h.s. of each of the eqs. (B.2) (eqs. (B.6)) for type IIA(B) be denoted

by Mµ1µ2...
X where X denotes the associated field. Furthermore let the components of the

Hodge dual of those equations be denoted by N µ1µ2...
X . Then, the constraint equations (3.36)

appear in the following linear combinations of the system equations

∇aT ab −F b ∝ E b
r + c1MbΩ

Ap+1
+ c2M

bσ2...σpΩ
B + c3Mbσ0σ1Ω

Ap−1

∇ajab2 ∝ N rb
B ,

∇aJ
aa1...ap
p+1 ∝ N ra1...ap

Ap+1
,

∇aJ
aa1...ap−2

p−1 − 1

3!
HabcJ

abca1...ap−2

p+1 ∝ N rσ0σ1a1...ap−2

Ap+1
+ c4N

ra1...ap−2

Ap−1
,

(C.16)

where ci are r-dependent functions, Ω collectively denotes the coordinates on the transverse

sphere and the F1-string is aligned along the σ1-direction. F b is the collection of force terms

appearing in eq. (3.36). Notice that the combinations of the system equations are exactly

such that the l.h.s. of eqs. (C.16) is r-independent.

D Entropy current analysis with a dilaton forcing function

In this appendix we perform an entropy current analysis of the forced fluids considered in

section 4.3 and show that in order to have stationary flows one must require the fluid to be

aligned with a worldvolume Killing vector field. This analysis follows closely that of [72].
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The fluids of section 4.3 have only the temperature T and the fluid velocity ua as

degrees of freedom. These fluids are characterized also by a conserved total charge Qp but

this charge is not a degree freedom, instead it only labels different families of such fluids.

The thermodynamic properties given in appendix (C.1) are those of a neutral perfect fluid.

Therefore, the dynamical equations along the worldvolume are just those of (4.37), which

we write explicitly as

ua∂aT = − 1

T
∂T
∂s

(T sθ + jφϕ̇) , P cb∂
bT =

1

s
P cb

(
jφ∂

bϕ− T sab
)
, (D.1)

where we have defined ϕ̇ = ua∂aϕ and introduced the fluid expansion θ via the decompo-

sition

∇aub = −uaab + σab + ωab +
θ

p
Pab , (D.2)

where σab and ωab are the fluid shear and vorticity respectively. Up to first order in deriva-

tives the most general stress-energy tensor, dilaton current and entropy current allowed by

symmetries are23

T ab = Pγab + (ε+ P )uaub − ζσab − ηθP ab ,

jφ = j
(0)
φ + α1θ + α2ϕ̇ ,

Jas = sua + β1θu
a + β2a

a + α3u
aϕ̇+ α4P

a
b∂
bϕ ,

(D.3)

where all coefficients ζ, η, βi, αi are functions of the temperature T and j
(0)
φ is the leading

order dilaton current, which in the case of the branes of section 4.3 is given by apQpΦp/2,

however, we have left it arbitrary in our analysis in this appendix.24

We wish to impose positivity of the divergence of the entropy current ∇aJas ≥ 0,

thereby ensuring that the second law of thermodynamics is satisfied. Using (D.1) we find

∇aJas = ζσ2 + ηθ2 +

(
β1 − sβ′1

∂T
∂s

+
β2

p

)
θ2 − β′2a2 + β2

(
σ2 + ω2

)
+ (β1 + β2)ua∇aθ + β2u

aubRab

−
j

(0)
φ

T
ϕ̇− α1

T
θϕ̇− α2

T
ϕ̇2

+

α3 + α4 −
∂T
∂s

sα′3 −
j

(0)
φ

T
∂T
∂s

β′1

 θϕ̇+

α3 + α4 − α′4T −
j

(0)
φ

s
β′2

 ab∂bϕ

+

j(0)
φ

s
α′4P

ab∂aϕ∂bϕ+ α4P
ab∂a∂bϕ+ α3u

aub∂a∂bϕ

− j
(0)
φ

T
∂T
∂s

α′3ϕ̇
2 , (D.4)

where we have defined σ2 = σabσ
ab and ω2 = ωabω

ba and introduced the Ricci tensor Rab
on the worldvolume. The prime denotes derivatives with respect to T . The first two lines

23One can also consider elastic corrections due to deformations of the surface where the fluid lives as

in [72] but we are not concerned with these corrections here.
24In particular, the case studied in [10] has j

(0)
φ = 0.
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in (D.4) are those that are also obtained when no dilaton is present in the background. In

particular the second line, being linear in fluid data requires β1 = β2 = 0 and hence the

first line requires the usual result ζ ≥ 0, η ≥ 0 which is unaffected in the presence of the

dilaton. The first three terms in the last line in (D.4) are linear in independent data and

had been classified in [10]. Therefore, if we wish to require positivity of the divergence

of the entropy current for arbitrary background source ϕ we must set α3 = α4 = 0. We

are left with the third line in (D.4). The first term in the third line is linear in the fluid

data but j
(0)
φ is non-zero. Therefore one must require −j(0)

φ ϕ̇ ≥ 0.25 If j
(0)
φ is constant, for

example, this condition will impose restrictions on the driving force ϕ̇. The second term

in the third line is linear in fluid data and therefore, for arbitrary background sources we

must have that α1 = 0. The third term in the third line is quadratic in the fluid data and

therefore we obtain the condition α2 ≤ 0.

Consider the forced fluid dynamics case analyzed in [10]. To first order in derivatives

the dilaton current found there is given by

jφ = − 1

16πG
(πT )3ϕ̇ , (D.5)

and hence we identify j
(0)
φ = 0 and α1 = 0, α2 = −(πT )3/(16πG) < 0 in agreement with

the analysis above. The entropy current obtained in [10] contains no first order corrections,

also in agreement with the analysis presented here.

Consider now the stationary case for which there is no entropy production ∇aJas = 0.

Due to the presence of non-zero viscosities ζ, η and leading order dilaton current j
(0)
φ ,

stationary configurations must satisfy θ = σab = ϕ̇ = 0.26 Indeed, this is only possible if

the fluid velocity is aligned with a worldvolume Killing vector field, i.e., ua = ka/k.
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