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1 Introduction

A great amount of interests and attempts have been dedicated to understand strongly

interacting systems in the context of AdS/CMT (see [1, 2] for reviews). Generically different

states of such systems are described in terms of solutions of Einstein-Maxwell-Dilaton

(EMD) theories. Although these theories seem to reproduce a family of essential features

of such systems, there exists very important features which are not captured by solutions

of EMD theories as gravity duals of such theories.

Solutions of EMD theories have a net amount of charge and are fully translational

invariant. In such a case applying a tiny electric field is enough to result in an infinite

DC conductivity. This is not what is known from realistic systems, thus the gravity dual

needs some improvements. To overcome such a feature and find the expected Drude be-

havior, people have proposed several ways to provide mechanisms for the charge carriers

to relax their momentum. To our knowledge, this is done either by considering probe

objects [3–9] or breaking the translational symmetry of the system. Breaking the trans-

lational symmetry itself can be done within different mechanisms. This is studied either

by considering impurities in the system [10–12], breaking the diffeomorphism invariance

in the bulk theory [13–15], turning on spatial dependent sources [16–21] or considering

backreacted geometries from probe charged matter [22–25].

Here we are interested in a specific family of models which have spatially dependent

sources. The model of our interest is what was first introduced by Andrade and Withers

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
1
3
5

in [21]. The transport properties and various generalizations (in different directions) of

this family of models have been widely studied in the literature. The idea is a very simple

one: in order to break momentum conservation, one may consider a (number of) spatial-

dependent scalar field(s) in the bulk thus the Ward identity takes the following form

∇iTij + 〈Oχ〉∂jχ = 0. (1.1)

Note that these models are usually considered in presence of a gauge field in the bulk

theory which has a position dependent source Ai. In this case there would also be a term

due to the gauge field as 〈J i〉Fij in the Ward identity. Here since we are not interested in

any transport coefficient, we will not consider any gauge field in our model.

Andrade-Withers model which we review in the next section is composed of gravity

and some minimally coupled massless scalar fields. The essential point is that since this

theory admits solutions with linear spatial-dependence of the scalar field profiles, the con-

tribution of the scalars to the stress tensor is homogeneous and together with considering

(d− 1) scalars (the number of spatial dimensions of the dual field theory) one can engineer

homogeneous and isotropic black-brane solutions.

As we have mentioned earlier, we consider black-brane solutions which are neutral.

Moreover, we would like to emphasis that we are mainly interested in considering mass-

less black-branes where the event horizon is caused merely by the momentum dissipation

parameter. Such solutions could be found either in Andrade-Withers model, which are

sometimes called polynomial models or even in a more strange family of models introduced

by Taylor and Woodhead in [26] where the scalar fields are under square root in the ac-

tion. We will mainly consider polynomial models in this paper and report some features

of square root models in the discussion section.

In these models which we consider, the massless scalar fields are dual to marginal op-

erators in the dual field theory. These marginal operators do not affect the UV structure

of the dual theory but have non-trivial subleading effects in the holographic RG flow. The

goal of this paper is to study the momentum dissipation effects on holographic non-local

measures such as entanglement entropy and Wilson loop. The geometries which we are in-

terested in, having non-vanishing momentum dissipation parameter, are interpreted as new

vacuum states in the dual theory which we call “non-conformal vacuums” Having this in

mind, in this paper we often consider the momentum relaxation parameter perturbatively

just for simplicity of our analysis. Furthermore to avoid mixture of thermal and quantum

effects, in some parts we also consider solutions with non-vanishing mass, to study holo-

graphic entanglement entropy in extremal geometries which is dual to a zero temperature

(but of course mixed) states.

The outlook of this paper is as follows: in section 2 we introduce the model of our

interest and some essential properties of it. Sections 3 and 4 are dedicated to holographic

study of entanglement measures including entanglement entropy and mutual information.

We continue in section 5 by investigating the momentum relaxation effects on the phase

transition of geometric entropy. Moreover, in section 6 we study the effective potential

between point like external objects in such theories using holographic Wilson loop. In the

last section we make our concluding remarks.
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2 Holographic theories with momentum relaxation

In this section we introduce specific holographic models of our interest which are dual to

quantum field theories in presence of momentum relaxation. As we have mentioned in the

introduction section, there are several families of such models. Here in the general family

of models with spatial dependent sources, we mainly consider one specific simple one.

This model which we sometimes refer to it by the polynomial model is defined in

(d+ 1)-dimensions by the following action [21]1

I =
1

16πGN

∫
dd+1x

√
−g

[
R− 2Λ− 1

2

d−1∑
I=1

(∂χI)
2

]
, (2.1)

where Λ = −d(d−1)
2L2 , and χI ’s are massless scalar fields. Here I is an internal index denoting

the (d − 1) scalar fields. This action has an asymptotically AdSd+1 black-brane solution

with a non-trivial profile for the scalar fields (for d > 2) as follows

ds2 =
L2

ρ2

[
−f(ρ)dt2 +

dρ2

f(ρ)
+ dx2d−1

]
,

f(ρ) = 1− α2ρ2

2(d− 2)
−m0ρ

d,

χI(x
a) = αIax

a,

(2.2)

where a denotes the d− 1 spatial directions and

α2 ≡ 1

d− 1

d−1∑
a=1

~αa.~αa, (~αa)I = αIa. (2.3)

The scalar fields are dimensionless and αIa’s have dimension of inverse length. Note that

for d = 2 the solution reads as

f(ρ) = 1 +
α2ρ2

2
log ρ−m0ρ

2,

χ(x) = αx.

(2.4)

The temperature of the black-brane is given by

T =
d

4πρh

(
1−

α2ρ2h
2d

)
, m0 =

1

ρdh

(
1−

α2ρ2h
2(d− 2)

)
, (2.5)

which for d > 2 with

α2 =
2d

ρ2h
, m0 =

2

2− d
1

ρdh
, (2.6)

1Since one important feature of systems with momentum relaxation is the so-called Drude behavior of

the DC conductivity, the authors of [21] have considered a gauge field in this model in order to verify such

a behavior. Here since we are not interested in studying any transport coefficient of this model, we turn off

the gauge field from the very beginning of our analysis.
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and for d = 2 with the following choice of the parameters

α2 =
4

ρ2h
, m0 =

1 + 2 log ρh
ρ2h

, (2.7)

leads to an extremal black-brane where f(ρh) = f ′(ρh) = 0. Here the extremal solution

exists due to the momentum relaxation parameter rather than a U(1) charge in comparison

with the case of RN-AdS black-brane. Also note that in the near horizon limit, considering

the following scaling limit for λ→ 0

ρ− ρh =
ρ2h
dξ
λ, t =

τ

λ
, (2.8)

the resultant near horizon region is an AdS2 × Rd−1, which is

ds2 =
L2
2

ξ2
(
−dτ2 + dξ2

)
+
α2L2

2

2
dx2d−1, L2

2 =
L2

d
. (2.9)

Hyperscaling violating generalization. An interesting generalization of the polyno-

mial model is to consider asymptotically non-relativistic backgrounds which have non-

trivial dynamical and hyperscaling violating exponents, z and θ. These kind of solutions

are constructed by adding some axion fields to the EMD theories, and has been studied

recently in [27]2 with the following action3

I =
1

16πGN

∫
dd+2x

√
−g

[
R+ V (φ)− 1

2
(∂φ)2 − 1

4
Z(φ)FµνF

µν − 1

2
Y (φ)

d∑
I=1

(∂χI)
2

]
,

(2.10)

where Z(φ) = eλ1φ and Y (φ) = e−λ2φ. The corresponding solution is given by

ds2 = ρ
2(θ−d)
d

[
− f(ρ)

ρ2(z−1)
dt2 +

dρ2

f(ρ)
+ d~x2d

]
, f(ρ) = 1−m0ρ

d+z−θ − α2ρ2(z−
θ
d
), (2.11)

together with

Fρt =
√

2(z−1)(z+d−θ)ρ1+θ−d−z, φ = −
√

2(d− θ)(z − 1− θ/d) ln ρ,

χI(x
a) = αIax

a, V (φ) = (z+d−θ−1)(z+d−θ)ρ
−2θ
d ,

(2.12)

where

λ1 =

√
2(θ − d− θ/d)√

(d− θ)(z − 1− θ/d)
, λ2 = −

√
2
z − 1− θ/d

d− θ

α2 =
d2α2

0

2(d− θ)(d2 + 2θ − d(z + θ))
, α2

0 ≡
1

d

d∑
a=1

~αa.~αa.

(2.13)

2For other types of anisotropic hyperscaling violating solutions see [28, 29].
3Note that in this paper whenever we discuss about hyperscaling violating solutions we consider (d+ 2)-

dimensional gravity solutions thus (d + 1)-dimensional dual field theories.
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3 Holographic entanglement entropy

A natural question about such marginal deformations in the field theory would be how

entanglement entropy is affected due to these types of deformations? Entanglement entropy

is believed to capture some universal information about the field theory such as anomaly

coefficients of the stress tensor and also some information about their behavior under

renormalization group flow at least in certain cases. Since we are interested in deformed

states of CFTs which are dual to asymptotically AdS geometries, here in this section we are

going to use Ryu-Takayanagi holographic proposal [30, 31] to study entanglement entropy

as a probe of how momentum relaxation caused due to specific marginal deformations may

affect the UV CFT.4

In what follows in this section we study holographic entanglement entropy (HEE) in

the model introduced in (2.2). This is done for different entangling regions to investigate

the role of momentum relaxation (marginal deformation of the CFT) on the HEE. We

consider infinite strip, spherical and cylindrical entangling regions defined as below.

For strip entangling region we have dx2d−1 =
∑d−1

i=1 dx
2
i . The entangling region is

defined as

− `

2
≤ x1 ≡ x ≤

`

2
, −H

2
≤ xi>1 ≤

H

2
, H � `. (3.1)

For spherical entangling region we have dx2d−1 = dr2 +r2dΩ2
d−2. The entangling region

is defined as 0 < r < `.

For cylindrical entangling region we have dx2d−1 = du2 + dr2 + r2dΩ2
d−3 where u is the

coordinate along the height direction of the cylinder. The entangling region is defined as

0 < r < `, 0 < u < H, H � `. (3.2)

Also in the following sections we will study some other entanglement measures including

holographic mutual information, information metric and phase transitions of double wick-

rotated solutions.

3.1 Strip entangling region

Considering the geometry (2.2), the corresponding hypersurface can be parametrized as

x = x(ρ) and the induced metric on the hypersurface is given by

ds2ind. =
L2

ρ2

[(
x′

2
+

1

f(ρ)

)
dρ2 +

d−1∑
i=2

dx2i

]
, (3.3)

where prime denotes the derivative with respect to ρ. Using the above expression the area

of the corresponding hypersurface is given by

A = Ld−1Hd−2
∫

dρ

ρd−1

√
x′2 +

1

f(ρ)
. (3.4)

4Here we would like to note that to our knowledge there are two related studies in the literature which

are [32] and [33]. The authors of these papers have briefly studied holographic entanglement entropy in

anisotropic models with momentum relaxation.
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This functional dose not depend on x(ρ) explicitly and the equation of motion leads to

x′(ρ) =
1√(

ρ
2(d−1)
t

ρ2(d−1) − 1

)
f(ρ)

, (3.5)

where ρt is the turning point of the hypersurface with x′(ρt) =∞. In this case the length

of the strip and the area of the minimal hypersurface are given by

` = 2

∫ ρt

0
dρ

1√(
ρ
2(d−1)
t

ρ2(d−1) − 1

)
f(ρ)

,

A = 2Ld−1Hd−2
∫ ρt

0

dρ

ρd−1
1√(

1− ρ2(d−1)

ρ
2(d−1)
t

)
f(ρ)

.

(3.6)

The above integrals do not have analytic results in arbitrary dimension, therefore we con-

sider different specific cases as follows:

(i) Case m0 = 0 and α` � 1. Here since we are considering α` as a small parameter,

and for fixed ` in the α → 0 limit we are left with the results in the pure AdS case, we

report the α-dependent part of the HEE as

∆S =
Ld−1Hd−2

8GN (d−2)

 1

(d−4)εd−4
+

2d−5
√
π

3`d−4

√πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−4

Γ
(

4−d
2(d−1)

)
Γ
(

3
2(d−1)

)
α2+O

(
α4
)
,

(3.7)

where ∆S = S − S0 and S0 is the HEE for the α = 0 case which is given by

S0 =
Ld−1Hd−2

2GN (d− 2)

 1

εd−2
− 2d−2

`d−2

√πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1 . (3.8)

In what follows we will use this ∆S notation in several parts of this paper.

Clearly the above expression does not hold for d = 2, 4. Indeed, for d = 4 one finds

∆S =
L3H2

16GN

[
log

`

ε
+ log

(
Γ
(
1
6

)
2

2
3
√
πΓ
(
2
3

))− 1

3

]
α2 +O

(
α4
)
. (3.9)

According to the above result in d = 4, the momentum relaxation parameter α leads to

appearance of subleading terms in the entropy expansion, including a logarithmic universal

term in the HEE for infinite strip entangling region. The new universal term in this case is

Suniv. =
L3H2

16GN
α2 log

`

ε
. (3.10)

The above perturbative analysis shows that for even d’s with (d > 3), there always exists

a universal term at O
(
αd−2

)
of the perturbative expansion.

– 6 –



J
H
E
P
1
0
(
2
0
1
6
)
1
3
5

Finally for d = 2 case we find

S =
L

2GN

[
log

`

ε
+
α2`2

72

(
2− 3

2
logα`

)]
+O

(
α4
)
. (3.11)

Here the interesting point is that since the universal term of entanglement entropy coincides

with the leading divergence, which is fixed by the UV structure of the theory, it does not get

momentum relaxation corrections. As a matter of fact a non-critical (massive) contribution,

which was first introduced in the celebrated work by Calabrese and Cardy [34], has appeared

as the leading momentum relaxation corrections.

(ii) Case T = 0 mixed state. Now we consider the extremal black-brane solution

which we have previously introduced in (2.6) and (2.7). In this case the entanglement

entropy for strip entangling region in the ρh →∞ limit is given by

∆S =
Ld−1Hd−2

4GN

d

(d−2)(d−4)

 1

εd−4
− 3

√
π

(d+2)`d−4

2
√
πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−4 Γ

(
3d

2(d−1)

)
Γ
(

2d+1
2(d−1)

)
 1

ρ2h
.

(3.12)

For the case of d = 4 one finds

∆S =
L3H2

2GN

[
log

`

ε
+ log

(
Γ
(
1
6

)
22/3
√
πΓ
(
2
3

))] 1

ρ2h
, (3.13)

which again gives a correction to the universal term as in the non-extremal case reported

previously in (3.10).

For the case of d = 2, the extremal geometry is given by α2 = 4
ρ2h

. The entanglement

entropy in the ρh →∞ limit in terms of the momentum relaxation parameter is given by

S =
L

2GN

[
log

2`

ε
− α2`2

4

(
1

3
log (16α`)− 31

18

)]
, (3.14)

which again in this case a non-critical like correction appeared in entanglement entropy.

(iii) Case large entangling region. Considering large entangling region limit, i.e.,

` � ρh, the main contribution to the area of the minimal surface comes from the limit

where it is extended all the way to the horizon, such that ρt ∼ ρh (see [35–37] for related

analysis). In this limit by defining ρ = ρtξ, one finds

`

2
≈ ρh

∫ 1

0

ξd−1dξ√
f(ξ)

(
1−ξ2(d−1)

) , A ≈ 2Ld−1Hd−2

ρd−2h

∫ 1

ε
ρh

dξ

ξd−1
√
f(ξ)

(
1−ξ2(d−1)

) . (3.15)

Beside the UV divergent term in A, the main contribution in the above integrals comes

from the upper limit ξ → 1. Around this point we have

A ≈ 2Ld−1Hd−2

ρd−2h

∫ 1

0

ξd−1dξ√
f(ξ)

(
1− ξ2(d−1)

) +

∫ 1

ε
ρh

dξ

√
1− ξ2(d−1)

ξd−1
√
f(ξ)

 . (3.16)
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Clearly the first term in the above expression is divergent as ξ → 1 while the second

one remains finite in this limit. Combining the above equation with the expression for `

one finds

A ≈ Ld−1Hd−2

ρd−1h

`+
2Ld−1Hd−2

ρd−2h

∫ 1

ε
ρh

dξ

√
1− ξ2(d−1)

ξd−1
√
f(ξ)

. (3.17)

Here one should extract the UV divergent part of the second integral. Using

f(ξ) = 1− ξd −
α2ρ2h

2(d− 2)
(ξ2 + ξd), (3.18)

and ∫ 1

ε
ρh

dξ

√
1− ξ2(d−1)

ξd−1
√
f(ξ)

=
ρd−2h

(d− 2)εd−2
− cd + α2ρ2h

(
Ad(ε) + c′d

)
+O

(
α4
)
, (3.19)

where

A3(ε) = 0, A4(ε) =
1

8
log

ρh
ε
, A5(ε) =

ρh
12ε

, · · · , (3.20)

and cd and c′d are numerical factors, one can easily find that the entanglement entropy in

this limit reads

S ≈
2Ld−1Hd−2ρd−2h

4GN

[
1

(d−2)εd−2
+

`

2ρd−1h

− cd

ρd−2h

+
α2

ρd−4h

(
Ad(ε)+c′d

)]
+O(α4). (3.21)

The second term in the above expression is the thermal entropy which is proportional

to the volume. Moreover, the remaining terms are proportional to the area of the entangling

region. There are no O
(
α2
)

corrections to the thermal entropy. Also one can easily redo

the same calculations for the extremal case and find similar results.

3.2 Spherical and cylindrical entangling regions

As we have mentioned previously, the momentum relaxation parameter may affect the

universal part of HEE. Here at this stage we are mainly interested in spherical and cylin-

drical regions. It is well known that in even-dimensional CFTs there exists a logarithmic

universal term in the entanglement entropy expansion [31]. The reason is that these two en-

tangling regions are shown to capture the ‘a’-type and ‘c’-type anomalies in 4-dimensional

CFTs [38, 39]. The ‘a’-type anomaly is the coefficient of the four-dimensional Euler den-

sity and the‘c’-type anomaly is the coefficient of the Weyl squared tensor in the trace of

stress tensor.5

Lets first consider the momentum relaxation correction to the universal part of spher-

ical entangling region in d = 4. The corresponding hypersurface in the bulk can be

parametrized as r = r(ρ) and the induced metric on the hypersurface is given by

ds2ind. =
L2

ρ2

[(
1

f
+ r′2

)
dρ2 + r2dΩ2

d−2

]
, (3.22)

5In the case of infinite strip entangling region it is believed that the cut-off independent part of entan-

glement entropy is a complicated function of the anomaly coefficients in 4-dimensional CFTs [40, 41].
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where prime denotes the derivative with respect to ρ. In this case the area can be

computed as

A = Ld−1Ωd−2

∫
dρ
rd−2

ρd−1

√
1

f
+ r′2. (3.23)

In this case we are again interested in first non-trivial α corrections to the profile of the

minimal surface in the bulk. The final result for the HEE is given by

S =
πL3

2GN

[
`2

ε2
− 1

2
− log

2`

ε
+
α2`2

4

(
log

2`

ε
− 4

3

)]
+O

(
α4
)
. (3.24)

It is well established that for theories dual to Einstein gravity, a = πL3

8GN
and for higher

curvature gravity theories this coefficient is modified due to stringy corrections. This result

shows that due to the presence of the momentum relaxation parameter this universal term

is also modified as follows

Suniv. ∼ −4a log
2`

ε
, a = a

(
1− α2`2

4

)
. (3.25)

The above result could be interpreted as the change of the central charge as the theory is

slightly deformed by the marginal deformations corresponding to momentum relaxation.

Since the correction decreases the value of the central charge at the fixed point it is in

agreement with ‘a’-theorem.

Now let us consider a cylindrical entangling region. In this case the corresponding

hypersurface can be parametrized as r = r(ρ) and the induced metric on the hypersurface

is given by

ds2ind. =
L2

ρ2

[(
1

f
+ r′2

)
dρ2 + du2 + r2dΩ2

d−3

]
, (3.26)

where prime denotes the derivative with respect to ρ. Using the above metric the area can

be written as

A = Ld−1HΩd−3

∫
dρ
rd−3

ρd−1

√
1

f
+ r′2. (3.27)

The equation of motion can not be solved analytically even considering perturbations

around α = 0. As long as we are interested in logarithmic universal terms, the near

boundary behavior of the minimal surface is enough to read this universal contribution.

Following [39] we expand the profile of the hypersurface near the boundary, ρ = 0. Since

the equation of motion of r is even under ρ→ −ρ, only even powers of ρ appears. Explicit

computations for d = 4 leads to

r(ρ) = `− ρ2

4`
+ · · · . (3.28)

Finally one can find the universal contribution of HEE in d = 4 as

Suniv. =
πL3H

2GN

−1 + α2`2

8`
log

`

ε
. (3.29)

The entanglement entropy of a cylinderical entangling region in a 4-dimensional CFT has a

universal term as Suniv. ∼ − c
2
H
` log 2`

ε where c is the coefficient of the Weyl squared tensor
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in the trace anomaly expression [38, 39]. In four dimensions for theories dual to Einstein

gravity we have c = πL3

8GN
and stringy corrections modifies it [39]. So the above result shows

that this universal term changes as

Suniv. ∼ −
c

2

H

`
log

`

ε
, c = c

(
1− α2`2

)
. (3.30)

One may interpret this corrected universal term as the corrected ‘c’-type central charge of

the dual theory which interestingly has decreased along the flow triggered by the momentum

relaxation marginal deformation.

3.3 Momentum relaxation and hyperscaling violation

It is well known in the literature that if the leading divergence of entanglement entropy

is a logarithmic term, the corresponding system has a Fermi surface [42–48]. This was

realized in holography via hyperscaling violating geometries in [49] and [50] (see also [51]

for a review).6 To be more precise, in terms of the parameters of this geometry which we

have previously introduced a version with momentum relaxation in (2.11), for the choice

of θ = d − 1 this geometry is believed to be dual to phases of matter with ‘hidden’ Fermi

surface of ‘fractionalized’ degrees of freedom (for details see [50]).

It would be interesting to study the effect of momentum relaxation deformation on the

formation of this kind of hidden Fermi surface in holography. To do so we consider (2.11)

for a d+ 2 dimensional bulk theory and study entanglement entropy for the dual state of

this geometry. Considering a strip entangling region leads to the following area functional

A = 2Hd−1
∫ ρt

ε
ρθ−d

√
x′2(ρ) +

1

f(ρ)
dρ. (3.31)

The equation for the minimal hypersurface can be solved using a conserved quantity in the

above action. This leads to

x′(ρ) = ± ρd−θ√
f(ρ)

(
ρ
2(d−θ)
t − ρ2(d−θ)

) , (3.32)

and the HEE is given by

S =
Hd−1

2GN

∫ ρt

ε

ρd−θt

ρd−θ
dρ√

f(ρ)
(
ρ
2(d−θ)
t − ρ2(d−θ)

) . (3.33)

Setting m0 = 0 the leading contribution to the HEE due to the momentum relaxation

parameter is given by

∆S =
Hd−1

4GN

d

(d2 − d(θ + 2z + 1) + 2θ)
× 1

ε
2θ
d
+d−θ−2z−1

−
√
π

Γ
(
1
2 + 2(dz−θ)+d

2d(d−θ)

)
Γ
(
2(zd−θ)+d
2d(d−θ)

) (
Q
`

) 2θ
d
+d−θ−2z−1

α2 +O
(
α4
)
,

(3.34)

6This is based on a generalization of the RT proposal to non-AAds solutions of Einstein gravity.
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where

Q ≡
2
√
πΓ
(
d−θ+1
2d−2θ

)
Γ
(

1
2d−2θ

) . (3.35)

To see whether this model is going to have leading logarithmic divergence in entanglement

entropy, that is formation of a hidden Fermi surface, we just have to look at the expansion

of the integrand of entanglement entropy in (3.33). The integrand in momentum relaxation

parameter expansion is given by(
ρt
ρ

)d−θ
√
ρ2d−2θt − ρ2d−2θ

+
α2
(
ρt
ρ

)d−θ
ρ2z−

2θ
d

2
√
ρ2d−2θt − ρ2d−2θ

+O
(
α4
)
. (3.36)

As we mentioned above, for d − θ = 1 the zeroth order gives a logarithmic divergence in

EE. Now we would like to see whether the first non-trivial α correction to this expression

may contribute at this order. This would happen for

d− θ − 2z + 2
θ

d
= 1,

for which if we apply d− θ = 1, it gives

z =
θ

θ + 1
.

One can easily check that the above condition violates the null energy conditions of the

background, which can also be found from reality conditions on the dilaton and gauge fields

of the corresponding solution in (2.11) as

(z − 1)(z + d− θ) > 0, (3.37)

(d− θ)(z − 1− θ/d) > 0. (3.38)

We have shown that the Fermi surface does not get correction from momentum re-

laxation parameter but if the dual state does not admit a Fermi surface at α = 0, that is

d−θ 6= 1, we can easily find windows in the parameter space of (θ, d, z) where a logarithmic

correction may appear in the expression of entanglement entropy with

d− θ − 2z + 2
θ

d
= 1.

It is worth to note that another interesting feature of the above result (3.34) is the

appearance of dynamical exponent, i.e., z, in the expression for HEE. To our knowledge this

was not previously seen in any static state of theories dual to Einstein gravity. Although

in the case of non-static states the dynamical exponent may appear in the entanglement

entropy (see [52, 53]).7,8

7Also in the case of higher derivative gravity theories, appearance of the dynamical critical exponent in

the entanglement entropy was previously reported in [54, 55].
8See also [56] for related studies in hyperscaling violating backgrounds with momentum relaxation.
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4 Other holographic entanglement measures

In this section we will study other holographic measures of entanglement such as mutual

information and information metric.

4.1 Mutual information

Entanglement entropy is in general a divergent quantity which does not capture much

from the field theory in hand. For instance for a single interval entangling region in a two

dimensional CFT it only depends on the central charge of the theory. In order to have a

finite measure which contains more information about the field content of the theory one

can employ other quantities such as mutual information. Mutual information quantifies

the extent which the degrees of freedom of two subsystems are correlated with each other

and is defined by

I(A1, A2) = SA1 + SA2 − SA1∪A2 , (4.1)

where SA1∪A2 is the entanglement entropy for the union of two subsystems. Using subaddi-

tivity property of the entanglement entropy it is obvious that mutual information is always

positive. Although for disjoint regions the divergent terms appear in the expression for

mutual information cancel each other, but it becomes divergent when these regions share

boundaries [57, 58].

For holographic CFTs mutual information can be computed using the RT prescription.

Actually due to the competition between two different configurations corresponding to

SA1∪A2 , it was shown that holographic mutual information exhibits a phase transition [57].

The location of the critical point depends on the ratio of the length of the entangling regions

to their separation. For large entangling regions with small separation, the holographic

mutual information is finite and it vanishes in the opposite limit where the correlation

between these regions becomes negligible.

In order to investigate the effects of momentum relaxation on the mutual information,

we compute this quantity for two disjoint strips where their lengths and separation are

given by `1, `2 and h respectively. In this case we have

SA1∪A2 =

{
S(`1 + `2 + h) + S(h) h� `1, `2,

S(`1) + S(`2) h� `1, `2,
(4.2)

and the mutual information becomes

I(A1, A2) =

{
S(`1) + S(`2)− S(`1 + `2 + h)− S(h) h� `1, `2,

0 h� `1, `2.
(4.3)

In order to simplify the computations, we will set `1 = `2 in what follows. Using the expres-

sion of the HEE for a strip entangling region, i.e., (3.7), the mutual information becomes9

∆I = c1

(
2

`d−4
− 1

(2`+h)d−4
− 1

hd−4

)
α2, c1 =

2d−7
√
π

3

√πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−4 Γ

(
4−d

2(d−1)

)
Γ
(

3
2(d−1)

) ,
(4.4)

9In the following we neglect an overall factor of Ld−1Hd−2

2(d−2)GN
which is positive and does not change our

results about the phase transitions and location of the critical points.
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h
˜
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Figure 1. Location of the critical points as a function of α for d = 3 (red) and d = 4 (blue) with

` = 1 in polynomial model. In each case the holographic mutual information is finite below the

transition curve and vanishes when we cross it.

where we have subtracted α = 0 contribution, i.e., ∆I = I − I0, and

I0 = −c0
(

2

`d−2
− 1

(2`+ h)d−2
− 1

hd−2

)
, c0 = 2d−2

√πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

. (4.5)

Also for d = 4 using (3.9) one finds

∆I =
α2

4
log

`2

h(2`+ h)
. (4.6)

Clearly the position of the critical point where the holographic mutual information vanishes

depends on the momentum relaxation parameter α. For example, in the case of d = 3 for

small α one finds

hcrit. =
1

2

(√
5− 1

)
`−

α2`3Γ
(
1
4

)4
96
√

5πΓ
(
3
4

)4 +O(α4). (4.7)

We have summarized the results for d = 3 and d = 4 with ` = 1 in figure 1. In order to

compare the results more clearly, we plot h̃crit. = hcrit.
hα=0
crit.

as a function of α. In this figure the

corresponding holographic mutual information is finite below each curve and it vanishes

above them. This shows that in theories with momentum relaxation the phase transition

of mutual information happens at smaller separation between the spatial subsystems com-

paring to translational invariant states. In other words it means that mutual correlation

between subsystems is a decreasing function of momentum relaxation parameter.

This analysis can be generalized to other holographic information measures to study

how momentum relaxation affects their behaviour. The simplest example is the holographic

tripartite information which is defined as follows

I [3](A1, A2, A3) = I(A1, A2) + I(A1, A3)− I(A1, A2 ∪A3). (4.8)

In [59] it was proved that this quantity is always negative which means that the holographic

mutual information is monogamous. Note that in a general QFT the tripartite information
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can be positive, negative, or zero and it seems that this monogamy property is a necessary

condition for a QFT to admit Einstein dual gravity. Also it was shown that in specific sit-

uations the holographic n-partite information which is a generalization of (4.8) to systems

consisting of n subsystems has a definite sign, i.e., it is positive (negative) for even (odd)

n [60–62]. Actually the presence of momentum relaxation does not change these argu-

ments. The basic assumptions leading to these behaviors are the minimality and homology

conditions of the RT prescription. These two are supposed to hold in solutions dual to

momentum dissipation as long as they are asymptotically AdS geometries as solutions of

Einstein gravity with minimally coupled matter fields.

4.2 Information metric

Fisher information metric (sometimes called Bures metric, information metric or even quan-

tum fidelity) is a measure to quantify how much two different states are different. It mea-

sures the distance between states in the states space. This quantity is defined for states

which are infinitesimally apart from the fidelity expansion

F(α0, α0 + δα) ≡ |〈ψ(α0 + δα)|ψ(α0)〉| = 1−Gαα (δα)2 +O
(

(δα)3
)
, (4.9)

where Gαα is defined as the information metric or fidelity susceptibility. This measure has

several applications including a useful tool to understand quantum critical phenomena and

quantum phase transitions [63] (see also e.g. [64] for a review).

Recently a proposal for holographic information metric has appeared for states of a

(d+ 1)-dimensional CFT which are separated due to a marginal deformation [65] (see [66]

for a concrete generalization of this proposal). This proposal is supposed to work for states

which their dual geometry are static solutions of Einstein gravity. The proposal simply

says that the information metric can be calculated holographically via

G(d+1)
αα = nd

Vol(Σmax)

Ld+1
, (4.10)

where nd is a numerical factor of O(1), Σmax is a time-slice (co-dimension one) with max-

imum volume of the geometry which ends on the boundaries of the geometry and L is the

AdS radius.

In this subsection we compute information metric between two states at leading order

of mass and momentum relaxation parameter corrections. Explicit computations for 2d

CFT leads to

G(2)
αα =

V2
2L

(
1

ε2
− 1

ρ2h

)
− V2α

2

4L
log

ε

ρh
. (4.11)

where for higher dimensional CFTs Gdαα is given by

G(d+1)
αα =

Vd−1
(d− 1)L

(
1

εd−1
− 1

ρd−1h

)
+

Vd−1α
2

4(d− 2)(d− 3)L

(
1

εd−3
− 1

ρd−3h

)
. (4.12)

The above expressions can be viewed two-fold. In order to find the fidelity susceptibility

between the conformal vacuum (dual to the pure AdS geometry) and the massless non-

conformal vacuum one may take ρh →∞ limit of these expressions. On the other hand the
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whole expressions give the fidelity susceptibility between massless non-conformal vacuum

and a massive deformation of that.10

5 Geometric entropy and confinement/deconfinement phase transition

An interesting property of holographic entanglement entropy is probing confinement/

deconfinement phase transitions [68, 69] (see also [70] for a review). This property is

captured by solitonic solutions which are obtained after a double Wick rotation. Such a

rotation in our case (2.2), leads to

ds2 =
L2

ρ2

[
f(ρ)dt2 +

dρ2

f(ρ)
− dx21 + dx2d−2

]
. (5.1)

In this section we are interested in studying the effect of momentum relaxation on these

kind of phase transitions. We restrict ourselves to the case of d = 3 with m0 = 0. Note

that here the t direction is compacted. Imposing the condition that there is no conical

singularity at the horizon ρh =
√
2
α , fixes the radius of t to be β = 2

√
2π

Lα . In this case there

are two types of RT surfaces which contribute to the HEE, and they are usually referred to

as the connected and disconnected RT surfaces. There is a critical value `c for the width

` of the strip entangling region, for which ` < `c the area of the connected RT surface is

minimal while for ` > `c the disconnected RT surface is minimal.

Connected RT surfaces. The connected RT surface is a smooth surface which starts

from one boundary of strip and ends on the other boundary. This surface is parametrized

by x1 = x1(ρ), thus the induced metric on it is given by

ds2ind. =
L2

ρ2

[
f(ρ)dt2 +

(
x′1

2
+

1

f(ρ)

)
dρ2
]
. (5.2)

The area functional for the connected RT surfaces is given by

Acon =

∫
dtdx1

L2

ρ2

√
ρ′ + f(ρ). (5.3)

The Hamiltonian H conjugate to x1 is given by

H =
f(ρ)

ρ2
√
ρ′2 + f(ρ)

=

√
f(ρt)

ρ2t
, (5.4)

and is a conserved quantity. Using the hamiltonian H one can find

ρ′(x1) = ±

√(
ρ2t − ρ2

)
(−2 + α2ρ2)

(
2ρ2t + ρ2

(
2− α2ρ2t

))
ρ2
√

2α2ρ2t − 4
, (5.5)

10One may also consider a more recent proposal known as ‘holographic complexity’ for holographic

calculation of ‘reduced fidelity susceptibility’ [67].
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Figure 2. The width of the strip ` as a function of the turning point ρt for α = 0.4, 0.6, · · · from

right to left. Note that for each ` there are always two solutions (two local minima of the area

functional). However only one of them minimizes the area functional, and is called the physical

connected configuration.

which ρt is related to the boundary data via

` = 2

∫ ρt

0
dρ

1

ρ′
. (5.6)

In figure 2, ` is plotted as a function of ρt. For the connected configuration there are

always two solutions to the e.o.m. of ρ(x1): the solution which gives the smallest area is

called ‘physical’, and the other one is called ‘unphysical’ RT surface in the literature. The

entropy given by the physical connected RT surface is

Scon. =
βL2

2GN

∫ ρt

ε
dρ

(
ρt
ρ

)2
√

(2− α2ρ2)(
ρ2t − ρ2

) (
2ρ2t + ρ2

(
2− α2ρ2t

)) . (5.7)

Disconnected RT surfaces. The disconnected RT surface is a union of two disconnected

parts each starting from one boundary towards the horizon at ρh. In this case x1 is

independent of the radial coordinate ρ, in contrast to the connected case. The induced

metric is given by

ds2ind. =
L2

ρ2

[
f(ρ)dt2 +

dρ2

f(ρ)

]
, (5.8)

and the HEE is given by

Sdis. =
βL2

2GN

(
1

ε
− 1

ρh

)
. (5.9)

We are interested in the difference between the contributions of these two type of RT

surfaces. Therefore, we consider the subtracted EE, ∆S = Scon.−Sdis. which is a UV finite

quantity. In figure 3 we have plotted ∆S as a functions of `. As can be seen from figure 3

by increasing the momentum relaxation parameter α, the critical length `c decreases. We

have also plotted `c as a function of α in figure 4.
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Figure 3. The subtracted holographic entanglement entropy ∆S = Scon. − Sdis. as a function of

the strip width ` for α = 0.4, 0.6, · · · from right to left. For each α there is a curve which has two

branches: upper and lower ∆S = 0. The upper branch is what is usually called unphysical while

the lower branch is the global minimum of the area functional and shows the physical connected

RT surface in the HEE. Here we set ε = 0.001, L = GN = 1.

1 2 3 4 5 6 7
α

0.5

1.0

1.5

2.0

lc

Figure 4. Critical length lc as a function of α. By increasing the parameter α, the critical length

decreases.

6 Wilson loop

In this section we will compute another nonlocal probe which is a rectangular Wilson loop

in the geometry given by (2.2). Using the expectation value of this quantity one can read

off the effective potential between extrenal point like objects, e.g., a quark-antiquark pair.

The prescription for calculating the expectation values of Wilson loop operators in the dual

theory was proposed in [71].11 According to this proposal the corresponding expectation

value is equal to the area of a worldsheet whose boundary is the loop located on the

asymptotic boundary of the spacetime. The corresponding area for the string worldsheet

11See [72] for studying the Wilson loop in the dual theory of anisotropic axionic backgrounds.
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is given by the Nambu-Goto action

I =
1

2πα′

∫
dτdσ

√
h, (6.1)

where h is the induced metric on the worldsheet. Considering a static configuration with

τ = t, σ = ρ, x1 = x(ρ), (6.2)

one finds

I =
L2

2πα′

∫
dt
dρ

ρ2

√
1 + x′(ρ)2f(ρ). (6.3)

The action does not depend on x, hence by defining a constant of motion one finds

x′2 =
ρ4f(ρt)

f(ρ)(f(ρ)ρ4t − f(ρt)ρ4)
, (6.4)

where ρt denotes the turning point. Using the above relation, the separation and also

effective potential between the quark and antiquark can be found as follows

` = 2

∫ ρt

0
dρρ2

√
f(ρt)

f(ρ)(f(ρ)ρ4t − f(ρt)ρ4)
,

V =
L2ρ2t
πα′

∫ ρt

ε

dρ

ρ2

√
f(ρ)

f(ρ)ρ4t − f(ρt)ρ4
.

(6.5)

Since we are not able to perform the above integral analytically, we compute the first order

correction due to the momentum relaxation parameter α. This can be found as

∆V = − L2

16
√
π(d− 2)α′

Γ(54)

Γ(74)
α2`, (6.6)

Similar to our previous notation we have defined ∆V = V − V (0). The regularized part of

the effective potential for the AdS vacuum is given by [71]

V (0)
reg. = −2L2

α′
Γ(34)2

Γ(14)2
1

`
. (6.7)

According to (6.6) in theories with momentum dissipation the correction to the effective

potential between point like external objects is linear and attractive. This result shows that

the strength of the corresponding force between these objects is given by

F0 = −dV0
d`

= −2L2

α′
Γ(34)2

Γ(14)2
1

`2
, (6.8)

which is an attractive force. On the other hand the momentum relaxation parameter leads

to the following correction

∆F = −d∆V

d`
=

L2

96
√

2π2(d− 2)α′
Γ(14)3

Γ(34)
α2, (6.9)

which is repulsive and independent of the separation `. The shows that total force between

the quark and the anti-quark decreases in presence of momentum dissipation.
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7 Discussions and concluding remarks

In this section we would like to first summarize our results and continue with some comple-

mentary material of our study. We will report the result of the main parts of our analysis

for another similar type of momentum relaxation model known as square root model, and

we will end with some comments mainly about massive deformations of the non-conformal

vacuum and the first law of entanglement in theories with momentum relaxation.

Summary of results.

• In the case of strip entangling region, it is well known from the very beginning of RT

proposal that in generic d-dimensional (with d > 2) holographic CFTs that there is no

logarithmic universal term in the entanglement entropy expansion. Here we show that

due to momentum relaxation effects, logarithmic universal terms may appear in the

entanglement entropy expansion with respect to momentum relaxation parameter.

• It is well-known that the universal terms of spherical entangling region capture the

‘a’-type and cylindrical entangling region capture the ‘c’-type central charges of

4-dimensional CFTs. Here we show that in presence of the marginal deformation

of the CFT these universal terms get corrections from the momentum relaxation

parameter (in agreement with a-theorem in case of spherical regions).

• In the case of 2-dimensional CFTs, since the universal term is the leading divergence

of entanglement entropy which is completely fixed from the UV structure of the

theory, the marginal deformation does not affect the universal term and thus the

central charge. In this situation entanglement entropy gets non-critical corrections

due to momentum relaxation.

• We have shown that increasing the distance between two subregions, in comparison

with the conformal vacuum state, the phase transition of holographic mutual infor-

mation happens at smaller distance. This is because of the decrease of the correlation

length in such states with momentum dissipation.

• We have studied the phase transition captured by the double Wick-rotated geometry

known as confinement/deconfinement phase transition. We have shown that the crit-

ical value of this phase transition, the length of strip entangling region, is decreased

by increasing the momentum dissipation parameter. Again this was expected because

of the decrease of the correlation length in the non-conformal vacuum.

• Considering the holographic Wilson loop, we have shown that in theories with mo-

mentum dissipation, the correction to the potential between quark and anti quark

is linear and attractive and the corresponding force between them is an increasing

function of the momentum relaxation parameter.
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Square root model. Another similar family of models which leads to momentum relax-

ation was introduced in [26]. This model is sometimes called square root model defined by

the following action

I =

∫
dd+1x

√
−g

[
R− 2Λ−

d−1∑
I=1

√
(∂χI)2

]
, (7.1)

where Λ = −d(d−1)
2L2 , and χI ’s are again massless scalar fields and index I runs over the

spatial directions of the dual theory. This action admits the following solution for d > 2

ds2 =
L2

ρ2

[
−f(ρ)dt2 +

dρ2

f(ρ)
+ dx2d−1

]
,

f(ρ) = 1− β

d− 1
ρ−m0ρ

d,

χI(x) = βδIax
a.

(7.2)

The entropy and temperature of this solution is given by

S =
Vd−1
4GN

(
β

d− 1

)d−1
, T =

β

4π(d− 1)
. (7.3)

In contrast with the polynomial model, the square root model has a non-logarithmic solu-

tion for d = 2 with

f(ρ) = 1− βρ−m0ρ
2,

χ(x) = βx,
(7.4)

where the above expressions are again valid for the entropy and temperature.

Here we report the result of more or less the same analysis we did for polynomial

models in section 3 and 4 for the square root models. We will study momentum relaxation

corrections to strip, spherical and cylindrical entangling regions, and we will highlight the

main differences between this model and the polynomial model. These differences are all

originated in the emblackening factors of these geometries.12

For the case of strip entangling region, using the expression found in (3.6) with f given

by (7.2), one can easily find the correction to HEE. For d > 3 and to the first order in β

expansion, one has

∆S =
Ld−1Hd−2

4GN

1

(d− 1)(d− 3)

 1

εd−3
−

2
√
π

(d+ 1)`d−3

Γ
(

3d−1
2(d−1)

)
Γ
(

d
d−1

)
2
√
πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−3β +O

(
β2
)
.

(7.5)

For the case of d = 3, one finds

∆S =
L2H

8GN

[
log

`

ε
+ log

(
Γ
(
1
4

)
√

2πΓ
(
3
4

))− 1

2

]
β +O

(
β2
)
. (7.6)

12It would be interesting to further investigate these differences from field theoretic point of view.
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Figure 5. Location of the critical points as a function of α for d = 3 (red) and d = 4 (blue) with

` = 1 in square root model. In each case, the holographic mutual information is finite below the

transition curve and vanishes when we cross it.

The important observation is that unlike the polynomial model, here for generic d (even

and odd both) there is a logarithmic correction, log `
ε at O

(
βd−2

)
. Also for d = 2, we must

use (7.4) and the corresponding HEE for m0 = 0 is given by

∆S =
πL

4GN

β`

8
+O

(
β2
)
. (7.7)

Here we have found a thermal correction to the entanglement entropy in contrast to the

non-critical correction we found in (3.14) for the polynomial model. For the case of T = 0

mixed state (extremal geometry) similar results can be found for the non-extremal case.

The area functional for the spherical and cylindrical entangling regions are given

by (3.23) and (3.27) respectively, where one should use f from (7.2) (again for the case

of m0 = 0). Here there is a crucial difference between this model and the polynomial

model: the structure of subleading logarithmic correction due to momentum relaxation is

shifted from even (field theory) dimensions to odd dimensions for spherical and cylindrical

entangling regions. This feature is a result of the difference between the structure of the

emblackening function in the solution which has a linear (in ρ) term instead of quadratic

term which we had in the polynomial model. For spherical entangling region at leading

order in β one has

∆S =

{
− πL2

8GN

(
log `

ε −
1
2

)
β`, d = 3,

− πL3

8GN

(
`
ε −

3π
4

)
β`, d = 4,

(7.8)

and for cylindrical entangling region at leading order in β one finds

∆S =

{
L2H
8GN

log `
ε (β`) , d = 3,

πL3H
12GN

(
`
ε − 1

)
(β`) , d = 4.

(7.9)

Also in figure 5 we have shown similar results for the phase transition of mutual

information in the square root model.
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First law of entanglement. It is well-known in the literature that using the positivity

of relative entropy directly implies that variation of entanglement entropy is bounded by

the variation of the expectation value of modular Hamiltonian [73–77]. In the context of

holographic CFTs, this bound is saturated at first order of perturbation which is known as

the first law of entanglement. First law of entanglement equates the variation of entangle-

ment entropy for two nearby states (one is the vacuum state) with the expectation value

of the modular Hamiltonian.

One may naturally ask what kind of deformed states are ought to satisfy such a law?

In the context of holographic CFTs, if the reference state is the CFT ground state (the

conformal vacuum in our language) and the second state is a slight deformation of it, still

preserving conformal symmetry, it would be natural to expect the first law of entanglement

to be satisfied. To our knowledge, this has been checked for several deformations such as

relevant mass deformations in [73–77] or for holographic duals of coherent states which are

constructed with relevant or even marginal scalar deformations in [78, 79].

In the case of the non-conformal vacuum one can compute for instance massive cor-

rections to the entanglement entropy which are

∆S =
m0`

2Ld−1Hd−2

32GN
√
π

Γ2( 1
2(d−1))

Γ2( d
2(d−1))

(
Γ( d

d−1)

Γ( d+1
2(d−1))

+ α2`2δd

)
(7.10)

where δd is a numerical factor, this is not going to be equal to the expectation value of

the modular Hamiltonian (which itself is not known in this case, even for spherical or cap

entangling regions).

Before finishing we would like to address possible relation between the effect of momen-

tum relaxation in the entanglement entropy of this type of holographic states and what

is well-known in the context of condensed matter physics: the central charge of critical

systems changes to an effective smaller central charge due to turning on a random coupling

in the system [80].13 It would be interesting to explore this possible relation more precisely

in future works.
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