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1 Introduction

The discovery of the Higgs boson gave rise to the important question of vacuum stability

in the Standard Model. Observed data indicate that the electroweak minimum in the

SM effective potential is metastable, so the potential has a second minimum to which the

electroweak vacuum may decay. It has been of great interest to investigate features of

such a process under more or less obvious modifications: addition of higher-dimensional

interactions [1], approximate scale-invariance [2], the issue of gauge dependence [3, 4],

the relation to primordial black holes [5], to name a few. The study of the gravitational

impact on the metastability has been mostly following the classic work of Coleman and

De Luccia [6]. More recently a new study has been devoted to the validity of the thin-

wall approximation in case of gravitational background [7]. Moreover, the influence of

the additional scalar along with the curved spacetime in the gauge-less top-Higgs model

has been investigated showing that the potential is modified both in the region of the

electroweak minimum and in the region of large field strength, see [8]. Quantum gravity

corrections to the SM effective potential and their impact on vacuum stability have also

been considered in [9].

The question of the role of the non-minimal coupling ξ, between the scalar field and

scalar curvature, in the process of vacuum decay is the central point of this note. This

coupling is required for the renormalizability of the scalar field in curved spacetime, even

though it might be zero at a certain energy scale, and it is a crucial feature of the Higgs

inflation model that is still allowed by the experimental data [10, 11]. So far impact of the

non-minimal coupling has been investigated in case of the inflationary background [12, 13]

and in the Standard Model case [14, 15]. In this paper we limit ourselves to the theories with

a single scalar field and a renormalizable potential. The seemingly simplified approach is

dictated by the need to accommodate in a readable manner a wide spectrum of parameters
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all of which are controlling the influence of gravity. We vary not only the ξ. Tunneling

both close and far from the thin-wall regime is discussed. We consider flat as well as

closed (dS) geometry of the false vacuum, and closed (dS) or open (AdS) geometry of the

true vacuum. Our qualitative discussion aims to be universally applicable in the plethora

of contexts evoking the quantum tunneling in the presence of gravity. Examples could

range from preventing catastrophes in phenomenological theories, through modeling past

cosmological events like inflation [16, 17] and baryogenesis [18], up to studies of the string

theory landscape [19].

The outline of the paper is as follows. In section 2 we present our Lagrangian describing

scalar field non-minimally coupled to gravity. In section 3 we introduce the non-minimal

coupling to the usual thin-wall approximation and calculate the appropriate numerical

action for the bounce solution that supports our analytical approximation. There we

discuss the results exemplifying different regimes and investigate the influence of a large

cosmological constant on the decay of the false vacuum. The connection between tunnelling

via bubble nucleation and the Hawking-Moss instanton is also explored.

2 The model

The main goal of this paper is to discuss the impact of the gravity on the vacuum decay

process. On the particle physics side we consider a toy model describing a single neutral

scalar field. Standard gravitational interaction is supplemented by adding the non-minimal

coupling of the scalar field to the Ricci scalar. The Lagrangian takes the form

L =
1

2
(∂φ)2 − V +

1

2

R

κ
(1− ξκφ2) (2.1)

with

V = −1

4
a2(3b− 1)φ2 +

1

2
a(b− 1)φ3 +

1

4
φ4 + a4c . (2.2)

The potential is intentionally chosen to be very simple but at the same time informative

as it exhibits all features we require to discuss tunnelling.

It has two minima: at φ = 0 and φ = a. We will always consider a scenario when

the field is initially in a homogeneous configuration in the more shallow minimum (or false

vacuum) at φ = 0 which we will denote by φf . And we consider tunnelling to the second

deeper minimum (or true vacuum) at φt = a.

We use natural units where Mp = 1, and, in our considerations, if not explicitly stated

otherwise, we always set a = 1, which means that the true vacuum is positioned at the

Planck scale. Since a is the only dimensionfull parameter, decreasing it simply corresponds

to pushing the Planck scale further away, and decreasing the gravitational effects, bringing

our results closer to flat spacetime case.

The constant c is responsible for the character of our initial false vacuum and in this

paper we focus on a de Sitter false vacuum case which means c > 0 and Minkowski false

vacuum with c = 0.

Figure 1 depicts our potential in the range of parameters used throughout the paper.

We fixed the parameter a = 1 and used different values of b parameter that controls the
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Figure 1. Our toy model potential for different values of b parameter. In this example vacuum

energy vanishes c = 0. Different choices of vacuum energy, we will discuss, simply mean adding a

constant to the potential.

degeneration of the vacua. In this example vacuum energy vanishes c = 0, different choices

of vacuum energy, we will discuss later, simply correspond to adding a constant to the

potential.

3 Tunneling

Our discussion is based on the standard formalism of Coleman and De Luccia (CDL) [6],

which assumes that vacuum decay proceeds through nucleation of true vacuum bubbles

within our false vacuum. Notably though, we keep the coupling ξ arbitrary. We will

begin by developing a thin-wall approximation [6, 20] aimed to include the effects of the

non-minimal coupling. Next we will discuss an even simpler approach assuming that the

whole spacetime volume transitions simultaneously [21]. Finally we will describe our exact

numerical calculation and use it to discuss the validity of the approximate methods.

The decay probability of the vacuum via bubble nucleation is given by [20, 22]

Γ = Ae−S , (3.1)

where S is in general the difference of the action integral between final and initial field

configurations. Presently, these are respectively the Coleman-DeLuccia bounce φCDL and

φf (and we denote S by SCDL)

SCDL = S[φCDL]− S[φf ] . (3.2)

The prefactor A is derived from quantum corrections to the bounce solution and we do not

discuss it in the present paper. Therefore to obtain the value of the decay probability we

have to calculate the CDL solution and S[φCDL].
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We are interested in a spherically symmetric scalar field configuration, φ = φ(τ), with

the metric given by ds2 = dτ2 + ρ(τ)2(dΩ)2. Here dΩ denotes an infinitesimal element of

the 3D sphere and ρ(τ) is the radius of that sphere. The resulting metric tensor is of the

form of the FRW metric with the curvature parameter k = +1. Euclidean action takes

the form

SE = 2π2

∫
dτρ3

(
1

2
φ̇2 + V − 1

2

R

κ
(1− κξφ2)

)
= 2π2

∫
dτρ3

(
1

2
φ̇2 + V

)
+

3

κ
(1− ξκφ2)(ρ̈ρ2 + ρ̇2ρ− ρ)

= 2π2

∫
dτ

[
ρ3

(
1

2
φ̇2 + V

)
− 3

κ
(1− ξκφ2)ρ(ρ̇2+ 1) + 6ξφ̇φρ̇ρ2

]
+

6π

κ
(1− κξφ2)ρ2ρ̇

∣∣∣∣τmax

0

(3.3)

where φ̇ = dφ
dτ and R = −6

( ρ̈
ρ + ρ̇2

ρ2
− 1

ρ2

)
. We integrated by parts the Lagrangian density

to get rid of the term proportional to ρ̈, thus acquiring the last boundary term instead.

In case of dS false vacuum the boundary term always vanishes as we will see in the next

section.

From the above action (3.3) we obtain the equation of motion of the scalar field,

φ̈+ 3
ρ̇

ρ
φ̇− ξφR =

∂V

∂φ
, (3.4)

the second Friedman equation,

ρ̈ =
κρ

3(1− κξφ2)

(
− φ̇2 − V + 3ξ

(
φ̇2 + φ̈φ+ φ̇φ

ρ̇

ρ

))
, (3.5)

and the first Friedman equation

ρ̇2 = 1 +
κρ2

3(1− κξφ2)

(
1

2
φ̇2 − V + 6ξφ̇φ

ρ̇

ρ

)
. (3.6)

Using this last equation we can also further simplify the action (3.3) to get rid of term

proportional to ρ̇,

SE = 4π2

∫
dτ

[
ρ3V − 3ρ

κ
(1− ξκφ2)

]
+

6π

κ
(1− κξφ2)ρ2ρ̇

∣∣∣∣τmax

0

. (3.7)

One can show that scale factor ρ crosses zero at least once [23]. Without loss of

generality we chose value of τ of the first zero to be τ = 0 and the other at τmax. The

appropriate boundary conditions then read

φ̇(0) = φ̇(τmax) = 0 ,

ρ(0) = 0 ,

ρ(τmax) = 0 (for dS false vacuum) ,

ρ(τmax) = ρmax 6= 0 (for Minkowski false vacuum) . (3.8)
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Using the definition of R, the smooth behaviour necessary in our calculation is not easy

to obtain numerically as the second power of ρ appears in the denominator. Thus, it is

much more convenient for numerical calculations to express the scalar curvature using the

Friedman equations as,

R = −6

(
ρ̈ρ+ ρ̇2 − 1

ρ2

)
=

κ

(1− κξφ2)

(
φ̇2 + 4V − 6ξ

(
φ̇2 + φφ̈+ 3φ̇φ

ρ̇

ρ

))
. (3.9)

Now R contains only the Hubble parameter that already appears in the scalar field’s EOM

and thus has to be numerically stable.

In order to calculate gravitational background energy we assume a constant field con-

figuration, which results in the simplified first Friedmann equation (3.6)

dρ

dτ
=

√
1− κρ2V

3(1− κξφ2)
, (3.10)

where V = V (φ) and φ is our chosen constant field value. This allows us to change variables

in (3.7) and integrating over all space we obtain the action of the background from (3.2),

S[φf ] = −
24π2(1− κξφ2

f )2

κ2Vf
(for dS)

S[φf ] = 0 (for Minkowski) .

(3.11)

In our toy potential φf is always set to zero so there is no modification of the false vacuum

energy. However, the same reasoning is applicable to the true vacuum energy. This al-

ready leads to one of the key features induced by the non-minimal coupling. Namely, this

modification can increase the energy of our true vacuum beyond that of the false vacuum

(in the case when V (φt) > 0) actually making our false vacuum stable. This is especially

visible for large vacuum energies where the true vacuum can disappear altogether as shown

in figure 2. In our calculations we always neglect tunnelling in such cases. Even though the

bubble profile can sometimes still be calculated, such bubble is not energetically favourable

and would not grow after nucleation.

3.1 Thin-wall approximation

Now we can proceed to the thin-wall (TW) approximation including gravity. This method,

originating from [6], assumes the true vacuum bubble stretches to some ρ̄ having a constant

value Vt and on the outside of the bubble our solution is identical to the false vacuum Vf .

The approximate EOM reads

φ̈− ξφR =
∂V

∂φ
, (3.12)

where according to our assumptions the scale factor is piecewise constant so that curvature

can be approximated by R = −6 ρ̈ρ+ρ̇2−1
ρ2

≈ 6
ρ2

. Integrating (3.12) once we obtain

dφ

dτ
= −

√
2(V − Vt) + ξR(φ2 − φ2

t ) . (3.13)
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Figure 2. Modified potential V/(1− κξφ2)2 for different choices of the vacuum energy c and with

the non-minimal coupling set to ξ = 0.2. The value of constant setting the false vacuum energy

was set to c = (0, 0.05, 0.1) from left to right.

Thus the action of the bubble wall reads

Bwall = 2π2ρ̄3

∫ τmax

0

[
2(V − Vt) + ξR(φ2 − φ2

t )
]
dτ

≈ 2π2ρ̄3

∫ φt

φf

√
2(V − Vt) + ξ

6

ρ̄2
(φ2 − φ2

t )dφ

≈ 2π2ρ̄3

∫ φt

φf

(√
2(V − Vt) +

ξ

ρ̄2

3(φ2 − φ2
t )√

2(V − Vt)

)
dφ

≈ 2π2

(
ρ̄3

∫ φt

φf

√
2(V − Vt)dφ+ ξρ̄

∫ φt

φf

3(φ2 − φ2
t )√

2(V − Vt)
dφ

)
= 2π2(ρ̄3S0 + ξρ̄S1) ,

(3.14)

where we expanded to the first order in ξ. S0 is the usual result we would obtain neglecting

gravity and S1 is the linear correction due to the non-minimal coupling. In order to calculate

gravitational part of the action we again assume a constant field configuration and as in

the previous section perform the integral in (3.7). However this time we integrate only to

a given radius ρ to calculate the action of a bubble, obtaining

Sgrav = 2π2 2

3

(1− ρ2ΛV )3/2 − 1

Λ2V
, (3.15)

where Λ = κ/(1− κξφ2) and φ is our constant field value.

Using the above results we combine action of the wall and the difference between true

and false vacua gravitational contributions to obtain the final expression for action, which

reads

STW = 2π2

(
ρ̄3S0 + ξρ̄S1−

2

3

(
(1− ρ̄2ΛfVf)

3/2 − 1
)

Λ2
f Vf

+
2

3

(
(1− ρ̄2ΛtVt)

3/2 − 1
)

Λ2
tVt

)
, (3.16)

where Λf = κ/(1 − κξφ2
f ) and Λt = 1/(1 − κξφ2

t ) are constant field values. In the case of

Minkowski background (Vf = 0) the false vacuum gravity action should be replaced with
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the appropriate limit Sgrav
V→0−−−→ −2ρ̄2/Λ which gives

STW = 2π2

(
ρ̄3S0 + ξρ̄S1 +

ρ̄2

Λf
+

2

3

(
(1− ρ̄2ΛtVt)

3/2 − 1
)

Λ2
tVt

)
, (3.17)

and analogously for the vanishing energy of the true vacuum.

Differentiating the action with respect to ρ̄ and again expanding it to the linear order

in ξ we obtain a simple bi-quadratic equation for the size of the bubble ρ̄,[(
1

Λ2
f

− 1

Λ2
t

)2
− 3ξS0S1

(
1

Λ2
f

+
1

Λ2
t

)]
+ ρ̄4

[
9

2
S2
0

(
Vf
Λf

+
Vt
Λt

)
+

(
Vt
Λt
− Vf

Λf

)2
+

81S4
0

16

]
+ρ̄2

[
− 2

(
Vf
Λ3
f

+
Vt
Λ3
t

)
− 9

2
S2
0

(
1

Λ2
f

+
1

Λ2
t

)
+

2

ΛfΛt

(
Vf
Λt

+
Vt
Λf

)
+ 3ξS0S1

(
Vf
Λf

+
Vt
Λt

+
9

4
S2
0

)]
= 0 .

(3.18)

Identical equation is obtained from both (3.16) and (3.17) after simply using Vf = 0

in (3.18). To obtain our final approximation for the action we solve the above equation and

plug the result back into (3.16) (or (3.17) if the vacuum energy vanishes). For S0 we use

the flat space-time relation S0 = ρ0(Vf −Vt)/3, where ρ0 is the size of the bounce obtained

numerically neglecting gravity (as explained below), while S1 is given by (3.14). We also

checked that expanding to the second order in ξ does not improve our results. In general

this correction only slightly increases the action. As we will see later on, this method

overestimates the correct result, and so we can say that the error of this approximation

comes from our assumption on the shape of the bounce rather than from expanding in the

non-minimal coupling ξ.

In the absence of gravity our equation of motion for the scalar field simplifies to

φ̈+
3

τ
φ̇ =

∂V

∂φ
. (3.19)

To obtain a finite action we need to satisfy the boundary conditions

φ̇(0) = φ̇(τmax) = 0

lim
τ→∞

φ = Vf .

We solve this equation numerically using the shooting method similar to [24]. Next we

find the bubble size ρ0 = τ
(
φ = Vt+Vf

2

)
crucial for the bubble tension and use it in (3.16).

We use this numerically obtained bubble size as it is much more accurate than the simple

flat spacetimete thin-wall result. Thus we can discuss the validity of thin-wall inclusion of

gravity without worrying about the initial flat spacetime error. In what follows we refer to

the action of this solution completely neglecting gravity as Sflat.

3.2 Hawking-Moss solution

Essentially, HM instantons simply describe the probability for a whole horizon volume to

transition to the top of the barrier (and continue by a classical roll-down).

– 7 –
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The action of such an instanton is just the difference between action of our false vacuum

and the energy of a homogenous solution on top of the potential barrier. Including the

modification of these energies from non minimal coupling as described in (3.11) we get

SHM =
24π2(1− κξφ2

max)2

κ2Vmax
−

24π2(1− κξφ2
f )2

κ2Vf
, (3.20)

where φmax and Vmax correspond potential and field values at the top of the barrier.

3.3 Numerical calculation of the CDL bounce

In our numerical procedure we solve the coupled scalar EOM (3.4) with the Ricci scalar

expressed through the scalar field (3.9) and the second Friedman equation (3.5). As bound-

ary conditions we simply set (3.8), approximating ρ(0) as proportional to initial τ = ε and

ρ̇ = 1. The corrections coming from expanding our EOM in a Taylor series give contribu-

tions which are higher order in ε and can be neglected as this value can be made arbitrarily

small. The final initial condition needed for our equations is the field value φ0. We find the

correct value of this parameter corresponding to CDL by a simple undershoot/overshoot

method, known from the flat setup (see e.g. [1] for details). Figure 3 shows the resulting

bubble profiles and their modification due to the non-minimal coupling.

It is important here to point out that including the boundary term in the action (3.7)

is crucial when the false vacuum has a vanishing energy. In this case ρ asymptotes to a

linear function instead of crossing zero again at τmax and the boundary term is sizeable.

3.4 Comparison of results

After finding the CDL solution for φ(τ) and ρ(τ) we numerically perform the action inte-

gral (3.7) which is the final result used in (3.2) together with the background action (3.11).

This finally allows us to calculate the action of our solution and consequently to obtain the

tunnelling probability.

Figure 4 shows the logarithm of the resulting action for all methods discussed in this

section. SCDL is the numerically obtained result fully including gravity, STW is the result

of our thin-wall approximation, SHM comes from Hawking-Moss solution and Sflat is the,

numerically obtained, flat spacetime result completely neglecting gravity.

As we can see, both approximations (TW and HM) always overestimate the action.

For relatively large vacuum energies HM solution gives action smaller than thin-wall and is

a very good approximation. Considering a smaller vacuum energy, our thin-wall approxi-

mation becomes better and the suppression of the action due to gravitational effects lowers.

However both approximations become less accurate as the vacuum energy decreases. This

is exemplified in the Minkowski case c = 0 when the gravitational effects suppress vacuum

decay (by increasing the action). Then the HM solution does not exist (SHM would be

infinite) and thin-wall severely overestimates the modification due to non zero coupling ξ.

We can see that the action quickly decreases as the false vacuum energy increases. The

reason is that in this regime we are essentially dealing with a temperature effect coming

from an effective temperature induced by our compact spacetime [25]. In this case our

bounce solutions do not have to reach the false vacuum but only pass the bubble wall. We

– 8 –
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Figure 3. CDL bubble profiles, tunnelling from dS false vacuum c = 0.05 (left panel) and from

Minkowski false vacuum (right panel) for several values of the non-minimal coupling ξ. For this

example we set the vacua splitting parameter to b = 1/10.
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Figure 4. Tunnelling action as a function of non-minimal coupling obtained using four different

methods. Left column shows results for small parameter b = 0.05 describing the splitting between

vacua, while right column shows results for a bigger value b = 0.1. Rows show several false vacuum

energy densities parametrised by c = (c = 0.1, c = 0.05, c = 0) from top to bottom.
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Figure 5. Potentials with different values of the vacuum energy c. The part of the potential

actually probed by the tunnelling solution is dashed. For this example the non-minimal coupling

was set to ξ = 0 (left panel) and ξ = 0.1 (right panel) while the vacua splitting parameter b = 1/10.

show this in figure 5 which depicts the potentials with different values of the vacuum energy

c and part of the potential actually probed by the tunnelling solution. We also show the

same effect in the presence on non-minimal coupling which weakens this effect as it makes

the potential more and more flat as the vacuum energy increases, thus also increasing the

action.

As we can see in figure 4, for a fixed positive vacuum energy (given c) increasing ξ also

results in more flat potential which means the bounce probes only values closer to the top

of the barrier making them more similar to the HM solutions. Also when value of ξ is too

large the potential becomes too flat and as a result the CDL bounces cease to exist [26, 27].

Thus, as the vacuum energy decreases larger values of ξ allow tunnelling.

4 Conclusions

In this paper we analysed the vacuum decay process in presence of non minimal coupling

to gravity. We discuss this issue in a simple model consisting of a single neutral scalar with

the generic potential described in section 2.

Section 3 describe a simple thin-wall solution and provide ready to use formulas needed

to compute the decay exponent in a generic model. We also perform a precise numerical

calculation to verify these analytical results. We show that, while the simple thin-wall

approximation would not give a precise result in a specific model, it does provide a correct

order of magnitude estimation, especially in the dS false vacuum case, when gravitational

correction decreases the stability of the vacuum.

Our results show that the influence of non-minimal coupling to gravity is very different

in cases of Minkowski and dS vacua. In the latter the decay probability quickly decreases

as the coupling grows and in fact the vacuum can be made absolutely stable. In the flat

background case the effect is much weaker and the decay rate increases for small values

of the non-minimal coupling. In this case the thin-wall approximation also works worse,

significantly overestimating the increase in action due to non-minimal coupling.
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