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1 Introduction

Conformal blocks are important ingredients for a wide variety of physical theories. Though

being fully determined by the conformal symmetry they are not completely understood.

A number of representations allowing for control over some of their properties, together

with a limited amount of exactly solvable examples exists. In this paper we study one

particular property of the conformal blocks, namely, their behavior under the modular

transformations. This direction seems especially interesting for the following reason. First,

usual definition of the conformal blocks keeps their properties under the modular transfor-

mations well hidden. Second, modular transformations can be studied indirectly, without

calling for the explicit shapes of conformal blocks. Therefore, by investigating the mod-

ular transformations of conformal blocks we can hope to gain a deeper insight at the

aspects of their structure which are not at all visible from the definition or conventional

representations.

The modular transformations for generic conformal blocks must satisfy some polyno-

mial relations the most famous of which is probably the pentagon identity. As turns out,

– 1 –



J
H
E
P
1
0
(
2
0
1
5
)
0
3
9

specifying the shape of the fusion matrices for degenerate representations and imposing the

fusion rules is enough to convert the pentagon identity into a set of difference equations

uniquely determining generic fusion matrix as the solution with certain properties. Toric

modular kernel enters similar polynomial relation which can also be used to derive a set

of difference equations. As before, these equations define the toric modular kernel. In the

paper we construct the solution to these equations in the form of a series expansion and

show that this representation is equivalent to the well known integral formula.

2 Conformal blocks

2.1 General discussion

Conformal blocks are prime constituents of any conformal field theory (CFT) [1]. In the

present paper we only deal with two-dimensional CFT. Symmetries of 2d CFT are encoded

in the Virasoro algebra spanned by generators Ln, n ∈ Z with commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.1)

In fact, the full symmetry algebra of the theory contains two copies of the Virasoro algebra

(holomorphic + antiholomorphic). In what follows we will pretend that all operators in the

theory are holomorphic. This will have no effect on our conclusions about conformal blocks

which are by definition holomorphic objects. However, disregarding antiholomorphic part

will greatly lighten the notation.

Space of states in CFT is isomorphic to the space of local operators. It is decomposed

into the direct sum of the irreducible highest weight representations called Verma modules

or conformal families. Highest weight vectors |∆〉 are eigenfunctions of L0 and they are

annihilated by all Ln with positive n

L0 |∆〉 = ∆

Ln |∆〉 = 0, n > 0 (2.2)

Verma module is conveniently organized into levels labeled by a non-negative integer k.

Vectors of the form

L−Y |∆〉 ≡ Lk1−1L
k2
−2 . . . |∆〉 (2.3)

constitute a basis at level k. Here Y = {k1, k2, . . . } is a partition of k, i.e. |Y | = k1 + 2k2 +

· · · = k. Thus, the operator product expansion (OPE) in 2d CFT can be written in the

following form

φ∆1(x)φ∆2(0) =
∑
∆,Y

C∆,Y
∆1∆2

(x)L−Y φ∆(0) (2.4)

Conformal invariance fixes functions C∆,Y
∆1∆2

(x) up to constants C∆
∆1∆2

independent of par-

tition Y

C∆,Y
∆1∆2

(x) = C∆
∆1∆2

β∆,Y
∆1∆2

x∆−∆1−∆2 (2.5)
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One normalizes by definition β∆,∅
∆1∆2

= 1, then C∆
∆1∆2

is a three-point correlation function

C∆3
∆1,∆2

= 〈φ∆1(0)φ∆2(1)φ∆3(∞)〉 (2.6)

Here a field inserted at infinity is understood as limit φ∆(∞) = limz→∞ z
2∆φ∆(z). One

should stress that coefficients β∆,Y
∆1∆2

are completely fixed by the conformal symmetry (re-

quirement that both sides in (2.4) transform identically).

By means of the OPE one can decompose any correlation function into a combination

of conformal blocks. Consider the four-point correlation function on a sphere1〈
φ∆1(0)φ∆2(x)︸ ︷︷ ︸

OPE

φ∆3(1)φ∆4(∞)︸ ︷︷ ︸
OPE

〉
=
∑
∆

C∆
∆1∆2

C∆
∆3∆4

B∆

[
∆2 ∆3

∆1 ∆4

]
(x) (2.7)

Here function B∆[∆i](x) is the spheric conformal block. It is conveniently depicted graph-

ically as

B∆

[
∆2 ∆3

∆1 ∆4

]
(x) =

∆1

∆2

∆

∆3

∆4 (2.8)

By definition, conformal block is a series in powers of x

B∆

[
∆2 ∆3

∆1 ∆4

]
(x) = x∆−∆1−∆2

∞∑
n=0

xnB
(n)
∆

[
∆2 ∆3

∆1 ∆4

]
(2.9)

where

B
(n)
∆

[
∆2 ∆3

∆1 ∆4

]
=

∑
Y,Y ′

|Y |=|Y ′|=n

β∆,Y
∆1∆2

β∆,Y
∆1∆2

〈L−Y φ(0)L−Y ′φ(∞)〉 (2.10)

We emphasize that conformal block (2.9) is unambiguously fixed by conformal symmetry.

We present here first few terms of the x-expansion

B∆

[
∆2 ∆3

∆1 ∆4

]
(x) = x∆−∆1−∆2

(
1 + x (∆−∆1+∆2)(∆+∆3−∆4)

2∆

+ x2
(

(c+8∆)(∆−∆1+∆2)(1+∆−∆1+∆2)(∆+∆3−∆4)(1+∆+∆3−∆4)
4∆(c−10∆+2c∆+16∆2)

+ . . .
)

+O(x3)

)
(2.11)

Already the second-order coefficient here is bulky and we only show it partially masking

the remainder by ellipses.

We now turn to the CFT on a torus. Simplest non-trivial example of the toric blocks

is the conformal block for the one-point correlation function

B∆(∆ext|τ) = Tr∆

(
qL0−c/24φ∆ext(0)

)
, q = e2πiτ (2.12)

1We want to stress that correlation functions are in fact bilinear combinations of holomorphic and

antiholomorphic conformal blocks. Thus formula (2.7) does not hold literally.
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or, graphically

B∆(∆ext|τ) =
∆ext

∆

(2.13)

Here τ is the modular parameter of the torus. The trace is taken over the Verma module

of primary dimension ∆; ∆ext stays for the dimension of the external field. Similarly to

the spheric case the toric conformal block naturally admits expansion in powers of q

B∆(∆ext|τ) = q∆−c/24
∞∑
n=0

qnB
(n)
∆ (∆ext)

= q∆−c/24

(
1 + q

(
∆ext(∆ext − 1)

2∆
+ 1

)
(2.14)

+q2

(
(8∆ + c)∆4

ext

4∆(c+ 2c∆− 10∆ + 16∆2)
+ . . .

)
+O(q3)

)
For the sake of brevity part of the second-order coefficient is hidden in ellipses.

Apart from certain special cases conformal blocks are best understood as such x- or

q-series expansions. There are, however, a few exceptions when conformal blocks can be

found in closed forms. Those of the most interest for the present paper are discussed in

the next subsection.

2.2 With degenerate fields

Conformal blocks can be found in a closed form when one of the external dimensions takes

a specific value corresponding to a degenerate representation of the Virasoro algebra. To

describe these efficiently we introduce the Liouville-type parametrization for the central

charge and conformal dimensions

c = 1 + 6Q2, Q = b+ b−1, ∆(a) = a(Q− a) (2.15)

Later in the article we will use α-variables for some momentums instead of a. The relation is

a = α+Q/2, ∆(α) =
Q2

4
− α2 (2.16)

Degenerate dimensions correspond to the following Liouville momentums

∆deg = adeg(Q− adeg), adeg = −nb
2
− mb−1

2
, n,m ≥ 0 (2.17)

When conformal dimension of a field is degenerate its Verma module contains a singular

vector. As a consequence, correlation functions and conformal blocks involving a degenerate

field satisfy certain differential equations.

We illustrate this at the simplest and most important for our purposes case of the

degenerate field with the Liouville momentum −b/2. From commutation relations of the

Virasoro algebra (2.1) it is easy to check that vector

|sing〉 =
(
L2
−1 + b2L−2

)
|∆(−b/2)〉 (2.18)
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is indeed a singular vector, i.e. it is annihilated by all Ln with n > 0 (this is only non-trivial

for n = 1, 2). In effect, any correlation function involving |sing〉 must vanish and for the

four-point correlation function

C

[
∆(−b/2) ∆3

∆1 ∆4

]
(x) =

〈
φ∆1(0)φ∆(−b/2)(x)φ∆3(1)φ∆4(∞)

〉
(2.19)

presence of the singular state produces equation(
b−2x(1−x)∂2

x + (2x−1)∂x+∆(−b/2) +
∆1

x
− ∆3

x− 1
−∆4

)
C

[
∆(−b/2) ∆3

∆1 ∆4

]
(x) = 0

(2.20)

Two independent solutions to this equation can be chosen as

Ba1−b/2

[
−b/2 a3

a1 a4

]
(x) = xba1(1− x)ba32F1(A,B;C|x)

Ba1+b/2

[
−b/2 a3

a1 a4

]
(x) = xb(Q−a1)(1− x)ba32F1(1 +A− C, 1 +B − C; 2− C|x) (2.21)

where

A = −b
2

2
+ b(a1 + a3 − a4), B = b(a1 + a3 + a4) + 2∆(−b/2), C = −b2 + 2ba1 (2.22)

One can verify in x-expansion that expressions in the r.h.s. of (2.21) coincide with the

general formula for the x-expansion of conformal blocks (which is partially presented in

equation (2.11)) upon substituting to the latter parametrization (2.15) and specifying a =

a1 ± b/2, a2 = −b/2.

Thus, for correlation function (2.19) only two conformal blocks (2.21) in decomposi-

tion (2.7) are relevant. This is a manifestation of the fusion rules for the OPE involving

degenerate fields. Particularly

φa × φ−b/2 = φa+b/2 + φa−b/2 (2.23)

In words, only operators of momentums a ± b/2 may have non-vanishing coefficients in

the OPE of fields φa, φ−b/2. Hence the space of conformal blocks is two-dimensional and

functions (2.21) can be chosen as a basis.

3 Fusion and modular transformations

3.1 General discussion

In order to obtain decomposition (2.7) we have chosen a particular pairing of the fields in

the correlation function. Namely, we fused the fields with dimensions ∆1,∆2 and ∆3,∆4.

Fusing the fields in a different way would result in a different basis for conformal blocks.

For example〈
φ∆1(0)φ∆4(∞)︸ ︷︷ ︸

OPE

φ∆2(x)φ∆3(1)︸ ︷︷ ︸
OPE

〉
=
∑
∆

C∆
∆1∆4

C∆
∆2∆3

Bt
∆

[
∆2 ∆3

∆1 ∆4

]
(x) (3.1)
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Function Bt
∆[∆i](x) appearing in this decomposition is called the t-channel conformal block

(in contranst to (2.8) which is called the s-channel conformal block) and depicted as

Bt
∆

[
∆2 ∆3

∆1 ∆4

]
(x) =

∆1 ∆4

∆

∆2 ∆3

(3.2)

Throughout this section we introduce additional labels s and t to differentiate between

the s- and t-channel blocks. In the subsequent sections we only use the s-channel blocks

and hence, drop the superscript. There is a simple relation between the s- and t- channel

conformal blocks

Bt
∆

[
∆2 ∆3

∆1 ∆4

]
(x) = Bs

∆

[
∆2 ∆1

∆3 ∆4

]
(1− x) (3.3)

From asymptotic near x = 0 (2.9) one sees that the s-channel conformal blocks are linearly

independent. Then, from (3.3) we conclude that the t-channel conformal blocks are also

linearly independent. Therefore, decompositions into the s- and t-channels (2.7), (3.1) are

simply decompositions in different bases. Hence these bases are related by some transfor-

mation matrix

Bs
∆

[
∆2 ∆3

∆1 ∆4

]
(x) =

∑
∆′

F∆∆′

[
∆2 ∆3

∆1 ∆4

]
Bt

∆

[
∆2 ∆3

∆1 ∆4

]
(x) (3.4)

Here the summation is performed over the spectrum of primary fields’ dimensions. One

might question formula (3.4) when the spectrum is continuous, but its validity is a common

belief confirmed from various perspectives. Transformation from the t- to the s-channel is

sometimes called fusion. Hence, we call matrix F∆∆′ [∆i] the fusion kernel.

From relation between the s- and t-channel (3.3) we see that the fusion kernel not

only describes fusion transformation, but rather monodromy properties of the s-channel

conformal block itself

Bs
∆

[
∆2 ∆3

∆1 ∆4

]
(x) =

∑
∆′

F∆∆′

[
∆2 ∆3

∆1 ∆4

]
Bs

∆

[
∆2 ∆1

∆3 ∆4

]
(1− x) (3.5)

and therefore contains non-trivial information about the structure of the conformal blocks.

Correlation functions on a torus must be invariant under the action of SL(2,Z) gener-

ated by T : τ → τ + 1 and S : τ → −1/τ . As a consequence, toric conformal blocks form

a representation of the modular group. T -transformation acts diagonally and can be read

off directly from definition (2.12)

B∆(∆ext|τ + 1) = q∆−c/24B∆(τ) (3.6)

The action of S is non-trivial and close in spirit to the fusion transformation (3.4)

B∆(∆ext| − 1/τ) =
∑
∆′

M∆∆′(∆ext)B∆′(∆ext|τ) (3.7)

We call matrix M∆∆′ the toric modular kernel or simply the modular kernel.

– 6 –
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The present paper is mainly concerned with the toric modular kernel. It is simpler

then the fusion kernel (already by counting the number of parameters) and allows for a

clearer exposition while catching all the important features. In paper [2] an integral expres-

sion describing modular kernel for generic conformal blocks was proposed. We postpone

discussion of this formula until section (6).

In the following, for the sake of brevity we often use the term modular transformations

for both, fusion transformations of the spheric and S-transformations of the toric blocks.

Hopefully, this is not to be a source of confusion.

3.2 With degenerate fields

In practice it turns out to be more convenient to use the Liouville-type parametriza-

tion (2.15). Hence we rewrite (3.5) as

Ba

[
a2 a3

a1 a4

]
(x) =

∫
da′Faa′

[
a2 a3

a1 a4

]
Ba′

[
a2 a1

a3 a4

]
(1− x) (3.8)

Note also that we have dropped the s-channel superscript. Here and in the sequel the spheric

conformal block without a superscript always refers to the s-channel conformal block.

Consider conformal blocks with a degenerate field of momentum −b/2 (2.21). Recall

that due to the fusion rules (2.23) the space of conformal blocks is two-dimensional. Basis

s-channel conformal blocks are given by formulas (2.21). Let us introduce notation

Bs
± = Bs

a1±b/2

[
−b/2 a3

a1 a4

]
(x) (3.9)

Note that permutation a1 ↔ a3 acts on parameters A,B,C (2.22) in the following way

A→ A, B → B, C → A+B − C + 1 (3.10)

Therefore, in this case the fusion kernel is nothing else than the matrix of connection

coefficients for the hypergeometric function(
Bs

+

Bs
−

)
= F

(
Bt

+

Bt
−

)
, F

[
−b/2 a3

a1 a4

]
=

(
Γ(2−C)Γ(A+B−C)

Γ(1+A−C)Γ(1+B−C)
Γ(2−C)Γ(−A−B+C)

Γ(1−A)Γ(1−B)
Γ(A+B−C)Γ(C)

Γ(A)Γ(B)
Γ(C)Γ(−A−B+C)

Γ(−A+C)Γ(−B+C)

)
(3.11)

4 Difference equations on the modular kernel

In this section we derive a set of the difference equations on the modular kernel

(see (4.24), (4.25), (4.26)). These equations follow from the relations in the fusion/modular

algebra. We first illustrate the idea at the example of the celebrated pentagon identity.

As is well known the fusion kernel satisfies the pentagon identity

Fp1q2

[
a2 a3

a1 p2

]
Fp2q1

[
q2 a4

a1 a5

]
=
∑
l

Fp2l

[
a3 a4

p1 a5

]
Fp1q1

[
a2 l

a1 a5

]
Flq2

[
a2 a3

q1 a4

]
(4.1)
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This formula follows from the requirement of consistency for the fusion transformations of

the 5-point conformal blocks. Labels a1−5 indicate the external momentums in these 5-

point blocks. When one of these momentums, say a2, is set to a degenerate value a2 = −b/2
two interesting phenomenons happen:

1) Three out of five fusion matrices entering the pentagon identity become degenerate

and therefore known explicitly. The two other matrices are left with generic values

of parameters. This converts polynomial equation (4.1) into a linear equation on

the generic fusion matrices with the degenerate fusion matrices playing the role of

coefficients.

2) Due to the fusion rules (2.23) generally continuous range of summation over momen-

tum l is restricted to just two values l = q1 ± b/2.

This turns the pentagon identity into a second order linear difference equation. One can

attempt to solve this equation directly. In the previous work [3] we took this route and

provided a way to recursively find coefficients in the expansion of the type (5.14) for the

fusion kernel. In the current work we continue to develop this approach at the example of

the toric modular kernel. This case appears to be simpler and allows for more complete

understanding.

Now we proceed to the derivation of equations (4.24), (4.25), (4.26), which follow from

the genus-one counterpart of the pentagon identity. Recall that in order to obtain the

pentagon identity one needs to consider the transformation properties of the five-point

conformal blocks. Likewise, in order to derive equations on the toric modular kernel we

have to consider not a one-point toric conformal block, but a two-point block

m1

m2

µ
Ba(m1,m2;µ|τ) =

a

(4.2)

Operators corresponding to the legs m1,m2 are inserted close to each other somewhere on

the torus. Conformal block also depends on their relative position, but we will not denote

this dependence in a manifest way.

When one of the legs, say m2, travels a closed path around the torus the conformal

block acquires a monodromy. We can express this monodromy via the fusion matrices by

representing the closed path at hand as a number of analytic continuations each performed

by the corresponding operation on the four-point block. Subsequent manipulations are

close to those used to obtain the Verlinde [4] formula and were extensively applied in

papers [5, 6] to compute Wilson/’t Hooft loops in AGT dual gauge theories.

Assume that a closed loop in our pictorial representation of the two-point block is the

B-cycle of the torus. Then, the series of moves that represents the transport of m2 operator

– 8 –
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along the A cycle is

m1

m2

µ

a

= Fµµ′

m1

m2

µ′

am1

m2

µ′

a

→ Ω2

m1

m2

µ′

a

= F−1
µ′µ′′

m1

m2

µ′′

a

(4.3)

Therefore, we have the following expression for the conformal block continued along A-cycle

A ◦Ba(m1,m2;µ|τ) =
∑
µ′,µ′′

Fµµ′

[
m1 a

m2 a

]
Ω2(µ′;m2, a)F−1

µ′µ′′

[
m1 a

m2 a

]
Ba(m1,m2;µ′′|τ)

(4.4)

In words: the first move uncouples two external legs; the second move transports the m2

leg along the A-cycle (denoted by the dotted arrow); the third move fuses the two external

operators back together. Quantities Faa′ are the same fusion matrices that relate the s-

and t-channel spheric conformal blocks while Ω(a1, a2, a3) is the phase factor representing

the monodromy of the permutation of the two legs in the conformal block which are ‘close’

to each other. It can be read off from the OPE asymptotic and equals simply

Ω(a1; a2, a3) = eiπ(∆(a1)−∆(a2)−∆(a3)) (4.5)

Similarly, B-cycle monodromy is represented as

m1

m2

µ

a

= Fµµ′

m1

m2

µ′

am1

m2

µ′

a

→

m2

m1

a

µ′

= F−1
aµ′′

m2

m1

µ′′

µ′

(4.6)

The first and the last moves here are the same as for the A-cycle. However, in contrast to

the A-cycle transport along the direction of the B-cycle does not introduce a phase factor

– 9 –
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but simply permutes the two intermediate dimensions a↔ µ′. Quantitatively

B ◦Ba(m1,m2;µ|τ) =
∑
µ′,µ′′

Fµµ′

[
m1 a

m2 a

]
F−1
aµ′′

[
m2 µ

′

m1 µ
′

]
Bµ′(m2,m1;µ′′|τ) (4.7)

Now, since the modular S-transformation permutes A and B cycles we have the following

consistency condition

S ◦A = B ◦ S (4.8)

Spelled out explicitly it reads

Maa′(µ)
∑
µ′′

Fµµ′′

[
m1 a

′

m2 a
′

]
Ω2(µ′′;m2, a

′)F−1
µ′′µ′

[
m1 a

′

m2 a
′

]
=

∑
a′′

Fµa′′

[
m1 a

m2 a

]
F−1
aµ′

[
m2 a

′′

m1 a
′′

]
Ma′′a′(µ

′) (4.9)

This is the analog of the pentagon identity intertwining spheric and toric transformation

matrices.

We can turn this equation into a second-order difference equation along the lines de-

scribed after equation (4.1). Namely, set momentum m2 to a degenerate value m2 = −b/2.

Due to the fusion rules (2.23) for m2 = −b/2 we have the following selection rules on the

momentums entering equation (4.9)

µ = m1 + s1b/2, µ′′ = m1 + s2b/2, µ′ = a′ + s3b/2, a′′ = a+ s4b/2 (4.10)

where all quantities s1, s2, s3, s4 are either + or −. Denote

Fa=a1+s1b/2, a′=a3+s2b/2

[
−b/2 a3

a1 a4

]
= Fs1,s2

[
−b/2 a3

a1 a4

]
(4.11)

Then, equation (4.9) for m2 = −b/2 can be rewritten as

Maa′(µ)
∑
s2=±

Fs1,s2

[
µ− s1b/2 a

′

−b/2 a′

]
Ω2(a′ + s2b/2;−b/2, a′)F−1

s2,s3

[
µ− s1b/2 a

′

−b/2 a′

]

=
∑
s4=±

Fs1,s4

[
µ− s1b/2 a

−b/2 a

]
F−1
−s4,s3

[
b/2 a+ s4b/2

µ− s1b/2 a+ s4b/2

]
Ma+s4b/2,a′(µ+ (s3 − s1)b/2)

(4.12)

This is indeed a difference equation on the modular kernel Maa′(µ). Note that for s1 = s3

only shifts in the internal momentum a are presented in the equation, while for s1 6= s3 we

also have shifts in the external momentum µ.

All of the fusion matrices entering equation (4.12) are known explicitly (3.11). More-

over, we can renormalize the basis of conformal blocks in a such a way that these matrices
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greatly simplify. Namely, we introduce the following renormalization factor for a single

chiral vertex

V (a1, a2; a3) =
Γb(2a1)Γb(2a2)Γb(2Q− 2a3)

Γb(2Q− a1 − a2 − a3)Γb(a1 + a2 − a3)Γb(a1 − a2 + a3)Γb(−a1 + a2 + a3)
(4.13)

Here Γb(z) is a special function we call the double gamma function (see appendix A). The

four-point spheric conformal block contains two vertices and is renormalized as (in the

following we use curly notation for the renormalized quantities)

Ba

[
a2 a3

a1 a4

]
(x) = V (a1, a2; a)V (a, a3; a4)Ba

[
a2 a3

a1 a4

]
(x) (4.14)

Toric conformal block contains a single vertex and thus is renormalized as

Ba(µ|τ) = V (µ, a; a)Ba(µ|τ) (4.15)

The fusion and the modular kernels are renormalized accordingly

Faa′
[
a2 a3

a1 a4

]
=

V (a1, a2; a)V (a, a3; a4)

V (a3, a2; a′)V (a′, a1; a4)
Faa′

[
a2 a3

a1 a4

]
(4.16)

and

Maa′(µ) =
V (µ, a; a)

V (µ, a′; a′)
Maa′(µ) (4.17)

Formula (4.16) holds for generic values of momentums. If we now set a2 = −b/2 then,

according to the fusion rules (2.23)

a = a1 + s1b/2, a′ = a3 + s2b/2 (4.18)

with s1, s2 = ±. For this special choice of parameters the ratios of the double gamma

functions in the renormalization factor (4.16) reduce to the ordinary gamma functions

which in turn almost cancel with those in the standard normalization (3.11). The result is

Fs1,s2

[
−b/2 a3

a1 a4

]
= s1

sinπb(a4 + s1a3 − s2a1 − (1 + s1 − s2)b/2))

sinπb(2a3 − b)
(4.19)

With this simple form of the degenerate fusion matrices it is easy to cast equations (4.12)

explicitly. There are in fact four of them, corresponding to each choice of s1, s3 = ±.

Equations for s1 = s3 = 1 and s1 = −s3 = 1 are(
sinπb(2a−b+µ)

sinπb(2a− b)
e
b
2
∂a +

sinπb(2a−b−µ)

sinπb(2a− b)
e−

b
2
∂a

)
Maa′(µ) = −2 cosπb(2a′ − b)Maa′(µ)

(4.20)

1

sinπb(2a− b)

(
e
b
2
∂a − e−

b
2
∂a
)
Maa′(µ− b) = 2Maa′(µ) (4.21)

– 11 –



J
H
E
P
1
0
(
2
0
1
5
)
0
3
9

Equations with s1 = s3 = −1 and s1 = −s3 = −1 are equivalent to the above equations.

Upon redefinition

a = α+Q/2, a′ = α′ +Q/2 (4.22)

these equations become (4.24) and (4.26). Equation (4.25) can be derived from condition∫
dα′Mαα′(µ)Mα′α′′(µ) = δ(α− α′′) (4.23)

Namely, by expressing Mαα′(µ) from the r.h.s. of equation (4.20) substituting it in the

above condition and moving shift operators to Mα′α′′(µ) via integration by parts one

recovers equation (4.25). This completes the derivation of our main equations which we

collect below(
sinπb(2α+ µ)

sin 2πbα
e
b
2
∂α +

sinπb(2α− µ)

sin 2πbα
e−

b
2
∂α

)
Mαα′(µ) = 2 cos 2πbα′Mαα′(µ) (4.24)(

e−
b
2
∂α′

sinπb(2α′ + µ)

sin 2πbα′
+ e

b
2
∂α′

sinπb(2α′ − µ)

sin 2πbα′

)
Mαα′(µ) = 2 cos 2πbαMαα′(µ) (4.25)

1

sin 2πbα

(
e
b
2
∂α − e−

b
2
∂α
)
Mαα′(µ) = 2eb∂µMαα′(µ) (4.26)

In paper [7] it was shown that these equations also follow in the language of matrix models

from the formalism of check operators.

Let us discuss these equations. First of them is a second-order linear difference equation

with shifts in internal momentum α. The second equation is the counterpart with shifts

in the other internal momentum α′. It can be derived from the first and the property that

Mαα′(µ) squares to unity. The third equation involves shifts in external momentum µ.

Hereby, we have three equations for the modular kernel which depends on three parameters.

At the first glance there are essential ambiguities in the general solution to sys-

tem (4.24), (4.25), (4.26). However, as we now explain these ambiguities are artifacts

of our parametrization (2.15) and can be completely removed.

Consider first equation (4.24). It is second-order linear difference homogeneous equa-

tion with b/2-valued shifts in α. Therefore, its general solution Gαα′(µ) can be written as

Gαα′(µ) = f1(α, α′, µ)× S1(α, α′, µ) + f2(α, α′, µ)× S2(α, α′, µ) (4.27)

with f1(α, α′, µ), f2(α, α′, µ) arbitrary b/2-periodic in α functions and S1(α), S2(α) two

independent solutions. Independence means that their ratio S1/S2 is not b/2-periodic.

Here and in the following we will emphasize b/2-periodicity of functions w.r.t. an argument

with an underline.

However, both α and −α correspond to the same conformal dimension ∆ = Q2

4 − α
2.

Since the modular kernel should be in fact a function of ∆ we shall choose Mαα′(µ) to be

an even function of α. As we will see explicitly, this requirement picks a single solution out

of two possible in (4.27). Hence, the general α-even solution to equation (4.24) is given by

Mα,α′(µ) = f(α, α′, µ)× Eαα′(µ) (4.28)

– 12 –



J
H
E
P
1
0
(
2
0
1
5
)
0
3
9

with Eαα′(µ) a particular α-even solution which is determined up to arbitrary α-even

periodic multiplier f(α, α′, µ). By the same reasoning, from equation (4.25) we can further

fix function f(α, α′, µ) up to some function g which is also b/2-periodic in α′

f(α, α′, µ)→ g(α, α′, µ) (4.29)

Finally, from equation (4.26) we constrain the dependence of g on µ up to some function

h which is b/2-periodic in all the arguments

g(α, α′, µ)→ h(α, α′, µ) (4.30)

By now we have seen that the seeming redundancy of solutions related to the order of

equations (4.24), (4.25) is removed by demanding the solution to be an even function in

α and α′. The remaining freedom in the choice of the function h can also be fixed. Note

that the central charge (2.15) is invariant under change b → b−1. As the modular kernel

only depends on c and not on b separately, it must be invariant under b→ b−1. This fixes

undetermined function h up to some other function C, which is both b/2 and b−1/2-periodic

in all the arguments. For generic irrational b this implies that C is simply a constant

independent of α, α′, µ. Eventually, this constant can be fixed from the requirement that

Mαα′(µ) squares to unity. Thus, for generic irrational values of b the modular kernel

is uniquely identified as the solution to equations (4.24), (4.25), (4.26) with the desired

symmetry properties.

5 Modular kernel series expansion from the difference equations

In the present section we construct the solution to equations (4.24), (4.25), (4.26) for generic

irrational b.2 Equation (4.24) can be rewritten in the following form

(
e−iπbµe

b
2
∂α + eiπbµe−

b
2
∂α − 2 cos 2πbα′

)
Mαα′(µ)

= e4πibα
(
eiπbµe

b
2
∂α + e−iπbµe−

b
2
∂α − 2 cos 2πbα′

)
Mαα′(µ) (5.1)

As explained in the previous section the solution to our problem with the desired sym-

metry properties is unique. In the sequel we construct such a solution starting with ansatz

M̃αα′(µ) = e4πiαα′e2πiαµ
∞∑
n=0

e4πinbαMn(α′, µ)× f(α, α′, µ), M0(α′, µ) = 1 (5.2)

with f(α, α′, µ) yet undetermined function b/2-periodic in α.3

2The difference equations for rational b are also solvable. However, in these cases solutions are only

determined up to a certain functional multiplier which can not be fixed from equations themselves. Hence,

we omit considering such cases here.
3We remind that an underline emphasizes b/2-periodicity.
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Plugging this ansatz into equation (5.1) results in a simple recurrence relation between

coefficients Mn(α′, µ)(
e2πibα′e2πinb2 + e−2πibα′e−2πinb2 − 2 cos 2πbα′

)
Mn(α′, µ)

=
(
e2πibα′e2πibµe2πi(n−1)b2 + e−2πibα′e−2πibµe−2πi(n−1)b2 − 2 cos 2πbα′

)
Mn−1(α′, µ)

(5.3)

Solving this relation and making use of the elementary trigonometric identities gives

Mn(α′, µ) =

n∏
k=1

sinπb(2α′ + µ+ (k − 1)b) sinπb(µ+ (k − 1)b)

sinπb(2α′ + kb) sinπkb2
(5.4)

The next step is to partially fix function f(α, α′, µ) by imposing that our ansatz (5.2)

also satisfies equation (4.25). The simplest way to do it is by noting a symmetry between

equations (4.24) and (4.25). Namely, as can be seen through direct manipulations, if some

function mαα′(µ) solves equation (4.24) then function mα′α(b− µ)× sin 2πbα′ × r(α, α′, µ)

with any function r which is b/2-periodic in α′ solves equation (4.25). Consequently, if

some function mαα′(µ) solves equation (4.24) and satisfies

mα′α(b− µ)× sin 2πbα′

mαα′(µ)
= r(α, α′, µ) (5.5)

then such a function solves both equations (4.24), (4.25). We can choose function f(α, α′, µ)

so that our ansatz (5.2) fulfills condition (5.5). A key observation is that

∞∑
n=0

e4πinbαMn(α′, µ) = (1− e4πibα′)
S̃(2α′|b)

S̃(2α′ + µ|b)
Nαα′(µ) (5.6)

where function S̃ is defined in appendix A, (A.10) and function Nαα′(µ) is given by

Nαα′(µ) =

∞∑
n,m=0

e4πinbαe4πimbα′e2πib2nm
n∏
k=1

e2πikb2 − e2πib(b−µ)

e2πikb2 − 1

m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
(5.7)

Relation (5.6) is proven in appendix B. Function Nαα′(µ) is manifestly symmetric under

the transformation of interest Nαα′(µ) = Nα′α(b− µ). Therefore, we obtain

M̃α′α(b− µ)× sin 2πbα′

M̃αα′(µ)
=

(
1

f(α, α′, µ)
sin 2πbα′

e2πiα′(b−µ)

1− e4πibα′
S̃(2α′ + µ|b)
S̃(2α′|b)

)

×

(
f(α′, α, b− µ)

1− e4πibα

e2πiαµ

S̃(2α|b)
S̃(2α+ µ|b)

)
(5.8)

The last factor in braces is already b/2-periodic in α′. We can render the first factor

periodic as well by choosing

f(α, α′, µ) = e−2πiα′µ S̃(2α′ + µ|b)
S̃(2α′|b)

× g(α, α′, µ) (5.9)

With some function g(α, α′, µ) which is b/2-periodic in both α and α′.
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It remains to fix µ dependence of function g(α, α′, µ) by imposing that our ansatz (5.2)

with function f(α, α′, µ) given by formula (5.9) satisfies equation (4.26). It appears that

only a simple phase factor has to be included in g(α, α′, µ) in order for our ansatz to also

satisfy equation (4.26)

g(α, α′, µ) = e
iπ
2
µ(Q−µ)h(α, α′, µ) (5.10)

Here h is any function b/2-periodic in all the arguments. Proving that with such a choice

of g our ansatz satisfies (4.26) is straightforward but a little bulky and we relegate it to

appendix C.

Now, as we have a function that satisfies all of the equations (4.24), (4.25), (4.26), the

last two steps are due. First, we should impose the self-duality condition, i.e. the symmetry

of M̃αα′(µ) under change b→ b−1. This is implemented trivially by choosing

h(α, α′, µ) =
S̃(2α′ + µ|b−1)

S̃(2α′|b−1)

×
∞∑
n=0

e4πinb−1α
n∏
k=1

sinπb−1(2α′ + µ+ (k − 1)b−1) sinπb−1(µ+ (k − 1)b−1)

sinπb−1(2α′ + kb−1) sinπkb−2
× C (5.11)

where C is both b/2 and b−1/2-periodic in all the arguments and hence is simply a con-

stant for generic irrational values of b. Second, we should construct an even in α, α′

solution out of our particular solution (5.2). Recall that our solution is a series expansion

in powers of e4πibα, e4πib−1α. If such an expansion is convergent for some α (parameters

e4πibα, e4πib−1α are small) then it typically is divergent for the opposite value α̃ = −α
(parameters e4πibα̃, e4πib−1α̃ are large). Hence we simply define our function for these val-

ues as an even extension from the region of convergence. Note that since each of equa-

tions (4.24), (4.25), (4.26) are symmetric w.r.t. α→ −α the extended function is a solution

everywhere where it is defined. For symmetrization in α′ we simply add the same function

that we already have with α′ replaced by −α′. Thus, the particular solution respecting all

the symmetries in play can be written as

Mαα′(µ) = M̃αα′(µ) + M̃α,−α′(µ) (5.12)

And it is only left to fix the overall normalization C requiring that M squares to unity.

This condition is most easily verified for µ = 0 when M̃αα′(0) = Ce4πiαα′ and Mαα′(0) =

2C cos 4παα′. A simple calculation then shows that

C = 2−1/2 (5.13)

This leads us to the final expression for a part of the modular kernel M̃αα′(µ)

M̃αα′(µ) = 2−1/2e4πiαα′e2πiµαeiπµ(Q−µ)/2Sb(2α
′ + µ)

Sb(2α′)

×

( ∞∑
n=0

e4πinbα
n∏
k=1

sinπb(2α′ + µ+ (k − 1)b) sinπb(µ+ (k − 1)b)

sinπb(2α′ + kb) sinπkb2

)
× (b→ b−1) (5.14)
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Here only the sum in the second line (in braces) is multiplied by its counterpart with

b → b−1. The full modular kernel is constructed by symmetrization in α′ according to

equation (5.12).

Alternatively, we can use representation (5.6) and the following straightforward relation

(see definitions in appendix A)

Sb(2α
′ + µ)

Sb(2α′)

S̃(2α′|b)S̃(2α′|b−1)

S̃(2α′ + µ|b)S̃(2α′ + µ|b−1)
=
S0(2α′ + µ|Q)

S0(2α′|Q)
= eiπµ(Q−µ)/2e−2πiα′µ (5.15)

to rewrite M̃αα′(µ) in a more symmetric double-expanded form

M̃αα′(µ) = 23/2e4πiαα′e2πi(µα+(Q−µ)α′)eiπµ(Q−µ) sin 2πbα′ sin 2πb−1α′

×
∞∑

n,m=0

e4πinbαe4πimbα′e2πinmb2
n∏
k=1

e2πikb2 − e2πib(b−µ)

e2πikb2 − 1

m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
× (b→ b−1)

(5.16)

We conclude this section with several comments on formulas (5.14), (5.16).

1) The series expansions of the modular kernel here are presented in a special basis

of conformal blocks, with normalization different from standard (2.12), (2.14). The

exact relation is spelled in equation (4.17).

2) By construction this modular kernel is symmetric w.r.t. the following reflections

α→ −α, α′ → −α′, (5.17)

In contrast, the symmetry µ→ Q− µ is broken in the normalization we use (4.17).

According to our knowledge, there is no a-priori symmetry properties that the mod-

ular kernel must have under the exchange of internal dimensions α ↔ α′. However,

it is easy to see explicitly from expression (5.16) that in the normalization used the

following relation holds

Mα′α(µ)

sin 2πbα sin 2πb−1α
=

Mαα′(Q− µ)

sin 2πbα′ sin 2πb−1α′
(5.18)

3) The series representations are valid in any domain of the parameter space where

they are convergent. For example, the default setup in the Liouville theory is c ≥ 1

restricting Q ∈ R while ∆ ≥ (c− 1)/24 ∈ R imposing α ∈ iR, µ ∈ Q
2 + iR. Then, the

series expansions are convergent for b ∈ R, α ∈ iR+. In fact, the domain of validity

of the series representation seems to be the same as for the integral formula. For

instance, for the minimal models corresponding to c < 1 we have to pick imaginary

b and then exponents e4πinbα refuse to be small rendering the series not convergent.

4) Note that one can not directly use the double-expansion (5.16) in equation (5.12)

since if M̃αα′ is convergent then M̃α,−α′ will diverge for the same α′. Instead, an

analytic continuation in one of the terms should be implied.
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5) The necessity to add a second term with α′ → −α′ in formula (5.12) is somewhat

formal. Since the conformal block can only depend on α through a conformal dimen-

sion ∆ = Q2/4 − α2 it must be an even function of momentum α. Therefore, for

the transformations of the conformal blocks α′-odd part of the modular kernel is not

essential.

6 Integral representation of the toric modular kernel

In paper [2] formula for the modular kernel of the generic toric conformal block was pre-

sented in the following integral form4

Mαα′(µ) =
23/2

i

sin 2πbα′ sin 2πb−1α′

Sb(µ)

∫
C
dξ

Sb(α
′ + µ

2 + ξ)Sb(α
′ + µ

2 − ξ)
Sb(α′ +Q− µ

2 + ξ)Sb(α′ +Q− µ
2 − ξ)

e−4πiαξ

(6.1)

Here Sb(z) is a special function we call the double sine function. It is described

in appendix A. This formula is written in the same normalization as series expan-

sions (5.14), (5.16).

For generic c > 1 integrand in (6.1) contains four infinite families of poles lying on half-

lines and integration contour C is chosen to maneuver between them in a specific way. For

certain values of parameters some of these poles can overlap and merge and formula (6.1)

needs a completion. In some cases this issue is not resolvable. For example, for c ≤ 1 (and

thus for all minimal models) the formula is not valid.

We now derive the series expansion (5.14) directly from the integral representa-

tion (6.1). As turns out, the series expansion corresponds to the sum over the residues

of the integral. Function Sb(z) is meromorphic with simple poles and zeros located at

zeros : z = nb+mb−1, n,m ≥ 1

poles : z = −nb−mb−1, n,m ≥ 0 (6.2)

Therefore, the integrand of (6.1) has simple poles at the points

ξ
(n,m)
II = α′ +Q− µ/2− nb−mb−1, n,m ≥ 1

ξ
(n,m)
I = α′ + µ/2 + nb+mb−1, n,m ≥ 0

ξ
(n,m)
III = − α′ − µ/2− nb−mb−1, n,m ≥ 0

ξ
(n,m)
IV = − α′ −Q+ µ/2 + nb+mb−1, n,m ≥ 1 (6.3)

4We warn the reader of notational difference with the original paper. The exact relation is α = ipa, α
′ =

ipb, µ = Q/2 + ipe, cb = iQ/2, sb(z) = Sb(Q/2 + iz).
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We can depict them in the complex ξ-plane

<ξ

=ξ

C

. . .

. . .

. . .

. . .

ξIξII

ξIII ξIV

(6.4)

Possible integration contour C in (6.1) is shown by the blue line. Assume now that α ∈ iR+

and b > 0. Then exponent e−4πiαξ in (6.1) decays for <ξ < 0 and the integral can be

represented as the sum over the residues collected at z ∈ ξII and z ∈ ξIII .
Note that this figure is a little schematic. In each of the four families poles are not

located equidistantly; for complex values of b one would have wedges instead of half-lines

as the domains containing poles; in some circumstances the four groups are not sharply

separated and the contour of integration can not be chosen to run along the imaginary axes

(we have shifted the contour at the figure away from imaginary axis for the clarity of the

picture). However, no matter what the deformation is necessary to correct the figure in

any particular case, the result remains simple: we can compute integral (6.1) accounting

for residues ξII and ξIII .

Denote the integrand of (6.1) by I, then

2πiRes
ξ
(n,m)
III

I

= 2πi
Sb(2α

′ + µ+ nb+mb−1)Sb(µ+ nb+mb−1)

Sb(2α′ +Q+ nb+mb−1) Res−1 Sb(−nb−mb−1)
e4πiαα′e2πiαµe4πiα(nb+mb−1)

(6.5)

From definition (6.3) one sees that the poles corresponding to ξII describe the same set

as ξIII but with α′ replaced by −α′ (recall that Q = b + b−1). Also, the integrand is

α′-even function as can be seen from property (A.4). As a consequence the residues of the

integrand at ξII are exactly the same as at ξIII with α′ replaced by −α′. Thus we can only

consider the sum over ξIII residues and then symmetrize the result to get an even function

of α′.
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Using property (A.5) and explicit form of residues (A.7) we can rewrite the obtained

expression in the following way

2πiRes
ξ
(n,m)
III

I = ie4πiαα′e2πiαµe4πiα(nb+mb−1)Sb(µ)
Sb(2α

′ + µ)

Sb(2α′ +Q)

×
n∏
k=1

sinπb(2α′ + µ+ (k − 1)b) sinπb(µ+ (k − 1)b)

sinπb(2α′ + kb) sinπb2k

×
m∏
l=1

sinπb−1(2α′ + µ+ (l − 1)b−1) sinπb−1(µ+ (l − 1)b−1)

sinπb−1(2α′ + lb−1) sinπb−2l
(6.6)

Finally, noting that

23/2 sin 2πbα′ sin 2πb−1α′

i

i

Sb(2α′ +Q)
=

2−1/2

Sb(2α′)
(6.7)

we see, that summing up all the contributions from ξIII and ξII groups of poles exactly

reproduces formula (5.14). We thus conclude that expressions (5.14), (5.16) indeed serve

as series representations to the original integral expression (6.1).

Note that for α ∈ −iR+ we can enclose the integration contour in (6.1) in the right

half-plane collecting ξI and ξIV residues. As is seen from (6.3) and the symmetry of the

integrand the result will be exactly the same up to replacement α → −α. This simply

means that Mαα′(µ) is even w.r.t. α, as it should be.

7 Conclusion

The main result of the paper are formulas (5.14), (5.16) for the toric modular kernel of

non-degenerate one-point toric Virasoro conformal blocks. These formulas are to be con-

sidered as series expansions of the integral expression originally presented in paper [2]. It

is worth mentioning that due to paper [8] there exists an alternative representation for

the toric modular kernel involving the fusion matrix of the spheric conformal blocks first

presented in [9, 10]. Also, in work [11] it was demonstrated that the integral expressions

also satisfy the full set of the consistency conditions, not only those containing the degen-

erate operators.

Besides giving yet another representation for the modular kernel which may prove

useful, our formulas reveal a curious structure. Namely, they take the form of a series

expansion in parameters

e4πib±1α, e4πib±1α′ (7.1)

on top of the simple Fourier-kernel

e4πiαα′ (7.2)

Such a structure does not seem natural from the conformal blocks point of view and

parameters (7.1) do not appear in usual considerations. In fact, it was shown recently
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in [12–15] that perturbatively modular transformations of conformal blocks are nothing but

the Fourier transformation. Therefore, expressions (5.14), (5.16) may be interpreted as non-

perturbative expansions about this asymptotic Fourier form. The method to obtain these

non-perturbative series was indirect and explicitly used only properties of the degenerate

conformal blocks. To test these formulas against the the non-degenerate conformal blocks

and explain the origin of these non-perturbative corrections seems to be important and

open issue.
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A Special functions

Double gamma function Γb(z) can be defined by means of the integral representation

log Γb(z) =

∫ ∞
0

dt

t

(
e−zt − e−Qt/2

(1− e−bt)
(
1− e−b−1t

) − (Q− 2z)2

8et
− Q− 2z

2t

)
, Q = b+ b−1

(A.1)

For our purposes the main property of this function is difference relation

Γb(z + b) =

√
2π bbz−1/2

Γ(bz)
Γb(z) (A.2)

The double sine function Sb(z) can be defined via

Sb(z) =
Γb(z)

Γb(Q− z)
(A.3)

From the definition one derives

Sb(Q− z) =
1

Sb(z)
(A.4)

Sb(z + b) = 2 sinπbz Sb(z) (A.5)

Note that

Γb(z) = Γb−1(z), Sb(z) = Sb−1(z) (A.6)

This property is often called self-duality.
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Double sine function has poles at points z = −nb −mb−1(n,m ≥ 0) and zeros at the

points z = nb+mb−1(n,m ≥ 1). The corresponding residues are

ResSb(−nb−mb−1) =
1

2π

(−1)nm+n+m∏n
k=1 2 sinπkb2

∏m
l=1 2 sinπlb−2

ResS−1
b (nb+mb−1) =

1

2π

(−1)nm∏n−1
k=1 2 sinπkb2

∏m−1
l=1 2 sinπlb−2

(A.7)

The following series representation of Sb is of a great use for our purposes

logSb(z) = − iπ
2

(
z2 −Qz +

Q2 + 1

6

)
−
∞∑
n=1

1

n

e2πinbz

e2πinb2 − 1
−
∞∑
n=1

1

n

e2πinb−1z

e2πinb−2 − 1
(A.8)

It is also convenient to introduce notation

logS0(z|Q) = − iπ
2

(
z2 −Qz +

Q2 + 1

6

)
(A.9)

log S̃(z|b) = −
∞∑
n=1

1

n

e2πinbz

e2πinb2 − 1
(A.10)

so that the double sine function is split into three factors

Sb(z) = S0(z|Q)S̃(z|b)S̃(z|b−1) (A.11)

One has

S̃(z + b|b)
S̃(z|b)

= 1− e2πibz (A.12)

This completes the list of the properties which we use in the article.

B Identity relating double and single expansions of the modular kernel

In this appendix we prove identity (5.6) which is equivalent to confirming the following

formula

L(p, µ) = R(p, µ) (B.1)

where

L(p, µ) =
n∏
k=1

sinπb(2α′ + µ+ (k − 1)b) sinπb(µ+ (k − 1)b)

sinπb(2α′ + kb) sinπkb2
(B.2)

R(p, µ) = (1− e4πibα′)
S̃(2α′|b)

S̃(2α′ + µ|b)

n∏
k=1

e2πikb2 − e2πib(b−µ)

e2πikb2 − 1

×
∞∑
m=0

e4πimbα′e2πib2nm
m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
(B.3)

and p denotes collectively all the other parameters except µ, p = (α′, b, n).
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We first note that when µ = b one has L(p, b) = 1 and due to relation (A.12) also

R(p, b) = 1, i.e.

L(p, b) = R(p, b) (B.4)

Next, one easily sees that both functions satisfy the same difference equation of the first

order with b−1-valued shift in µ

eb
−1∂µL(p, µ) = L(p, µ), eb

−1∂µR(p, µ) = R(p, µ) (B.5)

This implies that

L(p, µ) = R(p, µ)× f(p, µ) (B.6)

where f(p, µ) is some function b-periodic in µ. As we demonstrate in the rest of this

appendix, functions L(p, µ) and R(p, µ) also satisfy the same first-order difference equation

with b-valued shift in µ. This means that function f(p, µ) is both b and b−1 periodic in µ

and hence does not depend on µ at all (for generic irrational b)

f(p, µ) = g(p), (B.7)

On the other hand, since L(p, b) = R(p, b) we conclude that g(p) = 1 and therefore

equality (B.1) holds. It now remains to demonstrate that both functions do satisfy the

same difference equation with b-valued shift in µ.

One easily sees that

eb∂µL(p, µ) = Λ(p, µ)L(p, µ) (B.8)

where

Λ(p, µ) =
sinπb(2α′ + µ+ nb) sinπb(µ+ nb)

sinπb(2α′ + µ) sinπbµ
(B.9)

Next, using relation (A.12) and equalities

eb∂µ
n∏
k=1

e2πikb2 − e2πib(b−µ)

e2πikb2 − 1
=

1− e−2πinb2e−2πibµ

1− e−2πibµ

n∏
k=1

e2πikb2 − e2πib(b−µ)

e2πikb2 − 1
(B.10)

eb∂µ
m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
=

1− e2πibµ

1− e−2πimb2e2πibµ

m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
(B.11)

one shows that

eb∂µR(p, µ) =

{
1− e−2πinb2e−2πibµ

1− e2πib(2α′+µ)

1

1− e−2πibµ

}

×
(

1− e4πibα′
) S̃(2α′|b)
S̃(2α′ + µ|b)

n∏
k=1

e2πikb2 − e2πib(b−µ)

e2πikb2 − 1

×
∞∑
m=0

e4πimbα′
[

e2πibµ − 1

1− e2πibµe−2πimb2

]
e2πinmb2

m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
(B.12)
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Thus, the effect of the b-valued shift in µ on R(p, µ) is to multiply the whole expression by

the factor in the first line (in curly brackets) and to multiply each coefficient in the series

by the corresponding term (in square brackets). We now show that the multiplication by

Λ(p, µ) (B.9) leads to the same result. Let us rewrite Λ(p, µ) as

Λ(p, µ) =

{
1− e−2πinb2e−2πibµ

1− e2πib(2α′+µ)

1

1− e−2πibµ

}
×
(

1− e4πibα′e2πibµe2πinb2
)

(B.13)

Here the factor in curly brackets is the same as in equation (B.12). Let us denote

Rm = e2πib2nm
m∏
l=1

e2πilb2 − e2πibµ

e2πilb2 − 1
(B.14)

Then (
1− e4πibα′e2πibµe2πinb2

) ∞∑
m=0

e4πinbα′Rm

=

∞∑
m=0

e4πinbα′Rm
[
1− e2πibµe2πinb2R

m−1

Rm

]

=

∞∑
m=0

e4πinbα′Rm

[
1− e2πibµe2πinb2e−2πinb2 e2πimb2 − 1

e2πimb2 − e2πibµ

]

=

∞∑
m=0

e4πinbα′Rm
[

1− e2πibµ

1− e2πibµe−2πinb2

]
(B.15)

The factor in square brackets here is the same as in formula (B.12). Hence, the multiplica-

tion by Λ(p, µ) (B.9) is indeed the same as shifting µ by b in R(p, µ). Therefore function

R(p, µ) satisfies

eb∂µR(p, µ) = Λ(p, µ)R(p, µ) (B.16)

which according to our previous reasoning proves equality (B.1).

C Verifying difference equation with shift in µ

In this appendix we show that function

M̃αα′(µ) = e4πiαα′e2πi(α−α′)µe
iπ
2
µ(Q−µ) S̃(2α′ + µ|b)

S̃(2α′|b)

∞∑
n=0

e4πinbαMn(α′, µ) (C.1)

with coefficients Mn(α′, µ) defined as

Mn(α′, µ) =
n∏
k=1

sinπb(2α′ + µ+ (k − 1)b) sinπb(µ+ (k − 1)b)

sinπb(2α′ + kb) sinπkb2
(C.2)

solves equation (4.26), i.e.(
e
b
2
∂α − e−

b
2
∂α
)
M̃αα′(µ) = 2 sin 2πbαeb∂µM̃αα′(µ) (C.3)
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It is easy to compute the l.h.s.

(
e
b
2
∂α − e−

b
2
∂α
)
M̃αα′(µ) = 2ie4πiαα′e2πi(α−α′)µe

iπ
2
µ(Q−µ) S̃(2α′ + µ|b)

S̃(2α′|b)

×
∞∑
n=0

e4πinbαMn(α′, µ)
[
sinπb(2α′ + µ+ 2nb)

]
(C.4)

Next, with the help of relation (A.12) the r.h.s. can be written as

2 sin 2πbα eb∂µM̃αα′(µ) = ie−2πibα′
(

1− e2πib(2α′+µ)
)
e
iπ
2 e−iπbµ (C.5)

×e4πiαα′e2πi(α−α′)µe
iπ
2
µ(Q−µ) S̃(2α′ + µ|b)

S̃(2α′|b)

×
(

1− e4πibα
) ∞∑
n=0

e4πinbαMn(α′, µ)
sinπb(2α′ + µ+ nb) sinπb(µ+ nb)

sinπb(2α′ + µ) sinπbµ

Denote

N n(α′, µ) =Mn(α′, µ)
sinπb(2α′ + µ+ nb) sinπb(µ+ nb)

sinπb(2α′ + µ) sinπbµ
(C.6)

Then the last line in equation (C.5) is

(1− e4πibα)

∞∑
n=0

e4πinbαN n(α′, µ)

=
∞∑
n=0

e4πinbαN n(α′, µ)

[
1− N

n−1(α′, µ)

N n(α′, µ)

]
(C.7)

=

∞∑
n=0

e4πinbαN n(α′, µ)

[
1− sinπb(2α′ + nb) sinπnb2

sinπb(2α′ + µ+ nb) sinπb(µ+ nb)

]

=
∞∑
n=0

e4πinbαMn(α′, µ)
sinπb(2α′ + µ+ nb) sinπb(µ+ nb)− sinπb(2α′ + nb) sinπnb2

sinπb(2α′ + µ) sinπbµ

=
1

sinπb(2α′ + µ)

∞∑
n=0

e4πinbαMn(α′, µ)[sinπb(2α′ + µ+ 2nb) sinπbµ]

where in the last transformation the following trigonometric identity was used

sinπb(2α′ + µ+ nb) sinπb(µ+ nb)− sinπb(2α′ + nb) sinπnb2)

= sinπb(2α′ + µ+ 2nb) sinπbµ (C.8)

The sum in the last line of equation (C.7) is the same as in equation (C.4). Finally,

collecting the prefactors in equations (C.5), (C.7) and noting that

ie−2πibα′
(

1− e2πib(2α′+µ)
)
e
iπ
2 e−iπbµ

sinπb(2α′ + µ)
= 2i (C.9)

we obtain the desired result (C.3).
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