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1 Introduction

The pure SU(3) gauge theory at finite temperature exhibits a first order phase transition

separating the confined phase at low temperature from the deconfined phase at high tem-

perature. The standard way to locate the critical temperature by Monte Carlo simulations

is based on the computation of the susceptibility of the Polyakov loop. The position of the

peak of the susceptibility determines the temperature and the scaling of the peak value

with the spatial volume identifies the order of the transition.

In this work we study an alternative method to locate the phase transition based on

the energy density computed using the Wilson flow. We separate the spatial and temporal

components of the energy density. Their difference is zero in the confined phase and

becomes non zero in the deconfined phase. This behaviour allows to locate the phase

transition. Technically we propose to use an exponential smoothing spline to fit the data

of the energy difference. We give explicit formulae for the construction of such a spline.

We define the critical temperature to correspond to the maximum slope of the spline. We

verify by Monte Carlo simulations that the new method agrees with the results of the

standard method based on the Polyakov loop susceptibility.

The motivation to look at an alternative method to locate the phase transition is that

in QCD with dynamical fermions one usually uses the peak of the chiral susceptibility

to locate the phase transition or cross over (depending on the quark mass), which is a

computationally expensive quantity. The method based on the energy difference which we

describe in this paper can be applied also in presence of dynamical fermions.
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2 Finite temperature phase transition

The finite temperature can be investigated on lattices where the time extension Nt is much

smaller than the spatial one Ns. This means, it should at least hold Ns ≥ 4·Nt as described

in [1]. The temperature T is related to the time extension by the equation

T (β) =
1

Nt · a(β)

with lattice spacing a(β). This implies for a given Nt, there is a critical coupling βc such

that the critical temperature can be computed via Tc(βc). Finally, the critical temperature

can be computed in physical units, for example, as

Tc[MeV] =
r0/a(βc)

Nt · r0
· ~c =

r0/a(βc)

Nt · 0.49
· 197.3 MeV (2.1)

with ~c = 197.3 MeV fm and r0 = 0.49 fm [2]. The formula for the determination of the

scale r0/a(β) is

ln(a/r0) = −1.6804− 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3 (2.2)

for 5.7 ≤ β ≤ 6.92 and explained in [3].

2.1 Polyakov loop susceptibility

Usually, the critical coupling βc is determined using the Polyakov loop susceptibility. The

lattice average P of the Polyakov loop is computed as

P =
1

N3
s

∑
~x

1

3
Tr

Nt∏
nt=1

U(~x, nt)

which is the mean of the product of links U(~x, nt) in time direction nt for each 3d-spatial

vector ~x. As the lattice average P is a complex number, the Polyakov loop susceptibility

χp is the variance of its absolute value |P |,

χp := N3
s ·
(
〈|P |2〉 − 〈|P |〉2

)
.

For a given lattice of size (Nt, N
3
s ), the coupling constant β has to be chosen and through

Monte Carlo simulation an ensemble of gauge configurations is generated. The expectation

value in the ensemble of the Polyakov loop susceptibility 〈χp(β)〉 can be computed. This

has to be done for several values of β around the critical coupling βc such that the curve

(β, 〈χp〉)k for k = 1, . . . , nβ contains a peak around βc. The desired value βc is found by a fit

of the data, for example, with a smoothing spline s(β). The critical coupling βc is computed

as the value of β at which the fit s(β) reaches its maximum value. Fixing Nt and varying

Ns leads to several values βc(χp, Nt, Ns) of the critical coupling. Figure 1 shows the results

of the simulations which we will describe in section 4. At the end, a linear extrapolation

in 1/N3
s leads to the desired critical coupling βc(χp, Nt,∞) for infinite volume.
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Figure 1. Standard approach: detection of the critical coupling using the Polyakov loop suscep-

tibility, here for Nt = 8. The data are fitted by an exponential smoothing spline and the critical

coupling is determined via its maximum.

2.2 The Wilson flow

The Wilson flow [4–6] V (t) is a flow of lattice gauge fields and it is defined as the solution

of the ordinary Lie group differential equation

V̇x,µ(t) = Zx,µ
(
V (t)

)
· Vx,µ(t) (2.3)

with link variables Vx,µ(t) being elements of the special unitary Lie group SU(3) and a

function Zx,µ(V (t)) which takes values in the Lie algebra su(3). Particularly, the function

Zx,µ is the Lie derivative Zx,µ
(
V (t)

)
= −∂/∂Vx,µ(t)SW of the Wilson action

SW =
∑
p

ReTr{1− Vp(t)}

such that it depends not only on the link itself but also on its staples. SW is the sum

over all oriented plaquettes p and Vp(t) is the product of link variables around one of these

plaquettes p, see [7]. The Wilson flow (2.3) can be integrated numerically with initial

values V (t0) taken from an ensemble of configurations generated for a particular value

of the coupling constant β. The numerical integration is performed up to a certain flow

time and during this computation gauge invariant observables of interest are measured.

Thereby, we focus on the energy density

E =
a4

4
GcµνG

c
µν (2.4)

with lattice spacing a and symmetric field strength tensor Gµν as described in [7].

– 3 –
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Figure 2. Difference in the temporal and spatial energy for values of β = 6.03 and β = 6.07. In

the confined phase (blue) with values of β < βc the difference ∆E in the spatial and the temporal

part of the energy is approximately 0, ∆E � 0 in the deconfined phase (red).

2.3 Difference in the Wilson energy

We investigate the mean energy density 〈E〉 described in equation (2.4) on a four-dimen-

sional lattice with fixed temporal lattice size Nt = 8. Particularly, we focus on the

mean spatial and temporal part of the energy 〈Ess〉 and 〈Est〉 and its difference 〈∆E〉 :=

〈Ess − Est〉.
The splitting in the temporal and spatial part is done as follows numbering the di-

mensions 0, 1, 2, 3 with 0 being the time dimension: the spatial planes are (1, 2), (1, 3), and

(2, 3) and the temporal ones (0, k) with k = 1, 2, 3. Here, the exact formulae for the spatial

part of the energy Ess and the temporal one Est are

Est =
a4

4
Gc0νG

c
0ν and Ess =

a4

4
GcµνG

c
µν with µ, ν = 1, 2, 3, µ < ν.

The critical coupling βc divides the confined phase and the deconfined phase. In the

confined phase, the values of β are smaller than βc, in the deconfined one larger. It is

known from [1] that the critical coupling for lattices with Nt = 8 is at βc=6.0625. For a

first test, we simulated lattices with β = 6.03 < βc and β = 6.07 > βc and computed 〈Ess〉,
〈Est〉 and its difference 〈∆E〉 as a function of the flow time. It can be seen in figure 2

that in the confined phase (blue) with values of β smaller than βc there is no difference

in the spatial and the temporal part of the energy. On the other hand, in the deconfined

phase (red) with values of β larger than βc, there is a difference in both parts of the energy.

This implies, the spatial and temporal mean energy densities 〈Ess〉 and 〈Est〉 coincide in

the confined phase and differ in the deconfined one. In the following paragraphs, we fix a

certain flow time
√
t/r0 in units of the scale r0 such that 〈∆E〉 means

〈∆E(
√
t/r0)〉 := 〈Ess(

√
t/r0)− Est(

√
t/r0)〉 .
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For a fixed flow time
√
t/r0, it is shown in figure 2 (in this case

√
t/r0 = 0.4) that the

energy difference ∆E is approximately zero in the confined phase and grows suddenly in

the deconfined one. This advises that the critical coupling can be found using the energy

difference at a certain flow time.

2.4 The energy difference method

We developed a new method1 for the detection of the critical temperature and called it

the energy difference method. Therefore, we consider the Wilson flow and focus on the

difference in the spatial and temporal energy density at a certain flow time
√
t/r0. The

critical coupling βc can be computed by a fit through an exponential smoothing spline

developed in [10]. The idea is to combine smoothing splines, which approximate the data in

a spline setting, with an exponential spline, such that undesired oscillations not given in the

data are avoided (see section 3 for more details). For the detection of the critical coupling,

we proceed as follows similarly to the standard Polyakov loop susceptibility approach: first,

we fix a lattice size (Nt, Ns) and the values of βk for k = 1, . . . , nβ . Then, we need the

results of a HMC or heat bath simulation for these values as input for the Wilson flow.

Moreover, the Wilson flow has to be computed up to a certain simulation time which

has to be determined such that the statistical errors are minimized. We fixed the time√
t/r0 = 0.15 as described in paragraph 4.2. Additionally, the values for the spatial and

temporal energy density have to be measured for the flow time
√
t/r0 = 0.15. After the

simulation, an exponential smoothing spline s(β) is determined to fit the data (β, 〈∆E〉).
The critical coupling βc(∆E,Nt, Ns) for the specific lattice size (Nt, N

3
s ) is determined as

value of β where the steepest gradient of the spline s(β) occurs. This has to be repeated

for a few spatial lattice sizes Ns such that the values βc(∆E,Nt, Ns) can be extrapolated

towards an infinite space dimension Ns = ∞ in order to compute βc(∆E,Nt,∞) for the

finite temperature phase transition in infinite volume. Figure 3 shows the results of the

simulations which we will describe in section 4.

The energy difference ∆E is equivalent (up to discretization effects) to the difference

of the temporal and spatial plaquettes, cf. [7], and it corresponds to the sum of the pressure

and the energy density, see e.g. [9]. It is expected to develop a discontinuity in the ther-

modynamic limit2 since the energy density is discontinuos in the Yang-Mills SU(3) theory,

see e.g. [1]. Presently our data shown in figure 3 do not allow to verify this expectation.

3 Exponential smoothing splines

The class of exponential smoothing splines approximates data with uncertainties avoiding

undesired oscillations. It couples the ideas of smoothing splines [11] with exponential

splines [12, 13]. Here, we explain the idea of exponential smoothing splines and give the

necessary formulae for its implementation. The mathematical essentials can be found in [10]

based on [14] .

1In the course of our work the article [8] appeared, which also uses this method.
2We thank the referee of our paper for pointing this out.
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Figure 3. Detection of the critical coupling using the energy difference method. The data are

fitted by an exponential smoothing spline. For each lattice, the critical coupling is computed as

value of β at which the maximum slope of the spline occurs.

3.1 Idea

We start with data (xi, yi) with errors wi, i = 1, . . . , n. The data should be approximated

by a spline s(x) within the region of their errors and, moreover, no artificial oscillations

should be added. The spline can be found by minimizing the energy function∫ xn

x1

[
f ′′(x)2 + Λ(x)2f ′(x)2

]
dx

among all f ∈ C2(x1, xn) using the constraints

n∑
i=1

(
f(xi)− yi

wi

)2

≤ S

and piecewise constant tension functions Λ(x) = λi > 0 with x ∈ [xi, xi+1) for i = 1, . . . , n.

Here, Λ(x) avoid undesired oscillations, the weights wi are correlated to the errors of yi and

the smoothing parameter S defines how much the approximated values f(xi) may differ

from yi. There are three limiting cases which coincide with already known kinds of splines:

• λ = 0, S = 0 describes the well-known cubic spline,

• λ = 0, S 6= 0 leads to the smoothing spline which approximates the data; it may lead

to oscillations not given in the data,

• and λ 6= 0, S = 0 results in the exponential spline (also known as spline under tension)

interpolating the data exactly avoiding oscillations not given in the data.

– 6 –
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3.2 The shape of the exponential smoothing spline

Finally, the exponential smoothing spline is parameterized as

s(x) = si+1t+ si(1− t) +
di+1

λ2i

(
sinh(µit)

sinhµi
− t
)

+
di
λ2i

(
sinh(µi(1− t))

sinh(µi)
− (1− t)

)
(3.1)

for x ∈ [xi, xi+1) and coefficients si, si+1, di, di+1, µi and λi for all intervals i = 1, . . . , n−1.

For convenience, the variables hi, t and µi are used. They are specified as

hi := xi+1 − xi, t :=
x− xi
hi

and µi := hi · λi for i = 1, . . . , n− 1.

The variables λi, are tension parameters for all intervals i = 1, . . . , n−1 and, assuming they

are known, s = (s1, . . . , sn)T and d = (d1, . . . , dn)T are the only unknowns in equation (3.1).

3.3 Linear equations for the unknowns

So, for given data (xi, yi), i = 1, . . . , n, the coefficients si and di can be computed via the

linear equations

QT s = T d̃ and Us−Qd̃ = pD−2(s− y) (3.2)

with s = (s1, . . . , sn)T , d̃ = (d2, . . . , dn−1)
T , d = (d1 = 0, d̃, dn = 0), y = (y1, . . . , yn)T and

Lagrange parameter p. The matrices Q,T, U and D are sparse matrices and they have to

be set up as follows: choose

ui :=
λ2i
hi
, ti :=

cosh(µi)

λi sinh(µi)
− 1

λ2ihi
,

vj := uj + uj+1, tk,k+1 :=
1

λ2jhk
− 1

λk sinh(µk)
,

and qi :=
1

hi

for i = 1, . . . , n− 1, j = 1, . . . , n− 2 and k = 2, . . . , n− 2 such that the matrices read

Q :=



−q1 0

q1 + q2
. . .

−q2
. . . −qn−2
. . . qn−2 + qn−1

0 −qn−1


, T :=


t1 + t2 t23 0

t23
. . .

. . .
. . .

. . . tn−2,n−1
0 tn−1,n tn−2 + tn−1

 ,

D = diag(w1, . . . , wn) and U :=



−u1, u1, 0

u1, −v1,
. . .

. . .
. . .

. . .
. . . −vn−2, un−1

0 un−1, −un−1


.

Thus, U and D are of size n× n, T of size (n− 2)× (n− 2) and and Q of size n× (n− 2).

– 7 –
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These formulae still depend on the unknowns λi and µi = λi · hi. According to [13],

the tension parameters λi can be chosen as uniformly distributed random values in the

interval [4hi, 15hi].

Finally, the Lagrange parameter p is still unknown and can be computed by F (p)2 =

S with

F (p) = ||pD−1(U −QT−1QT − pD−2)−1D−2y − pD−2y||2 .

This can be done, for example, by a Newton iteration or interval nesting. Thereby, it must

be taken into account that the starting value p(0) = 0 should be avoided since it would lead

to vectors s = 0, d = 0 and therefore to a spline s(x) = 0, see [10].

4 Monte Carlo results

We simulate the Wilson plaquette gauge action [15]

S(U) =
β

6

∑
p

ReTr{1− Up(t)}

for gauge group SU(3) using the Hybrid Monte Carlo algorithm [16]. We let HMC sim-

ulations run for varying β (6.03 ≤ β ≤ 6.10) and the lattice sizes Nt × N3
s with Nt = 8

and Ns = {32, 40, 48}. Taking the gauge configurations of the HMC simulations as initial

values for the Wilson flow, we computed the Wilson flow up to
√
t/r0 = 0.15 and measured

its spatial and temporal energy density. Statistical errors and autocorrelation times are

computed with the method of [17]. Besides, we computed the Polyakov loop susceptibility

along the Wilson flow for comparison reasons.

4.1 Determination of the critical temperature

For the determination of the critical temperature, we computed the mean energy difference

〈∆E〉 for all β at the flow time
√
t/r0 = 0.15 and for each lattice separately. Then, the

data (β, 〈∆E〉) are fitted by exponential smoothing splines s(β), see figure 3. Here, the

smoothing parameter S is set to S = 2 and the weights wi used in the matrix D are set

to the statistical errors of 〈∆E〉i. Note that a small variation of S does not change the

result; if S is chosen too large, the exponential smoothing spline does not fit each value

of 〈∆E〉 in the region of its error δ〈∆E〉 . The maximum of the slope s′(β) of this spline

leads to the critical coupling βc(∆E,Nt, Ns) which is the value of β at which s′′(β) = 0

holds. The errors δβc(∆E,Nt, Ns) are computed by a small variation of the single values

of 〈∆E〉 using the Gaussian error propagation law:

δβ2c =

nβ∑
k=1

(
∂βc

∂〈∆E〉k

)2

· 〈∆E〉2k.

The partial derivatives ∂βc/∂〈∆E〉k are computed using the symmetric difference quotient

with perturbed value ∆Ek; we use 10 percent of the error of 〈∆E〉k.
At the end, a linear extrapolation in 1/N3

s leads to the final value βc(∆E,Nt =

8, Ns = ∞) = 6.0601(11) which is shown in figure 4. It agrees within errors with the

– 8 –
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Figure 4. The critical couplings βc(Ns = {32, 40, 48}) for the different lattice sizes and Nt =

8 are shown for the energy difference method (red diamonds) and the standard Polyakov loop

susceptibility approach (blue circles). The extrapolated values βc(∆E,Ns = ∞) and βc(χp, Ns =

∞) of both methods coincide. The black cross represents the reference value βc(Nt = 8, Ns =∞) =

6.0624(12) from [18].

value 6.0624(12) computed in [18] and with the newest result 6.06239(38) of ref. [19]. Us-

ing equation (2.2) this result translates to Tcr0 = 0.7426(14)(37), where the first error is

the uncertainty in βc and the second one is a 0.5% error for r0/a computed from equa-

tion (2.2). For comparison reasons, we determined the critical coupling from our data with

the standard Polyakov loop susceptibility approach described in paragraph 2.1 and shown

in figure 1. Also this method leads to a critical coupling βc(χp, Nt = 8,∞) = 6.0602(7)

close to the value given in the literature [18]. Both methods lead to very consistent values

of the critical coupling and also the size of the errors are of the same magnitude.

4.2 Statistical errors at different flow times

We investigated the statistical errors of both methods at different flow times. For the

Polyakov loop susceptibility, the relative statistical errors do not change during the flow.

The Wilson flow has just an effect on its absolute value, see figure 5. Therefore, it would

be no advantage to combine the Wilson flow and the Polyakov loop susceptibility. On

the other hand, the statistical errors for the energy difference method have a minimum

at
√
t/r0 = 0.15. We checked that this flow time is large enough such that cut-off effects

(measured by comparing different definitions of the energy density) are small and therefore

the best choice for the computation of the critical temperature.

The statistical errors already include autocorrelation effects shown in figure 6 which

are quite large close to the critical coupling. For this reason, long simulations have to

be run for these values of the coupling constant β such that the number of independent

– 9 –



J
H
E
P
1
0
(
2
0
1
6
)
0
6
1

Re(P)

-1 -0.5 0 0.5 1

Im
(P

)

-1

-0.5

0

0.5

1

-=6.03

Re(P)

-1 -0.5 0 0.5 1

Im
(P

)

-1

-0.5

0

0.5

1

-=6.07

Figure 5. The value of the Polyakov loop along the Wilson flow from
√
t/r0 = 0 up to

√
t/r0 = 0.708
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Figure 6. Integrated autocorrelation times of the Polyakov loop susceptibility (left) and the energy

difference (right) in units of 128 MDUs.

configurations is large enough. Surprisingly, the number of independent configurations for

the energy difference at flow time
√
t/r0 = 0.15 is for almost all values of β (except at

βc) larger than the one of the Polyakov loop susceptibility at
√
t/r0 = 0, mentioned in

table 1. This means, the number of configurations needed for the energy difference method

is smaller than for standard approach.

4.3 Conclusion and outlook

For pure gauge theory, it is possible to detect the critical coupling βc via the energy

difference of the Wilson flow. Our results agree with the standard method as well as with

the reference value given in [1, 18] and [19]. For the energy difference method, the Wilson

flow has to be computed in addition to the HMC as it leads to a reduction of the statistical

error. This is a disadvantage compared to the standard approach but just a small one,

since the energy difference can be evaluated at small flow times. For most values of β
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Ns = 32 Ns = 40 Ns = 48

χp ∆E χp ∆E χp ∆E

β = 6.03 62(20) 208(39) 166(38) 287(34) 72(22) 426(43)

β = 6.04 36(13) 312(56) 135(32) 683(73) 74(21) 508(45)

β = 6.05 101(26) 269(49) 134(31) 1034(112) 238(46) 1784(139)

β = 6.055 - - - - 70(20) 280(50)

β = 6.06 339(57) 119(29) 265(48) 86(23) 380(59) 132(31)

β = 6.065 - - - - 84(23) 173(37)

β = 6.07 63(19) 116(29) 85(23) 337(55) 540(74) 746(89)

β = 6.08 134(33) 215(46) 236(48) 198(44) 145(34) 193(40)

β = 6.09 72(23) 145(35) 70(22) 105(29) 246(47) 279(44)

β = 6.10 195(45) 198(42) 51(18) 61(19) 168(40) 143(34)

Table 1. Number of independent configurations.

the statistical errors of the energy difference method are smaller than for the standard

approach such that the simulation has to be run for less configurations to reach the same

amount of independent configurations.

Moreover, our results are promising for simulations with fermions. Our method can

be used as alternative to the expensive computation of the chiral susceptibility, which is

usually taken in this case. Our technique based on the exponential smoothing spline is

also suitable for other applications, as it allows to fit a smooth function through a data

set and compute its derivatives. Additionally, the integration of the Wilson flow can be

improved by using better integrators. For example, adaptive step size methods developed

in [20] and [21] reduce at the same time the computational cost and are able to control the

statistical errors.
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