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aDipartimento di Fisica, Università di Genova and INFN, Sezione di Genova,

via Dodecaneso 33, 16146 Genova, Italy
bPhysik-Institut, Universität Zürich,
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1 Introduction

In the recent years there has been quite a lot of interest for the emergence of a few 3-

4σ experimental anomalies in particle physics. Among those, the most relevant are the

longstanding one of the anomalous magnetic moment of the muon, (g− 2)µ, [1] (see ref. [2]

for a review) and a collection of anomalies in semileptonic B-meson decays [3–5]. More

recently, ATLAS [6, 7] and CMS [8–10] reported a hint of a di-photon resonance with mass

in the vicinity of 750 GeV in the first LHC data collected at 13 TeV collision energies.1

None of them is conclusive at the moment, and require further scrutiny both from the

experimental and the theoretical point of view; it is nevertheless tantalizing to try to

interpret them within new physics frameworks beyond the standard model (SM). This

has triggered a large amount of works, ranging from full-fledged theoretical constructions,

like for example supersymmetry, up to simplified 1-particle extensions of the SM. In the

latter case, one simply adds a new irreducible representation (irrep) on top of the SM field

content, with spin quantum number 0, 1/2, 1, etc. While the case of a new scalar or fermion

1New 2016 LHC data at 13 TeV have not confirmed the excess [11, 12].
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irrep is conceptually straightforward, being the SM extension automatically renormalizable

and well-behaved in the ultraviolet (UV), the one of a generic Lorentz vector is less obvious

and will be the subject of the present paper.

The two main challenges that one faces when extending the SM with a vector irrep are

the following: i) depending on the UV completion, the theory might not be renormalizable,

thus reducing the degree of predictivity for the observables whose anomaly one is willing to

explain and ii) regardless of the renormalizability issue, the 1-particle extensions hypothesis

is possibly violated in explicit constructions, which require several new particles at the same

energy scale.

Concerning the first point, massive vectors typically arise either as composite states

resulting from a new strongly-coupled dynamics (for example the ρ meson in QCD) or

as extra gauge bosons associated with a spontaneously broken gauge extension of the

SM. The difference between these two possibilities is substantial, the most dramatic being

renormalizability. Though there is nothing wrong in contemplating a non-renormalizable

theory within an effective field theory (EFT) approach, we will focus on UV-complete,

weakly-coupled models which provide a more predictive framework for dealing with preci-

sion loop observables. As a prototypical example we will mainly discuss the (g−2)µ, while

commenting en passant on other anomalies.

After a brief review of the (g − 2)µ discrepancy in section 2, we discuss in section 3

the most general d ≤ 4 Lagrangian of a massive vector coupled to the SM, and show the

divergence structure of the one-loop diagrams. In the particular case at hand, we will see

that the culprit of the non-renormalizability resides in the triple vector boson vertex which

has to be properly modified in order for the theory to be renormalizable. In section 4 we

classify all possible SM gauge quantum numbers of the new vector, hereafter denoted by

X, coupling to a muon and to another SM fermion (a general classification of the X gauge

quantum numbers such that it couples to SM fields at the renormalizable level is provided

in appendix A). Next, by assuming that X is a gauge boson of an extended SM gauge

group, we compute for each case the finite contribution to the (g − 2)µ and estimate the

required mass scale, MX , in order to explain the discrepancy. Remarkably, after providing

a minimal gauge embedding for each case, we find that the UV theory imposes strong

direct and indirect constraint (e.g. from proton decay or flavor violating processes), such

that most of the simplified 1-particle extended models cannot provide an explanation of

the g − 2 discrepancy in the full renormalizable setup. The only exception to this rule

is given by abelian gauge extensions, like e.g. the case of a light dark photon or dark Z.

Furthermore, another aspect emerging from the full analysis is that extra states required

by the consistency of the gauge symmetry breaking pattern cannot be arbitrarily decoupled

from X, thus typically violating the 1-particle extension hypothesis. We finally conclude

in section 5 by summarizing our findings and comment on the use of massive vectors for

the B-meson decay and di-photon anomalies.

2 Review of the (g − 2)µ discrepancy

Known respectively with 12 and 9 digits, the anomalous magnetic moments of the electron

and the muon are among the best measured quantities in physics. While the former is used
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to fix the value of the fine structure constant αem, the latter constitutes a good observable

where to look for new physics.

The world average of the measured aµ ≡ (gµ− 2)/2, dominated by the result obtained

by E821 at Brookhaven [1], is given by [2]

aexpµ = 116592080(63) · 10−11 . (2.1)

In the SM aµ arises at one loop and, due to the great precision of this measurement,

higher order corrections must be taken into account. The SM contribution can be divided

into three categories: i) QED contributions, consisting of loops involving only leptons

and photons, ii) electroweak contributions, involving leptons, W , Z and Higgs bosons

and iii) hadronic contributions, with hadronic resonances circulating in the loops. The

QED contribution has been calculated up to five loops and the electroweak one up to two

loops, which is enough for the current experimental precision. On the other hand, the

largest error on the theoretical determination comes from the hadronic contributions: in

the light-by-light scattering amplitude some theoretical input is needed in order to perform

the calculation, while in the vacuum polarization diagrams some dispersion relations are

extracted from experiments, either from e+e− scattering or from τ decay. Depending on

these different inputs, different results are obtained for the theoretical prediction. We

choose as a reference value for the SM determination the one contained in the review [2],

while a list of other predictions can be found for instance in ref. [13]:

aSMµ = 116591790(65) · 10−11 . (2.2)

If we now compare this with the measured value, we get a difference of ∆aµ = 290(90)·10−11

which corresponds to a discrepancy with 3.1σ significance. By choosing different theoret-

ical predictions one obtains discrepancies which range from 2 to 4 σ. New, independent

measurements are expected in the next few years by two collaborations, E989 at Fermi-

lab [14] and E34 at JPARC [15], and therefore the existence of a (g−2)µ anomaly will soon

be confirmed or disproved; for the moment, we stick to the available experimental result.

Even if this is not enough to claim a discovery, this discrepancy deserves a detailed

analysis. Basically, it can arise for two different reasons: either i) the SM prediction is not

accurate, or ii) there is some physics beyond the SM contributing to the (g − 2)µ.

Due to the difficulties in calculating the hadronic contributions, one could think that

i) is the favourite explanation. However, if one fixes the hadronic contribution in order

to agree with aexpµ , deviations in the electroweak precision observables are obtained. In

particular, the Higgs mass prediction is modified and, in order to be compatible with the

measured value, large modifications of the hadronic contribution at energies lower than

1 GeV would be required, while this is precisely the energy region where the experimental

measurement is solid [16]. Therefore, this explanation seems to be disfavoured.

According to case ii), the discrepancy ∆aµ could be due to the presence of new physics

beyond the SM. Indeed, in models beyond the SM involving new particles’ couplings to

muons, like for example supersymmetric models, a positive (and large) contribution to the

(g − 2)µ can be achieved quite easily. Two approaches are therefore possible: either one
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takes a model, conceived to solve another problem, and verifies whether it can also explain

this discrepancy, or tries to classify, in a more model-independent way, which are the new

particles that can contribute to the (g − 2)µ. This second approach is the one adopted

e.g. in ref. [17], where minimal extensions of the SM with a single scalar or fermion irrep

were considered (see also refs. [18–21] for other analysis with a similar formulation). In

the present paper, we follow the same idea and complete the classification by adding one

massive vector to the SM field content.

3 EFT approach to the (g − 2)µ

A possible approach to the (g−2)µ consists in adding to the SM field content a new Lorentz

vector, Xµ, without specifying the full UV completion of the theory. In general, the theory

is non-renormalizable and one expects loop observables to be divergent. In this section, we

discuss the d ≤ 4 operators that can appear in the Lagrangian of a massive vector coupled

to the SM and analyze the divergence structure of the diagrams relevant for the g − 2.

3.1 Lagrangian of a massive vector

Before performing the actual (g − 2)µ calculation, we discuss the Lagrangian of the new

vector boson, which is assumed to transform under a complex irrep of the SM gauge group.

As already mentioned, we will not assume that its mass originates from a spontaneously

broken gauge symmetry. The canonical kinetic and mass terms of Xµ read2

LfreeX = −∂µX†ν∂µXν + ∂µX
†
ν∂

νXµ +M2
XX

†
µX

µ , (3.2)

with propagator

i∆µν(k) =
i

k2 −M2
X

(
−gµν +

kµkν

M2
X

)
, (3.3)

which is the same as the unitary gauge propagator of a massive gauge boson.

We are interested in working out the interaction term of Xµ with the photon field Aµ,

which in turn contributes to the g−2. The so-called minimal coupling to electromagnetism

is generated by simply replacing ordinary derivatives in eq. (3.2) by covariant derivatives:

∂µXν → DµXν = (∂µ − ieQXAµ)Xν , (3.4)

where QX is the electric charge of X in units of the proton charge e. This is enough to

make the Lagrangian of eq. (3.1) invariant upon local gauge transformations

Xµ → eieQXα(x)Xµ; Aµ → Aµ + ∂µα(x) , (3.5)

2Note that by Lorentz and gauge invariance the most general Lagrangian quadratic in Xµ is

Lfree
X = −∂µX†ν∂µXν + β ∂µX

†
ν∂

νXµ +M2
XX

†
µX

µ , (3.1)

where β is a free parameter. It can be shown [22] that for β = 1 the above Lagrangian describes the free

propagation of a massive spin 1 particle. For β 6= 1 a scalar degree of freedom is included as well.
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where α(x) is the local parameter of the transformation. The resulting coupling of the

vector field X is

LemX = Jem
µ Aµ − e2Q2

X

(
AµA

µX†νX
ν −AµAνX†νXµ

)
, (3.6)

where

Jem
µ = ieQX

[(
∂µX

†
ν − ∂νX†µ

)
Xν − (∂µXν − ∂νXµ)X†ν

]
, (3.7)

is the conserved current of the free theory.

On the other hand, it is easy to see that there exist extra gauge invariant terms not

related to the minimal coupling. A complete classification of SM gauge invariant d ≤ 4

operators involving X and SM fields is given in appendix A, and the most general EFT

should contain them all.

3.2 Divergence structure of one-loop diagrams

The EFT described in the previous subsection is non-renormalizable because Xµ is not a

gauge boson. This can be proved on general grounds. However, it is interesting to see how

non-renormalizability manifests itself in the case of the g− 2, and to study its relationship

with the minimal coupling. To this purpose we extend the minimally coupled theory by

adding a gauge invariant term proportional to (see also ref. [23])(
XµX

†
ν −XνX

†
µ

)
∂µAν . (3.8)

By including also the interaction terms with the muon field µ and a generic SM fermion f ,

the effective Lagrangian relevant for the (g − 2)µ calculation is

Lg−2int = µ (gV γα + gAγαγ5) fX
α + h.c.

+ ieQX

[(
∂µX

†
ν − ∂νX†µ

)
AµXν − (∂µXν − ∂νXµ)AµX†ν

+kQ

(
XµX

†
ν −XνX

†
µ

)
∂µAν

]
+ ieQffγµfA

µ , (3.9)

where gV,A are vector and axial couplings, Qf is the electromagnetic (EM) charge of f and

kQ is a free parameter.

The two diagrams contributing to the (g − 2)µ at the one-loop level are displayed in

figure 1. The degree of superficial divergence of diagrams (a) and (b) is respectively 4 and

2. However, denoting by Λ the cut-off regulator, an explicit calculation shows that

• The contribution to the (g − 2)µ from diagram (a) is only logarithmically divergent,

since the Λ4 term vanishes when the virtuality of the external photon is set to zero,

while the Λ2 term goes into the renormalization of the electric charge.

• Diagram (b) is finite.

The reduction of the degree of divergence for the 3-point function is a simple consequence

of the Ward identity, which connects the µµγ vertex Γα(p, q) to the derivative of the muon

self-energy Σ(p) in the soft-photon limit q → 0 via the relation

Γα(p, p) =
dΣ(p)

dpα
. (3.10)

– 5 –



J
H
E
P
1
0
(
2
0
1
6
)
0
0
2

(a)

µ f µ

X X

γ
(b)

Xµ µ

f f

γ

Figure 1. One-loop diagrams contributing to the (g−2)µ. Red wiggled lines stand for the massive

vector X, while the blobs in the vertices denote the interactions of X with the SM fields defined

in eq. (3.9).

To see this, let us Taylor expand the muon self-energy in powers of /p−mµ

Σ(p) = A+B(/p−mµ) + Σc(p)(/p−mµ) . (3.11)

Since Σ(p) is linearly divergent, the first two coefficients A and B are respectively linearly

and logarithmically divergent (indeed every derivative with respect to p lowers the degree

of divergence by one unit). This implies that dΣ(p)/dpα, and hence Γα(p, p) because of

eq. (3.10), can be at most logarithmically divergent.

By employing the Lagrangian in eq. (3.9) we find the following contribution to the

divergent part of the (g − 2)µ:

∆adiv.µ =
QXm

2
µ

8π2M2
X

(kQ − 1)

[(
g2V + g2A

)
−
mf

mµ

(
g2V − g2A

)]
log

Λ2

M2
X

. (3.12)

This result shows that the logarithmic divergence disappears in the limit kQ → 1. On

the other hand, the divergence persists in the minimally coupled theory (kQ = 0). Also

note that for kQ = 1 and QX = 1, the second line of eq. (3.9) reproduces the SM triple

gauge vertex WW †A, with the identification Xµ = W+µ. We hence conclude that the

choice kQ = 1 is a necessary condition for renormalizability. Moreover, possible extra

gauge invariant terms in eq. (3.9) do not arise in renormalizable theories (cf. the discussion

in appendix A).

Even though one could estimate the contribution of the massive vector to the (g− 2)µ
by setting Λ to the value of the cut-off of the EFT, this requires the specification of a new

energy scale (e.g. the scale of compositeness in strongly-coupled theories). Once an appro-

priate number of counterterms are fixed in terms of physical observables, EFTs can be fully

predictive within their range of validity and at a given order in the coupling/energy expan-

sion (cf. e.g. the case of the SM EFT [24–26]). Nevertheless, renormalizable setups provide

us with a larger degree of predictivity and in the following we will focus for simplicity on

UV-complete, weakly coupled models.
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4 Renormalizable approach to the (g − 2)µ

In this section we discuss the case in which the new vector is embedded in a sponta-

neously broken extended gauge symmetry. Hence, kQ = 1 in eq. (3.9), so that the vector

contribution to the (g − 2)µ turns out to be finite and predicted in terms of a renormali-

zable Lagrangian.

Before turning to the actual discussion of the gauge embeddings, we estimate the mass

scale MX required in order to explain the (g− 2)µ discrepancy, regardless of its UV gauge

completion. Since existing bounds require MX � MW ,3 it is more appropriate to employ

an SU(2)L ⊗ U(1)Y invariant language. To this purpose, we have classified in appendix A

all the possible X-quantum numbers such that the new vector can couple to SM fields via

d ≤ 4 operators (cf. tables 2–3). Only a subset of these operators are relevant for the

(g−2)µ, namely all those involving a lepton field, which are reported in table 1. This table

summarizes most of our results. It shows all the possible new vector’s quantum numbers,

together with their EM components and the d = 4 operators involving X, a muon and a

SM fermion field. Moreover, it contains, for each case, the sign of the contribution to ∆aµ
in the approximation where the SU(2)L multiplet components have the same mass MX ,

4

and the value of MX which is required in order to explain the experimental discrepancy,

for the reference gauge coupling gX = 1 (MX scales linearly with gX). Finally, in the last

column, we provide a minimal gauge embedding of the massive vector into an extended

gauge symmetry group. What we did not include in table 1 are the actual bounds on MX ,

which are instead discussed in detail in section 4.2. In some cases a model-independent

bound applies (namely without specifying the embedding), while in general the gauge

embedding implies extra indirect constraints. As a matter of fact, we find that only the

abelian extension can provide an explanation of the (g− 2)µ discrepancy, compatibly with

the existing bounds.

4.1 Unitary gauge calculation

Let us consider the Lagrangian in eq. (3.9) with kQ = 1. The contribution to the muon

anomalous magnetic moment (cf. the two diagrams displayed in figure 1) in the unitary

gauge is known since long [27] (see also refs. [2, 19]). At the leading order in mµ/MX and

mf/MX it reads

∆a(a)µ =
NcQX

4π2
m2
µ

M2
X

[
|gV |2

(
−5

6
+
mf

mµ

)
+ |gA|2

(
−5

6
−
mf

mµ

)]
=
NcQX

4π2
m2
µ

M2
X

[
− 5

12

(
|gL|2 + |gR|2

)
+ Re (gLg

∗
R)

mf

mµ

]
, (4.1)

3The only exception is given by abelian gauge extensions (cf. end of section 4.2.1). But in such a case

X is a SM gauge singlet.
4The mass splitting between the electroweak components of an SU(2)L multiplet originates from a tree-

level term and, for MX �MW , goes like ∆MX ∼ g′2 10 GeV (1 TeV/MX), where g′ is a custodial breaking

gauge coupling.
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Xµ QEM Og−2X sign(∆aµ) MX [GeV] Gauge embedding

(1, 1, 0) 0 eRγµeRX
µ, `Lγµ`LX

µ +/− 180(220) U(1)′

(1, 2,−3
2) −1,−2 eRγµ`

c
LX

µ + 750(900) SU(3)L ⊗U(1)X

(1, 3, 0) 1, 0,−1 `Lγµ`LX
µ + 160(190) SU(2)1 ⊗ SU(2)2

(3, 1,−2
3) −2

3 eRγµdRX
µ, `LγµqLX

µ +/− 2000(2400) SU(4)C ⊗U(1)R

(3, 1,−5
3) −5

3 eRγµuRX
µ + 520(620) SU(4)C ⊗U(1)R′

(3, 2, 16) 2
3 ,−

1
3 `Lγµu

c
RX

µ − / SU(5)⊗U(1)Z

(3, 2,−5
6) −1

3 ,−
4
3 eRγµq

c
LX

µ, `Lγµd
c
RX

µ +/− 4400(5300) SU(5)

(3, 3,−2
3) 1

3 ,−
2
3 ,−

5
3 `LγµqLX

µ + 540(650) SO(9)⊗U(1)R

Table 1. List of new Lorentz vectors coupling to SM fermions at the renormalizable level and

contributing to the g − 2. In the second column we provide the EM components of the SU(2)L
multiplets, while Og−2X denotes the d = 4 operator responsible for the g−2 (gauge and flavor indices

are suppressed). Representations with Y = 0 are understood to be real. For those cases where the

contribution to the (g − 2)µ is non-negative we estimate in the fifth column the mass scale of the

vector boson required in order to fit the discrepancy ∆aµ = (290± 90)× 10−11 (the number in the

bracket corresponds to the +1σ value). For the estimate we take the gauge coupling gX = 1 and

an universal mass MX for all the components of the SU(2)L multiplets. The last column displays

the minimal embedding of the massive vector into an extended gauge group.

∆a(b)µ =
NcQf
4π2

m2
µ

M2
X

[
|gV |2

(
2

3
−
mf

mµ

)
+ |gA|2

(
2

3
+
mf

mµ

)]
=
NcQf
4π2

m2
µ

M2
X

[
1

3

(
|gL|2 + |gR|2

)
− Re (gLg

∗
R)

mf

mµ

]
, (4.2)

where QX,f denote the EM charges of X and f , while Nc = 3 (1) for color triplets (singlets).

Note that in the second step of eqs. (4.1)–(4.2) we switched to the chiral basis couplings

gL = gV − gA and gR = gV + gA, which is a better language for SU(2)L ⊗U(1)Y invariant

interactions. The generalization in flavor space for a generic gauge theory is also straight-

forward. The interaction term involving X, a muon and a SM fermion mass eigenstate

field fi reads

µ
(
gLU

µi
L γαPL + gRU

µi
R γαPR

)
fiX

α + h.c. , (4.3)

where PL,R = 1
2(1∓ γ5) are chiral projectors and UL,R are unitary matrices in flavor space

which perform the rotation from the flavor to the mass basis. Consequently, eqs. (4.1)–(4.2)

are generalized into

∆a(a)µ =
NcQX

4π2
m2
µ

M2
X

[
− 5

12

(
|gL|2 + |gR|2

)
+ Re (gLg

∗
R) Re

(
UµiL U

∗µi
R

) mfi

mµ

]
, (4.4)

∆a(b)µ =
NcQf
4π2

m2
µ

M2
X

[
1

3

(
|gL|2 + |gR|2

)
− Re (gLg

∗
R) Re

(
UµiL U

∗µi
R

) mfi

mµ

]
, (4.5)
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where in the first term of the square brackets we exploited the unitarity relation

(UL,RU
†
L,R)µµ = 1. On the other hand, the LR contribution in eqs. (4.4)–(4.5) is weighted

by the fermion mass mfi and, depending on the specific UV gauge completion, by a gen-

erally unknown unitary matrix element.

In reproducing the unitary gauge calculation we would like to mention a subtlety that

one encounters when employing the unitary gauge at the loop level.5 It is known that

one should not shift momenta in more-than-logarithmically divergent integrals, otherwise

spurious surface terms can change the final result by a finite amount (see e.g. chapter 6.2

in [28]). This is a potential issue in the unitary gauge, since the degree of superficial

divergence of the loop integrals gets worsened. Though the contribution to the g− 2 must

be finite in a renormalizable theory, one still needs to regularize the integrals in order not to

meet the aforementioned issue. Indeed, we verified that the result of the calculation differs

by a finite amount if one naively computes the integrals in d = 4 dimensions, instead of

using dimensional regularization in d = 4− 2ε and taking the ε→ 0 limit at the very end.

4.2 New vectors’ contributions, gauge embeddings and bounds

We proceed now by detailing the contribution of the new vectors in table 1 to the (g− 2)µ
by using eqs. (4.4)–(4.5) and estimate in turn the value of MX which is required in order

to explain the discrepancy. Next, we discuss for each case a minimal gauge embedding of

the new Lorentz vector. In order for the model to be phenomenologically viable, the SM

fermions and Higgs boson must be properly embedded into the extended matter multiplets

and the absence of gauge anomalies must be fulfilled. Regarding these last two points,

we will not enter too much into details, but just refer to the existing literature when

possible. For those cases where the SM matter embedding has not been discussed yet we

will see that there exist independent arguments which are actually sufficient in order to

exclude those possibilities as an explanation of the (g− 2)µ. In particular, for any minimal

viable realization we estimate indirect bounds from B and L number and flavor violating

processes as well as limits from direct searches. To simplify the notation, we esplicitate

the flavor structure only when needed. It is otherwise understood a unitary structure like

that in eq. (4.3), as the most general gauge interaction of the massive vector with the

SM matter fields.

4.2.1 (1, 1, 0)

Sticking to a flavor diagonal Z ′, the interaction Lagrangian is

Lg−2int ⊃ gX1eRγµeRX
µ + gX2`Lγµ`LX

µ ⊃ gX1eRγµeRX
µ + gX2eLγµeLX

µ , (4.6)

which yields

∆aµ = − 1

12π2
m2
µ

M2
X

(
g2X1

+ g2X2
− 3gX1gX2

)
. (4.7)

5Another option could be that of using a different gauge, like the ’t Hooft-Feynman gauge.
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The latter is positive for 1
2(3−

√
5) < gX2/gX1 <

1
2(3 +

√
5), while it reaches its maximal

positive value

∆amax
µ =

g2X1

12π2
m2
µ

M2
X

5

4
, (4.8)

for gX2/gX1 = 3/2.6 From eq. (4.8) we find that the (g− 2)µ requires MX/gX1 = 200 GeV.

The gauge embedding corresponds to that of an extra U(1)′ factor and the lower

bounds on MX are quite model dependent. For instance, in the case of a sequential

SM Z ′, ATLAS [29] and CMS [30] set the bound respectively to MZ′ > 3.4 TeV and

MZ′ > 3.2 TeV by looking into di-lepton channels. On the other hand, even if the Z ′ couples

only to muons (as minimally required by the muon g − 2), neutrino trident production

νµN → νµNµ
+µ− from CCFR data [31] rules out the explanation of the (g− 2)µ anomaly

for masses MZ′ & 400 MeV [32], while the available low-mass range can be covered at

future neutrino beam facilities.

Without requiring additional exotic fermions contributing to the (g − 2)µ, there are

two other options leading to a viable Z ′ explanation of the (g − 2)µ. The first one is a

dark photon or Z without direct couplings to the SM fields, which can still contribute to

the (g − 2)µ via a gauge kinetic mixing to the EM current [33–35]. As shown in ref. [35],

the explanation in terms of a light gauge boson of O(100) MeV requires however a sizeable

invisible decay channel of the Z ′. Another possibility, recently discussed in refs. [36, 37],

is that of a flavor off-diagonal coupling of the Z ′ to the µ and τ sector. This can explain

the (g − 2)µ for a Z ′ heavier than the τ lepton, compatibly with all the existing bounds.

4.2.2 (1, 2,−3
2
)

Let us consider the interaction Lagrangian

Lg−2int ⊃ gXeRγµ`
c
LX

µ + h.c. = gX
[
eRγµν

c
LX

µ
−1 + eRγµe

c
LX

µ
−2
]

+ h.c.

= gX

eRγµνcLXµ
−1 +

1
2 eγµCe

T︸ ︷︷ ︸
=0

Xµ
−2 + 1

2eγµγ5Ce
TXµ
−2

+ h.c. , (4.9)

where in the last step we have emphasized the fact that the vector current associated to

the doubly-charged component of X is zero by symmetry reasons.7 Note, also, that the

Feynman rule of X−2 features an extra 2 symmetry factor in the µµX vertex (and hence

a factor 4 in the g − 2 amplitude). At the end the final contribution to the (g − 2)µ is

found to be

∆aµ =
23

16π2
m2
µ

M2
X

g2X , (4.10)

and in order to reproduce the (g − 2)µ we need MX/gX = 750 GeV.

6This option is prone to gauge anomaly cancellation constraints, since the couplings are chiral. However,

anomalies can be fixed by coupling X to another fermionic sector. Alternatively, one can consider the

anomaly free scenario gX1 = gX2 . In such a case, the required vector boson mass is MX/gX1 = 180 GeV.
7In fact, by using the anticommuting properties of fermion fields, CγµTC−1 = −γµ and CT = −C one

gets: eγµCe
T = (eγµCe

T )T = −eCT γTµ eT = −eγµCeT .
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The gauge embedding in this case is minimally realized via the so-called 331 models,

which are based on the extended gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X [38]. The SM

hypercharge is embedded via the relation

Y = ξT 8
L +X , (4.11)

where T 8
L is a Cartan generator of the SU(3)L algebra (normalized as Tr T aLT

b
L = 1

2δ
ab)

and the parameter ξ defines a class of different models (see e.g. [39]), while the X-charge

assignment of the matter fields defines the embedding of the SM fermions into the extended

matter multiplets. In particular, in order to obtain (1, 2,−3
2) as a would-be goldstone

boson (WBG) one needs ξ = ±
√

3. On top of that, the SU(3)C ⊗ SU(3)L ⊗ U(1)X →
SU(3)C ⊗ SU(2)L ⊗U(1)Y breaking also delivers a Z ′.

Ref. [40] studied the interplay between the (g − 2)µ and the electroweak and collider

constraints in different classes of 331 models and found that no renormalizable extension

can explain the (g − 2)µ, mainly due to lower bounds on the Z ′ mass which translate

into lower bounds on the singly and doubly charged components of (1, 2,−3
2) within the

specific models.

4.2.3 (1, 3, 0)

In this case we use a matrix representation for the (real) electroweak triplet

Xµ =
σiXiµ

√
2

=

 Xµ
0√
2

Xµ
+1

Xµ
−1 −

Xµ
0√
2

 , (4.12)

and the relevant Lagrangian for the (g − 2)µ is

Lg−2int ⊃ gX`LγµX
µ`L ⊃ −

gX√
2
eLγµeLX

µ
0 + gX

(
eLγµνLX

µ
−1 + h.c.

)
. (4.13)

The contribution to ∆aµ is

∆aµ =
1

16π2
m2
µ

M2
X

g2X , (4.14)

from which we get that in order to reproduce the (g − 2)µ we need MX/gX = 160 GeV.

A minimal gauge extensions delivering (1, 3, 0) as a WBG is given by SU(2)1⊗SU(2)2,

spontaneously broken to the diagonal subgroup, which is identified with SU(2)L. Different

variant models depend on the SM fermions’ embedding. Let us mention, for instance,

the “un-unified” model where left-handed quarks and leptons are respectively assigned to

SU(2)1 and SU(2)2 [41, 42], and the “non-universal” model in which the third generation

left-handed fermions undergo a different SU(2) interaction from those of the first two

generations [43]. Due to the symmetry breaking pattern the masses of the W ′ and Z ′

contained in the (1, 3, 0) are quite degenerate and their mixing with the W and Z leads

to strong constraints from precision electroweak measurements. In fact, a global analysis

including Z-pole observables, W properties, τ lifetime, νN(e)-scattering and atomic parity

violation sets the bound at the level of MW ′ ∼ MZ′ & 2.5 TeV [44]. On the other hand,

the new charged vector bosons can be pair-produced and leave a signature of leptons and

missing energy. By recasting LHC slepton searches [45], ref. [18] sets the lower bound

MW ′ & 400 GeV, which holds irrespectively of the UV completion. This clearly rules out

the possible explanation of the (g − 2)µ discrepancy.
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4.2.4 (3, 1,−2
3
)

The interaction Lagrangian can be written as

Lg−2int ⊃ gX
(
eRγµdRX

µ + `LγµqLX
µ
)

+ h.c.

⊃ gX
(
eRµU

µi
R γµdRiX

µ + eLµU
µi
L γµdLiX

µ
)

+ h.c. , (4.15)

where UL,R are unitary mixing matrices. The contribution to the (g − 2)µ is then

∆aµ =
1

4π2
m2
µ

M2
X

g2X

(
1− Re

(
UµiL U

∗µi
R

) mdi

mµ

)
. (4.16)

In order to maximize the contribution, we assume maximal mixing in the bottom direc-

tion with Re
(
UµiL U

∗µi
R

)
= −1, thus inferring MX/gX = 2.0 TeV in order to explain the

(g − 2)µ discrepancy.

The minimal UV completion of the (3, 1,−2
3) vector leptoquark is given by the quark-

lepton unification model based on the gauge group SU(4)C⊗SU(2)L⊗U(1)R (see e.g. [46]),

which is a particular case of the more general Pati-Salam group [47]. The SM hypercharge

is embedded via the relation

Y =

√
6

3
T 15
C +R , (4.17)

where T 15
C is a properly normalized Cartan generator of SU(4)C algebra (TrT aCT

b
C = 1

2δ
ab).

The R-charge assignment of the matter fields defines the embedding of the SM fermions

into the extended matter multiplets. On top of (3, 1,−2
3), the SU(4)C⊗SU(2)L⊗U(1)R →

SU(3)C ⊗ SU(2)L ⊗U(1)Y breaking also delivers a Z ′ as a WBG.

The vector leptoquark (3, 1,−2
3) contributes to the rare decay K0

L → e∓µ∓, which for

O(1) couplings yields the bound MX & 103 TeV (see e.g. [48, 49]). Such a strong constraint

can be in principle evaded if one takes into account the freedom in the flavor mixing between

quarks and leptons, due to the unknown unitarity matrices UL,R in eq. (4.15). In such a

case, a full set of observables from rare K and B meson decays must be taken into account

and, by combining the strongest constraints, refs. [50, 51] find MX & 38 TeV, regardless

of flavor mixing. Remarkably, a numerical scan of the multi-dimensional parameter space

reveals the existence of viable configurations with masses as low as MX ∼ 12 TeV [52],

which is however still too high for the explanation of the (g − 2)µ.

4.2.5 (3, 1,−5
3
)

From the interaction Lagrangian

Lg−2int ⊃ gXeRγµuRX
µ + h.c. , (4.18)

the contribution to ∆aµ is found to be

∆aµ =
11

16π2
m2
µ

M2
X

g2X . (4.19)

The mass scale required to fit the (g − 2)µ is MX/gX = 520 GeV.
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The gauge extension of this case is analogous to the previous one, and is given by the

SU(4)C ⊗SU(2)L⊗U(1)R′ group, whose breaking also delivers an extra Z ′ as a WBG. The

corresponding embedding of the SM hypercharge is

Y =
5

2

√
6

3
T 15
C +R′ . (4.20)

The R′-charges of the matter fields define the embedding of the SM fermions into the

extended matter multiplets. The latter differs substantially from the standard Pati-Salam

embedding and we did not attempt to build a realistic fermionic sector. However, even

without discussing that, such a light MX (as required by the (g − 2)µ) is ruled out by

collider searches.

In order to show that let us make explicit the unitary structure of the leptoquark

interactions in flavor space

gXU
ij
R eiRγµujRX

µ , (4.21)

where the (a priori unknown) unitary matrix UR controls the branching ratios of X → eiuj .

In particular, we have

B(X → ej) =

∑
j=u,c

∣∣∣U ejR ∣∣∣2∑
i=e,µ,τ

∑
j=u,c,t

∣∣∣U ijR ∣∣∣2 =
1−

∣∣U etR ∣∣2
3

, (4.22)

B(X → µj) =

∑
j=u,c

∣∣∣UµjR ∣∣∣2∑
i=e,µ,τ

∑
j=u,c,t

∣∣∣U ijR ∣∣∣2 =
1−

∣∣∣UµtR ∣∣∣2
3

. (4.23)

On the other hand, the pair-production cross section of X is unambiguously fixed by

QCD and we can use the CMS searches in ref. [53] in order to constrain the combined

X → ej and X → µj channels. Note that the elements U ejR and UµjR are still related by

unitarity, and even in the worse case scenario where the top is maximally mixed with the

first two generation leptons (thus leading to a potential reduction of the branching ratios

in eqs. (4.22)–(4.23)), we can parametrize the mixing matrix elements as U ejR = sinφ and

UµjR = cosφ. The most conservative bound is obtained by simultaneously minimizing the

two branching ratios, since ej and µj searches lead to similar bounds. This is obtained by

taking φ = π/4, which corresponds to a B of 1/6 in both the channels. By simply rescaling

the cross sections in figures 13 and 14 of ref. [53] by a (1/6)2 factor we obtain MX & 1 TeV,

which is sufficient in order to exclude the explanation of the (g− 2)µ in terms of (3, 1,−5
3).

4.2.6 (3, 2, 1
6
)

Given the interaction Lagrangian

Lg−2int ⊃ gX`Lγµu
c
RX

µ + h.c. ⊃ gXeLγµucRX
µ
−1/3 + h.c. , (4.24)

the contribution to ∆aµ is

∆aµ = − 1

16π2
m2
µ

M2
X

g2X , (4.25)

which, being negative, cannot explain the (g − 2)µ.
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For completeness, we mention that this case corresponds to the “flipped” SU(5) em-

bedding of the SM hypercharge [54, 55]. Moreover, the breaking also delivers an extra Z ′

as a WBG.

4.2.7 (3, 2,−5
6
)

The interaction Lagrangian can be written as

Lg−2int ⊃ gX
(
eRγµq

c
LX

µ + `Lγµd
c
RX

µ
)

+ h.c. (4.26)

⊃ gX
(
eRµŨ

µi
R γµu

c
LiX

µ
−1/3 + eRµU

µi
R γµd

c
LiX

µ
−4/3 + eLµU

µi
L γµd

c
RiX

µ
−4/3

)
+ h.c. ,

where ŨR and UL,R are unitary mixing matrices. The contribution to ∆aµ is found to be

∆aµ =
5

16π2
m2
µ

M2
X

g2X

(
3− 4 Re

(
UµiL U

∗µi
R

) mdi

mµ

)
. (4.27)

In order to maximize the contribution, we assume maximal mixing in the bottom direction

with Re
(
UµiL U

∗µi
R

)
= −1, and thus we get MX/gX = 4.4 TeV in order to explain the

(g − 2)µ discrepancy.

The UV completion of this vector leptoquark is the standard SU(5) [56], which clearly

rules out the interpretation of the (g − 2)µ, since MX & 1015 GeV from proton decay and

unification constraints.

4.2.8 (3, 3,−2
3
)

By using the following electroweak triplet matrix representation

Xµ =
σiXiµ

√
2

=

 Xµ
−2/3√
2

Xµ
+1/3

Xµ
−5/3 −

Xµ
−2/3√
2

 , (4.28)

we can write the interaction Lagrangian as

Lg−2int ⊃ gX`LγµX
µqL + h.c. ⊃ − gX√

2
eLγµdLX

µ
−2/3 + gXeLγµuLX

µ
−5/3 + h.c. . (4.29)

This leads to

∆aµ =
3

4π2
m2
µ

M2
X

g2X , (4.30)

which implies MX/gX = 540 GeV for the explanation of the (g − 2)µ discrepancy.

On top of possible collider searches which we do not discuss, the main no-go here is the

gauge embedding which requires the SU(3)C and SU(2)L SM gauge factor to get unified

below the TeV scale, which is clearly ruled out.

For completeness, we provide a symmetry breaking pattern delivering (3, 3,−2
3) as a

WBG. The minimal option we were able to find is SO(9) ⊗ U(1)R → SU(4)C ⊗ SU(2)L ⊗
U(1)R → SU(3)C⊗SU(2)L⊗U(1)Y . Here, the branching rule of the adjoint under SO(9) →
SU(4)C ⊗ SU(2)L is given by 36 → (1, 3) ⊕ (6, 3) ⊕ (15, 1) [57]. Next, under SU(4)C ⊗
SU(2)L⊗U(1)R → SU(3)C⊗SU(2)L⊗U(1)Y , (6, 3, 0)→ (3, 3, 23)⊕ (3, 3,−2

3), provided the

embedding of the SM hypercharge is Y = 2
√
6

3 T 15
C +R. On the other hand, the embedding

of the SM fermions is non-trivial and we did not attempt to build a realistic model.
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5 Discussion and conclusions

The increase of the degree of divergence of loop diagrams in presence of non-gauge massive

vectors is something well-known. A typical example is given by meson mixing amplitudes

for which the box diagrams involving massive vectors, with propagators as in eq. (3.3), are

quadratically divergent (see e.g. [58, 59])

∆mij
M ∝ Λ2

∑
f,f ′

U ifU∗jfU if
′
U∗jf

′
. (5.1)

Here, M denotes a K, D or B meson, ij are the meson constituent quarks and ff ′ the

fermions exchanged in the loop. In a gauge theory the U -matrices are unitary and a

GIM-like mechanism ensures the cancellation of the quadratic divergence, as it should in

a renormalizable theory. Yet another example is given by the divergent contributions to

electroweak precision observables from composite vectors (see e.g. [60–64]). In a similar

way, we have seen that the triple vector boson vertex in diagram (a) of figure 1 is the origin

of the logarithmic divergence of the g−2. This is also to be expected, since renormalizability

crucially hinges on the exact values of the non-abelian vertices.

In this paper we have classified all the possible quantum numbers of a new massive

vector which can couple to SM fields via d ≤ 4 operators (cf. tables 2–3). Only a subset of

these irreps can contribute to the g − 2, and for each of them we provided the embedding

of the massive vector into a spontaneously broken gauge theory (cf. table 1). While some

gauge extensions are of course well-known, those concerning (3, 1,−5
3) and (3, 3,−2

3) are to

our knowledge new. The maybe less obvious result of this paper is that after embedding the

massive vector into an extended gauge symmetry, such that the g−2 can be unambiguously

computed in terms of a renormalizable Lagrangian, renormalizability highly constrains the

interactions of the vector field. In fact, a combination of direct and indirect bounds, as well

as unification constraints, rules out the possible explanation of the muon g− 2 in terms of

new massive vectors, with the only notable exception of an abelian gauge extension. The

latter, indeed, is less constrained because the extra gauge group is factorized with respect

to the SM gauge group and the couplings to SM fields are highly model dependent.

It should be also stressed that the starting hypothesis of a 1-particle vector extension of

the SM is often violated in the renormalizable case, since new sectors of the theory are often

required by the consistency of the symmetry breaking pattern (e.g. scalar fields breaking the

extended symmetry, extra WGBs and new fermions fitting the extended matter multiplets)

and they cannot be arbitrary decoupled from the new vector mass scale. In principle, the

inclusion of these extra fields can provide extra contribution for explaining the (g − 2)µ.

This, however, is model dependent and goes beyond the original question.

Finally, we would like to comment on a couple of other phenomenologically relevant

contexts where similar observations apply as in the g − 2 case. The first one is that of B-

meson decay anomalies. New massive vectors have been recently proposed for addressing

some 3σ level discrepancies in semileptonic B-meson decays [3–5]. Aside from abelian

gauge extensions (see e.g. [65–70]) there are three non-trivial irreps which are well-suited

for addressing B-meson anomalies if they couple to SM fermions exclusively via left-handed

– 15 –



J
H
E
P
1
0
(
2
0
1
6
)
0
0
2

currents: (1, 3, 0) [71–74], (3, 1,−2
3) [23, 75] and (3, 3,−2

3) [76, 77]. In these examples the

issue of renormalizability was not central, being all the main experimental anomalies to be

explained at tree level (see however ref. [23] for a discussion of divergent loop observables).

Nevertheless, if one requires these non-abelian massive vectors to arise from a spontaneously

broken extended gauge symmetry new extra constraints must be fulfilled. We already

discussed a minimal gauge embedding for each of these three vector irreps in section 4.2.

As far as regards (1, 3, 0), if it couples universally to the three SM families, the unitarity

of the gauge interactions forces the neutral currents to be diagonal in flavor space and the

charged currents to be aligned to the SM, thus lacking of the required amount of flavor

violation for b→ s and b→ c transitions. As pointed out in refs. [73, 74], a viable UV gauge

completion of (1, 3, 0) for the explanation of the the B-anomalies requires universal gauge

couplings and an extra source of flavor violation, e.g. from the mixing of the SM quarks

with new vector-like fermions. Similarly, in the case of (3, 1,−2
3) the unitary structure of

the leptoquark interactions with the SM fermions is such that a bunch of rare processes

from rare K and B meson decays cannot be simply set to zero by switching-off right-handed

currents. As discussed in section 4.2.4, the mass of the new vector is bounded to lie in

the multi-tens of TeV region and hence too high in order to explain all the B anomalies.

Finally, the case of a light (3, 3,−2
3) is also trivially excluded, since if it were to come

from a gauge theory the strong and electroweak couplings would have to be unified at

the TeV scale.

Massive vectors mediators have been also recently invoked for the explanation of the

LHC di-photon excess (see e.g. [78, 79]). In such a case both the production of the scalar

resonance via gluon fusion and its decay into two photons is obtained via a loop of massive

vectors featuring triple and quartic vector boson vertices, which lead in general to divergent

contributions. On the other hand, by sticking to a finite result for the loop functions in

order to fit the cross-section signal one is implicitly assuming that the vector boson has

a gauge origin and, as we saw in the previous examples, it is non-trivial to satisfy all the

relevant bounds in presence of a gauge vector mediator at the TeV scale.
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A 1-particle vector extensions of the SM

In this appendix we provide the classification of all the possible gauge quantum numbers

of a Lorentz vector, Xµ, which can couple to SM fields at the renormalizable level. We

start by collecting in table 2 those cases where the new vector couples to SM fermions.

In table 3 we classify instead d ≤ 4 operators involving Xµ and SM bosons (either scalar

or vector).
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Xµ QEM Od=4
X

(1, 1, 0) 0 eRγµeRX
µ, `Lγµ`LX

µ, uRγµuRX
µ, dRγµdRX

µ, qLγµqLX
µ

(1, 1, 1) 1 uRγµdRX
µ

(1, 2,−3
2) −1,−2 `Lγµ(eR)cXµ

(1, 3, 0) 1, 0,−1 `Lγµ`LX
µ, qLγµqLX

µ

(3, 1,−2
3) −2

3 eRγµdRX
µ, `LγµqLX

µ

(3, 1,−5
3) −5

3 eRγµuRX
µ

(3, 2, 16) 2
3 ,−

1
3 `Lγµ(uR)cXµ, qcLγµdRX

µ

(3, 2,−5
6) −1

3 ,−
4
3 eRγµq

c
LX

µ, `Lγµd
c
RX

µ, qcLγµuRX
µ

(3, 3,−2
3) 1

3 ,−
2
3 ,−

5
3 `LγµqLX

µ

(6, 2, 16) 2
3 ,−

1
3 qcLγµdRX

µ

(6, 2,−5
6) −1

3 ,−
4
3 qcLγµuRX

µ

(8, 1, 0) 0 uRγµuRX
µ, dRγµdRX

µ, qLγµqLX
µ

(8, 1, 1) 1 uRγµdRX
µ

(8, 3, 0) 1, 0,−1 qLγµqLX
µ

Table 2. List of new Lorentz vectors with d = 4 coupling to SM fermions. The EM charges of the

particles in the multiplet and the relevant d = 4 operators are displayed (gauge and flavor indices

are understood).

Note that some of the operators collected in table 3 can potentially yield extra non-

standard contributions to the g− 2. This happens for the operator WµνD
µXν , which only

exists when X transforms like (1, 3, 0), or for some operators involving the ε-tensor. It can

be shown, however, that the former operator does not arise in renormalizable setups. To this

end, let us consider the gauge embedding of the SU(2)L factor in terms of SU(2)1⊗SU(2)2
discussed in section 4.2.3: the only possible source of such operator is the kinetic term of

the two field strengths

− 1

4
W a,µν

1 W a
1,µν −

1

4
W a,µν

2 W a
2,µν , (A.1)

which upon an orthogonal transformation in terms of mass eigenstates, namely a massless

triplet W and a massive one X (we neglect electroweak symmetry breaking here), leads to

− 1

4
W a,µνW a

µν −
1

4
Xa,µνXa

µν , (A.2)

without any W -X mixed term. Similarly, among the operators obtained via an εµνρσ
contraction, those arising from renormalizable theories are always total derivatives, and

hence do not contribute to the g − 2 in perturbation theory.
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OX dim(OX) Xµ

HDµX
µ 3 (1, 2, 12)

H†DµX
µ 3 (1, 2,−1

2)

HHDµX
µ 4 (1, 3,−1)

HH†DµX
µ 4 (1, 1⊕ 3, 0)

HHXµX
µ 4 (R, 2k,−1

2)

HH†XµX
µ 4 (R, 2k, 0)

HH†XµX
†µ 4 (C, n, Y )

DµX
†
νDµXν 4 (C, n, Y )

DµX
†
νDνXµ 4 (C, n, Y )

GµνD
µXν 4 (8, 1, 0)

WµνD
µXν 4 (1, 3, 0)

Bµν∂
µXν 4 (1, 1, 0)

GµνX
µX†ν 4 (C 6=1, n, Y )

WµνX
µX†ν 4 (C, n 6=1, Y )

BµνX
µX†ν 4 (C, n, Y )

DµXνX
µXν 4 (C, 2k + 1, 0)

DµXνX
µX†ν 4 (R, 2k + 1, 0)

εµνρσG
µνDρXσ 4 (8, 1, 0)

εµνρσW
µνDρXσ 4 (1, 3, 0)

εµνρσB
µν∂ρXσ 4 (1, 1, 0)

εµνρσG
µνXρX†σ 4 (C 6=1, n, Y )

εµνρσW
µνXρX†σ 4 (C, n 6=1, Y )

εµνρσB
µνXρX†σ 4 (C, n, Y )

Table 3. New vectors Xµ which can couple to H or SM gauge bosons at the renormalizable level.

(C, n, Y ) denote generic quantum numbers under the SM gauge group. R stands for a real SU(3)C
representation (i.e. R = 1, 8, 27, . . .), while 2k (2k + 1) for an even (odd) SU(2)L representation.

The subscript “ 6= 1” means that the trivial representation is excluded.
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