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1 Introduction

If the renormalization group(RG) flow of a quantum field theory has a stable conformal

fixed point, and the fixed point preserves more symmetries(besides conformal symmetry

itself) than the original theory, then these extra symmetries will emerge as a result of

RG flow. Emergent supersymmetry has been found in different contexts, for example, in

topological superconductors [1], in gauge theories with some Yukawa operators [2], and in a

class of models in 1+1 dimensions [3]. In this paper, we show that supersymmetry emerges

in a four dimensional renormalizable quantum field theory: the marginal deformations of

N = 4 SYM in the planar limit.

The most general superconformal deformation of N = 4 SYM is the Leigh-Strassler

deformation [4]. As a conformal field theory, the Leigh-Strassler deformation is a fixed

subspace in the space of more general deformations. However, it is technically difficult to

determine whether this fixed subspace is stable, given the huge number of parameters in

the Yukawa and quartic scalar couplings.

The a-function (see e.g. [5, 6]) is a proposed quantity which increase monotonically

with the energy scale, and its gradient flow gives the β-functions. The a-function can be

very helpful in the study of RG flow in theories with large number of parameters, because

the complicated behavior of RG flow in a high dimensional space is characterized by a

single function.

We shall start in section 2 by briefly reviewing the a-function, and discuss the relation

between a-function and conformal fixed points. With the help of a-functions we study the

flow of gauge and Yukawa couplings in gauge theories in section 3, and show that when

the number of fermions and scalars satisfy a relation, the Yukawa couplings always flow to

conformal fixed points. In section 4, we briefly review the Leigh-Strassler theory. And in
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section 5 and section 6, we study the RG flow around the Leigh-Strassler theory, show that

although the Leigh-Strassler theory seems to be a saddle point of generic deformations,

it becomes stable if only a subspace of (but still non-supersymmetric) deformations are

turned on.

2 The a-function and the conformal fixed point

In two dimensional quantum field theories the Zamolodchikov c-theorem [7, 8] identifies a

C-function which satisfies a RG flow equation of the form

dC

d lnµ
=

3

2
GIJβ

IβJ , (2.1)

where gI are the couplings corresponding to the operators OI , β
I are beta functions of

gI . GIJ is proportional to the two point functions 〈OIOJ〉, and it is positive definite,

so (2.1) implies that the C function increase monotonically with the energy scale. The

four dimensional analog of C-theorem is the a-theorem, which conjectures that for four

dimensional quantum field theories we can define the a-function, Ã, which satisfies

∂IÃ = TIJβ
J ,

dÃ

d lnµ
= GIJβ

IβJ , (2.2)

where GIJ is the symmetric part of TIJ , and a-theorem holds as long as GIJ is positive

definite. The first evidence of a-theorem appeared in the 1970s [5], and a lot of progresses

have been made in this direction since then (see [9–15] and references therein).

In this paper we are mainly interested in the behavior of RG flow in the infrared

region, and throughout the paper conformal fixed points always means infrared conformal

fixed points unless otherwise specified. Conformal fixed points correspond to the stationary

points of the a-function. This is clear from (2.2): since GIJ is positive definite, dÃ
d lnµ = 0 if

and only if βI = 0. A conformal fixed point can be isolated, in the sense that it is locally the

only conformal fixed point, or it can be located in a Dc dimensional space of conformal fixed

points. An isolated conformal fixed point can be stable or unstable: a stable conformal fixed

point corresponds to a local minimum of the a-function, while a unstable one corresponds

to a local maximum or saddle points. An example of stable and unstable conformal fixed

point is shown in figure 1: g = 1 is a stable conformal fixed point, while g = 0 is unstable.

The definition for a stable conformal fixed point gI0 is, any gI = gI0 + ηI will flow to gI0
when energy goes to zero, as long as ηI is small enough. But this is not true if gI0 located

in a Dc dimensional space of conformal fixed points. So in this case it is more appropriate

to discuss the stableness of the conformal fixed subspace. A conformal fixed subspace, C, is

called stable, if any g flow to a point in C at low energies, as long as g is close enough to C.
Stable fixed points(spaces) can be found by solving the differential equations numeri-

cally. The set of gI which flow to the given stable fixed points(spaces) has non-zero measure.

So start with random gI , when energy goes to zero, the possibility that the flow reaches

the stable fixed point(spaces) is not zero.

A particularly interesting case of stable fixed points is when the a-function is bounded

below: the RG flow must stop either when it reaches the lower bound, or trapped in some
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Figure 1. a-function with Ã(g) = 1
4g

4 − 1
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3.

fixed point above the lower bound. This means the corresponding quantum field theory

must flow to a conformal fixed point at low energies. In section 3 we will see the the first

two orders of Ã for gauge theories can be bounded blow with proper choice of fermion and

scalar numbers.

3 The RG flow of gauge and Yukawa couplings

In [16], gauge theories with a Yukawa interaction 1
2ψ

T
i C(Ya)ijψjφa + h.c. and a quartic

scalar interaction 1
4!λabcdφaφbφcφd was studied, and the a-function is computed to 4 loops,

up to some g6 terms,1

ds2 = GIJdg
IdgJ =

2nV
g2

(1 + σg2)dg2 +
1

6
tr[dŷadya] +

1

144
dλabcddλabcd,

Ã(2) = −nV β0g
2,

Ã(3) = −1

2
nV g

4(β1 + σβ0)− 1

2
g2 tr[yaŷaĈ

ψ]

+
1

24
tr[yaŷaybŷb] +

1

12

(
tr[yaŷbyaŷb] +

1

4
tr[yaŷb] tr[yaŷb]

)
,

Ã
(4)
λ =

1

8
λabcdλabefλcdef +

(
3

2
g4(tφAt

φ
B)ab(t

φ
At
φ
B)cd −

1

2
tr[yaŷbycŷd]

)
λabcd

+
1

12
λabcdλabce

(
tr[yeŷd]− 6g2(Cφ)ed

)
,

(3.1)

in which

σ =
1

6
(102CG − 20Rψ − 7Rφ), β0 =

1

3

(
11CG − 2Rψ − 1

2
Rφ
)
,

β1 =
1

3
CG

(
34CG − 10Rψ −Rφ

)
− 1

nV
tr[(Cψ)2]− 2

nV
tr[(Cφ)2].

(3.2)

Ã
(4)
λ are the λ-dependent terms in Ã(4), we did not present the other terms here because

we will not need them in this work. Our conventions for the group invariants and various

other constants completely follows [16], and for compactness we will not list them here.

1In [16] the coefficient of last term of (3.2) was −4, we modified it to −2 based on our own calculations,

and the results of other authors, e.g. [17].
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Ã(2) only depend on g, and if β0 < 0, g = 0 is a the minimum of Ã(2), so at low energies,

the gauge coupling approaches 0, and gauge field decouples. Higher loop corrections do

not affect our conclusion because they become unimportant when g → 0.

When β0 > 0, g2 becomes greater at low energies(asymptotic freedom), and higher

loop corrections becomes important. In order to find the minimum of Ã(2) + Ã(3), we

define the following quantities,

F2 = yaŷa − 6g2Ĉψ,

Iab = −i tr(YaȲb) + i tr(YbȲa),

tijkl = YaijYakl + YaikYajl + YailYajk.

(3.3)

Using
1

3
tijkl t̄

ijkl = tr(yaŷbyaŷb) +
1

4
tr(yaŷb) tr(yaŷb)−

1

4
IabIab, (3.4)

the Yukawa terms in Ã(3) can be written as a sum of perfect squares,

Ã(3) = −1

2
nV g

4 (b1 + σβ0) +
1

24
tr[F2F2] +

1

36
tijkl t̄

ijkl +
1

48
IabIab, (3.5)

where

b1 = β1 +
3

nV
tr[(Ĉψ)2] =

1

3
CG

(
34CG − 10Rψ −Rφ

)
+

2

nV
tr[(Cψ)2]− 2

nV
tr[(Cφ)2]. (3.6)

If β0 > 0 and b1 < 0, Ã(2) + Ã(3) has a local minimum at2

F2 = Iab = tijkl = 0, g2 = g2
m ≡ −

β0

b1
. (3.7)

Notice tijkl is proportional to the tree amplitude of 4 positive fermion,

A (ψi(k1), ψj(k2), ψk(k3), ψl(k4)) =
[12][34]

s12
tijkl. (3.8)

and the vanishing of tijkl forbids these UHV(ultra-helicity-violating) amplitude3 at tree

level. Actually we found the amplitude also vanishes at one loop if tijkl = 0, and it is

natural to expect it to vanish at all loops in conformal deformations of N = 4 SYM.

Now consider a theory with nψ fermions and nφ scalars, both in adjoint representation,

β0 =
1

3
CG

(
11− 2nψ −

1

2
nφ

)
,

β1 =
1

3
C2
G (34− 16nψ − 7nφ) ,

σ =
1

6
CG(102− 20nψ − 7nφ).

(3.9)

The pairs of (nψ, nφ) satisfying β0 > 0, b1 < 0, and the corresponding g2
mN are

collected in table 1. Notice for some choices of (nψ, nφ), g2
mN is still much smaller than 1,

and perturbation theory may be trusted.

2The stationary point of Ã is given by ∇IÃ = 0 instead of ∂IÃ = 0.
3It can be easily checked that tijkl also vanishes for supersymmetric Yang-Mills theories.
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(nψ, nφ) (1,6) (1,7) (1,8) (1,9) (1,10) (1,11) (1,12) (1,13)

g2
mN 1 11

26
1
4

1
6

2
17

7
82

1
16

1
22

(nψ, nφ) (1,14) (1,15) (1,16) (1,17) (2,6) (2,7) (2,8) (2,9)

g2
mN

1
31

1
46

1
76

1
166 1 7

22
1
6

1
10

(nψ, nφ) (2,10) (2,11) (2,12) (2,13) (3,6) (3,7) (3,8) (3,9)

g2
mN

1
16

1
26

1
46

1
106 1 1

6
1
16

1
46

Table 1. (nψ, nφ) satisfying β0 > 0, b1 < 0, and the corresponding g2mN .

4 The Leigh-Strassler theory

The Leigh-Strassler theory is aN =1 superconformal deformation of theN =4 SYM. Super-

conformal symmetry and unitarity gives strong constraints to the anomalous dimensions of

operators in supersymmetric theories, and a classification of supersymmetric deformations

has been carried out in [18]. For N = 1 SYM it has been proved non-perturbatively that

the conformal fixed point is always stable by showing there is a positive a-function around

the fixed point [19]. The a-function was also computed perturbatively in e.g. [9, 20–22].

Less effort has been paid on the non-supersymmetric deformations of conformal field

theories. The non-supersymmetric theories have much more parameters than the super-

symmetric theories, which makes a direct study of RG flow unfeasible. And without super-

symmetry, the known unitarity bounds are not enough to decide whether the deformation

operators are relevant or irrelevant.

We will study the RG flow of non-supersymmetric theories using the a-function. From

the perspective of last section, the Leigh-Strassler theory is a gauge theory with four chiral

fermions six real scalars in adjoint representation of the SU(N) gauge group. Interestingly,

from (3.9) we find β0 = σ = b1 = 0, and

Ã(2) + Ã(3) =
1

24
tr[F2F2] +

1

36
tijkl t̄

ijkl +
1

48
IabIab ≥ 0. (4.1)

So Ã(2) + Ã(3) has a global minimum at

F2 = Iab = tijkl = 0. (4.2)

Eq. (4.2) is ‘homogeneous’ in g and Yaij : if g and Yaij solves (4.2), |z|g and zYaij also

solves (4.2) for arbitrary non-zero complex z. This implies unlike the theories in table 1,

where g2
mN is fixed, conformal fixed points may exist for arbitrary gauge couplings when

(nψ, nφ) = (4, 6).

We will focus on the planar limit, then in terms of SU(N) matrix-valued fields, the

Yukawa interaction can be written as YIAB Tr(φIψAψB)+ Ȳ IBA Tr(φI ψ̄Aψ̄B) and the quar-

tic scalar coupling is 1
4λIJKL Tr(φIφJφKφL).

It is convenient to combine φI into 3 complex scalars φi, and to discriminate ψi and

ψ4. ψi are the super-partner of φi, while ψ4 is the super-partner of the gauge field. The
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Yukawa interaction of the Leigh-Strassler theory is given by

LY = Tr

[
κε+ijkφ

i

(
qψjψk − 1

q
ψkψj

)
+ h

∑
i

φiψiψi + gφ̄i[ψ
i, ψ4]

]
+ c.c. (4.3)

where

ε+ijk =
1

2
(εijk + |εijk|), (4.4)

and h and q are two complex parameters.

The quartic scalar interactions are related to the Yukawa couplings Yijk by,

Lφ = −g
2

2
Tr([φi, φ̄i]

2)− YijmȲ lkm Tr(φiφjT a) Tr(φ̄kφ̄lT
a), (4.5)

where T a are the SU(N) generators.

Besides supersymmetry, the theory is also invariant under a U(1) transformation:

ψi → eiξψi, ψ4 → e−3iξψi, φi → e−2iξφi. (4.6)

In order for the theory to be conformal, κ, h and q must satisfy a condition. At 2 loops

and in the planar limit, this condition is

2g2 = |h|2 + κ2(|q|2 + |q|−2). (4.7)

The condition under which the theory is conformal up to three loops (four loops in planar

limit) was given in [23].

In the planar limit, (4.2) becomes

(F2)BA = YIAC Ȳ
IBC + YICAȲ

ICB − 6g2δBA ,

IIJ =
1

i
(YJCDȲ

ICD − YICDȲ JCD) = 0,

tABCD = YIABYICD + YIDAYIBC .

(4.8)

It can be verified that (4.8) holds4 and the Leigh-Strassler theory does lie in the the global

minimum of Ã(2) + Ã(3). However, it is possible that there are other (non-supersymmetric)

conformal fixed points in the neighborhood of the Leigh-Strassler deformation, then the RG

flow may end up reaching these non-supersymmetric conformal fixed points, and supersym-

metry fails to emerge. in order to exclude this possibility we will examine the anomalous

dimensions of marginal operators in the next section.

5 Marginal operators and conformal deformations

In this section we study the conformal deformations of the Leigh-Strassler theory. The space

of ‘all conformal deformations’ may have multiple components, and in different components,

the space may have different dimensions. So to be more accurate we define the term

‘sector’: the sector of a given conformal fixed point is the irreducible component containing

4Actually (4.2) hold even in the non-planar case for the Leigh-Strassler theory.
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a neighborhood of the point in the space of conformal deformations. The Leigh-Strassler

deformation has 4 real physical parameters, so locally it is the only conformal fixed subspace

if the enclosing sector also has 4 physical parameters.

Different fixed points in the same sector are physically equivalent if they are related by

SO(6) and U(4) redefinitions of scalars and fermions. So number of ‘physical’ parameters

is the dimension of the quotient space of the sector by SO(6) ×U(4).

Suppose Lcft is the Lagrangian of the enclosing sector of the Leigh-Strassler theory,

and ga are the physical parameters,

Lcft = Lcft(ga, Aµ, U
A
B (ωi)ψ

A, OIJ(ωi)φ
J), (5.1)

where ωi’s are parameters of U(4) (16 parameters) and SO(6) (15 parameters) redefinitions

UAB and OIJ .

General deformations can be written as L0, the Lagrangian of the Leigh-Strassler

theory, plus four types of dimension-4 operators,

LO = L0
cft + δga

∂Lcft

∂ga
+ δωi

∂Lcft

∂ωi
+ cmOm + zαZα. (5.2)

The first type, ∂Lcft
∂ga

, corresponds to the variation of the Lagrangian when the parameters

ga changes. The number of ∂Lcft
∂ga

is Np, which is the number of physical parameters The

second type, ∂Lcft
∂ωi

, corresponds to the variation of the Lagrangian under the redefinition

of scalars and fermions. The number of ∂Lcft
∂ωi

is at most 31, but it is possible that a

subgroup of U(4)×SO(6), Gsym, is preserved in the theory. In this case, the corresponding

Oi vanishes, so the number of Oi is the same as the number of generators of the quotient

group U(4)×SO(6)/Gsym. For example, N = 4 SYM has a SU(4) symmetry, so the number

of Oi is only 16. The γi-deformed SYM [24, 25] has a U(1)3 symmetry, and the number

of Oi is 28. Adding these two types of operators to the Lagrangian does not break the

conformal symmetry, and the corresponding beta functions vanishes.

The third type, Om, are operators with non-zero anomalous dimensions, or marginally

irrelevant operators. The last type, Zα are operators which break conformal symmetry

but with vanishing anomalous dimensions. We will call operators with zero anomalous

dimensions protected operators, Zα will be called accidentally protected operators, and

the number of Zα will be denoted by Nacci.

Each protected operator corresponds to a zero eigenvalue of the anomalous dimension

matrix ∇IβJ , so we have

Np = Dim(Ker(∇IβJ))−Nacci −Dim(U(4)× SO(6)) +Dim(Gsym). (5.3)

As an example, we consider the Yukawa couplings of γi deformed N = 4 SYM. There

are in all 34 protected operators, in which none is accidentally protected, and the theory

preserves a U(1)3 symmetry. From (5.3) the theory has 6 physical parameters. The com-

plete Lagrangian of this 6-parameter theory is not known yet, but it has been formulated for

a 3-parameter sub-theory(when all γi’s are real) [24]. The gravity dual of this 3-parameter

– 7 –
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sub-theory [24] is a sub-theory of a 6+2 parameter5 deformation of AdS5 × S5 [25]. This

indicates the 6 + 2 parameter deformation is the gravity dual of the enclosing sector of γi
deformed SYM.

The Leigh-Strassler deformation has 46 protected Yukawa operators.6 Among them 30

operators correspond to the variation of the Lagrangian under SO(6) and U(4) rotations of

scalars and fermions. 4 protected operators corresponds to the variation of the Lagrangian

when the parameter of the theory, β and h change. The left 12 operators are:7

Oi1 = Tr

(
κ

(
p2 +

1

p2
− 1

)
φiψ4ψ4 +

κ

h̄
(q̄ − q̄−1)2(φ1)4

+ (φ1)2(q̄φ2φ3 − q̄−1φ3φ2) + (q̄ − q̄−1)φ1φ2φ1φ3 − h̄

κ
(φ2φ3)2

)
,

Oi2 = Tr

(
φj{ψk, ψ4}+ φk{ψj , ψ4} − κ

h̄
(q̄ − q̄−1)φi{ψi, ψ4},

+ (φj)2[φ̄j , φ
k] + (φk)2[φ̄k, φ

j ] + [φi, φ̄i]{φj , φk}

− κ

h̄
(q̄ − q̄−1)(φi)2([φj , φ̄j ] + [φk, φ̄k])

)
,

(5.4)

Adding these operators to the Leigh-Strassler Lagrangian,

δL = aiO
i
1 + āiŌ

i
1 + biO

i
2 + b̄iŌ

i
2, (5.5)

tijkl and Iab are invariant, but F2 is not. For example,

1

2
δ(F2)1

1 =
κ2|q − 1/q|2

|h|2
|b1|2 + |b2|2 + |b3|2,

1

2
δ(F2)4

4 = |a1|2 + |a2|2 + |a3|2 +

(
2− κ2|q − 1/q|2

|h|2

)
(|b1|2 + |b2|2 + |b3|2).

(5.6)

Apparently turning on any of these operators will change F2, and in the end increase Ã.

So these operators are accidentally protected operators, and do not corresponds to new

conformal field theories. From (5.3), the number of parameters in the enclosing sector is

Np = 4, so we have proved that as far as Yukawa couplings are concerned, locally the

Leigh-Strassler deformation is the only conformal deformation.

Last, let us emphasize that these 12 accidentally protected operators may not be

protected by higher loop corrections. If the two loop anomalous dimensions turn out to be

negative, the Leigh-Strassler theory will be unstable even at weak coupling. However, it

will be guaranteed to be stable at weak couplings if we complete turn off the accidentally

5These 2 extra parameters corresponds to the variation of complex gauge coupling τ = 1
g2

+ iθ
8π2 .

6The anomalous dimensions of quartic scalar operators will be modified when these protected Yukawa

operators are added to the Lagrangian. This is why in (5.4), protected Yukawa operators also contain a

quartic scalar piece.
7In (5.4) Oi1 and Oi2 are both complex operators. Each of them corresponds to 2 real accidentally

protected operator which contain both chiral and anti-chiral fermions.
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protected operators, for example, in the subspace of deformations described by

LY = Tr
[
Yijkφ

iψjψk +Xi
jφ̄iψ

jψ4 + Zijφ̄iψ
4ψj
]

+ c.c.

Lφ = λijk̄l̄ Tr(φiφjφ̄kφ̄l) +
1

2
λik̄jl̄ Tr(φiφ̄kφ

jφ̄l).
(5.7)

6 Emergent supersymmetry

In the planar limit, the λ-dependent terms of Ã(4) in (3.1) is reduced to

Ã
(4)
λ = −3

8
g4λIIJJ −

3

4
g2λIJKLλLKJI +

1

8
DMNλMIJKλKJIN ,

+BIJKLλLKJI −
1

6
λIJKLλLKMNλNMJI ,

(6.1)

in which DIJ corresponds to a fermion bubble diagram,

DIJ = YICDȲ
JCD + YJCDȲ

ICD, (6.2)

and BIJKL corresponds to a fermion box diagram,

BIJKL = YIABȲ
AD
J YKCDȲ

CB
L + Ȳ AB

I YJCBȲ
CD
K YLAD. (6.3)

Ã
(4)
λ is a polynomial of degree 3 in λIJKL so it does not have a global minimum.

Nevertheless, VS may have local minimum or saddle points, corresponding to stable or

unstable fixed points of single trace scalar couplings, respectively.

Numerical tests shows that the anomalous dimension matrix of λIJKL is still positive

semi-definite. There are 6 protected scalar operators, and they are combinations of three

holomorphic and three anti-holomorphic operators.

ORi =
1

2
Tr(Oi + Ōi), OIi =

1

2i
Tr(Oi − Ōi). (6.4)

One anti-holomorphic operators is

Ō1 =
κ

h

[
h3

(
q2 +

1

q2

)
+ κ3

(
q − 1

q

)3
]
φ̄4

1 + h2κ

(
q2 +

1

q2
− 1

)
φ̄1(φ̄3

2 + φ̄3
3)

+

[
h3 1

q
+ κ3(q2 − 1)2

]
φ̄2

1φ̄2φ̄3 +

[
−h3q + κ3

(
1

q2
− 1

)2
]
φ̄2

1φ̄3φ̄2

+

(
q − 1

q

)[
−h3 + κ3

(
q − 1

q

)]
φ̄1φ̄2φ̄1φ̄3

− hκ2

(
q − 1

q

)(
q2 +

1

q2
− 1

)
φ̄2

2φ̄
2
3 +

h

κ

[
h3 − κ3

(
q − 1

q

)]
φ̄2φ̄3φ̄2φ̄3.

(6.5)

The other two anti-holomorphic operators can be obtained form Ō1 using the Z3 sym-

metry. The holomorphic operators are the Hermitian conjugate of anti-holomorphic oper-

ators.
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If we add these protected operators to the Leigh-Strassler Lagrangian,

L = LLS + ziOi + z̄iŌi. (6.6)

We can expand VS as the power of zi and z̄i. The O(z) order vanishes because it is

proportional to beta functions in Leigh-Strassler theory. The O(z2) order also vanishes

because it is proportional to the anomalous dimensions of accidentally protected operators

Oi and Ōi.
VS(zi, z̄i) = V LS

S − 1

6
δλIJKLδλLKMNδλNMJI , (6.7)

in which δλ is defined by

1

4
δλIJKL Tr(φIφJφKφL) = ziOi + z̄iŌi . (6.8)

With complex indices, the only non-vanishing components of δλ are λijkl and λīj̄k̄l̄, so δλ’s

cannot give non-zero contribution to λ3 terms in eq. (6.7). So the presence of δλ does not

change VS . But we found that δλ make the beta functions non-zero,

dVS(zi, z̄i)

d lnµ
= O(z2). (6.9)

One can add O(z2) order operators to the Lagrangian to cancel these O(z2), and Oi will

become exact marginal if the same can be done to all orders in z. It is technically hard

to exclude this possibility, but numerical tests indicates it fails at O(z3). So the Leigh-

Strassler deformation seems to be a saddle point in the complete parameter space.

In the subspace of deformations described by (5.7), the operators Oi are turned off,

and the Leigh-Strassler theory becomes stable. So N = 1 supersymmetry emerges at low

energies in this non-supersymmetric subspace.

7 Discussions

In this paper we focused on the flow of deformed N = 4 SYM in the planar limit. At

the non-planar level, the Leigh-Strassler deformation is a saddle fixed point even in the

subspace (5.7). The next step along this route shall be finding the maximal subspace

of deformations in which the Leigh-Strassler deformation is a stable fixed point even at

non-planar level.

Besides supersymmetry, other symmetries may also emerge in other models. In fact,

since the Leigh-Strassler deformation preserves a U(1) symmetry while the subspace (5.7)

does not, this U(1) also emerges together with supersymmetry. It would be worthwhile to

check whether the γi deformed SYM, which preserves a U(1)3 symmetry is a stable fixed

point in some subspace of deformations.

In section 3 we proved Yukawa couplings of deformed N = 4 SYM always flow to

fixed points. Following the flow one may find new types of fixed points(subspaces) which

is previously unknown.

Last but not least, it would be interesting to search for more realistic models in which

supersymmetry emerges. In these models supersymmetry are not treated as a fundamental
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symmetry. Even if the ‘fundamental theory’ is non-supersymmetric, supersymmetry may

still emerge as a result of RG flow at some intermediate energy scale which is much lower

than the characteristic energy scale of the ‘fundamental theory’, but still much higher than

the electroweak scale.
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