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1 Introduction and summary of results

The only known microscopic models of black holes in string theory describe supersymmet-

ric black holes [1, 2], which are necessarily also extremal. Remarkably, the extremal Kerr

black hole is a close model to some of observed astrophysical black holes [3–5]. However,

the extremal Kerr black hole cannot be supersymmetric and hence known string theory

descriptions do not apply to these realistic black holes. It is then natural to ask which meth-

ods, independent of supersymmetry, can provide us with relevant microscopic information

about non-supersymmetric extremal black holes.

On the other hand, given the fact that black holes, in general, admit a thermodynamical

description at the semiclassical level [6], and in particular have entropy [7], one is motivated

to explore how much extra information about the microscopic description of black holes one

may be able to extract from a low energy description as a solution of classical gravity. The

main aim of this paper, which was announced in [8], is to make steps in this direction. In

particular, we present a consistent proposal for the classical phase space and symmetries of

the gravitational field around extremal spinning black holes in four and higher dimensions

using covariant phase space methods. Given the phase space, the symplectic structure and

its symmetries, one can apply usual quantization procedures. The latter may then provide

a setup to explore the microscopic description of extremal black holes.

After the seminal work of Wald [9], we have learned that the entropy of a black hole

with a Killing horizon may be viewed as a conserved Noether-Wald charge [10] associated

with the Killing vector field generating the horizon. We also know that the temperature

attributed to the thermodynamic description of a black hole is a quantity which can be

read only, up to a conventional normalization usually imposed at spatial infinity, from

the form of the metric near the horizon. Moreover, other quantities which appear as

chemical potentials in the thermodynamical description of black holes like horizon angular

velocity and horizon electric potential, are quantities attributed to the horizon. These and

other facts about black holes have led to the idea that the information about black hole

microstates is completely encoded in the (quantum and classical) near horizon data. If this

idea is correct, no information is needed in the surroundings of the black hole nor in its

interior to describe the black hole microstates. The near horizon geometry for a generic

black hole is not a decoupled region of the black hole in the sense of geodesic completeness.

Nonetheless, for the class of extremal black holes, i.e. black holes with degenerate (non-

bifurcate Killing) horizon or, equivalently, black holes at zero Hawking temperature, a

near horizon limit exists and yields a new class of solutions decoupled from the asymptotic

region, the Near Horizon Extremal Geometries (NHEG). Therefore, within the mindset
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alluded above, it is natural to explore the NHEG family in search for a formulation of

(extremal) black hole microstate problem. This is the setup we will analyze here.

At the classical level, there are uniqueness theorems for extremal black holes and their

near horizon geometries. In particular, the extremal Kerr black hole is the unique asymp-

totically flat, stationary vacuum solution to four dimensional Einstein’s equations [11]. It

admits a near-horizon limit with enhanced SL(2,R) × U(1) isometry [12], which is again

an Einstein vacuum solution. This new geometry is the unique solution with this set of

isometries [13]. Similar statements extend to d dimensional Einstein vacuum solutions with

SL(2,R) × U(1)d−3 isometry [13, 14]. This is the class of NHEG’s we will be focusing on

in this work.

Killing horizons (the codimension one null surface generated by a Killing vector) and

bifurcation horizons (codimension two intersections of future and past branches of Killing

horizons) play a crucial role in the thermodynamic analysis of black holes and in defining

the conserved charges. Although not black holes (in the absence of an event horizon), the

NHEG have an infinite set of bifurcation surfaces with unit surface gravity [15], as we will

review and detail in section 2. Moreover, one can define the entropy as a conserved Noether-

Wald charge on any of these bifurcation horizons upon using a specific linear combination

of SL(2,R) × U(1)d−3 isometries as generator [15, 16]. Invariance under SL(2,R) then

ensures that the conserved charge is independent of the choice of bifurcation surface. The

near-horizon geometry and its enhanced symmetries allow to find the precise symmetry

canonically associated with entropy in the strict extremal limit, thereby completing Wald’s

program [9].

Appearance of an AdS2 factor in the geometry (associated with the SL(2,R) isometry),

may prompt the idea of using an AdS/CFT correspondence [17] in exploring the black hole

microstates. This idea seems to be full of obstacles given the issues with defining quan-

tum (gravity) theories on AdS2; e.g. see [18–23]. Another related proposal put forward

in [24], is considering perturbations with prescribed falloff behavior on the near-horizon

limit of extremal Kerr and studying their asymptotic symmetry group, with the idea to

promote the asymptotic symmetry group to the symmetry of the quantum Hilbert space

of microstates. Nonetheless, it was realized that this proposal which is usually dubbed

as Kerr/CFT cannot be a full-fledged correspondence because of the following conceptual

problems: the near horizon limit does not admit consistent back-reacted local bulk dy-

namics [25, 26], it does not admit axisymmetric and stationary configurations other than

the background itself [25], and it does not admit perturbations which asymptotically re-

spect the background isometries [16]. Given these background and perturbation uniqueness

theorems, one is hence led to considering perturbations only generated through diffeomor-

phisms.

Symmetries and their associated conserved charges have been an important guiding

principle, especially in modern physics. Within the set of diffeomorphisms relevant to de-

scribe generally covariant gravitational theories and in the context of near-horizon extremal

geometries, two classes of symmetries, namely isometries and asymptotic symmetries, have

been largely studied in the literature [12–14, 24]. A third class of symmetries, dubbed sym-

plectic symmetries, was introduced in [8] and is our main focus in this paper. Our main
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result is the construction of the NHEG phase space, including the symplectic structure and

its conserved charges, using these symmetries.

Before stating the summary of our results, we pause for explaining the difference be-

tween symplectic symmetries (appearing in this work) and asymptotic symmetries (e.g.

appearing in the Kerr/CFT setup [24, 27, 28]). In general, gauge systems such as grav-

ity, admit a conserved symplectic structure, which allows one to define a (not necessarily

conserved) surface charge associated with any gauge parameter, such as a diffeomorphism

generator. A symplectic symmetry is defined as a gauge parameter such that the sym-

plectic structure, when contracted with the corresponding gauge transformation, vanishes

on-shell but not off-shell. Such symplectic symmetries are large gauge transformations,

similar to asymptotic symmetries, but they are defined everywhere in spacetime, not only

in an asymptotic region. They are associated with nontrivial conserved surface charges.

The existence of symplectic symmetries implies the existence of boundary conditions where

the asymptotic symmetries are the symplectic symmetries, but not necessarily the other

way around. AdS3 Einstein gravity provides an example of symplectic symmetries: the two

Virasoro algebras found as asymptotic symmetries by Brown and Henneaux [29] can be pro-

moted to symplectic symmetries [30]. We expect that symplectic symmetries might arise

when bulk propagating degrees of freedom are absent. Motivated by the lack of consistent

dynamical degrees of freedom in the near-horizon limit of extremal black holes [16, 25, 26],

it is then natural to search for symplectic symmetries in such near-horizon geometries, too.

That is exactly what we will do in this work.

1.1 Summary of results

In this work we focus on the class of d dimensional Near Horizon Extremal Geometries,

which are solutions to vacuum Einstein gravity and have SL(2,R) × U(1)d−3 isometry.

These geometries are specified by ki, i = 1, 2, · · · , d− 3, which will be collectively denoted

as ~k and a set of functions of the coordinate θ.1 There are then d − 3 conserved charges
~J , associated with U(1)d−3. The NHEG has an entropy S which is related to the other

parameters as ~

2πS = kiJi = ~k · ~J [15, 32].

Our main result are:

1. The existence of the NHEG phase space G[F ], i.e. a set of diffeomorphic metrics

with SL(2,R)×U(1)d−3 isometry which depend upon an arbitrary periodic function

F = F (~ϕ) on the d − 3 torus spanned by the U(1) isometries dubbed the wiggle

function. Symplectic symmetries can be defined as the set of diffeomorphisms which

can arbitrarily change the wiggle function.

2. The phase space is equipped with a consistent symplectic structure through which

we define conserved surface charges associated to any each symplectic symmetry.

1The dimensionless vector ~k physically represents the linear change of angular velocity close to extremal-

ity, normalized using the Hawking temperature, ~Ω = ~Ωext +
2π
~

~k TH + O(T 2
H), see e.g. [28, 31]. For the

extremal Kerr black hole, k = 1.
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3. We work out the algebra of these conserved charges, the NHEG algebra V̂~k,S whose

generators L~n, ~n ∈ Z
d−3, satisfy

[
L~m, L~n

]
= ~k · (~m− ~n)L~m+~n +

S

2π
(~k · ~m)3δ~m+~n,0 . (1.1)

The NHEG algebra generators commute with the isometries leading to the “full

NHEG symmetry algebra”

Full NHEG Symmetry Algebra = V̂~k,S ⊕ sl(2,R) ⊕ u(1)︸ ︷︷ ︸
(d−3 times)

. (1.2)

4. We give an explicit construction of the charges over the phase space from a one-

dimensional “Liouville stress-tensor” for a fundamental boson field Ψ, which is con-

structed from the wiggle function F (~ϕ).

It is instructive to make a few short comments here:

• As it is seen, the algebra V̂~k,S is the familiar Virasoro algebra in four dimensions

while in higher dimensions V̂~k,S is a generalization of Virasoro algebra, which to

our knowledge has not appeared before in the literature of physics or mathematics.

Although the “higher rank Virasoro algebras” have appeared in the mathematics

literature [33–35], none of them explicitly depend upon a vector ~k ∈ R
d−3.

• As is made explicit in (1.2), the symmetry algebra V̂~k,S , even in four dimensions, is

not an extension of the U(1) symmetries of the background. Explicitly, L~0 is not the

angular momenta ~J , or a linear combination thereof.

• The black hole entropy S appears a central term, consistently with the entropy law
~

2πS = ~k · ~J and the fact that the angular momenta commute with the Virasoro

generators [ ~J, L~n] = 0.

1.2 Outline

Section 2 is meant to provide the minimum needed information about the NHEG back-

ground and to fix the notations and conventions. In particular, we review some basic facts

about the family of near-horizon geometries: their isometries, causal structure, and the

laws of NHEG mechanics.

In section 3 we discuss how we construct the family of geometries which will be pro-

moted as the elements of the NHEG phase space. These geometries are built through

a specific one-function family of diffeomorphisms. We first fix the form of infinitesimal

coordinate transformations, generators of the phase space, by providing physically moti-

vated requirements. Then, we work out the finite coordinate transformations through the

“exponentiation” procedure that we explain.

A phase space is a configuration space equipped with a symplectic structure. We

specify the symplectic structure on the set of geometries that we built in section 4. We first

briefly review the covariant phase space method and then construct a conserved, consistent
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symplectic structure for our problem and discuss how the surface “symplectic charges” can

be read from the symplectic structure. In the appendix A we give a more detailed discussion

on the general construction of the symplectic structure and its consistency relations, and

how to compute the surface charges, their algebra and central extension.

In section 5 we apply the construction given in section 4 and appendix A to the specific

NHEG phase space, compute the charges, their algebra and the central element. Moreover,

we give an explicit representation of the charges over the phase space in terms of the single

periodic wiggle function F (~ϕ) specifying the geometries in the phase space. We also discuss

the semi-classically quantized NHEG algebra.

In the last section 6, we further discuss the results and the physical implications of the

NHEG phase space and algebra and discuss various ways in which our construction can be

extended.

In appendix B we have gathered some technical details of the computations and the

proofs. In appendix C we discuss the alternative possible diffeomorphism in our motivated

class which leads to a consistent phase space. For this case, similarly to the Kerr/CFT

proposal, the symplectic symmetry is just a Virasoro algebra. The form of our generators

is slightly different than the one in the original Kerr/CFT [24], allowing us to construct a

phase space consisting of smooth geometries specified by a single function of one periodic

coordinate. Due to this similarity, we call this phase space “the Kerr/CFT phase space”.

2 Quick review on NHEG

The near horizon extremal geometries (NHEG) are generic classes of geometries with at

least SL(2,R)×U(1) isometry. These geometries, as the name suggests, may appear in the

near horizon limit of extremal black holes, while they may also be viewed as independent

classes of geometries. Here we will mainly adopt the latter viewpoint. In this work, for

concreteness and technical simplicity, we will focus on a special class of the NHEG which

are Einstein vacuum solutions in generic d dimensions with SL(2,R) × U(1)d−3 isometry.

The general metric for this class of NHEG is

ds2 = Γ(θ)

[
− r2dt2 +

dr2

r2
+ dθ2 +

d−3∑

i,j=1

γij(θ)(dϕ
i + kirdt)(dϕj + kjrdt)

]
(2.1)

where

t ∈ (−∞,+∞) , r ∈ {r < 0} or {r > 0} , θ ∈ [0, θMax] , ϕi ∼ ϕi + 2π , (2.2)

and ki are given constants. We fix the orientation to be ǫtrθϕ1...ϕd−3 = +1. The geometry

is a warped fibred product over an AdS2 factor, spanned by t, r, with a Euclidean smooth

and compact codimension two surface H, covered by θ, ϕi; i.e. H are constant t, r surfaces.

Notably, due to the SL(2,R) isometry of the background, constant t = tH, r = rH surfaces

for any value of tH, rH, all give isometric surfaces H.

The first two terms of the above metric form an AdS2 in the Poincaré patch; r = 0

is the Poincaré horizon. The metric however extends beyond the horizon. The AdS2
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r
=

−
∞

r
=
0

r
=

∞

r
=
0

I

II

Figure 1. Penrose diagram for NHEG, suppressing the θ, ϕi directions. The positive and negative

r values of the coordinates used in (2.1) respectively cover I and II regions in the above figure. The

two boundaries are mapped onto each other by an r–~ϕ inversion symmetry (2.7). The arrows on

the boundaries shows the flow of time t. Note also that flow of time is reversed between regions I

and II.

metric has two disjoint boundaries. Covering the global coordinate system with families

of Poincaré patches, one can assign these boundaries at r = ±∞, as has been depicted

in figure 1 (see also [17]). The range of the θ coordinate is fixed requiring that H is a

smooth and compact manifold. Note that H can take various topologies [36]. Requiring

the geometry to be smooth and Lorentzian implies Γ(θ) > 0 and the eigenvalues of γij to

be real and nonnegative. Moreover, smoothness and absence of conical singularity of H
implies that: (1) at most one of the eigenvalues of γij(θ) matrix can be vanishing around

a given θ = θ0 coordinate; (2) if at θ0 we have a vanishing eigenvalue, it should behaves as

(θ − θ0)
2 +O(θ − θ0)

3. Note that the coefficient of (θ − θ0)
2 should be exactly one.

The geometry is completely determined by the functions Γ(θ), γij(θ) and the d − 3

constants ki which are determined through the Einstein field equations. There are many

constraints and the number of independent parameters in any dimension is not easily

determined. After detailed analysis, it was found in [36] following [37] that there are

(d − 2)(d − 3)/2 independent continuous parameters and two discrete parameters that

specify a given NHEG. The discrete parameters specify the topology which can be either

S2×T d−4, or S3×T d−5, or quotients thereof, L(p, q)×T d−5 where L(p, q) is a Lens space.

In four dimensions, there is only one continuous parameter which is the entropy or angular

momentum (remember that k = 1 in that case). In five dimensions, there are three possible

topologies S2 × S1, S3 and L(p, q) and three continuous parameters.
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NHEG isometries. The NHEG background (2.1) enjoys SL(2,R) × U(1)d−3 isometry.

The SL(2,R) isometries generated by Killing vectors ξa with a ∈ {−, 0,+},

ξ− = ∂t , ξ0 = t∂t − r∂r , ξ+ =
1

2

(
t2 +

1

r2

)
∂t − tr∂r −

1

r
ki∂ϕi , (2.3)

and the U(1)d−3 isometries by Killing vectors mi with i ∈ {1, · · · , d− 3},

mi = ∂ϕi . (2.4)

The isometry algebra is then

[
ξ0, ξ−

]
= −ξ− ,

[
ξ0, ξ+

]
= ξ+ ,

[
ξ−, ξ+

]
= ξ0 ,

[
ξa,mi

]
= 0 . (2.5)

That is, if we view ξ0 as the scaling operator, ξ−, ξ+ are respectively lowering and raising

operators in SL(2,R). We also note that ξ−, ξ0 form a two dimensional subalgebra of

SL(2,R). For further use we define the structure constants f c
ab from [ξa, ξb] = f c

ab ξc.

Notations. Hereafter, we will denote all the d − 3 indices by vector sign; e.g. ki will be

denoted by ~k, ϕi by ~ϕ, ∂ϕi by ~∂ϕ and when there is a summation over i-indices it will be

denoted by dot-product; e.g. ki∂ϕi = ~k · ~∂ϕ = ~k · ~m.

The NHEG also enjoys various Z2 isometries. The two which will be relevant for our

later analysis are r–~ϕ and t–~ϕ-inversions. The t–~ϕ-inversion,

(t, ϕi) → (−t,−ϕi) , (2.6)

is reminiscent of similar symmetry in the (extremal) black hole (see [38] for a recent dis-

cussion) whose near horizon limit leads to the NHEG. One may readily check that under

the above Z2, ξ0 does not change while ξ−, ξ+, ~m change sign. Another Z2 isometry is the

r–~ϕ-inversion,

(r, ϕi) → (−r,−ϕi) . (2.7)

This Z2 exchanges the two boundaries of AdS2 (cf. figure 1). Under the r–~ϕ-inversion (2.7),

the SL(2,R) Killing vectors (2.3) remain invariant.

The space-time inversion PT provides yet another Z2 isometry.

NHEG examples in 4d and 5d. As some examples of NHEG, let us consider the near

horizon geometry of extremal Kerr black hole (NHEK) in four dimensions [12] and extremal

Myers-Perry black hole in five dimensions [13, 37]. For NHEK we have

Γ = J
1 + cos2 θ

2
, γ11 =

(
2 sin θ

1 + cos2 θ

)2

, k = 1 , (2.8)

where J is a constant equal to the angular momentum of the corresponding black hole.

The range of polar coordinate is θ ∈ [0, π]. Near the roots of γ11 which occur at θ = 0, π, it

clearly satisfies the smoothness condition and the compact surface H, whose area is 4πJ ,

is topologically a two-sphere.
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For the 5d doubly spinning extremal Myers-Perry near-horizon geometry we have

Γ =
1

4
(a+ b)

(
a cos2

θ

2
+ b sin2

θ

2

)
, k1 =

1

2

√
b

a
, k2 =

1

2

√
a

b
,

γij =
4

(
a cos2 θ

2 + b sin2 θ
2

)2

(
a
(
a+ b sin2 θ

2

)
sin2 θ

2 ab cos2 θ
2 sin

2 θ
2

ab cos2 θ
2 sin

2 θ
2 b cos2 θ

2

(
b+ a cos2 θ

2

)
)
,

(2.9)

where a > 0, b > 0 are constants related to the angular momenta, and θ ∈ [0, π]. Note

that k1k2 = 1
4 and hence k1 and k2 are not independent. One can compute the eigenvalues

λ1,2(θ) of the matrix γij . Then we observe that one of the eigenvalues is always positive,

while the other eigenvalue (say λ2) vanishes at θ = 0, π. Near these poles we find

λ2 = θ2 +O(θ3) , λ2 = (π − θ)2 +O
(
(π − θ)3

)
(2.10)

satisfying the regularity condition. The 3d surface H is hence topologically S3 and it is

area is 2π2 ·
√
ab(a+ b)2.

2.1 Killing horizons

The Petrov classification has been extended to higher dimensions [39]. NHEG is a Petrov

type D spacetime [40]. It has two real principal null directions which turn out to be

congruences of torsion, expansion and twist free geodesics [41]. They are generated by

ℓ+ =

(
1

r
∂t + r∂r − ~k · ~∂ϕ

)
,

ℓ− =

(
1

r
∂t − r∂r − ~k · ~∂ϕ

)
.

(2.11)

These vector fields are respectively normal to the hypersurfaces,

N+ : v ≡ t+
1

r
= const ≡ tH +

1

rH
= vH ,

N− : u ≡ t− 1

r
= const ≡ tH − 1

rH
= uH .

(2.12)

One may readily see that ℓ+ ·dv = ℓ− ·du = 0 and that N± are therefore null hypersurfaces.

Intersection of these two hypersurfaces is a d−2 dimensional compact surface H, identified

by t = tH, r = rH. Note that both ℓ± are normal to H and its binormal tensor is

ǫ⊥ = Γdt ∧ dr =
Γ

2
r2dv ∧ du , (2.13)

normalized such that ǫ⊥µνǫ
µν
⊥ = −2. We note that under the t–~ϕ-inversion or r–~ϕ-inversion

symmetries (2.6)–(2.7), ℓ± ↔ −ℓ∓.
The surface H is similar to the bifurcation surface of a Killing horizon in black hole

geometries, in the sense that it has two normal null vectors. In what follows we make

this statement precise and prove the existence of bifurcate Killing horizon at each point

tH, rH [15, 16]. (Similar arguments can be found in [42] for warped AdS3 geometries.)

– 8 –
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Killing horizon generator. By definition, N = {N+ ∪ N−} is the Killing horizon of

the Killing vector field ζ, provided that the vector ζ is normal to N . Let us now consider

the Killing vector ζH [16]

ζH = na
Hξa − ~k · ~m , (2.14)

where na
H are given by the following functions computed at the constant value t = tH,

r = rH

n− = − t2r2 − 1

2r
, n0 = t r , n+ = −r . (2.15)

It can be shown that these functions form the coadjoint representation of SL(2,R) as

follows. The space of functions of t, r forms a vector space in R. The SL(2,R) action

is defined by ξaf(t, r) = ξµa∂µf(t, r). Now consider the subspace spanned by the three

functions na (with lower indices) defined as

n+ =
t2r2 − 1

2r
, n0 = t r , n− = r . (2.16)

One can check that the action of SL(2,R) vectors ξa on the functions nb is given by a

matrix whose components are the SL(2,R) structure constants,

ξanb = f c
ab nc . (2.17)

Therefore, the subspace spanned by {n+, n0, n−} forms the adjoint representation space of

the SL(2,R) algebra. The functions na are then defined as na = Kabnb, using the Killing

form of SL(2,R) in (−, 0,+) basis

Kab = Kab =




0 0 −1

0 1 0

−1 0 0


 . (2.18)

Accordingly the functions na form the coadjoint representation. Since the Killing vectors

ξa (2.3) also form an adjoint representation of SL(2,R), one can consider the direct product

na⊗ξb which can be decomposed into 3⊗3 = 5⊕3⊕1. The singlet 1 is given by the vector

na ξ µ
a = Kabnbξ

µ
a . This is obviously a singlet representation, since it is constructed by the

contraction of the Killing form with two vectors. Indeed it can be shown that na ξa = ~k · ~m
and therefore the Killing vector ζH vanishes on the surface H.

The three vector na can also be interpreted as the position vector of an AdS2 surface

embedded in a three dimensional flat space R2,1 with the metric given by −Kab. Explicitly

n2 ≡ −Kabn
anb = 2n+n− − (n0)2 = −1 . (2.19)

The vector na
H is a specific point on this surface, but any other point can be obtained by

an SL(2,R) group action on this vector.

Returning back to (2.14), one can check that

ζH
∣∣
N±

=
r − rH

r
ℓ± . (2.20)
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Note also that ζH vanishes at the bifurcation surface H. Therefore, N is the “Killing

horizon” of ζH, and H is its bifurcation surface. The choice of tH, rH is arbitrary in the

above argument, so there are infinitely many Killing horizons, bifurcating at any compact

surface determined by tH, rH.
It is important to note that although the extremal black hole does not possess any

bifurcate Killing horizon, the corresponding near horizon geometry has an infinite number

of them. The reason why one can find bifurcate Killing horizons in NHEG but not in

extremal black hole geometry traces back to the enhancement of symmetries in the near

horizon geometry. We explicitly used this fact in construction of the vector ζH.
Another important feature about the vector ζH is that on H,

∇[µζHν] = ǫ⊥µν (2.21)

where ǫ⊥ is the binormal tensor (2.13). We can use this fact to compute the surface gravity

on the bifurcation surface of the Killing horizon:

κ2 = −1

2
|∇ζH|2 = 1 . (2.22)

The above gives the value of κ2. As in the usual black hole cases, ζH is the generator of a

bifurcate Killing horizon with future and past oriented branches.2 One can then show that

the value of κ is +1 for the future oriented branch and −1 for the past oriented branch.

As a consequence of SL(2,R) invariance the surface gravity is a constant and independent

of tH and rH. As in the Rindler space, one can associate an Unruh-type temperature [43]

to the Killing horizons. This temperature is simply ~

2π and constant over H.

Gaussian null coordinates. Another coordinate system of interest is the Gaussian null

coordinate system (GNC) (also called ingoing Eddington-Finkelstein coordinates).3 This

coordinates are obtained by the following transformations

v = t+
1

r
, φi = ϕi + ki ln r , r → r , θ → θ . (2.23)

Therefore the metric takes the form

ds2 = Γ(θ)

[
− r2dv2 − 2 dr dv + dθ2 +

d−3∑

i,j=1

γij(θ)(dφ
i + kirdv)(dφj + kjrdv)

]
(2.24)

with v ∈ (−∞,∞) and the range of the other coordinates is the same as (2.2). In the same

way one can express the metric in outgoing Eddington-Finkelstein coordinates by replacing

t with u = t− 1/r. In GNC coordinates, the Killing vectors are redefined as

ξ− = ∂v , ξ0 = v∂v−r∂r , ξ+ =
v2

2
∂v−(vr+1)∂r+v~k ·~∂φ , mi = ∂φi . (2.25)

Note that the above are related to the Killing vectors (2.3)–(2.4) by an automorphism of

the algebra of isometries. As a check, the commutation relations (2.5) still hold.

2In the black hole terminology, the future (past) oriented branch of horizons corresponds to the black

(white) hole. However here there is no event horizon.
3In our construction of the phase space we mainly use Poincaré coordinates. However, we will make

some remarks about the usage of other coordinate systems as a starting point for constructing the phase

space in the discussion section.
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Figure 2. Flow of the Killing vector ζH. The two black dots denote the codimension two bifurcation

surfaces and the 45◦ lines intersecting at them are the Killing horizons N . Under r–~ϕ inversion (2.7)

the upper and lower triangles separated by r = 0 line are mapped to each other. The Killing vector

is mapped as ζH → −ζH under r–~ϕ inversion.

Kruskal-type coordinates and causal structure. To gain a better intuition about

the Killing horizons of the NHEG it is useful to draw the flow of ζH over the spacetime

in a Kruskal-type coordinate (u, v, θ, ϕi). To this end, we note that for the r ≥ 0 (r ≤ 0)

region, v ≥ u (v ≤ u). Also, v = u represents the asymptotic (large r region) of spacetime.

Also, u = const, v = const represent null hypersurfaces. In these coordinates the Killing

vectors are

ξ− = ∂u + ∂v , ξ0 = u∂u + v∂v , ξ+ =
1

2
(u2∂u + v2∂v) +

1

2
(u− v)~k · ~∂ϕ (2.26)

and

n− =
uv

u− v
, n0 = −u+ v

u− v
, n+ =

2

u− v
, (2.27)

therefore

ζH =
1

uH − vH

[
(u−uH)(u− vH)∂u+(v− vH)(v−uH)∂v +

(
(u−uH)− (v− vH)

)
~k · ~∂ϕ

]
.

(2.28)

It is clearly seen that this vector vanishes at u = uH, v = vH. The flow of ζH is depicted

in figure 2.
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2.2 NHEG entropy

Given a generic diffeomorphic invariant Lagrangian, the entropy, which is the conserved

Noether-Wald charge for a bifurcate Killing horizon, is defined as [9, 10]

S

2π
= −1

~

∮

H
ǫH

δL
δRµναβ

ǫ⊥µνǫ
⊥
αβ , (2.29)

where ǫH is the volume form on H and ǫ⊥µν the binormal normalized as ǫ⊥µνǫ
µν
⊥ = −2. In

Einstein theory, this definition reduces to the familiar Bekenstein entropy (the area law).

For extremal black holes, there is no bifurcation surface and the derivation of entropy as a

Noether charge breaks down. However, physically one would expect that the entropy should

be a continuous function for near-extremal black holes and hence the entropy for extremal

black holes may be obtained from a limiting procedure starting from near-extremal black

holes.

Now for extremal black holes, the near horizon geometry possesses infinitely many

bifurcate Killing horizons with Killing generator (2.14). The fact that on the bifurcation

surface H the Killing vector ζH vanishes, and that ∇[µζHν] = ǫ⊥µν allows one to prove that

the entropy is given by the Noether charge associated with ζH and coincides with (2.29)

where ǫH = Γ
d−2

2
√
γ dθ d~ϕ is the volume form of any surface H [15]. This last result

completes Wald’s program for defining the entropy as a Noether charge in the case of

extremal black holes by using the additional SL(2,R) symmetry in the near-horizon region.

2.3 Laws of NHEG mechanics

For a general theory of pure gravity determined by a diffeomorphism invariant Lagrangian

L, and admitting a solution of the form (2.1), one can prove the following “Laws of NHEG

Mechanics” [15] (see also [32]).

Zeroth law. ki should necessarily be constant as a result of SL(2,R) invariance of the

background. Moreover, the surface gravity is constant over any H-surface (cf. (2.22) and

discussions below it).

The entropy law.
~

2π
S = ~k · ~J −

∮

H

√−gL , (2.30)

where the angular momentum Ji is the conserved charge corresponding to the mi isometry.

For NHEG’s which are Einstein vacuum solutions, like the class we have focused on here,√−gL = 0 on-shell and hence the entropy law reduces to ~

2πS = ~k · ~J .

Entropy perturbation law. Consider a generic perturbation δΦ over NHEG solution

satisfying the linearized field equations. One can associate charge perturbations δ ~J and

δS to these perturbations. Assuming that perturbations are invariant under ξ−, ξ0 Killing

vectors (2.3), [ξ−, δΦ] = [ξ0, δΦ] = 0, one can prove the following relation [15, 16]

~

2π
δS = ~k · δ ~J . (2.31)
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We make the intriguing comment that the factor of ~

2π in (2.30) and (2.31) could

be attributed to the “Unruh-type” temperature of the NHEG background (cf. discussions

below equation (2.22)).

3 NHEG phase space

In this section we present the construction of the phase space geometries. We find it useful

to the reader to first start with a qualitative presentation before deriving the details.

3.1 Overview on the NHEG phase space

A phase space is a configuration space of fields equipped with a finite and conserved sym-

plectic structure. Due to the absence of finite energy propagating degrees of freedom in the

NHEG background, we propose to build the NHEG phase space using the set of geome-

tries obtained by specific coordinate transformations of the background (2.1). It should

be emphasized that in a diffeomorphic invariant theory not all coordinate transformations

are necessarily pure gauge transformations. In a gauge theory, one can associate surface

charges to local gauge transformations. Those with vanishing charge are defined to be pure

gauge, while those with well-defined, finite and conserved nonvanishing charges describe

physically distinct configurations in the phase space. Other gauge transformations are not

allowed. In the following we will define such non-trivial diffeomorphisms associated with

conserved surface charges.

In this context, the most common and better known setup is the asymptotic symmetry

method. Here, we will rather follow a different approach which we could name the symplec-

tic symmetry method. In the asymptotic symmetry method, one defines the phase space

through appropriately prescribed asymptotic boundary conditions. Diffeomorphisms which

preserve the boundary conditions are said to be allowed. Allowed infinitesimal diffeomor-

phisms are either nontrivial, if associated with well-defined, finite and conserved charges

defining the asymptotic symmetries, or they are trivial (or equivalently pure gauge), if as-

sociated with vanishing charges over the phase space. In the symplectic symmetry method,

we instead specify a class of infinitesimal diffeomorphisms everywhere in spacetime and ex-

ponentiate them to find finite coordinate transformations upon which we build the phase

space. A requirement on the infinitesimal diffeomorphisms is that they are non-trivial; i.e.

associated with well-defined conserved charges even though they are not isometries.4 Sym-

plectic symmetries are therefore extensions into the bulk of asymptotic symmetries defined

at infinity; any symplectic symmetry is necessarily also asymptotic but not vice-versa. In

the symplectic symmetry method, one never defines the set of pure gauge transformations,

which at any rate do not contain physical information. In a sense the phase space built

from the symplectic symmetries defines physical perturbations in a fixed gauge and all the

physical information is contained in the symmetries.

4We refer to such vectors χ as symplectic symmetries since the presymplectic structure ω[δΦ,LχΦ,Φ]

(defined in appendix A) is zero on-shell everywhere while the surface charges built from the symplectic

structure are non-vanishing (see section 5.1 for further details).
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While the construction of the family of diffeomorphisms and the associated symplectic

structure on the phase space are intertwined, for the clarity of the presentation, we first

present a (mostly self-contained) derivation of the family of diffeomorphisms and the result-

ing family of geometries while we will discuss the construction of the symplectic structure

in section 4. It is however important to keep in mind that to these diffeomorphisms there

should be associated finite, conserved, well-defined and non-vanishing surface charges de-

rived from the symplectic structure, as we will discuss in section 5. The latter property

justifies considering these diffeomorphisms as physically relevant.

As already mentioned before, we restrict ourselves to solutions of the d dimensional

Einstein vacuum theory

S =
1

16πG

∮
ddx

√−gR , (3.1)

with SL(2,R)×U(1)d−3 isometry. These solutions are uniquely identified, up to coordinate

transformations, by the topology of theH surfaces and by (d−2)(d−3)/2 continuous param-

eters collectively denoted as {p} including the angular momenta Ji, i = 1, · · · d− 3 [36, 37].

At the infinitesimal level, a coordinate transformation is generated by a vector field χµ

through xµ → xµ + χµ. We denote all dynamical fields as Φ. In this paper Φ is only the

metric, but we keep that notation to facilitate possible generalizations with additional fields.

An active coordinate transformation generates a perturbation, denoted as δχΦ, which is

the Lie derivative of the dynamical field δχΦ = LχΦ. Such a perturbation automatically

obeys the linearized field equations as a consequence of general covariance.

In the following, we will first single out the infinitesimal diffeomorphisms around the

background using a set of physical requirements. We use the background in the fixed

coordinate system (t, r, θ, ϕi). Arbitrary field configurations of the phase space are then

produced by finite coordinate transformations, obtained by the exponentiation of these

infinitesimal coordinate transformations. To this end we require the functional form of the

vector field χ to be preserved along any element of the phase space. We will finally comment

on the isometries of the phase space and on the algebra of infinitesimal diffeomorphisms at

the end of the section.

Notations. For the sake of clarity, we will use the following convention from now on: all

quantities associated with the background metric (2.1) will be defined with an overline. In

particular, the metric (2.1) will be denoted as Φ̄ ≡ ḡµν and infinitesimal diffeomorphisms

around the background will be generated by χµ. Instead, we denote a generic element of

the phase space as Φ and an infinitesimal diffeomorphism tangent to the phase space as χ.

3.2 Generator of infinitesimal transformations

We start with the most general diffeomorphism generator around the background χ and

determine the generator of our infinitesimal transformations through the six conditions

listed below.

(1) [χ, ξ0] = [χ, ξ−] = 0. These conditions are supported as follows:

1.1) H-independent charges. Any conserved charge is defined through integrating over a

d− 2 dimensional bifurcation surface H. However, there are infinitely many of such
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surfaces at any given tH, rH. We require that all such conserved charges be equal.

Since two points t, r and tH, rH can be mapped through a diffeomorphism generated

by ξ−, ξ0, we require that these vectors commute with χ.

1.2) Perturbations δχΦ in the SL(2,R) lowest and zero weight representation. As men-

tioned in the introduction, we construct the phase space such that the field per-

turbations around the background δχΦ have vanishing SL(2,R) charges. A sufficient

condition for the latter is that δχΦ are invariant under ξ0,−; i.e. Lξ−,0
δχΦ = 0. It

then implies that Lξ0,−
Φ = 0 on the entire phase space generated by χ and the as-

sociated charges will be zero on the entire phase space.5 In the appendix B.1, we

have proved that this condition implies [χ, ξ−] = 0, [χ, ξ0] = βimi, with constant

βi, after discarding vectors χ which are linear combinations of the SL(2,R) algebra.

We then fix the constants βi = 0 since exponentiating such generators would lead

to logarithmic terms which would be very irregular at the Poincaré horizon. These

perturbations are therefore lowest weight because annihilated by ξ− and of weight

zero because annihilated by ξ0.

1.3) Finiteness of energy of perturbations. As argued in [16] only perturbations with

Lξ−,0
δχΦ = 0 can be related to finite energy perturbations around the original ex-

tremal black hole whose near horizon limit gives the near horizon extremal geometry

in question.6

This condition fixes the t and r dependence of all components of χ:

χ =
1

r
ǫt∂t + rǫr∂r + ǫθ∂θ + ~ǫ · ~∂ϕ , (3.2)

where the ǫ-coefficients are only functions of θ, ~ϕ. Also, it implies that ξ− = ξ− and

ξ0 = ξ0 on any element of the phase space. Therefore, ξ−, ξ0 will be Killing isometries of

each element of the phase space.

(2) ∇µχ
µ = 0. We require the volume element ǫ,

ǫ =

√−g

d !
ǫµ1µ2···µd

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµd , (3.3)

to be the same for all elements in the phase space; i.e. δχǫ = 0. Since ǫ is covariant,

δχǫ = Lχǫ. On the other hand,

Lχǫ = χ · dǫ+ d(χ · ǫ) = d(χ · ǫ) = ⋆(∇µχ
µ) , (3.4)

where ⋆ is the standard d dimensional Hodge dual. Therefore, Lχǫ = 0 is equivalent to

∇µχ
µ = 0.

5The charges associated with ξ+ will then also turn out to be zero, as we will explain around (5.7). Note

that imposing instead [χ, ξ+] = 0 would imply χt = χr = 0 which would be unnecessarily too restrictive.
6It was shown in [16] that the necessary and sufficient condition for the entropy perturbation law

(EPL) (2.31) is ξ−, ξ0 invariance of the perturbations. Nonetheless, as we will argue, here we are deal-

ing with perturbations with vanishing entropy and angular momenta variations δJi = δS = 0 and the EPL

is trivially satisfied.
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(3) δχL = 0, where L = 1
16πGRǫ is the Einstein-Hilbert Lagrangian d-form evaluated on

the NHEG background (2.1) before imposing the equations of motion. (The functional form

of Γ(θ) and γij(θ) is therefore arbitrary except for the regularity conditions.) Since L is a

scalar density built from the metric, it is invariant under the background SL(2,R)×U(1)d−3

isometries and only admits θ dependence.

The above properties (2) and (3) lead to

ǫθ = 0 , ǫr = −~∂ϕ · ~ǫ . (3.5)

(4) ǫt = −b ~∂ϕ · ~ǫ, b = ±1. This condition can be motivated from two different per-

spectives:

4.1) Preservation of a null geodesic congruence. As discussed in section 2.1, the NHEG has

two expansion, rotation and shear free null geodesic congruences generated by ℓ+ and

ℓ− which are respectively normal to constant v = t + 1
r
and u = t − 1

r
surfaces [41].

We request that either Lχv = 0 or Lχu = 0, yielding the above condition with b = ±1

for the choice of ℓ±. It implies that each element in the phase space will admit one

of the branches of their bifurcate horizon N+ or N−, respectively.

4.2) Regularity of H surfaces. As we will discuss in section 3.3, this condition ensures that

constant t, r surfaces H are regular without singularities at poles on each element of

the phase space. Fixing instead b = 0 as done in [24] will lead to surfaces H with

singularities.

The two possibilities b = ±1 are related to each other by either a t–~ϕ or r–~ϕ inversion

symmetry of the background (cf. discussions of the previous section). The two phase spaces

built with either of these choices are mapped to each other by this Z2 symmetry. Without

loss of generality we choose b = +1.

(5) ~ǫ are θ-independent and periodic functions of ϕi. We impose these conditions

as they guarantee (i) smoothness of the t, r constant surfacesH of each element of the phase

space, as we will show below in section 3.3, and (ii) constancy of the angular momenta ~J

and the volume of H over the phase space, as we will also show in section 3.5.

(6) Finiteness, conservation and regularity of the symplectic structure. These

final conditions crucially depend on the definition of the symplectic structure which is

presented in section 4. Our analysis reveals that additional conditions are required in

order to obtain a well-defined symplectic structure. After fixing the ambiguities in the

boundary terms of the symplectic structure, we found two classes of generators:

6.1) ~ǫ · ~∂ϕ = ǫ(φ)∂φ where φ is a specific SL(d − 3,Z) choice of circle in the (d−3)-torus

spanned by ~ϕ and ǫ(φ) is a periodic function of φ.

6.2) ~ǫ = ~kǫ(ϕ1, . . . ϕd−3), where ǫ is a function periodic in all its d− 3 variables.

In four dimensions, where ~k has one component and k = 1, the above two classes are iden-

tical. In higher dimensions however, the two classes are distinct and mutually incompatible
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because the Lie bracket between one generator χ with ~ǫ defined from the first class 6.1)

with another generator χ with ~ǫ defined from the second class 6.2) does not belong to any

of these classes.

The first choice leads to a Kerr/CFT type diffeomorphism, which may be used to

construct the Kerr/CFT phase space. We discuss this in the appendix C. The second

choice leads to the NHEG phase space which is the main focus of our paper and will be

described here and in the next two sections. We also show in appendix C that no phase

space exists which contains both the classes 6.1) and 6.2), assuming the same definition for

the symplectic structure.

As a result, we end up with the following NHEG phase space generator

χ[ǫ(~ϕ)] = ǫ~k · ~∂ϕ − ~k · ~∂ϕǫ
(
b

r
∂t + r∂r

)
(3.6)

with b = ±1 which generates the infinitesimal perturbations tangent to the phase space

around the background, δΦ[ǫ(~ϕ)] = LχΦ̄.

3.3 Finite transformations and generic metric of the phase space

We define the NHEG phase space from the exponentiation of the vector field χ with an

arbitrary periodic function ǫ(~ϕ). At the infinitesimal level, one applies the coordinate

transformation

x → x = x− χ(x) . (3.7)

To define the finite coordinate transformation x → x(x) we need to specify the vector

field χ for an arbitrary element of the phase space. For this purpose, we impose that

the vector χ keeps its functional form identical to the one of χ, though with a possibly

different function, which we denote by ǫ(~ϕ). More precisely, we require that the coordinate

transformation maps the vector χ[ǫ(ϕ)] to the vector χ[ǫ(ϕ̄)] defined on the background as

χµ[ǫ(ϕ)] =
∂xµ

∂x̄α
χα[ǫ(ϕ̄)] . (3.8)

In this section we keep the b parameter in (3.6) unfixed (without setting it to ±1). This

will allow us to derive the property 4.2) claimed in the previous subsection.

The finite coordinate transformation ought to take the form

ϕ̄i = ϕi + kiF (~ϕ) , r̄ = re−Ψ(~ϕ), t̄ = t− b

r

(
eΨ(~ϕ) − 1

)
, (3.9)

with functions F (ϕi) and Ψ(ϕi) periodic in all of their arguments in order to ensure smooth-

ness. Indeed, the form of the finite coordinate transformation (3.9) is constrained by the

following facts: (1) ~ǫ is proportional to ~k and hence ϕi − ϕ̄i is also proportional to ki;

(2) χ commutes with ξ− and therefore the time dependence is trivial; (3) there is no θ

dependence; (4) χ commutes with ξ0 and therefore the radial dependence is uniquely fixed;

(5) since χ commutes with the vector

ηb ≡
b

r
∂t + r∂r , (3.10)
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the coordinate

vb ≡ t+
b

r
,

is invariant.7 Note that vb for b = ±1 reduces to v and u. This finally fixes the form (3.9)

where we can check that vb = t̄+ b
r̄
.

The remaining question is how to relate the functions F (~ϕ) and Ψ(~ϕ) such that (3.8)

is satisfied. The answer is unique and given by

eΨ = 1 + ~k · ~∂ϕF . (3.11)

We prove this equation in appendix B.3. We also note that the arguments of χ and χ̄,

respectively ǫ(~ϕ) and ǭ( ~̄ϕ) are related as

ǭ( ~̄ϕ) = eΨ ǫ(~ϕ) . (3.12)

Therefore, from now on we will denote the phase space as G{p}[F ] as a function of the

initial parameters of the NHEG background and as a function of the function F (~ϕ) which

we will dub the wiggle function.

Using the finite coordinate transformations we can finally derive the one-function fam-

ily of metrics which constitute the phase space in the (t, r, θ, ϕi) coordinate system:

ds2 = Γ(θ)

[
− (σ − bdΨ)2 +

(
dr

r
− dΨ

)2

+ dθ2 + γij(dϕ̃
i + kiσ)(dϕ̃j + kjσ)

]
, (3.13)

where vb = t+ b
r
and

σ = e−Ψrdvb + b
dr

r
, ϕ̃i = ϕi + ki(F − bΨ) . (3.14)

We note that, by virtue of periodicity of F and Ψ, all angular variables ϕ̄i, ϕi and ϕ̃i have

2π periodicity.

As a cross-check one can readily observe that ξ− = ∂t and ξ0 = t∂t−r∂r are isometries

of the metric (3.13). Moreover, one can check that for |b| = 1, constant vb are null surfaces

at which ∂r becomes null.

We will be defining the conserved charges through integration of (d− 2)-forms on the

constant t, r surfaces H whose metric is

ds2H = Γ(θ)
[
(1− b2)dΨ2 + dθ2 + γij(θ) dϕ̃

i dϕ̃j
]
. (3.15)

For a generic function F (~ϕ) (and hence Ψ), the above metric (3.15) does have the same

metric and topology as the constant t, r surfaces on the background (2.1) if and only if

|b| = 1. This provides the justification for the requirement 4.2).

We also comment that even at b = 1, (3.15) comes with the coordinate ϕ̃i (3.14).

Therefore, the volume form of (3.15) differs from that of constant t, r surfaces of (2.1) by

the Jacobian of transformation matrix M j
i

M j
i =

∂ϕ̃i

∂ϕ̄j
= δij − kiYj , Yj = ∂jΨ+ ~k · ~∂ϕ(e−Ψ) ∂jF , (3.16)

7In other words, in the coordinates (vb, r, θ, ϕ
i) the generator χ has ~∂ϕ and ∂r components. Therefore

the coordinate vb is not affected by the exponentiation of χ.
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and hence

detM = 1− ~k · ~Y = 1 + ~k · ~∂ϕ(e−Ψ) . (3.17)

Since this is one of the main results of this paper, we write again the final metric over the

final phase space (with b = 1) as

ds2 = Γ(θ)

[
− (σ − dΨ)2 +

(
dr

r
− dΨ

)2

+ dθ2 + γij(dϕ̃
i + kiσ)(dϕ̃j + kjσ)

]
, (3.18)

σ = e−Ψrd

(
t+

1

r

)
+

dr

r
, ϕ̃i = ϕi + ki(F −Ψ) , eΨ = 1 + ~k · ~∂ϕF . (3.19)

3.4 Algebra of generators

One can expand the periodic function ǫ(~ϕ) in its Fourier modes:

ǫ(~ϕ) = −
∑

~n

c~n e
−i(~n·~ϕ) (3.20)

for some constants c~n and ~n ≡ (n1, n2, . . . , nn), ni ∈ Z.8 Therefore the generator χ

decomposes as

χ =
∑

~n

c~nχ~n , (3.21)

where

χ~n = −e−i(~n·~ϕ)
(
i(~n · ~k)

(
1

r
∂t + r∂r

)
+ ~k · ~∂ϕ

)
. (3.22)

The Lie bracket between two such Fourier modes is given by

i
[
χ~m, χ~n

]
L.B.

= ~k · (~m− ~n)χ~m+~n . (3.23)

Since the generators do not explicitly depend upon the metric field, the total bracket

defined in (A.24) coincides with the Lie bracket. We will discuss the representation of this

algebra by conserved charges in section 5.

3.5 SL(2,R) × U(1)d−3 isometries of the phase space

Since the whole phase space is constructed by coordinate transformations from the NHEG

background (2.1), they will still have the same isometries. The isometries in the phase

space are defined by the pushforward of the background isometries under the coordinate

transformations. Explicitly,

ξ̄ = ξ̄ν
∂

∂x̄ν
=

(
ξ̄ν

∂xµ

∂x̄ν

)
∂

∂xµ
.

As a result, the Killing vectors are defined as

ξµ =
∂xµ

∂x̄ν
ξ̄ν (3.24)

8The sign conventions are fixed such that the algebra takes the form (3.23) and such that the central

charge takes the form (5.8).
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where ξ̄ν are defined in (2.3). Note that the transformation matrix ∂xµ

∂x̄ν is a function of

F (~ϕ) and hence ξµ constitute field dependent isometries on (each point of) the phase space.

After a straightforward computation, the SL(2,R)×U(1)d−3 isometries are explicitly

ξ− = ∂t , ξ0 = t∂t−r∂r , ξ+ =
1

2

(
t2+

1

r2

)
∂t − tr∂r−

1

r
ki∂ϕi+

1

r
~k · ~∂ϕ(F−Ψ)η+ ,

mi =
(
δji −e−Ψkj∂iF

)
∂ϕj +

(
∂iΨ−e−Ψ~k · ~∂ϕΨ∂iF

)
η+ , (3.25)

where η+ = ηb=1 is defined in (3.10), see also appendix B.4. As a consequence of the

construction, ξ−, ξ0 are not field dependent; i.e. they are independent of the function F ,

but other isometries are field dependent.

The angular momenta Ji are by definition the conserved charges associated with the

Killing vectors mi whereas the charge H~0 is associated with ki∂ϕi which is not a Killing

vector. Despite the fact that the vectors mi are field dependent cf. (3.25), their conserved

charge Ji is fixed on the whole phase space as we will demonstrate in section 5.2. On the

contrary, the vector ki∂ϕi has fixed components over the phase space but its conserved

charge H~0 varies over the phase space, as a consequence of the symmetry algebra as dis-

cussed in section 5.2.

Moreover, using (3.15) and (3.17) one may readily show that the area of the bifurcation

surface H, and hence the entropy S, is independent of the function F and therefore is the

same over the phase space. Indeed, the area of H (at b = 1) is given by

AH =

∫
dθΓ

d−2

2

√
det γ ·

∫ ∏

i

dϕ̃i =

∫
dθΓ

d−2

2

√
det γ ·

∫ ∏

i

dϕ̄i, (3.26)

and therefore equal to the one of the background. In the last equality we used the fact

that the Jacobian of the transformation from ϕ̃ to ϕ̄ is one plus a total derivative, as given

in (3.17). Therefore, the phase space consists of metrics with equal S and Ji.

Summary of the section. The NHEG phase space G{p}[F ] is a one-function family of

everywhere smooth metrics given in (3.18). These are obtained through finite coordinate

transformations (3.9) acting on the NHEG background (2.1), which is the F = 0 element

in the phase space. All the metrics of the form (3.18) have the same angular momentum

and same parameters ~k. By the entropy law (2.30), they have the same entropy. This last

observation is schematically depicted in figure 3.

4 Symplectic structure

The set G{p}[F ] consisting of field configurations (metrics) (3.13), can be viewed as a

manifold, where each point of this manifold represents a metric g[F ] over the spacetime,

determined by the functional form of the wiggle function F [ϕi]. In order for G{p}[F ] to

be a phase space, it should be accompanied by a symplectic structure. That is, a finite,

closed and nondegenerate two-form which is the integral of a d − 1 spacetime form and

two-form in field variations, the presymplectic form. The aim of this section is to define

the presymplectic form on the set of metrics (3.13).
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Ji

g[F = 0] = ḡ

g[F ]

G{p}[F ]

Figure 3. A schematic depiction of the NHEG phase space G{p}[F ]. The vertical axis shows

different background NHEG solutions of the form (2.1) specified by different angular momenta Ji,

and the horizontal plane shows the phase space constructed by the action of the finite coordinate

transformation (3.9). Each geometry in the phase space is identified by a periodic function F (~ϕ)

and admits the same angular momenta Ji and entropy.

The ADM formulation of gravity [44] provides a way to construct the phase space and

its symplectic structure, see also [45, 46]. Such Hamiltonian methods are not covariant by

construction since they split space and time. The covariant phase space method, developed

in [9, 47] and refined in [48–50], is a prescription to construct the phase space in a covariant

fashion. A self-contained brief review on this topic is given in appendix A.

In the particular case at hand, a complete basis of one-forms at any point of G{p}[F ],

is given by the Lie derivative of fields with respect to generators χ~n (3.22). In other words,

we can expand any variation δΦ as

δΦ =
∑

~n

c~n Lχ~n
Φ . (4.1)

From the fundamental theorem of the covariant phase space formalism, the theorem 1 in

appendix A, for a given Lagrangian the symplectic structure is equal on-shell to a sum of

boundary terms. Such boundary terms are surface charges which are the integral of surface

charge d− 2 forms. All dynamical information about the phase space is therefore encoded

in these surface charges.

More precisely, since the geometries in G{p}[F ] have two spatial boundaries due to the

AdS2 factor, the symplectic structure reduces to a sum of two boundary surface integrals.

While the change of orientation between these two boundary integrals might make the

symplectic structure vanish, the surface charges might not individually vanish. This is

familiar already for the simple example of the phase space of all Schwarzschild black holes

with varying mass M . The symplectic structure vanishes on-shell but the surface integrals

at the two spatial boundaries of the maximal analytic extension of Schwarzschild are +M

and −M . We therefore expect here that the physical information of the phase space is

only partially contained in the symplectic structure but fully in the surface charges. At

any rate, all dynamical information is fully contained in the presymplectic form to which

we now turn our attention.
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According to (4.1), the presymplectic structure is completely determined when its

action on δ~mΦ, δ~nΦ for any ~m,~n is known. As a consequence of ξ−, ξ0 invariance, there is

no time dependence in the presymplectic structure and the radial dependence is fixed as

ωt ∝ 1

r
, ωr ∝ r , ωθ ∝ r0, ωϕi ∝ r0. (4.2)

Also, since constant vb = t+ b
r
surfaces are preserved in the phase space (we keep b arbitrary

for book-keeping purposes but we will impose b = 1 at the end), one has

ωt =
b

r2
ωr. (4.3)

One usually requires that ωr is zero at the boundary in order to avoid a leaking symplectic

flux at spatial infinity. This implies that ωt will automatically vanish as well, and the

presymplectic structure will be trivial. However, it is important to note that we can

impose these conditions only on-shell. If the presymplectic structure is zero on-shell but

non-zero off-shell, it still allows to define non-trivial surface charges. We conclude that the

phase space exists and is non-trivial if and only if the presymplectic form at constant t or

constant r is zero on-shell but not off-shell.

4.1 Lee-Wald symplectic structure

The standard presymplectic structure as defined by Lee-Wald is given by

ω(LW)[δ1Φ, δ2Φ,Φ] = δ1Θ(LW)[δ2Φ,Φ]− δ2Θ(LW)[δ1Φ,Φ] , (4.4)

where for Einstein gravity and for perturbations which preserve the d dimensional volume,

h ≡ gµνδgµν = 0, we have

Θµ
(LW) =

1

16πG
∇νh

µν . (4.5)

It is straightforward to check that ωr
(LW) is non-vanishing. Therefore the set of metrics

G{p}[F ] equipped with the Lee-Wald symplectic structure does not define a well-defined

phase space.

More precisely, in four spacetime dimensions we find around the NHEG background

ωt[δmg, δng, ḡ] =
b

r2
ωr[δmg, δng, ḡ] ,

√−gωr[δmg, δng, ḡ] =
Γ(−1 + k2γ) r

8πG
√
γ

ei(m+n)ϕ k2mn(m− n)(m+ n− ibkγ) ,

√−gωθ[δmg, δng, ḡ] = −i
Γγ′

16πG
√
γ
ei(m+n)ϕ b k3mn(m− n) ,

√−gωϕ[δmg, δng, ḡ] = i
Γ(−1 + k2γ)

8πG
√
γ

ei(m+n)ϕ k2mn(m− n) .

(4.6)

Given our choice of b 6= 0 the integral
∫
Σω[δmg, δng, ḡ] over a constant t surface Σ is

divergent for m = −n 6= 0. Also, ωr ∝ r so the boundary flux is not vanishing and in fact

divergent. Also note that since γ → 0 at the poles θ = {0, π}, ωϕ is locally divergent at

the poles.
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4.2 Regularization of symplectic structure

As reviewed in appendix A, the presymplectic potential Θ[δΦ,Φ] is ambiguous up to the

addition of boundary terms. The total presymplectic potential therefore has the form

Θµ[δΦ,Φ] =
1

16πG
∇νh

µν +∇µY
µν , (4.7)

where Y µν = Y [µν] defines a d− 2 form Y[δΦ,Φ] which is linear in the field variations but

non-linear in the fields. This leads to the total presymplectic form

ω[δ1Φ, δ2Φ,Φ] = ω(LW)[δ1Φ, δ2Φ,Φ] + d
(
δ1Y[δ2Φ,Φ]− δ2Y[δ1Φ,Φ]

)
. (4.8)

Next, we will define Y[δΦ,Φ] in order to ensure that ωt and ωr vanish on-shell.

In the derivation of the finite coordinate transformations we noted that the vector field

ηb defined in (3.10) commutes with the generator around the background χ. Since the form

of the generator χ around any point in the set of metrics (3.13) takes the same functional

form, one has

[ηb, χ] = 0 (4.9)

for any metric in the class. It can then be checked that for any two variations tangent to

the phase space around the background δ1Φ̄, δ2Φ̄ we have

Lηbω(LW)[δ1Φ̄, δ2Φ̄, Φ̄] = ω(LW)[δ1Φ̄, δ2Φ̄, Φ̄] . (4.10)

Applying the finite diffeomorphism (3.9), and recalling covariance of ω and ηb one deduces

that the equation holds around any element of the phase space, which we can rewrite

on-shell as

ω(LW)[δ1Φ, δ2Φ,Φ] ≈ d
(
ηb · ω(LW)[δ1Φ, δ2Φ,Φ]

)
(4.11)

after using Cartan’s identity LηX = η · dX + d(η · X) and recalling the fact that the

presymplectic structure is closed on-shell, dω ≈ 0.

Therefore, it is natural to define

Y[δΦ,Φ] = −ηb ·Θ(LW)[δΦ,Φ] +Ycomp[δΦ,Φ] (4.12)

and we obtain from (4.8) and (4.11),

ω[δ1Φ, δ2Φ,Φ] ≈ d
(
ηb · ω(LW)[δ1Φ, δ2Φ,Φ]−δ1

(
ηb ·Θ(LW)[δ2Φ,Φ]

)
+δ2

(
ηb ·Θ(LW)[δ1Φ,Φ]

))

+ d
(
δ1Ycomp[δ2Φ,Φ]− δ2Ycomp[δ1Φ,Φ]

)

≈ d
(
δ1Ycomp[δ2Φ,Φ]− δ2Ycomp[δ1Φ,Φ]

)
(4.13)

where we used the fact that ηb does not depend upon the fields (its components are identical

for the entire family of metrics considered). We therefore obtained that for any Ycomp

such that

d
(
δ1Ycomp[δ2Φ,Φ]− δ2Ycomp[δ1Φ,Φ]

)
≈ 0 , (4.14)
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the total symplectic structure is vanishing on-shell. A phase space therefore exists for

the set of metrics (3.13) for all symplectic structures defined off-shell by (4.8)–(4.12)–

(4.14). In particular Ycomp = 0 defines a symplectic structure. The fact that Ycomp is not

fixed constitutes a remaining dynamical ambiguity that we need to fix through additional

considerations. Note that we could only require that the t, r components of the symplectic

structure be vanishing instead of fixing all components as in (4.14) so strictly speaking we

did not prove that the conditions (4.14) are necessary. However, we do not expect that

the additional components of the symplectic structure play an important role since the

physical observables will be surface charges computed at fixed t, r.

4.3 Fixation of the dynamical ambiguity

We fixed most of the ambiguities in the definition of the presymplectic structure by requir-

ing finiteness and conservation of the symplectic structure, up to the remaining ambiguity

Ycomp constrained by (4.14). A first natural question is whether or not this ambiguity

matters. In fact, it matters since the value of the charges to be defined in section 5.2 will

receive contributions from that term, unless it is of the form

Ycomp[δΦ,Φ] = δZ[Φ] + dZ̃[δΦ,Φ] , (4.15)

see appendix A.5 for a proof. Therefore, we have a cohomological problem: can we find

representatives forYcomp which obey (4.14) but which are not trivial, i.e. of the form (4.15)?

Part of the problem is to clearly specify what are the fields: clearly the metric is the only

dynamical field, but non-dynamical fields might enter the expression for Ycomp such as the

vector ηb (3.10) defined earlier which we already used to define the presymplectic structure.

We did not find a representative of the cohomology class using only the non-dynamical

field ηb. We were however not exhaustive and we do not claim that such an object does

not exist. However, if we introduce one further non-dynamical field and if we also use the

binormal tensor to H surfaces, we found one representative. Let us define η2 as follows.

We first define η2 on the background NHEG as

η2 =
1

r̄
∂t̄ . (4.16)

We then extend the definition to an arbitrary element of the phase space using the push-

forward of the diffeomorphism generated by χ. Since [η2, χ] 6= 0, the components of η2 will

depend upon the element of the phase space. One ansatz for such a non-trivial cohomol-

ogy is

Y µν
comp[δΦ,Φ] = f [δΦ;Φ]ǫµν⊥ (4.17)

where ǫµν⊥ is the binormal tensor of H-surfaces (the NHEG bifurcation Killing horizons).

The scalar function f [δΦ;Φ] should be linear in the variation of the dynamical field which

is the metric, so we construct the function f with the help of two vector fields t+, t−

f [δΦ;Φ] =
1

16πG

1

Γ(θ)
δgµν t

µ
+ t ν− . (4.18)
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It turns out that if we choose t± as linear combinations of ηb and η2 as

t± = c±ηb + d±η2 , (4.19)

we can obtain a representative for the dynamical ambiguity (4.14). Indeed, the central

charge of the charge algebra, to be defined in section 5 from (A.28), depends upon this rep-

resentative. Defining C~m,~n =
∮
H kχ~m

[δχ~n
Φ̄, Φ̄] we find after a straightforward computation

using the formulas given in appendix A.5

iC~m,~n = (~k · ~m)3
((

1− b(b+∆)
) AH
8πG

+ 2b(b+∆)~k · ~J
)
δ~m+~n,0

+ (~k · ~m)(2~k · ~J)δ~m+~n,0 (4.20)

where all dependence in the coefficients c±, d± reduces to a dependence in the single com-

bination ∆,

∆ = 2d−d+ + b(c+d− + c−d+) . (4.21)

Note that in the original Kerr/CFT ansatz, b = 0, and this dynamical ambiguity does not

appear.

In order to fix this ambiguity in our case b = ±1, we now require that the central

charge of the charge algebra is independent of the choice b. This fixes ∆ ≡ −b where

∆ is defined in (4.21). We do not have a fundamental justification for imposing such a

requirement. We are however motivated by the universality of the computation of central

charge obtained using the Kerr/CFT ansatz for which b = 0 (see e.g. [51, 52]) and it seems

natural to us to impose that the central charge does not depend upon the particular choice

of generator ansatz.

Up to trivialities (vanishing terms), the choice is then unique in the ansatz (4.17)–

(4.18)–(4.19) and given by ∆ = −b. A representative is given by

c+ = 1 , c− = 0 , d+ = 0 , d− = −1 =⇒ t+ = ηb , t− = −η2 . (4.22)

Therefore the final symplectic structure is constructed using (4.8) with

(16πG)Y µν [δΦ,Φ] = η
[µ
b ∇ρh

ν]ρ −
(
1

Γ
δgαβ η

α
b η β

2

)
ǫµν⊥ . (4.23)

It would be important to prove that either there is a unique representative for this

cohomology class or that the requirement that the central charge is b independent uniquely

fixes the charges. We do not have such a proof. Some properties of special vectors in the

phase space are given in appendix B.4 for the eager reader who might want to pursue this

direction.

5 Surface symplectic charges and the NHEG algebra

In the previous sections we built the NHEG phase space and its symplectic structure. In

this section, we show that the set of vector fields which generate the phase space indeed
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constitutes the set of symplectic symmetries and analyze their conserved charges and their

algebra. To this end, we first observe that any symplectic symmetry is integrable, namely

it leads to well-defined charges over the phase space. We then construct the algebra of

charges and provide an explicit representation of the charges in terms of a Liouville-type

stress-tensor on the phase space.

5.1 Symplectic symmetries and integrability

The fundamental theorem of the covariant phase space, see (A.10), states that the symplec-

tic structure contracted with a perturbation generated by the vector field χ is a boundary

term on-shell,

ω[δΦ, δχΦ,Φ] = dkχ[δΦ,Φ] + terms that vanish on-shell . (5.1)

In the previous section we constructed ω such that ω[δ1Φ, δ2Φ,Φ] ≈ 0 for any two pertur-

bations around an arbitrary element of the phase space Φ. Therefore, for each generator

χ, one has a conserved infinitesimal surface charge

δHχ =

∮

H
kχ[δΦ,Φ] . (5.2)

The charge is conserved upon any smooth deformation of H and it is in particular inde-

pendent of t and r. For the Hamiltonian to exist, the integrability condition δδHχ = 0

needs to be obeyed. The integrability condition can be written as

∫

H
χ · ω[δ1Φ, δ2Φ,Φ] = 0 , (5.3)

for any perturbations δ1,2Φ and any χ, appendix A. The integrand is proportional to

χtωr − χrωt which is zero off-shell upon using (4.3) with b = 1 and χt = 1
r2
χr. The

integrability condition is therefore obeyed off-shell.

Therefore, to any vector χ in the class (3.21) there is a surface charge defined off-shell as

Hχ[Φ] =

∫

γ

∮

H
kχ[δΦ,Φ] +Nχ[Φ̄] , (5.4)

where γ is any path in the phase space between the NHEG background and the solution

Φ and Nχ[Φ̄] is a choice of normalization at the reference solution. The surface charge is

conserved on-shell.

5.2 Algebra of charges

Let us use the Fourier decomposition (3.21). We denote the surface charge associated with

χ~n as H~n. As discussed in section 3, we also have the charges associated with the Killing

vectors mi, Ji, i = 1, . . . d− 3, and charges associated with SL(2,R) Killing vectors Hξ±,0
.

Ji are constant over the phase space and Hξ±,0
are vanishing. The bracket between charges

H~n is defined as

{H~m, H~n} = δ~nH~m =

∮

H
kχ~m

[δ~nΦ,Φ] , (5.5)
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for an arbitrary point in the phase space Φ and field variations δ~nΦ. The right-hand side

is indeed anti-symmetric as a consequence of the integrability conditions.

Using the representation theorem proven in [49] (reviewed in appendix A), the charges

obey the same algebra as the symmetry generators (3.23) up to a possible central term, i.e.

{H~m, H~n} = −i~k · (~m− ~n)H~m+~n + C~m,~n

{H~p, C~m,~n} = {H~m, Ji} = {H~m, Hξ±,0
} = 0 , ∀ ~p, ~n, ~m .

(5.6)

Note that the vanishing bracket between H~m and the angular momenta follows from either

the fact that the angular momenta are constant, or from the fact that the vector fields mi are

Killing symmetries so that
∮
kχ[Lmi

g, g] = 0. Even though the Lie bracket [χ,mi]L.B. 6= 0,

the vanishing charge bracket is also consistent with the representation theorem since the

total bracket [χ,mi] = [χ,mi]L.B. − δgχmi = 0. The same reasoning holds for Hξ+ .

As mentioned in the end of section 3, the angular momenta Ji and the SL(2,R) charges

are constants over the phase space (the latter are in fact vanishing). To see this, we

note that

δJi = −
∫

H
kmi

[δχΦ,Φ] = −
∫

H
km̄i

[δχΦ̄, Φ̄] = 0 . (5.7)

The second equality follows from general covariance of all expressions and the ξ−, ξ0 in-

variance which allows to freely move the surface H, and the last equality is a result of the

fact that Φ̄ is axisymmetric, and the only ϕi dependence coming from χ makes the integral

vanishing. This argument can also be repeated for SL(2,R) charges.

The central extension C~n,~m is defined in (A.28) as a constant over the phase space

which is computed on the background. The second term on the right-hand side of (A.28)

can be fixed to cancel terms proportional to (~m − ~n) by fixing the reference point for the

charges. In this case, it amounts to fixing Nχ~n
= 0, ∀~n 6= 0 and Nχ~0

= −~k · ~J as we can

see from the expression (4.20).9 The central extension is then found to be proportional to

the entropy S,

C~m,~n = −i(~k · ~m)3
~S

2π
δ~m+~n,0 , (5.8)

after multiplying and dividing by one power of ~, cf. section 5.4. The fact that entropy

appears as the central element of the algebra dovetails with the arguments in the end of

section 3 and especially (3.26), ensuring that the area and therefore the entropy does not

vary over the phase space.

Therefore we find the classical NHEG algebra

i{H~m, H~n} = ~k · (~m− ~n)H~m+~n + (~k · ~m)3
~S

2π
δ~m+~n,0 , (5.9)

{H~m, Ji} = {H~m, Hξ±,0
} = {H~m, S} = 0 . (5.10)

5.3 Charges on the phase space

As discussed earlier, the phase space G{p}[F ] consists of the one-function family of metrics

g[F ] given in (3.13) which is specified by the wiggle function F (~ϕ). This wiggle function

defines an auxiliary quantity Ψ defined in (3.11) which we will interpret in the following.

9This is very similar to the shift of the generators of the Virasoro algebra L0, L̄0 when we move from

the cylinder to the plane.
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We have proven so far that the charges H~n are well-defined over phase space and that

they obey the algebra (5.9). We now provide an explicit expression for the charges H~n as a

functional of Ψ. We can plug in the phase space metric and the symplectic symmetries χ~n

into the explicit formula for the charges in Einstein gravity in order to obtain the explicit

expression for the charges H~n. This computation is explicitly performed in appendix B.5

with the result

H~n =

∮

H
ǫH T [Ψ]e−i~n·~ϕ, (5.11)

where ǫH is the volume form on H and

T [Ψ] =
1

16πG

(
(Ψ′)2 − 2Ψ′′ + 2e2Ψ

)
(5.12)

where primes are directional derivatives along the vector ~k, i.e. Ψ′ = ~k · ~∂ϕΨ. The charges

H~n are therefore the Fourier modes of T [Ψ].

In order to understand this result, it is interesting to first note how the wiggle function

F transforms under a symplectic symmetry transformation generated by χ[ǫ]. To this end,

we recall that by construction

Lχ[ǫ]

(
gµν [F ]

)
= gµν [F + δǫF ]− gµν [F ] . (5.13)

We find

δǫF = (1 + ~k · ~∂ϕF )ǫ = eΨǫ . (5.14)

The field Ψ then transforms as

δǫΨ = ǫΨ′ + ǫ′, (5.15)

where prime denotes again the directional derivative ~k · ~∂ϕ. Therefore, Ψ transforms like

a Liouville field. In particular note that δǫe
Ψ = (eΨǫ)′ and hence eΨ resembles a “weight

one operator” in the terminology of conformal field theory. It is then natural to define the

Liouville stress-tensor

T [Ψ] =
1

16πG

(
(Ψ′)2 − 2Ψ′′ + Λe2Ψ

)
(5.16)

with “cosmological constant” Λ which transforms as

δǫT = ǫT ′ + 2ǫ′T − 1

8πG
ǫ′′′. (5.17)

Expanding in Fourier modes as in (5.11), it is straightforward to check from the transfor-

mations law (5.17) that the algebra (5.9) is recovered. Using the explicit computation for

the surface charges (5.11) we identify the cosmological constant to be Λ = 2.

The above resembles the transformation of the energy momentum tensor, a “quasi-

primary operator of weight two”. However, we would like to note that Ψ and hence T [Ψ]

are not function of time but are functions of all coordinates ϕi, in contrast with the standard

Liouville theory.

Given (5.11) and (5.12), one can immediately make the following interesting observa-

tion: The charge associated with the zero mode ~n = 0, H~0, is positive definite over the

whole phase space. This is due to the fact that the ∂2Ψ term does not contribute to H~0

and the other two terms in (5.16) give positive contributions.
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5.4 Quantization of algebra of charges: the NHEG algebra

Since the symplectic structure is nontrivial off-shell and the resulting surface charges are

integrable, we were able to define physical surface chargesH~n associated with the symplectic

symmetries χ[ǫ~n], where ǫ~n = e−i~n·~ϕ, ni ∈ Z. The generators of these charges satisfy the

same algebra as χ themselves, but with the entropy as the central extension in (5.9). One

can use the Dirac quantization rules

{ } → 1

i~
[ ] , and H~n → ~L~n , (5.18)

to promote the symmetry algebra to an operator algebra, the NHEG algebra V̂~k,S

[L~m, L~n] = ~k · (~m− ~n)L~m+~n +
S

2π
(~k · ~m)3δ~m+~n,0 . (5.19)

The angular momenta Ji and the entropy S obeying (2.30) commute with L~n, in accordance

with (5.10), and are therefore central elements of the NHEG algebra V̂~k,S . Explicitly, the

full symmetry of the phase space is

Phase Space Symmetry Algebra = sl(2,R)⊕ u(1) “d− 3 times”⊕ V̂~k,S . (5.20)

We reiterate that all geometries in the phase space have vanishing SL(2,R) charges and

U(1) charges equal to Ji.

The case d = 4. For the four dimensional Kerr case, k = 1 and one obtains the familiar

Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m3δm+n,0 (5.21)

with central charge c = 12 S
2π = 12J

~
, as in [24]. We indeed fixed the dynamical ambiguity

in the definition of the symplectic structure in order that the resulting central charge be

independent of the choice of constant b in the definition of the generator. Since b = 0

corresponds to the Kerr/CFT generator, we reproduce their central charge.

The cases d > 4. In higher dimensions, the NHEG algebra V̂~k,S (5.9) is a more general

infinite-dimensional algebra in which the entropy appears as the central extension. For

d > 4 the NHEG algebra contains infinitely many Virasoro subalgebras. To see the latter,

first we note that vectors ~n construct a d− 3 dimensional lattice. ~k may or may not be on

the lattice. Let ~e be any given vector on this lattice such that ~e · ~k 6= 0. Consider the set

of generators L~n such that ~n = n~e. Then one may readily observe that these generators

form a Virasoro algebra of the form (5.21). If we define

ℓn ≡ 1

~k · ~e
L~n , (5.22)

then

[ℓm, ℓn] =

[
L~m

~k · ~e
,
L~n

~k · ~e

]
=

~k · (~m− ~n)

~k · ~e
L~m+~n

~k · ~e
+

(~k · ~m)3

(~k · ~e)2
S

2π
δ~m+~n,0

= (m− n)ℓm+n +
c~e
12

m3 δm+n,0 . (5.23)
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As a result, the central charge for the selected subalgebra would be:

c~e = 12(~k · ~e) S
2π

. (5.24)

The entropy might then be written in the suggestive form S = π2

3 c~e TF.T. where

TF.T. =
1

2π(~k · ~e)
(5.25)

is the extremal Frolov-Thorne chemical potential associated with ~e, as reviewed in [28].

We also comment that V̂~k,S contains many Abelian subalgebras spanned by generators

of the form L~n where ~n = n~v and ~v · ~k = 0, if ~v is on the lattice.

6 Discussion and outlook

In this work we elaborated on the main results reported in [8]. We introduced a consistent

phase space for near-horizon spinning extremal geometries in four and higher dimensions

which we dubbed the NHEG phase space. We identified its symmetries as a direct sum

of sl(2,R) isometries, d − 3 commuting u(1) isometries, and a class of symmetries that

we called symplectic symmetries. The symplectic symmetries form a novel generalized

Virasoro algebra which we dubbed the NHEG algebra and denoted as V̂~k,S . The phase

space is generated by diffeomorphisms corresponding to the symplectic symmetries. All

elements of the phase space have the same angular momenta and entropy. We will comment

below on various aspects of our construction, on the comparison with existing literature

and on possible future directions.

Comments on the NHEG algebra. One of our results is the representation of the

infinite dimensional NHEG algebra V̂~k,S (5.19) in the phase space of near-horizon geome-

tries. Its structure constants are specified by the vector ~k obtained from the near-extremal

expansion of the black hole angular velocity ~Ω = ~Ωext +
2π
~
~k TH + O(T 2

H). The central

charge is given by the black hole entropy S. As discussed, the generators of the isome-

tries SL(2,R)×U(1)d−3 commute with the generators L~n. The total symmetry algebra is

therefore a direct product (1.2). Generalized or higher rank Virasoro algebras have been

considered in the mathematics literature [33–35] but to our knowledge none of these al-

gebras depends upon a real vector ~k. It is desirable to explore further various interesting

mathematical aspects of this algebra, including its unitary representations, the correspond-

ing group manifold and its coadjoint orbits. Obtaining a stringy realization of this algebra

would also be interesting.

NHEG phase space vs Kerr/CFT. Our construction shares several features with the

original Kerr/CFT proposal [24]. We both use covariant phase space methods to describe

the microscopics of extremal rotating black holes and (at least) a Virasoro algebra appears

as a symmetry algebra. However, we would like to emphasize that our results are both

conceptually and technically distinct from the Kerr/CFT proposal.
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1. In four dimensions, we obtained that the symmetry group is a direct sum sl(2,R)⊕
u(1)⊕Virasoro while the Kerr/CFT conjectured algebra is sl(2,R)⊕Virasoro.10 We

obtained that consistency requires the angular momentum J associated with the U(1)

isometry to be constant over the phase space. Instead, the Virasoro zero mode L0,

associated with the symplectic symmetry ∂ϕ, varies over the phase space.

2. As a consequence of invariance under two out of the three generators of SL(2,R),

the NHEG phase space admits a transitive action which maps any codimension two

surface at fixed tH, rH to another such surface at fixed t, r. Therefore, surface charges

are not only defined at infinity but rather on any sphere t, r in the bulk of spacetime,

which leads to the feature that symmetries are symplectic instead of only asymptotic.

3. We explicitly construct the phase space, with a consistent symplectic structure, and

specify the set of smooth metrics. Specifying the phase space in the Kerr/CFT setup

has faced various issues, including non-smoothness of the candidate metrics at the

poles [25, 53]. We resolve these issues here thanks to the change of symmetry ansatz.

While we described the largest symmetric phase space in the main text, we also found

that it is consistent to define a phase space which admits only one Virasoro algebra

as symmetry algebra in any dimension. We describe the details of this alternative

“Kerr/CFT type” phase space in appendix C.

4. Our construction in higher dimensions than four is invariant under permutation of the

d− 3 ϕi directions. We have provided a democratic treatment of all U(1) directions.

Dynamical ambiguity and central charge. As our construction shows, the symplectic

structure is determined upon the addition of a specific class of boundary terms which might

contribute to the central charge. We formulated the existence of such boundary terms

as a cohomological problem and identified a cohomology representative by using specific

background structures in the phase space. We then fixed the coefficient in front of this

boundary term by requiring that the central charge be identical for a one-parameter (the b

parameter) family of symmetry generators. It would of course be interesting to fully classify

this cohomology. Also, one possible more solid way to fix these boundary terms would be

to study the boundary terms necessary to obtain a well-defined variational principle and

use those to fix the remaining ambiguity in the symplectic structure using the prescription

of [50].

Conserved charges from a Liouville-type stress-tensor. The phase space is labelled

by the periodic wiggle function F (~ϕ) over the d−3 dimensional torus which allows defining

the periodic function Ψ. We showed that the charges defined over the phase space can

be expressed in terms of the Fourier modes of the functional T [Ψ] (5.16) over the torus.

The functional T [Ψ] has a striking resemblance to (a component of) the energy-momentum

10In this proposal, there is an obvious tension between requiring the angular momentum to be the Virasoro

zero mode (which does not commute with the other Virasoro generators) and at the same time the central

term in the symmetry algebra (which does commute with the other Virasoro generators). We resolve this

tension here by identifying an additional U(1) factor.
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tensor of a Liouville field theory. However, there are also major differences since there is no

time dependence here and instead there are multidimensional circle directions. While the

relationship between 3d Einstein gravity and Liouville theory is well understood using the

Chern-Simons formulation [54], to our knowledge, it is the first occurrence of a connection

between four and higher dimensional gravity and Liouville theory. We also remark that

the zero mode of the NHEG algebra H~0 is positive definite over the whole phase space.

Therefore, one might be tempted to use H~0 as a defining Hamiltonian for such a Liouville-

type theory. It is natural to ask where such a “holographically dual” theory would be

defined. In that regards, we note that a special role in the construction is played by one null

shear-free rotation-free and expansion-free geodesic congruence [41] which is kept manifest

in the phase space and thereby provides a natural class of null “holographic screens”.

Diffeomorphism covariance of the phase space. The phase space that we con-

structed (3.13) constitutes a zero-measure set of all metrics diffeomorphic to the back-

ground near-horizon geometry (2.1). One may wonder if there is a physical significance

to all other metrics related by diffeomorphisms which are not generated by the symplec-

tic symmetries (3.6). In the usual construction of asymptotic boundary conditions, many

diffeomorphisms are pure gauge in the sense that they are associated with vanishing asymp-

totic charges while very large diffeomorphisms are not allowed by the boundary conditions

and are associated with infinite charges. Pure gauge transformations do not contain any

physics while very large diffeomorphisms are by definition not usually considered. Here

since the asymptotics plays no role and we do not strictly impose boundary conditions we

propose the alternative following answer. Let us consider two NHEG background metrics

related by an arbitrary diffeomorphism ψ. If the construction of the phase space is co-

variant, it will be possible to define a phase space depending upon a wiggle function F

for each of these background metrics, and therefore the background metric (2.1) and its

coordinate system (t, r, θ, ~ϕ) will have no preferred role. The diffeomorphism ψ need not be

associated with finite or vanishing charges, or even need not admit an infinitesimal version.

The diffeomorphism will just be a map, an isomorphism between the two classical phase

spaces which will share an identical functional structure. Most of the steps in our con-

struction are covariant but we did not entirely complete that program, since for example

η2 defined in (4.16) does not admit a covariant definition. If the program of defining the

phase space in a covariant manner can be completed, it would establish that the phase

space is diffeomorphism covariant in the sense above. Note that at the quantum level, the

choice of time matters in the definition of quantum states and two phase spaces related by

diffeomorphisms may not remain equivalent at quantum level.

Z2-isometries. We mentioned the t–~ϕ and r–~ϕ inversion Z2 isometries of the NHEG

background. As is explicitly seen from (3.6) the phase space generator does not respect

these Z2 symmetries. Instead, there is a one-to-one map between the two phase spaces

built upon (2.1) by the action of χ with b = ±1. One may hence “gauge” this Z2 by

identifying the two phase spaces. The explicit bijection between the two phase spaces is

provided in appendix B.2.
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Comparison with 3d Einstein gravity. Three dimensional gravity is often consid-

ered as a toy model for higher dimensional gravity. It is instructive to quickly emphasize

the similarities and differences between the four and higher dimensional setup and these

lower dimensional models. Specifically for AdS3 Einstein gravity, the most general solution

with Brown-Henneaux or Dirichlet boundary conditions [29] is specified by a “holomor-

phic” and a “anti-holomorphic” function, f±(t±φ), where t, φ are parametrizing the AdS3
boundary cylinder. The boundary conditions lead to the standard Lee-Wald symplectic

structure. Therefore, the set of geometries, nicely summarized by Bañados [55] constitutes

the phase space of AdS3 Einstein gravity with Dirichlet boundary conditions (see also [56]

for further analysis). Similarly to the geometries analyzed here, one can show that the

Brown-Henneaux asymptotic symmetry charges [29] extend to symplectic charges [30] and

may be formulated in the bulk with the same results for the algebra and central charges.

This phase space however does not directly compares to the NHEG phase space considered

here, e.g. there is no SL(2,R) isometry.

Another class of boundary conditions for AdS3 Einstein gravity exists where the solu-

tions have SL(2,R) isometry and are specified with a single “holomorphic” function, say

f(t+φ) [56, 57]. While Bañados geometries may be viewed as “descendant geometries” of

the AdS3 vacuum, conical defects and generic BTZ black holes [58, 59], these solutions may

be viewed as “descendant geometries” of the AdS3 self-dual orbifold [60] which appears in

the near-horizon limit of the extremal BTZ black hole. It is therefore the best analogue of

a 3 dimensional NHEG geometry. The relationship between this phase space and the full

AdS3 has not been worked out in full details but it has been convincingly argued that the

near-horizon limit of extremal geometries will freeze out one chiral Virasoro algebra, say

the left-movers, leaving one chiral copy free to vary, the right-movers, which extend the

U(1) isometry of the self-dual orbifold [61]. It is also expected that the asymptotic sym-

metries are realized in the bulk as symplectic symmetries with the same Brown-Henneaux

central charge.

In AdS3 gravity, the symmetry algebra of near-horizon extremal geometries is there-

fore sl(2,R) ⊕ Virasoro, in distinction with the higher dimensional case where there are

additional u(1)d−3 factors. In 3d the angular momentum is linearly proportional to the

Virasoro zero mode and therefore varies over the phase space. This is qualitatively distinct

from the fixed angular momenta which parametrize a higher dimensional NHEG solution.

Also, the Virasoro central charge depends upon the theory but does not depend upon the

physical parameters of the black hole solution, unlike the higher dimensional case where the

entropy, an intrinsic property of the NHEG solution, appears as the central charge. These

two features are therefore radically different in 3d as compared with higher dimensions.

The best map between the NHEG phase space and a 3d model, if such a map would be

useful, would be to identify the AdS3 scale ℓ with the higher dimensional NHEG black hole

entropy S. One would identify the sl(2,R) ⊕ Virasoro symmetries between higher d and

d = 3 but the u(1)d−3 symmetries with fixed angular momenta would not belong to the 3d

description.

A natural question is if, like the AdS3 case, there exists a bigger algebra which con-

tains the physics before taking the near-horizon limit and/or physics beyond extremality.
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The AdS3 example, then suggests that such a generalization may require a “non-chiral”

extension of the NHEG algebra; e.g. by doubling it with left-movers, which is frozen out

as a result of extremality and the near-horizon limit. (See [62] for a step in that direction,

e.g. in the case of warped AdS3 but see also [63, 64] for limitations of the occurrence of

conformal symmetry in an asymptotically flat geometry.)

Extension to other near-horizon extremal geometries. In this work we focused on

the specific example of d dimensional Einstein vacuum solutions with SL(2,R) × U(1)d−3

isometry. More general near horizon geometries exist and we expect our construction to be

extendible to any such geometries. In particular, one may consider the near horizon geom-

etry of the extremal Kerr-Newman solution to the four (or higher dimensional) Einstein-

Maxwell theory, where the symmetries of the solution involves two (or more) U(1)’s, one

associated with the “internal” U(1) of electromagnetism and the rest with Killing isome-

tries. It would be interesting to explicitly explore how this other internal U(1) appears in

the NHEG algebra and phase space.

Possible relationship with black hole microstates. Our main motivation for em-

barking on this study has been understanding the microstates of extremal black holes. The

existence of a large symmetry algebra in near-horizon geometries together with the appli-

cation of Dirac semi-classical quantization rules, if valid in this case, imply that black hole

quantum states, whatever they might be, form a representation of the quantized NHEG

algebra V̂~k,S (5.19). A stronger statement would be that the low energy description of

these microstates is entirely captured by a quantization of the phase space (which might

be possible thanks to the existence of a symplectic structure). If such a low energy descrip-

tion is available, H~0 would appear as the natural “Hamiltonian” governing the dynamics

on this Hilbert space. Alternatively, one might seek for an embedding in string theory.

If the supergravity low energy approximation captures a large fraction of the microstates,

a possible route would be to build primaries corresponding to the (generalized) Virasoro

algebra using classical solitons with non-trivial homological cycles and fluxes by exploiting

the loopholes in uniqueness theorems [65]. Progress in that direction can be found in [66].

All the above points discussed here cries for a better understanding and further analysis

in these directions are very much needed. We will be exploring them in our future studies.

Anybody is very welcome to join in this, hopefully fruitful, research.
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A Generalities on the symplectic structure and charge algebra

The construction of symplectic structure, corresponding surface charges, their algebra and

the central charge for diffeomorphic and/or gauge invariant theories has an established

framework based on the covariant phase space method. In this appendix, to make our

article self-contained, we present a quick review of this framework. Instead of providing

the analysis in the most general case, we concentrate on diffeomorphic invariant theories

without additional gauge transformations. We will indicate the explicit expressions for the

theory we consider here, namely pure Einstein gravity in generic d dimensions.

Notations. We use the standard conventions of [10] where boldface symbols are used to

denote forms and

(dd−px)µ1···µp =
1

(d− p)!p!
ǫµ1···µpνp+1···νddx

νp+1 ∧ · · · ∧ dxνd , (A.1)

so that a d− p form is given by X = Xµ1···µp(dd−px)µ1···µp . Here ǫµ1···µd
is the volume-form

(it contains
√−g). We use the conventions of [49] for the definition of the variations of fields

which imply δχΦ = LχΦ and lead to define the bracket of charges as {Hχ1
, Hχ2

} = δχ2
Hχ1

in order to represent the algebra of symmetry generators with the correct signs. The

conventions of [48] are opposite in that respect (δχΦ = −LχΦ, {Hχ1
, Hχ2

} = δχ1
Hχ2

). We

use the convention for the overall sign of the surface charges such that the energy of the

Schwarzschild black hole is +M with our convention for the orientation, ǫtrθϕ1...ϕd−3 = +1.

A.1 Symplectic structure

Let all fields in the theory (including the metric) be collectively denoted as Φ. We assume

that all fields are bosonic. Let the Lagrangian d-form be denoted by L[Φ]. We define the

d− 1 form presymplectic potential Θ[δΦ,Φ] via variation of the Lagrangian

δL[Φ] = EΦ[Φ]δΦ+ dΘ[δΦ,Φ] (A.2)

where EΦ[Φ] =
δL
δΦ are the Euler-Lagrange equations for the fields Φ and summation on all

fields is understood in the first term on the right-hand side. Here δΦ are Grassmann-even

field variations which obey δ1δ2Φ − δ2δ1Φ = 0. δ may be viewed as an exterior derivative

operator on the field space while d is the exterior derivative operator on the spacetime. The

operator δ commutes with the total derivative operator d. The presymplectic potential Θ

is hence a d− 1-form over the spacetime and a one form over the field space.

The general solution of Θ in (A.2) has the following form:

Θ[δΦ,Φ] = Θref [δΦ,Φ] + dY[δΦ,Φ] (A.3)
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where Θref is defined by the standard algorithm, which consists in integrating by parts the

variation of the Lagrangian or, more formally, by acting on the Lagrangian with Anderson’s

homotopy operator Id
δΦ [48, 49, 67], defined for second order theories as

Θref = Id
δΦL , Id

δΦ ≡
(
δΦ

∂

Φ ,µ
− δΦ∂ν

∂

Φ ,νµ

)
∂

∂(dxµ)
. (A.4)

No universal method exists (so far) to determine Y[δΦ,Φ]. Instead, a case by case analysis

is necessary to fix this ambiguity depending upon the physical problem.

The Lee-Wald presymplectic current d − 1 form ω[δ1Φ, δ2Φ,Φ] is defined as the anti-

symmetrized variation of the presymplectic potential [47]

ω(LW)[δ1Φ, δ2Φ,Φ] = δ1Θ[δ2Φ,Φ]− δ2Θ[δ1Φ,Φ] . (A.5)

Under (A.3) we find

ω[δ1Φ, δ2Φ,Φ] = ωref [δ1Φ, δ2Φ,Φ] + d
(
δ1Y[δ2Φ,Φ]− δ2Y[δ1Φ,Φ]

)
. (A.6)

The symplectic form contracted with two vectors δ1Φ, δ2Φ on the tangent space of the

phase space is defined as

ΩAB(Φ)(δ1Φ)
A(δ2Φ)

B =

∫

Σ
ω[δ1Φ, δ2Φ,Φ] (A.7)

where the integral is defined over a spacelike surface Σ. Since the presymplectic form is con-

served on-shell dω ≈ 0 the symplectic form does not depend upon continuous deformations

of the surface Σ when its boundaries are fixed.

Physically, we require that the symplectic structure be finite and conserved upon de-

forming Σ including at the boundary. This implies that there is no symplectic flux at the

spatial boundary of the spacetime.

A.2 Gauge transformations and associated surface charges

Let δǫΦ denote an infinitesimal gauge transformation of the fields. For gravitational the-

ories, ǫ is a vector field χ which generates an infinitesimal diffeomorphism. For all gen-

erally covariant fields Φ we have therefore δχΦ = LχΦ, the Lie derivative of fields with

respect to χ.

The Noether-Wald current for a diffeomorphism χ is defined as [10]

Jχ = Θ[δχΦ,Φ]− χ · L . (A.8)

One can show that dJχ vanishes on-shell and therefore

Jχ = dQχ (A.9)

where the d− 2 form Qχ is the Noether charge density associated to χ. We define Qref
χ [Φ]

up to a total derivative from dQref
χ [Φ] = Θref [δχΦ]− χ · L.

The fundamental identity of the covariant phase space formalism is the following. The

proof can be found in several references; e.g. [9, 48, 68].
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Theorem 1. If the presymplectic form is contracted with a gauge transformation δχΦ,

there is a unique (up to a total derivative) d − 2 form kχ[δΦ,Φ] satisfying the following

identity

ω[δΦ, δχΦ,Φ] = dkχ[δΦ,Φ] (A.10)

provided that the fields Φ satisfy the equations of motion and the field variations δΦ satisfy

the linearized equations of motion around Φ. The form of kχ[δΦ,Φ] is given by

kχ[δΦ,Φ] = δQχ[Φ]− χ ·Θ[δΦ,Φ] + d(·) . (A.11)

Here the notation d(·) refers to possible boundary terms which cancel upon integration

over a closed surface. The surface charge is explicitly given by

kχ[δΦ,Φ] = δQref
χ [Φ]− χ ·Θref [δΦ,Φ] + δY[δχΦ,Φ]− δχY[δΦ,Φ] . (A.12)

One can define the associated infinitesimal surface charge on a closed surface H as

/δHχ =

∮

H
kχ[δΦ,Φ] . (A.13)

There are 3 standard physical requirements on this surface charge: (1) it should be

finite; (2) it should be conserved upon shifting H along time; (3) it should also be integrable

in the sense that δ(/δHχ) = 0 as we detail below.

For Einstein theory which is the context of this paper,

LEinstein =
1

16πG
Rǫ , (A.14)

and

(16πG)Θµ
ref = ∇νh

νµ −∇µh , (16πG)Qµν
χ = −∇µχν +∇νχν , (A.15)

where we denoted hµν ≡ δgµν , h
µν = gµαhαβg

βν , h = gµνhµν . Therefore

kEinstein
χ ≡ δQǫ[Φ]− χ ·Θref [δΦ,Φ]

=
1

8πG
(dd−2x)µν

(
χν∇µh− χν∇σh

µσ + χσ∇νhµσ +
1

2
h∇νχµ − hρν∇ρχ

µ

)
.

(A.16)

A.3 Integrability condition

The integrability condition is

I[δ1Φ, δ2Φ,Φ] ≡ δ1

∮
kχ[δ2Φ;Φ]− (1 ↔ 2) = 0 (A.17)

for all variations δΦ on the phase space and for an arbitrary point in the phase space Φ.

If the integrability condition holds at any point Φ of the phase space, then
∮
kχ[δΦ;Φ] is

an exact variation. In other words, there exist a function Hχ on phase space satisfying

δHχ =

∮
kχ[δΦ;Φ] . (A.18)
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The function Hχ is the canonical charge corresponding to the gauge transformation along

χ which is the generator of this transformation through the Poisson bracket

{Hχ, f} = δχf . (A.19)

To compute Hχ, one can choose any path γ in the phase space between a reference

configuration Φ̄ (which can be the background field configuration) and the field of interest

Φ and define the canonical charge associated with any transformation of the phase space as

Hχ[Φ, Φ̄] =

∫

γ

∮
kχ[dΦ,Φ] +Nχ[Φ̄] (A.20)

where dΦ is a phase space variation one-form which is integrated along the path γ. Here,

Nχ[Φ̄] is the freely chosen charge of the reference configuration Φ̄.11 Using (A.11) and the

fact that δQχ is an exact variation, we find the simple integrability condition,

I[δ1Φ, δ2Φ,Φ] ≡ −
∮

χ · ω[δ1Φ, δ2Φ,Φ] = 0 , (A.21)

for arbitrary variations δ1Φ, δ2Φ and for the χ of interest.

A.4 Algebra of gauge transformations

Given two diffeomorphism generators χ1, χ2 one can define the Lie bracket [χ1, χ2]L.B.

which define a natural algebra among the gauge parameters χ1, χ2. For field-independent

diffeomorphism generators, the algebra of field variations is isomorphic to the Lie bracket

algebra, up to an overall sign,

[δχ1
, δχ2

] = −[Lχ1
,Lχ2

] = −L[χ1,χ2]L.B.
= −δ[χ1,χ2]L.B.

. (A.22)

The first minus sign comes from

δχ1
δχ2

gµν ≡
(
Lχ1

gαβ
∂

∂gαβ
+ ∂γLχ1

gαβ
∂

∂∂γgαβ

)
Lχ2

gµν = Lχ2
Lχ1

gµν ,

and similarly for other fields Φ.

Now, for generators χ1[Φ], χ2[Φ] whose components depend upon the fields Φ, the field

variations δ also act on the field dependence of the generators themselves. Therefore we

instead have

[δχ1
, δχ2

] = −[Lχ1
,Lχ2

] + δδΦχ1
χ2−δΦχ2

χ1
= −δ[χ1,χ2] (A.23)

where we emphasize that δ acts on the fields with a superscript δΦ and the total bracket is

[χ1, χ2] = [χ1, χ2]L.B. − δΦχ1
χ2 + δΦχ2

χ1 . (A.24)

The total bracket is the one that appears in the representation theorem for the charges,

see the next section. It appeared previously e.g. in [30, 69, 70].

11In the covariant phase space formalism, this reference charge is arbitrary. If a holographic renormaliza-

tion scheme exists, one would be able to define this reference charge from the first principles, as it is done

e.g. in asymptotically AdS spacetimes.
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A.5 Charge algebra

We define the bracket between two charges as

{Hχ, Hξ} ≡ δξHχ =

∮
kχ[δξΦ,Φ] . (A.25)

One can obtain the charge algebra as follows: add and subtract two background terms

to obtain,

{Hχ, Hξ} =

∮
kχ[δξΦ,Φ]−

∮
kχ[δξΦ̄, Φ̄] +

∮
kχ[δξΦ̄, Φ̄] (A.26)

=

∫

γ

∮
dkχ[δξΦ,Φ] +N[χ,ξ][Φ̄] +Kχ,ξ[Φ̄] (A.27)

where

Kχ,ξ[Φ̄] =

∮
kχ[δξΦ̄, Φ̄]−N[χ,ξ][Φ̄] (A.28)

is the central term. The second part of the central extension (A.28) is trivial in the sense

that it can be absorbed by a shift of the charges of the reference solution (which is usually

fixed using additional physical considerations). It was proven in [49] that integrability of

charges (A.17) implies that

∮
dkχ[δξΦ,Φ] =

∮
δξkχ[dΦ,Φ] =

∮
k[χ,ξ][dΦ,Φ] (A.29)

for solutions Φ and linearized solutions dΦ and where the bracket is defined in (A.23)–

(A.24). Therefore, one gets the algebra

{Hχ, Hξ} = H[χ,ξ][Φ, Φ̄] +Kχ,ξ[Φ̄] . (A.30)

One can also prove that Kχ,ξ[Φ̄] = −Kξ,χ[Φ̄] and

K[χ1,χ2],ξ[Φ̄] +K[ξ,χ1],χ2
[Φ̄] +K[χ2,ξ],χ1

[Φ̄] = 0 . (A.31)

Therefore the Jacobi identity is satisfied by the centrally extended charge algebra, which

is a central extension of the algebra of corresponding diffeomorphisms (A.23).

On trivial Y terms. The contribution of the Y terms to the surface charge kχ[δξΦ,Φ]

is given by

kY
χ [δξΦ,Φ] = δξY[δχΦ,Φ]− δχY[δξΦ,Φ]−Y[δ[χ,ξ]Φ,Φ] (A.32)

after carefully commuting δ with the operator which contracts δΦ with δξΦ. Therefore, for

Y of the form Y = δZ[Φ] this contribution is zero as a consequence of the algebra (A.23).

This implies that such Z terms do not contribute to the central extension and to the bracket

of charges. Therefore, from the charge algebra it does not contribute to H[χ,ξ] and if the Lie

bracket of vector fields is surjective in the space of vectors fields associated with non-trivial

charges, as it is the case in this paper, it will not contribute to any charges. Terms of the

form Y = dZ̃ with Z̃ regular will also not contribute since the integral of such terms on a

closed surface are zero.
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B Details of calculations and proofs

Some of the computational details in the construction of our generators χ and the corre-

sponding charges H~n are given in this appendix.

B.1 Consequences of ξ̄−,0 symmetry of field perturbations

Let Φ̄ denote the NHEG background (2.1) and A the algebra of background isometries

sl(2,R) × u(1)d−3. For notational convenience, we will drop all bars on vector fields in

this appendix but it is understood that we are considering generators of diffeomorphisms

around the background. First, we note

Lξ−,0
δχΦ̄ = Lξ−,0

LχΦ̄ = L[ξ−,0,χ]Φ̄ , (B.1)

since ξ−,0 are Killing vectors of the background. Requiring Lξ−,0
δχΦ̄ = 0 is therefore

equivalent to requiring that [χ, ξ−,0] ∈ A.

Proposition. The only vectors χ for which [χ, ξ−,0] ∈ A are linear combination of mem-

bers of the sl(2,R) algebra and the ones for which [χ, ξ−] = 0, [χ, ξ0] = βimi with βi fixed

constants.

Proof. [χ, ξ−,0] ∈ A means that

[χ, ξ−] = α1ξ− + α2ξ0 + α3ξ+ + αimi ,

[χ, ξ0] = β1ξ− + β2ξ0 + β3ξ+ + βimi ,
(B.2)

for some constants α and β’s. By the Jacobi identity we have:

[[χ, ξ−], ξ0] + [[ξ0, χ], ξ−] + [[ξ−, ξ0], χ] = 0 . (B.3)

Inserting (B.2) in the above equation, and using the algebra of Killings of NHEG, we get

(α1ξ− − α3ξ+) + (β2ξ− + β3ξ0)− (α1ξ− + α2ξ0 + α3ξ+ + αimi) = 0 . (B.4)

Noting that the above should identically vanish, coefficients of ξa and mi all should be set

to zero:

α3 = αi = β2 = 0 , α2 = β3, (B.5)

and hence

[χ, ξ−] = α1ξ− + α2ξ0 , [χ, ξ0] = β1ξ− + α2ξ+ + βimi . (B.6)

Using the redefinition

χ′ ≡ χ+ α1ξ0 + α2ξ+ − β1ξ− (B.7)

then

[χ′, ξ−] = 0 , (B.8)

[χ′, ξ0] = βimi . (B.9)
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Therefore, recalling (B.7), we have proved that χ is a linear combination of χ′ with prop-

erties (B.8)–(B.9), and a member of sl(2,R), namely −α1ξ0 − α2ξ+ + β1ξ−.
It is useful for clarifying the requirement (1) in section 3.2 to find the generic com-

ponents of χ′ explicitly. (B.8) is just ∂tχ
′µ = 0. It means that χ′ = χµ∂µ where

χ′µ = χ′µ(r, θ, ϕi). Inserting it in (B.9), leads to the following equations:




(r∂r + 1)χ′t = 0

(r∂r − 1)χ′r = 0

r∂rχ
′θ = 0

r∂rχ
′ϕi

= βi

(B.10)

The above equations fix the r dependence of the χ′µ as follows

χ′ =
ǫt

r
∂t + rǫr∂r + ǫθ∂θ + (βi ln r + ǫi)∂ϕi , (B.11)

where ǫµ = ǫµ(θ, ϕi).

B.2 Z2 transformations as bijections between b = ±1 phase spaces

The NHEG background (2.1) is manifestly invariant under the two Z2 transformations:

(r → −r, ~ϕ → −~ϕ) or (t → −t, ~ϕ → −~ϕ). In section 3.2, two families of vector fields were

distinguished as generators for the NHEG phase space:

χ±[ǫ(~ϕ)] = −~k · ~∂ϕǫ
(
b

r
∂t + r∂r

)
+ ǫ~k · ~∂ϕ , b = ±1 . (B.12)

Let us denote the phase spaces generated by χ± as G±[F ]. Here we show that

The two Z2 transformations maps G+[F ] and G−[F ] onto each other.

Proof. The background is mapped to itself under any of the two Z2 transformations. The

χ+[ǫ] is mapped to the χ−[ǫ̃] in which:

ǫ̃(~ϕ) = −ǫ(−~ϕ) . (B.13)

This map provides the bijection relation:

G+[F (~ϕ)] ↔ G−[−F (−~ϕ)] . (B.14)

B.3 Proof of (3.11)

The transformations (3.9) imply that

∂t = ∂ t̄ ,

∂r = e−Ψ∂r̄ +
b

r2
(eΨ − 1)∂t̄ , (B.15)

∂ϕi = −∂ϕi(eΨ)

(
b

r
∂ t̄ + e−2Ψr∂ r̄

)
+ (δji + kj∂ϕiF )∂ϕ̄j .
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Therefore, we have

~k · ~∂ϕ = −~k · ~∂ϕΨ
(
b

r̄
∂ t̄ + r̄∂ r̄

)
+ (1 +X)~k · ~∂ϕ̄ ,

r∂r = r̄∂ r̄ +
b

r
(eΨ − 1)∂ t̄ ,

(B.16)

where X(x) ≡ ~k · ~∂ϕF (~ϕ). We now start from the l.h.s. of (3.8):

χ[ǫ(~ϕ)] = ǫ(~ϕ)~k · ~∂ϕ − ~k · ~∂ϕǫ
(
b

r
∂t + r∂r

)

= ǫ(1 +X)~k · ~∂ϕ̄ −
(
b

r̄
∂ t̄ + r̄∂ r̄

)(
ǫ~k · ~∂ϕΨ+ ~k · ~∂ϕǫ

)
.

Defining

ǭ( ~̄ϕ) ≡ (1 +X) ǫ , (B.17)

if we can find Ψ such that
~k · ~∂ϕ̄ǭ = ǫ~k · ~∂ϕΨ+ ~k · ~∂ϕ ǫ , (B.18)

we would obtain the desired result

χ̄[ǭ(~ϕ)] = ǭ( ~̄ϕ)~k · ~∂ϕ̄ − ~k · ~∂ϕ̄ǭ
(
b

r̄
∂ t̄ + r̄∂ r̄

)
. (B.19)

To solve (B.18), we use the fact that, when dealing with functions of ~ϕ only,

~k · ~∂ϕ̄ =
~k · ~∂ϕ
1 +X

, (B.20)

which is a result of (B.16). Therefore,

~k · ~∂ϕ̄ǭ =
~k · ~∂ϕ
1 +X

(
ǫ(1 +X)

)

=
ǫ~k · ~∂ϕX
1 +X

+ ~k · ~∂ϕǫ . (B.21)

Comparison with the r.h.s. of (B.18) then implies Ψ = ln(1 + X) or (3.11). So we have

established our ansatz (3.9) which defines a one-function family of finite coordinate trans-

formations, specified by the function F (~ϕ).

B.4 Special vector fields η±

Two special vectors fields are singled out in our construction:

η+ =
1

r̄
∂t̄ + r̄∂r̄ , η− =

1

r̄
∂t̄ − r̄∂r̄ . (B.22)

They obey the commutation relation

[η+, η−] = −(η+ + η−) (B.23)

and therefore they form a closed algebra under the Lie bracket. Here are some of their

properties:
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1. Although not Killing vectors, η± commute with ξ−, ξ0 and the U(1)d−3 generators

mi (2.4).

2. They commute with the respective symmetry generator χ±; i.e.

δη+χ+ = [η+, χ+] = 0 , δη−χ− = [η−, χ−] = 0 , (B.24)

where χ± correspond to the choice of χb with b = ±1.

3. As η+ commutes with the phase space generating diffeomorphism χ+, it is invariant

in the phase space generated by χ+ which in turn implies

η̄+ = η+ =
1

r
∂t + r∂r . (B.25)

The above may be explicitly checked using (B.15). The same property holds with

minuses in the respective phase space.

4. η±, similarly to χ±, are mapped to each other by the t–~ϕ or r–~ϕ Z2-transformations

discussed in section 2.

One can in fact show that η+ (or η−) are the only vectors with properties 1. and 2. in the

above list. Properties 3. and 4. then follow from the first two.

B.5 Explicit computation of the surface charges

Here we give the explicit computation of charges H~n over the phase space as a function of

Ψ. We derived all expressions in dimensions d = 4 and d = 5 which allowed us to infer

the general expressions for any d. As outlined in the appendix A the charges are defined

through an integration of the infinitesimal surface charge over the phase space which we

can compute in principle. Since we know that the charges are integrable, we are allowed

to use the symmetry algebra to simplify the derivation of the charges. We present such a

simpler derivation below. Explicitly, we start from (5.9) which implies

{H~n, H~0} = −i(~k · ~n)H~n . (B.26)

However, recalling (5.5), we have

{H~n, H~0} = δ~0H~n =

∮
kχ~n

[δχ~0Φ,Φ] . (B.27)

Therefore,

H~n =
i

~k · ~n

∮
kχ~n

[δχ~0Φ,Φ] , ~n 6= ~0 . (B.28)

Using (5.9) we can also obtain H~0 from

H~0 =
1

2~k · ~n

(
i{H~n, H−~n} −

AH
8πG

(~k · ~n)3
)
. (B.29)
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In order to determine H~n in (B.28), we need to calculate kχ~n
[δχ~0Φ,Φ]. The result is

(
kEinstein
χ~n

[δχ~0Φ,Φ]
)
θϕ1...ϕn

=
−√−g e−i~n·~ϕ

16πGΓ

[
2kikjγij

(
eΨ(i~k · ~nΨ′ −Ψ′2 −Ψ′′)

)
+ (i~k · ~nΨ′′ −Ψ′′′)

+
(
eΨ(Ψ′2 +Ψ′′ − i~k · ~nΨ′)

)
+ 2kikjγij(Ψ

′′Ψ′ − i~k · ~nΨ′′ + e2ΨΨ′)
]
,

(
kY

χ~n
[δχ~0Φ,Φ]

)
θϕ1...ϕn

=

√−g i~k · ~n(kikjγij − 1)e−i~n·~ϕ

16πGΓ

[
Ψ′2 − 2Ψ′′ + (Ψ′′ − i~k · ~nΨ′)

]
, (B.30)

where prime denotes the directional derivative ~k · ~∂. The first three parenthesis in kEinstein

and the last one in kY are total derivatives in ~ϕ. They are explicitly proportional to

(Ψ′eΨ−i~n·~ϕ)′, (Ψ′′e−i~n·~ϕ)′, (Ψ′eΨ−i~n·~ϕ)′ and (Ψ′e−i~n·~ϕ)′. Therefore their integration van-

ishes. Now considering the identity
∫
dθ

√−g
kikjγij

Γ = 2
∫
dθ

√−g
Γ , we have

H~n =
i

~k · ~n

∮
kEinstein
χ~n

[δχ~0Φ,Φ] +
i

~k · ~n

∮
kY

χ~n
[δχ~0Φ,Φ] (B.31)

=
i

~k · ~n

∮
ǫH

−4e−i~n·~ϕ

16πG
(Ψ′′Ψ′ − i~k · ~nΨ′′ + e2ΨΨ′)−

∮
ǫH

e−i~n·~ϕ

16πG
(Ψ′2 − 2Ψ′′) (B.32)

=

∮
ǫH

e−i~n·~ϕ

16πG
(2Ψ′2 − 4Ψ′′ + 2e2Ψ)−

∮
ǫH

e−i~n·~ϕ

16πG
(Ψ′2 − 2Ψ′′) , (B.33)

where in the last equation we used integration by parts, and dropped some total derivatives

of ~ϕ. Finally,

H~n =

∮
ǫH

1

16πG
(Ψ′2 − 2Ψ′′ + 2e2Ψ)e−i~n·~ϕ. (B.34)

C The Kerr/CFT type phase space

In this section we derive the Kerr/CFT phase space, defined as the regular phase space

resulting from defining symmetry generators which depend on a function of a single angle

along an arbitrary direction of the d − 3 dimensional torus. We show that a symplectic

structure exists such that the Kerr/CFT infinitesimal diffeomorphisms (defined however

with a different ansatz than in the original proposal [24]) are symplectic symmetries and

we build the set of regular metrics which represent the symplectic symmetries. We also

show that there is no larger phase space which contains both the Kerr/CFT phase space

and the NHEG phase space defined in the main text.

The Kerr/CFT ansatz prescribes choosing a particular direction along the d−3 dimen-

sional torus spanned by the ϕi coordinates and defining an arbitrary diffeomorphism along

that direction (see e.g. [71] for the 5d case). Namely, one fixes a vector Ki and defines the

ϕ angle such that Ki∂ϕi ≡ ∂ϕ. In order ϕ to be periodic (with period 2π) the direction

K should be a vector on the d − 3 lattice associated with the torus. In other words, one

should be able to map ϕ to one of the directions ϕi’s using SL(d − 3,Z) transformations.

The arbitrary function of ϕ is denoted as ǫ(ϕ). According to our discussions on the choice
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of symmetry generator in section 3 (cf. discussions in the paragraph above (3.6)), we define

the infinitesimal diffeomorphism

χb[ǫ(ϕ)] = ǫ(ϕ)∂ϕ − ∂ϕǫ(ϕ)

(
b

r
∂t + r∂r

)
. (C.1)

In the original Kerr/CFT proposal, one set b = 0. However, we saw that requiring regularity

of the phase space obtained by exponentiating this generator instead fixes b = ±1.

Quite nontrivially, a symplectic structure exists such that (C.1) are symplectic sym-

metries. The symplectic structure can be chosen to be exactly the same as for the NHEG

phase space, namely,

ω[δ1Φ, δ2Φ;Φ] = ω(LW)[δ1Φ, δ2Φ;Φ] + d
(
δ1Y[δ2Φ;Φ]− δ2Y[δ1Φ;Φ]

)
(C.2)

where the boundary term Y[δΦ;Φ] is defined in (4.23). One can readily check that the

infinitesimal diffeomorphism (C.1) obeys

ω[δχΦ, δχ′Φ;Φ] ≈ 0 . (C.3)

Therefore, the charges are conserved and are integrable off-shell using the same reasoning

as the one in section 5.1. The charges represent a Virasoro algebra.

For the simple example Ki = δi1, ϕ = ϕ1 one can check that the Virasoro central charge

c is given by c = 12k1 S
2π where S is the black hole entropy. In order to define the central

charge for a general choice of cycle, let us define ei such that ϕ = eiϕ
i. It then follows

that eiK
i = 1 and then ϕi = Kiϕ + ϕi

⊥ with eiϕ
i
⊥ = 0. We can recycle the computation

of the central charge that we performed for the NHEG ansatz to the Kerr/CFT case

as follows. In section 5.4 we discussed that the NHEG algebra V̂~k,S has infinitely many

Virasoro subalgebras obtained through considering only generators L~n where ~n = n~e, for

a given vector ~e, ~k · ~e 6= 0 and n integer. These generators which we denoted by ℓn (5.22)

may be viewed as the Fourier modes of ℓ(ϕ), where niϕ
i = nϕ. If along with the ℓ(ϕ)

we also restrict ourselves to part of the phase space specified by functions of ϕ = eiϕ
i

(not depending on other combinations of ϕi), then for this sector the ℓn NHEG generators

reduce to

ℓn = −e−inϕ∂ϕ + ∂ϕe
−inϕ

(
b

r
∂t + r∂r

)

and therefore coincide with the Kerr/CFT generators discussed in this appendix. The

central charge is therefore equal to the one given in (5.24),

c~e = 12(~k · ~e) S
2π

. (C.4)

One can also check that for ei = δ1i we reproduce the explicit result mentioned earlier. The

central charge for general choices of cycles on the torus were also discussed in [71].

The regular phase space is obtained by exponentiating the diffeomorphism with the

choice b = 1 and applying this finite coordinate transformation on the background. The

phase space is labelled by an arbitrary function F (ϕ) = F (ϕ+ 2π) from which one defines
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the Liouville field eΨ = 1 + ∂ϕF (ϕ). Using a similar reasoning as in the main text, one

obtains

ds2 = Γ(θ)

[
− (σ − bdΨ)2 +

(
dr

r
− dΨ

)2

+ dθ2 + γij(dϕ̃
i + kiσ)(dϕ̃j + kjσ)

]
, (C.5)

where

σ = e−Ψrdv +
dr

r
, ϕ̃i = ϕi +KiF (ϕ)− kiΨ(ϕ) , (C.6)

with v = t + 1
r
and ~K is the direction in the d − 3 torus defining the ϕ direction defined

earlier.

The computation of the charges follows the same route as in the main text. Here the

charges are labelled by the single function ǫ[ϕ]. Explicitly, in any dimension

Hχ[ǫ] =
1

16πG

∫

H
ǫH

(
(∂ϕΨ)2 − 2∂2

ϕΨ+ Λe2Ψ
)
ǫ[ϕ] . (C.7)

The Virasoro charges are therefore expressed as the modes of a Liouville-type stress-tensor

which depends upon a single angle ϕ and is time-independent.

An obvious question is whether or not a larger phase space exists that contains both

the NHEG symplectic symmetries and the Kerr/CFT symplectic symmetries. Here, we

show that these phase spaces are mutually incompatible. Let us consider the 5d case and

consider the vector field

χ~ǫi = ~ǫi · ~∂ϕ − ~∂ϕ · ~ǫi
(
b

r
∂t + r∂r

)
(C.8)

with i = 1, 2 and

~ǫ1 =
(
ǫ1(ϕ1), 0

)
, ~ǫ2 = (k1, k2)ǫ2(ϕ2) . (C.9)

The first vector ~χ~ǫ1 is part of the Kerr/CFT ansatz and the second one ~χ~ǫ2 is part of

the NHEG ansatz. If a phase space exists where both of these vectors define symmetry

generators, then the commutator of these generators should also be a symmetry generator.

We have

[χ~ǫ1 , χ~ǫ2 ] = χ[~ǫ1,~ǫ2] . (C.10)

Now, ~ǫ3 ≡ [~ǫ1,~ǫ2] =
(
k1χ2(ϕ2)∂1ǫ

1(ϕ1), 0
)
. Expanding in Fourier modes, ~ǫ3 ∼

(eim1ϕ
1+im2ϕ

2

, 0). Let us now compute the symplectic structure for two such ~χ~ǫ3 vec-

tors with modes (m1,m2) and (n1, n2). Since we require that the symplectic structure

be independent on b, we set b = 0 without loss of generality. Evaluating the symplectic

structure (C.2) around the background in (v, r, θ, ϕ1, ϕ2) coordinates we find

ωv
[
δg[m1,m2], δg[n1, n2], ḡ

]
∝

√−g

16πG

1

r
e−i(m1+n1)ϕ1−i(m2+n2)ϕ2

(m1 + n1)(n1m2 +m1n2) .

In the NHEG phase space, ωv = 0 exactly so this divergence is specific to the extension

of the phase space. After an extensive search we didn’t find any possible boundary term

which we could add to the symplectic structure to cancel the divergence. We conclude that

the Kerr/CFT ansatz and NHEG ansatz define mutually incompatible phase spaces in five

and higher dimensions. In four dimensions the NHEG phase space and the Kerr/CFT

phase space that we constructed in this appendix simply coincide.
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