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1 Introduction

In [1] we presented a general method for constructing classical integrable deformations of

principal chiral and symmetric space σ-models. At the hamiltonian level, the classical in-

tegrability of these σ-models rests on the fact that the Poisson bracket of their Lax matrix

takes the general form in [2, 3]. An important related feature of these σ-models is the exis-

tence of another compatible Poisson bracket with respect to which the integrable structure

may be described [4]. The deformation is set up by starting from a linear combination

of these compatible Poisson brackets. The same procedure may also be applied to the

AdS5 × S5 superstring. Indeed, it is known that the Poisson bracket of the corresponding

Lax matrix has the right form [5, 6]. Furthermore, the second compatible Poisson bracket

was obtained in [7, 8].

The deformed action in the case of the AdS5 × S5 superstring was presented in the

letter [9] where its classical integrability and κ-symmetry invariance were also exhibited.

The action depends on a real parameter η ∈ ]−1, 1[ with η = 0 corresponding to the

undeformed Metsaev-Tseytlin action [10]. The first purpose of this article is to present a

derivation of this deformed action within the hamiltonian framework. In fact, the latter

is also the right framework for studying how the original psu(2, 2|4) symmetry is affected

by the deformation. The second purpose of this article is to show that this symmetry

gets replaced in the deformed theory by the classical analog of Uq(psu(2, 2|4)), where the

relation between q and η is found to be

q = exp

(
−2η

(
1− η2

)

(1 + η2)2

)
.

This relation, which may in fact already be inferred from the bosonic case [1], is in agree-

ment with the one found in [11]. We also indicate why the limits η → ±1 correspond, at

the hamiltonian level, to an undeformed semi-symmetric space σ-model. In particular, we

show that its target space is PSU∗(4|4)/(SO(4, 1) × SO(5)), the bosonic sector of which

corresponds to dS5 ×H5. This proves the conjecture made in [9].

We discuss the various freedoms and rigidities in the construction. The linear combi-

nation of the two Poisson brackets used in defining the deformation is characterised by a

so called deformed twist function. We argue that this function is essentially unique. This

rules out the possibility of obtaining a double deformation within this framework. On the

other hand, another key ingredient in the construction is a so called non-split R-matrix

on psu(2, 2|4). Let us recall that the modified classical Yang-Baxter equation for a linear

operator R on psu(2, 2|4) may be written as

[RX,RY ]−R([RX, Y ] + [X,RY ]) = ±[X,Y ],

for X,Y ∈ psu(2, 2|4). Solutions to this equation with the minus and plus sign are referred

to as split and non-split R-matrices respectively. In this article we shall only need the

latter. We discuss what happens when one considers other non-split R-matrices than the

one considered in [9].
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The plan of the article is the following. In section 2, we recall important properties

related to the hamiltonian integrability of the Green-Schwarz superstring on AdS5 × S5.

The deformation is then carried out at the hamiltonian level in section 3. The limits

η → ±1 are discussed in subsection 3.5. We show in section 4 how the original psu(2, 2|4)
symmetry becomes q-deformed. In section 5, we perform the inverse Legendre transform to

determine the deformed action, which was presented in the letter [9]. Some open questions

are mentioned in the conclusion. This article contains four appendices. Properties of

psu(2, 2|4) which are used have been collected in appendix A. Appendix B concerns non-

split R-matrices. The q-Poisson-Serre relations are proved in appendix C. Finally, the

discussion related to the choice of R is presented in appendix D. In particular, we give the

metrics and B-fields corresponding to three inequivalent choices of R-matrices in the case

of su(2, 2).

2 Green-Schwarz superstring on AdS5 × S5

We start this section by recalling properties of the hamiltonian integrability of the AdS5×S5

superstring that will be used. For more details concerning material presented in sub-

sections 2.1 and 2.2, see [6, 12, 13].

2.1 Poisson bracket and Hamiltonian

To fix notations, consider the real Lie superalgebra su(2, 2|4) and define the Lie algebra f as

its Grassmann envelope. We equip f with a Z4-automorphism Ω defined in equation (A.4).

The corresponding decomposition of f into the eigenspaces of Ω is f = f(0)⊕ f(1)⊕ f(2)⊕ f(3).

Define the Lie group F = exp f and the subgroup G = exp g associated with the Lie

subalgebra g = f(0). We refer the reader to appendix A for further details.

At the hamiltonian level, the supersymmetric σ-model on the semi-symmetric space

F/G may be described by a pair of fields A and Π taking values in the Lie algebra f. We

shall consider the case where the underlying space, parameterised by σ, is the entire real

line. The fields A and Π, which are assumed to decay sufficiently rapidly at infinity, satisfy

the following Poisson brackets{
A

(i)
1
(σ), A

(j)
2

(σ′)
}
= 0, (2.1a)

{
A

(i)
1
(σ),Π

(j)
2

(σ′)
}
=
[
C

(i 4−i)
12

, A
(i+j)
2

(σ)
]
δσσ′ − C(i 4−i)

12
δi+j,0 ∂σδσσ′ , (2.1b)

{
Π

(i)
1
(σ),Π

(j)
2

(σ′)
}
=
[
C

(i 4−i)
12

,Π
(i+j)
2

(σ)
]
δσσ′ . (2.1c)

Here C
(i 4−i)
12

is the projection onto f(i) ⊗ f(4−i) of the quadratic Casimir C12 defined by

equation (A.13) and δσσ′ = δ(σ−σ′) is the Dirac distribution. There are also the following

constraints:

C(0) = Π(0) ≃ 0 , (2.2a)

C(1) = 1

2
A(1) +Π(1) ≃ 0 , (2.2b)

C(3) = −1

2
A(3) +Π(3) ≃ 0 , (2.2c)

T± = str
(
A

(2)
± A

(2)
±

)
≃ 0 , (2.2d)
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where

A
(2)
± =

1

2

(
Π(2) ∓A(2)

)
. (2.3)

The constraint C(0) is associated with the SO(4, 1)×SO(5) gauge invariance and T± are the

Virasoro constraints. The fermionic constraints C(1) and C(3) are a mixture of first-class

and second-class constraints. Their first-class part,

K(1) = 2i
[
A

(2)
− , C(1)

]

+
, K(3) = 2i

[
A

(2)
+ , C(3)

]

+
, (2.4)

is related to the κ-symmetry of the superstring. We introduce the following quantities:

T+ = T+ − str

((
A(1) − 1

2
C(1)

)
C(3)

)
, T− = T− + str

((
A(3) +

1

2
C(3)

)
C(1)

)
. (2.5)

Then the dynamics is induced [6] by the Hamiltonian Hstring =
∫∞
−∞ dσhstring where

hstring = λ+T+ + λ−T− − str
(
k(3)K(1)

)
− str

(
k(1)K(3)

)
− str

((
A(0) + ℓ

)
Π(0)

)
. (2.6)

Here the variables λ± are related to the worldsheet metric hαβ as

λ± =
1± γ01
γ11

=
1± γ01
−γ00 , (2.7)

where γαβ =
√
−hhαβ .

2.2 Lax matrix and integrability

The AdS5×S5 superstring possesses an infinite number of hidden symmetries. In order to

identify them we rephrase the Poisson bracket (2.1) together with the dynamics induced by

the Hamiltonian (2.6) in terms of the so called Lax matrix. In the present case, the latter

is a linear combination of the fields (A,Π) and depends on an arbitrary complex variable

z called the spectral parameter, namely

L(z) = A(0) +
1

4

(
z−3 + 3z

)
A(1) +

1

2

(
z−2 + z2

)
A(2) +

1

4

(
3z−1 + z3

)
A(3)

+
1

2

(
1− z4

)
Π(0)+

1

2

(
z−3 − z

)
Π(1) +

1

2

(
z−2 − z2

)
Π(2)+

1

2

(
z−1 − z3

)
Π(3). (2.8)

Its first property is that the Poisson brackets (2.1) of the fields (A,Π) are satisfied if and

only if the Poisson bracket of the Lax matrix (2.8) with itself takes the form

{
L1(σ),L2(σ′)

}
=
[
R12,L1(σ)

]
δσσ′ −

[
R∗

12
,L2(σ)

]
δσσ′ +

(
R12 +R∗

12

)
∂σδσσ′ , (2.9)

where the notation is as follows. We use the usual shorthands L1 = L(z1)⊗1, L2 = 1⊗L(z2)
where the dependence on the pair of spectral parameters z1, z2 is implicit in the tensorial

index. Similarly, the R-matrix, which lives in both tensor factors, also depends on both

spectral parameters and is given explicitly by

R12(z1, z2) = 2

∑3
j=0 z

j
1z

4−j
2 C

(j 4−j)
12

z42 − z41
φstring(z2)

−1, φstring(z) =
4z4

(1− z4)2 . (2.10)
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We refer to φstring(z) as the twist function. The adjoint of the R-matrix in (2.9) is then

given simply by R∗
12
(z1, z2) = R21(z2, z1).

Secondly, the evolution of the fields A and Π under the string Hamiltonian Hstring is

equivalent to the following zero-curvature equation

[∂τ −M(z), ∂σ − L(z)] = 0 , (2.11)

governing the time evolution of the Lax matrix (2.8). Here ∂τ ≡ {·, Hstring} and we have

introduced

M(z) = A(0) − 1

4

(
z−3 − 3z

)
A(1) − 1

2

(
z−2 − z2

)
A(2) − 1

4

(
3z−1 − z3

)
A(3)

+
1

2

(
1−z4

)
Π(0) − 1

2

(
z−3+z

)
Π(1) − 1

2

(
z−2+z2

)
Π(2) − 1

2

(
z−1+z3

)
Π(3). (2.12)

The advantage of formulating the Poisson structure and dynamics of the superstring

σ-model in the Lax form (2.9) and (2.11) is that it naturally lends itself to the construction

of an infinite number of conserved charges in involution. Specifically, if we define the

monodromy matrix as

T (z) = P←−exp
∫ ∞

−∞
dσL(z) , (2.13)

then by the usual argument it follows directly from (2.11) and the decay of the fields at

infinity that T (z) is conserved, namely

∂τT (z) = 0 . (2.14)

Expanding the monodromy in z − 1 then yields an infinite number of non-local conserved

charges.

2.3 Group valued field

The group valued field g of the semi-symmetric space σ-model is defined in terms of A

through the relation A = −g−1∂σg. If we also define the field X = −gΠg−1 then the

Poisson brackets (2.1) can be deduced from

{
g1(σ), g2(σ

′)
}
= 0 , (2.15a)

{
X1(σ), g2(σ

′)
}
= C12 g2(σ)δσσ′ , (2.15b)

{
X1(σ), X2(σ

′)
}
=
[
C12, X2(σ)

]
δσσ′ . (2.15c)

An important observation for what follows is the fact that the fields g and X can be

obtained from the expansion of the Lax matrix (2.8) at the poles of the twist function

φstring(z). In order to see this, first note that the expansions at each of these four poles

are related to one another using the relation Ω (L(z)) = L(iz). It is therefore sufficient to

consider one of these poles, say z = 1. Now the expansion of the Lax matrix near z = 1 reads

L(z) = A− 2(z − 1)Π +O
(
(z − 1)2

)
. (2.16)
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Consider the gauge transformation of the Lax matrix Lg(z) = ∂σgg
−1+ gL(z)g−1 with the

group valued field g as parameter. Using the relation A = −g−1∂σg we observe that

Lg(z) = 2(z − 1)X +O
(
(z − 1)2

)
. (2.17)

In particular, the group valued field g is characterised by the vanishing of the gauge trans-

formed Lax matrix Lg(z) at the special point z = 1. Furthermore, the field X corresponds

to the subleading term in the expansion of Lg(z) at that point. In other words, we have

Lg(1) = 0 , X =
1

2

dLg
dz

(1) . (2.18)

2.4 Global symmetry algebra

We assume that the field g tends to constant values as σ → ±∞. Then by virtue of the

conservation of the monodromy matrix (2.14) it follows that its gauge transformation T g(z)

by the field g is also conserved. Using equation (2.17), the first non-trivial terms in the

expansion of the gauge transformed monodromy near z = 1 read

T g(z)=g(∞)T (z)g(−∞)−1=P←−exp
∫ ∞

−∞
dσLg(z)=1+2(z−1)

∫ ∞

−∞
dσX+O

(
(z−1)2

)
. (2.19)

Since T g(z) is conserved for all z it follows that
∫∞
−∞ dσX is conserved. It then follows

using (2.15c) that its Poisson bracket algebra takes the form
{∫ ∞

−∞
dσX1,

∫ ∞

−∞
dσX2

}
=

[
C12,

∫ ∞

−∞
dσX2

]
.

This conserved charge therefore generates the symmetry under left action by the Lie

group F .

3 Defining the deformation

We shall proceed to deform the AdS5 × S5 superstring σ-model by following the strategy

developed in [1] for deforming symmetric space σ-models. Thus, in order to preserve

integrability throughout the deformation, we shall not modify the Lax matrix (2.8). We

shall also not modify the dynamics of the fields A and Π. In other words, the zero curvature

equation (2.11) will remain the same. All we will deform is the Poisson bracket (2.9). And in

order to do so, we shall simply deform the twist function appearing in the R-matrix (2.10),

replacing φstring by another function φǫ in such a way that φǫ → φstring in the limit ǫ→ 0.

It will then be a matter of suitably deforming the relations (2.18) for defining the fields g

and X of the deformed theory.

3.1 The twist function

Consider, therefore, the Poisson bracket (2.9) with the R-matrix defined using a more

general twist function, namely

R12(z1, z2) = 2

∑3
j=0 z

j
1z

4−j
2 C

(j 4−j)
12

z42 − z41
φ(z2)

−1. (3.1)

– 6 –
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With φ(z) set to 1 this is simply the kernel of the standard R-matrix on the twisted

loop algebra fΩ((z)) with respect to the trigonometric inner product. More generally, the

expression (3.1) is the kernel of the same R-matrix but with respect to a twisted inner

product (see for instance [12]). In order for the latter to be non-degenerate on fΩ((z)), the

twist function should satisfy φ(iz) = φ(z). On the other hand, it is well known [14] that the

Poisson bracket (2.9) with R-matrix (3.1) and twist function of the form φ(z) = zk leads to

a well defined Poisson bracket for the fields A and Π only if −4 ≤ k ≤ 4. Hence there are

only three independent choices for the inverse of the twist function φ(z)−1 in (3.1), namely

z4, 1 and z−4. Moreover, the corresponding brackets are all compatible [14]. That is, any

linear combination of these also defines a valid Poisson bracket through (2.9) and (3.1).

Note that φstring(z)
−1 = 1

16z
4 − 1

8 + 1
16z

−4 is such a linear combination.

The twist function φgFR(z) = 1 was shown in [8] to correspond to a certain gener-

alisation for the superstring of the Faddeev-Reshetikhin Poisson bracket [15]. To deform

the superstring σ-model we will use the R-matrix (3.1) with the twist function φ = φǫ,

depending on a real parameter ǫ, defined by

φǫ(z)
−1 = φstring(z)

−1 + ǫ2φgFR(z)
−1. (3.2)

We shall also denote the corresponding Poisson bracket as {·, ·}ǫ. The undeformed case

is recovered in the limit ǫ → 0. Recall from (2.18) that in this limit the poles of the

twist function φstring play an important role in extracting both the group valued field and

the non-local conserved charges of the superstring σ-model. We shall extend this key

observation to the deformed case in order to extract the group valued field g and the non-

local charges of the deformed theory from the poles of the deformed twist function φǫ. A

natural parametrisation for these poles is obtained by introducing θ ∈
[
−π

4 ,
π
4

]
as

ǫ = sin(2θ). (3.3)

Note that with the chosen range of values of θ, the original deformation parameter lies

in the range ǫ ∈ [−1, 1]. The reason for this apparent restriction is that, as we shall

see, the points ǫ = ±1 will play a special role in the deformation. In terms of the new

parametrisation (3.3), the deformed twist function defined by (3.2) explicitly reads

φǫ(z) =
4z4

∏3
k=0 (z − ikeiθ) (z − ike−iθ)

. (3.4)

Therefore the poles of this twist function lie at e±iθ and their images under multiplication

by i, as depicted in figure 1.

Before proceeding to extract the fields g,X from the behaviour of the Lax matrix at

these points, let us comment on the possibility of further deforming the twist function (3.4).

One could try to introduce a second real deformation parameter r by considering the

twist function

φr,θ(z) =
4z4

∏3
k=0(z − ikreiθ)(z − ikre−iθ)

. (3.5)

In fact, this is the most general real deformation of φǫ(z), since we must require that the

set of eight simple poles of the twist function be invariant under multiplication by i as well

– 7 –
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eiθ

−eiθ

1−1

eiπ/4

e−iπ/4

e−iθ

−e−iθ

ei(
π

2
−θ)

e3iπ/4

e−3iπ/4

i

−i

Figure 1. The eight poles of the deformed twist function φǫ(z) for ǫ ∈ [0, 1].

as under complex conjugation. Let us denote the corresponding Poisson bracket, defined in

the same way as (2.9), by {·, ·}r,θ. It is natural to ask what linear combination of Poisson

brackets gives rise to it. For this we simply need to invert (3.5) which yields

φr,θ(z)
−1 = φstring(z)

−1 +
1

2

(
1− r4 cos(4θ)

)
φgFR(z)

−1 +
1

4

(
r8 − 1

)
z−4.

The twist function (3.5) is thus a double deformation of φstring(z)
−1 by φgFR(z)

−1 = 1 and

z−4. However, note that we have the relation φr,θ(z) = r−4φǫ(z/r). But a rescaling of the

spectral parameter such as z 7→ z/r simply corresponds to a linear redefinition of the fields

A(i) and Π(i). Therefore the Poisson bracket {·, ·}r,θ can be obtained from the Poisson

bracket {·, ·}ǫ, associated with the twist (3.2), by this linear redefinition of the fields and

an overall rescaling by r4. We thus conclude that any further deformation of the twist

function (3.4) will not lead to a more general deformed model.

3.2 The Hamiltonian

Recall that we wish to keep the dynamics of the fields A and Π intact so as to preserve

integrability. In other words we want the dynamics of the Lax matrix (2.8) to still take

the form of the zero curvature equation (2.11). We actually find that for any functional f

of the phase space variables A and Π,

{Hstring, f}ǫ ≃ {Hstring, f} ,

when taking into account the constraints (2.2). In other words, this equality holds up to

terms proportional to the constraints.

3.3 The group valued field

In the superstring σ-model, the fields g and X can be obtained from the behaviour of the

Lax matrix at 1 by means of the relation (2.18). The significance of the point z = 1 is

– 8 –
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that it corresponds to a double pole of the twist function φstring(z). Having introduced a

deformed twist function φǫ(z), our next goal is to extract new fields g and X in a similar

fashion to (2.18) but from the poles of φǫ(z). However, as the deformation is turned on,

the double pole at z = 1 splits into two single poles at z = eiθ and z = e−iθ. We should

therefore consider the behaviour of the Lax matrix at both these points (see figure 1).

Definition of g. We define the group valued field g of the deformed theory by generalising

the approach in [1] to the case at hand. Since we want to describe a deformation of the group

valued field of the superstring σ-model, which takes values in F = exp f, it is natural to

require our field g also to live in F for any value of the deformation parameter ǫ. We define

∂σgg
−1 to be the component along f relative to the decomposition (B.3) of −gL

(
eiθ
)
g−1.

In other words, we define g ∈ F as the parameter of a gauge transformation such that the

gauge transformed Lax matrix

Lg
(
eiθ
)
= ∂σgg

−1 + gL
(
eiθ
)
g−1

belongs to h0⊕n ⊂ b. Now the fields A(i) and Π(i) of the model take values in f which means

that A(i) = τ
(
A(i)

)
, Π(i) = τ

(
Π(i)

)
with τ defined by (A.14). By virtue of these reality

conditions and the definition (2.8) of the Lax matrix in terms of these fields we obtain

τ (L(z)) = L(z̄) . (3.6)

This, in particular, implies Lg
(
e−iθ

)
= τ

(
Lg
(
eiθ
))

so that Lg
(
e−iθ

)
belongs to h0⊕ τ(n) ⊂

τ(b). Thus the field g is characterised by the single property

Lg
(
eiθ
)
∈ h0 ⊕ n . (3.7)

A nice feature of this definition is that in the limit ǫ→ 0, or equivalently θ → 0, where the

points eiθ and e−iθ both tend to 1, we recover the defining relation Lg(1) = 0 of the F -valued

field g of the superstring σ-model. Indeed, in this limit we find that Lg(1) = τ (Lg(1))
from which it follows that Lg(1) ∈ b ∩ τ(b) = h. In fact Lg(1) ∈ h0 ⊂ h which means that

Lg(1) = −τ (Lg(1)). The only possibility is therefore that Lg(1) = 0.

Definition of X. We may also define the f-valued field X of the deformed theory by

generalising the analysis of [1]. Specifically, we set

X =
i

2γ

(
Lg
(
eiθ
)
− τ

(
Lg
(
eiθ
)))

, (3.8)

where the real normalisation constant γ will be fixed later. The field X then takes values

in f because γ is taken to be real and τ is an anti-linear involution, which implies that

τ(X) = X. We will come back to the limit ǫ → 0 of (3.8) after fixing the value of γ as a

function of ǫ.

Applying the linear operator (B.4) to (3.8) we find

RX =
1

2γ

(
Lg
(
eiθ
)
+ τ

(
Lg
(
eiθ
)))

. (3.9)

Combining (3.8) with (3.9) and using the fact that Lg
(
e−iθ

)
= τ

(
Lg
(
eiθ
))

we therefore

arrive at

Lg
(
e±iθ

)
= γ(R∓ i)X . (3.10)
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3.4 Lifting to (g,X)

Recall that in the superstring σ-model, the field g describing the embedding of the string

in target space and the field X are related to the fields A and Π entering the definition of

the Lax matrix as

A = −g−1∂σg , Π = −g−1Xg . (3.11)

Further projecting these relations onto the various graded components of f yields equations

for the fields A(i) and Π(i). As already emphasised at the beginning of this section, in order

to ensure that integrability is preserved throughout the deformation, we have deformed

neither the Lax matrix nor the actual dynamics of the fields A(i) and Π(i). Now that we

have candidates for the deformation of the fields g and X, what we need is to relate them

to the fields A(i) and Π(i). This will, in particular, enable us to obtain the dynamics of g in

the deformed theory. In other words, we seek a deformation of the relations (3.11). This

can be once more extracted from the behaviour of the Lax matrix at the pair of points e±iθ.

Using the relation (3.10), we can express the Lax matrix at e±iθ as follows

L
(
e±iθ

)
= −g−1∂σg + γ g−1 ((R∓ i)X) g . (3.12)

On the other hand, the left hand side can be evaluated directly in terms of the fields A(i)

and Π(i) from the definition (2.8) of the Lax matrix. Therefore (3.12) constitutes a set

of two equations relating (g,X) to (A,Π), each of which can be projected onto the four

different gradings of f. This yields a linear system of eight equations in the eight unknowns

A(i), Π(i) for i = 0, . . . , 3. Solving this system we finally arrive at the desired deformation

of equations (3.11), namely

A(0) = P0

(
−g−1∂σg + γ g−1

((
R+

2η

1− η2
)
X

)
g

)
, (3.13a)

A(1) =

√
1 + η2

1− η2 P1

(
−g−1∂σg + γ g−1 ((R− η)X) g

)
, (3.13b)

A(2) =
1 + η2

1− η2P2

(
−g−1∂σg + γ g−1(RX)g

)
, (3.13c)

A(3) =

√
1 + η2

1− η2 P3

(
−g−1∂σg + γ g−1 ((R+ η)X) g

)
, (3.13d)

Π(0) = −γ
(
1 + η2

)2

2η(1− η2) P0

(
g−1Xg

)
, (3.13e)

Π(1) = η2
√
1 + η2

2(1− η2)P1

(
−g−1∂σg + γ g−1

((
R− η−3

)
X
)
g
)
, (3.13f)

Π(2) = −γ 1 + η2

2η
P2(g

−1Xg), (3.13g)

Π(3) = −η2
√

1 + η2

2(1− η2)P3

(
−g−1∂σg + γ g−1

((
R+ η−3

)
X
)
g
)
. (3.13h)

In these expressions, Pi denote the projectors onto the subspaces f(i) of f. Here we have

introduced a new parameter η related to the deformation parameter ǫ as

η = − ǫ

1 +
√
1− ǫ2

. (3.14)
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Recall that the variable γ was introduced in (3.8) as an overall factor in the definition of X.

Remarkably, it turns out that if we choose it to depend on the deformation parameter

as follows

γ = −ǫ
√
1− ǫ2 = 2η

(
1− η2

)

(1 + η2)2
, (3.15)

then the deformed Poisson brackets between the fields A(i) and Π(i) follow from the canon-

ical Poisson brackets between g and X identical to those in (2.15). Furthermore, with

the dependence of γ now fixed by (3.15), we can proceed to determine the limit ǫ → 0 of

the definition (3.8). And indeed we find that it correctly reduces to the definition in the

original superstring σ-model, namely the second relation in (2.18).

3.5 Behaviour at ǫ = ±1

To close this section, we consider the deformed model for the values ǫ = ±1. The situation
here is similar to the one discussed in the bosonic case [1]. Specifically, we find that these

values of ǫ correspond to an undeformed semi-symmetric space σ-model. A first indication

of this behaviour can be seen from figure 1: for ǫ = ±1, the deformed twist function

once again acquires four double poles at z = e±i
π
4 and z = e±3iπ

4 . Furthermore, in the

neighbourhood of the pole z = ei
π
4 , the Lax matrix (2.8) has the behaviour

L(z) = A(0) +
1

2
ei

π
4A(1) − 1

2
e3i

π
4A(3) +Π(0) − eiπ4 Π(1) − iΠ(2) − e3iπ4 Π(3) (3.16)

+
(
z−eiπ4

)(3

2
A(1)+2ei

π
4A(2)+

3

2
iA(3)−2e3iπ4 Π(0)+Π(1)−iΠ(3)

)
+O

((
z−eiπ4

)2)
.

In order to compare this situation to the undeformed one at ǫ = 0, we introduce ẑ = e−i
π
4 z.

The pole z = ei
π
4 then corresponds to ẑ = 1 and the expression (3.16) takes the same form

as in equation (2.16),

Â− 2(ẑ − 1)Π̂ +O
(
(ẑ − 1)2

)
(3.17)

provided we define

Â = A(0) +Π(0) + ei
π
4

(
1

2
A(1) −Π(1)

)
− iΠ(2) + e−i

π
4

(
1

2
A(3) +Π(3)

)
, (3.18a)

Π̂ = −Π(0) − 1

2
ei

π
4

(
3

2
A(1) +Π(1)

)
− iA(2) +

1

2
e−i

π
4

(
3

2
A(3) −Π(3)

)
. (3.18b)

One can also check that the Poisson algebra satisfied by the fields Â and Π̂ corresponds to

the undeformed one, given in (2.1). Furthermore, the constraints (2.2) take the same form

when expressed in terms of
(
Â, Π̂

)
, namely

C(0) = Π(0) = −Π̂(0),

C(1) = 1

2
A(1) +Π(1) = −e−iπ4

(
1

2
Â(1) + Π̂(1)

)
,

C(3) = −1

2
A(3) +Π(3) = −eiπ4

(
−1

2
Â(3) + Π̂(3)

)
,

T± = str
(
A

(2)
± A

(2)
±

)
= − str

(
Â

(2)
± Â

(2)
±

)
.
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However, the fields Â and Π̂ satisfy different reality conditions from the fields A and Π.

Recall that the latter belong to f = (Gr ⊗ su(2, 2|4))[0], where an element M in su(2, 2|4)
satisfies the reality condition τ(M) = M with τ the antilinear map defined by (A.14).

Starting from an element M in su(2, 2|4), formulas (3.18) suggest to consider the following

element of sl(4|4),
M̂ =M (0) + ei

π
4M (1) + ei

π
2M (2) + ei

3π
4 M (3). (3.19)

Using the reality conditions for M and the anti-linearity of τ , one finds that

τ
(
M̂
)
=M (0) + e−i

π
4M (1) + e−i

π
2M (2) + e−i

3π
4 M (3),

= M̂ (0) + e−i
π
2 M̂ (1) + e−iπM̂ (2) + e−i

3π
2 M̂ (3) = Ω−1

(
M̂
)
.

The last equality is obtained by using the property (A.5) of the automorphism Ω defining

the Z4-grading of su(2, 2|4). Thus, the reality condition for the element (3.19) may be

written as

Ω ◦ τ
(
M̂
)
= M̂. (3.20)

One can check that (Ω ◦ τ)2 is equal to the identity. Working in the fundamental represen-

tation of sl(4|4), the reality condition (3.20) may be written more explicitly as

K̂−1M̂∗K̂ = M̂ , K̂ = diag(k,−k,−ik, ik) , (3.21)

where k is defined in (A.17). The matrix K̂ is antisymmetric and non-singular. Up to

conjugation, equation (3.21) means that the matrix M̂ belongs to the real superalgebra

su∗(4|4) as defined in [16]. In particular, the fields Â and Π̂ belong to the real form

(Gr⊗su∗(4|4))[0] of the Lie algebra fC. The bosonic subalgebra of su∗(4|4), after projection,
is su∗(4)⊕ su∗(4) ≡ so(1, 5)⊕ so(1, 5). Notice that the grade zero part, and thus the gauge

algebra, is not modified.

We thus find that at ǫ = ±1, we obtain again an undeformed σ-model on the semi-

symmetric space PSU∗(4|4)/(SO(4, 1)×SO(5)) with bosonic sector corresponding to dS5×
H5 as announced in [9].

4 q-deformed symmetry algebra

Recall from section 2.4 that charges generating the F symmetry of the undeformed su-

perstring σ-model on F/G can be extracted from the expansion of the gauge transformed

monodromy matrix at the pole z = 1 of the undeformed twist function. Since the mon-

odromy matrix is still conserved in the deformed theory by virtue of the zero curvature

equation (2.11) not being modified, it makes sense to try to extract the global charges of

the deformed model in a similar way.

Specifically, we consider the gauge transformed monodromy matrix T g(z) at the poles

z = e±iθ of the deformed twist function

T g
(
e±iθ

)
= g(∞)T

(
e±iθ

)
g(−∞)−1 = P←−exp

[∫ ∞

−∞
dσLg

(
e±iθ

)]
. (4.1)
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We note here the first difference with the behaviour of T g(z) near z = 1 in (2.19): since the

gauge transformed Lax matrix Lg(z) does not vanish at z = e±iθ, by (3.10), the expansion

of T g(z) near these points is already non-trivial at leading order.

In order to evaluate the right hand side of (4.1) further we recall from (3.10) and (B.6)

that the expressions Lg
(
eiθ
)
and Lg(e−iθ) respectively take values in the subalgebras h0⊕n

and h0 ⊕ τ(n). We may therefore write them as follows

Lg
(
eiθ
)
= γ

7∑

µ=1

hµH
µ + γ

∑

α>0

eαE
α, Lg

(
e−iθ

)
= −γ

7∑

µ=1

h̃µH
µ − γ

∑

α>0

e−αE
−α,

for some Gr-valued fields hµ(σ), h̃µ(σ) and GrC-valued fields e±α(σ) such that |hµ(σ)| =
|h̃µ(σ)| = 0 and |e±α(σ)| = |Eα|. By using the reality condition Lg

(
e−iθ

)
= τ

(
Lg
(
eiθ
))

we

then find that these fields are related as (see appendix A)

h̃µ = h∗µ = hµ, e∗ǫa−ǫb = (−1)s(a)+s(b)i|Eab|eǫb−ǫa , (4.2)

for 1 ≤ µ ≤ 7 and all positive roots ǫa − ǫb ∈ Φ+. Following the same reasoning as in the

bosonic case [1], the Cartan direction in (4.1) may be factored out as

T g
(
eiθ
)
= exp


γ

∫ ∞

−∞
dσ

7∑

µ=1

hµ(σ)H
µ


P←−exp

[
γ
∑

α>0

∫ ∞

−∞
dσ JEα (σ)E

α

]
, (4.3a)

T g
(
e−iθ

)
= P←−exp

[
−γ
∑

α>0

∫ ∞

−∞
dσ JE−α(σ)E

−α

]
exp


−γ

∫ ∞

−∞
dσ

7∑

µ=1

hµ(σ)H
µ


 . (4.3b)

The notation in these expressions is as follows. For any positive root α > 0 we define

the fields

JHα (σ) =
7∑

µ=1

α(Hµ)hµ(σ), JE±α(σ) = e±α(σ)e
−γχα(σ)eγχα(∓∞). (4.4)

Moreover, the function χα for α > 0 is explicitly defined as

χα(σ) =
1

2

∫ ∞

−∞
dσ′ǫσσ′JHα (σ

′) , (4.5)

where ǫσσ′ = sgn(σ − σ′), sgn being the sign function, which satisfies ∂σǫσσ′ = 2δσσ′ . By

construction this satisfies ∂σχα(σ) = JHα (σ) and takes the following values at infinity

χα(±∞) = ±1

2

∫ ∞

−∞
dσ′JHα (σ

′) . (4.6)

As in the case of bosonic σ-models [1], it can be deduced from the conservation of T g(z)

and its explicit value (4.3) at the points z = e±iθ that the charges
∫ ∞

−∞
dσ JHαµ

(σ) ,

∫ ∞

−∞
dσ JE±αµ

(σ) (4.7)

are separately conserved for each simple root αi. Note also that the conservation of the

former would also follow from the conservation of
∫∞
−∞ dσ hµ(σ) using the first relation

in (4.4) between the densities JHαµ
(σ) and hµ(σ).
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Deformed symmetry algebra. We now wish to derive the Poisson algebra of the

charges (4.7). As in the undeformed case, this can be obtained from the Poisson

bracket (2.15c) of the field X with itself since the charge densities (4.4) are entirely defined

in terms of the components of the field X. Indeed, by definition (3.8) of the field X, it

may be written more explicitly as

X =
7∑

µ=1

ihµH
µ +

i

2

∑

α>0

(
eαE

α + e−αE
−α
)
. (4.8)

Using the expression (A.13) for the tensor Casimir we may write the Poisson

bracket (2.15c) as

{
X1(σ), X2(σ

′)
}
ǫ
=

(
7∑

µ,ν=1

YµνH
µ ⊗ [Hν , X(σ)]

+
∑

α>0

(
(−1)|Eα|Eα ⊗ [E−α, X(σ)] + E−α ⊗ [Eα, X(σ)]

))
δσσ′ .

By comparing coefficients of the various basis elements of sl(4|4) in the first tensor factor

on both sides we find

i
{
hµ(σ), X(σ′)

}
ǫ
=

7∑

ν=1

Yµν [H
ν , X(σ)] δσσ′ , (4.9a)

i
{
eα(σ), X(σ′)

}
ǫ
= 2

[
E−α, X(σ)

]
δσσ′ . (4.9b)

Multiplying the first of these equations by the symmetrised Cartan matrix and using the

relation (A.11) along with the fact that I =
∑7

ν=1 xνH
ν yields

i
7∑

ρ=1

Bµρ
{
hρ(σ), X(σ′)

}
ǫ
= [Hµ, X(σ)]δσσ′ − ω−1αµ

(
H8
)
[I,X(σ)]δσσ′ .

However, since the generator I is central in sl(4|4), the second term on the right hand side

vanishes. Using the definition (4.4) we are left with

i
{
JHαµ

(σ), X(σ′)
}

ǫ
= [Hµ, X(σ)]δσσ′ .

Consider the component of this equation along the Cartan subalgebra. Since the right

hand side involves only non-Cartan generators, it follows that

i
{
JHαµ

(σ), JHαν
(σ′)

}

ǫ
= 0 , (4.10)

for any 1 ≤ µ, ν ≤ 7. Likewise, by comparing the coefficient of E±αν on both sides of this

equation we obtain

i
{
JHαµ

(σ), e±αν (σ
′)
}

ǫ
= ±Bµν e±αν (σ)δσσ′ . (4.11)

Using the definition (4.5) of χα(σ), this in particular implies the following

i
{
e−γχαµ (σ), e±αν (σ

′)
}

ǫ
= ∓1

2
γBµν e±αν (σ

′)e−γχαµ (σ)ǫσσ′ . (4.12)
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Furthermore, specialising (4.9b) to the case of a simple root α = αµ, and comparing the

coefficient of E−αν on both sides we have

i
{
eαµ(σ), e−αν (σ

′)
}
ǫ
= 4 ∂σχαµ(σ)δµνδσσ′ .

Putting the above together we find that the Poisson brackets between the charge densities

JHαµ
(σ) and JE±αµ

(σ) take the form

i
{
JEαµ

(σ), JE−αν
(σ′)

}

ǫ
= −2γ−1∂σ

(
e−2γχαµ (σ)

)
δµνδσσ′ , (4.13a)

i
{
JHαµ

(σ), JE±αν
(σ′)

}

ǫ
= ±Bµν JE±αν

(σ)δσσ′ . (4.13b)

We define the integrated charges as

QHαµ
=

∫ ∞

−∞
dσJHαµ

(σ), QE±αµ
=

(
γ

4 sinh γ

) 1

2
∫ ∞

−∞
dσJE±αµ

(σ), (4.14)

where the normalisation in QE±αµ
was introduced for convenience as in the bosonic case [1].

With these definitions, the collection of Poisson brackets (4.10) and (4.13) for the densities

now implies

i
{
QHαµ

, QHαν

}

ǫ
= 0, (4.15a)

i
{
QEαµ

, QE−αν

}

ǫ
= δµν

qQ
H
αµ − q−QH

αµ

q − q−1
, (4.15b)

i
{
QHαµ

, QE±αν

}

ǫ
= ±Bµν QE±αν

, (4.15c)

where we have made use of the values (4.6). The new deformation parameter q used here

is related to γ, defined in (3.15), as follows

q = e−γ = exp
(
ǫ
√
1− ǫ2

)
= exp

(
−2η

(
1− η2

)

(1 + η2)2

)
. (4.16)

Charges associated with non simple roots. In order to construct conserved charges

QEα associated with any positive root α ∈ Φ+, we make a choice of normal ordering on

the set of positive roots Φ+ of psl(4|4) (see for instance [17–19]). The latter is defined

as a partial ordering on Φ+ with the property that if α < β and α + β is a root, then

α < α+ β < β. Using such an ordering, the remaining path ordered exponential appear-

ing on the right hand side of (4.3a) can be expressed in terms of simple exponentials of

individual generators Eα. Specifically, we have

P←−exp
[
γ
∑

α>0

∫ ∞

−∞
dσ JEα (σ)E

α

]
=
∏<

α>0

exp

(
γ

∫ ∞

−∞
dσQE

α (σ)E
α

)
(4.17)

where QE
α (σ) are GrC-valued fields whose parities are the ones of Eα. In particular, given

any simple root αν we haveQ
E
αν
(σ) = JEαν

(σ). The ordering of the product on the right hand
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side of (4.17) is determined by the normal ordering of the corresponding roots. Although

the latter is only a partial ordering on Φ+, there is no ambiguity in the above product

since generators Eα and Eβ commute whenever the corresponding roots α and β are not

ordered. Moreover, equation (4.17) implies that for any pair of simple roots αµ < αν such

that αµ + αν is a root, we have

QE
αν+αµ

(σ) = JEαν+αµ
(σ)− γ Nαµ,ανJ

E
αν
(σ)

∫ σ

−∞
dσ′JEαµ

(σ′), (4.18)

with Nαµ,αν defined by (C.4). In this case, we define the corresponding charge by

QEαν+αµ
=

γ

4 sinh γ

∫ ∞

−∞
dσQE

αν+αµ
(σ). (4.19)

q-Poisson-Serre relations. In this paragraph, we list the q-Poisson-Serre relations.

They are proved in appendix C. To write these relations, we first define the q-Poisson

bracket of any charges QEα and QEβ associated with positive roots α and β. It is simply

given by

(
ad{·,·}q ǫ

QEα
) (
QEβ
)
=
{
QEα , Q

E
β

}
q ǫ

=
{
QEα , Q

E
β

}
ǫ
− iγ (α, β)QEαQEβ . (4.20)

The standard q-Poisson-Serre relations then take the form (see for instance [17]):
{
QEαν

, QEαµ

}

ǫ
= 0 when (αν , αµ) = 0, (4.21a)

{
QEαν

,
{
QEαν

, QEαµ

}

q ǫ

}

q ǫ

= 0 when αν < αµ and (αν , αµ) 6= 0, (4.21b)

{{
QEαµ

, QEαν

}

q ǫ
, QEαν

}

q ǫ

= 0 when αν > αµ and (αν , αµ) 6= 0. (4.21c)

In the first relation (4.21a), note that for such a pair of simple roots, the corresponding

q-Poisson bracket (4.20) is equal to the ordinary Poisson bracket. Let us also point out

that this situation clearly holds when αν = αµ and Eαµ is odd.

These relations are written independently of the choice of Dynkin diagram. We can

however be more precise, even without specialising to a particular Dynkin diagram. Indeed,

for ν 6= µ, we only have (αν , αµ) 6= 0 when ν = µ± 1. The proof given in appendix C is for

ν = µ+ 1 with the ordering αµ < αµ + αµ+1 < αµ+1. Let us note that we will also prove

the relation {
QEαµ

, QEαµ+1

}

q ǫ
= −2iNαµ+1,αµ(αµ+1, αµ)Q

E
αµ+αµ+1

. (4.22)

For completeness, non-standard q-Poisson-Serre relations should also be proved. For

simplicity, this will be done in the case of the standard Dynkin diagram. In this case,

there is in fact just one non-standard relation. It is associated with the part of the Dynkin

diagram shown on figure 2. With these conventions, the relation is [17, 20, 21]
{{

QEαµ
, QEαµ−1

}

q ǫ
,
{
QEαµ

, QEαµ+1

}

q ǫ

}

ǫ

= 0 . (4.23)

All these relations are proved in appendix C.
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Figure 2. Part of the Dynkin diagram relevant for the non-standard q-Poisson-Serre relation.

To conclude this section, we have shown that the psu(2, 2|4) symmetry of the AdS5×S5

superstring is replaced in the deformed theory by the classical analog of the quantum

group corresponding to this Lie superalgebra. This is a generalisation of the situation first

encountered for the case of the squashed 3-sphere σ-model in [22, 23]. The relation (4.16)

between q and η is in agreement with the one found in [11]. More precisely, in [11],

q = exp(−ν/g) with ν = 2η/
(
1 + η2

)
. The value of g should then be fixed by comparing

the different prefactors in the Lagrangian (2.1) of [11] and in the action (5.16) below.

This comparison leads to (4.16). Finally, it is expected that the full symmetry algebra,

including higher conserved charges, corresponds to the classical analog of Uq

(
̂psu(2, 2|4)

)
.

This would again generalise the situation in the squashed sphere σ-model [24].

5 The deformed superstring action

So far we have constructed a deformation in the hamiltonian framework. We would now

like to derive the corresponding action. To do so, we need to perform the inverse Legendre

transform in the presence of constraints. The fields λ+ and λ− will be treated as spectator

fields in the inverse Legendre transform. The starting point is to consider the quantity

(see for instance [25])
∫
dσdτ

[
− str

(
g−1∂τgg

−1Xg
)
−

(
λ+T++λ−T− − str

(
µ(3)C(1)

)
− str

(
µ(1)C(3)

)
− str

((
A(0)+ℓ

)
Π(0)

))]
(5.1)

as a functional of g, X, µ(1), µ(3) and ℓ. Performing the Legendre transform then corre-

sponds to extremizing (5.1) with respect to all the fields except g. Specifically, varying (5.1)

with respect to the Lagrange multipliers ℓ, µ(3) and µ(1) produces the bosonic constraint

C(0) = −
(
g−1Xg

)(0) ≃ 0, and the fermionic constraints C(1) ≃ 0 and C(3) ≃ 0, where

C(1) = − 1√
1 + η2

(
(
g−1Xg

)(1) − η
(
g−1RXg

)(1)
+

(
1 + η2

)2

2 (1− η2)
(
g−1∂σg

)(1)
)
, (5.2a)

C(3) = − 1√
1 + η2

(
(
g−1Xg

)(3)
+ η

(
g−1RXg

)(3) −
(
1 + η2

)2

2 (1− η2)
(
g−1∂σg

)(3)
)
. (5.2b)

Here we have used the equations (2.2) and the results (3.13). The equation obtained by

taking the variation with respect to X is analysed in the next paragraph. We then get the

deformed action Sǫ[g] by plugging all these equations in (5.1).

5.1 Relating X to g−1∂τg

Using all the above, and setting the constraints C(0), C(1) and C(3) to zero, the non-zero

grades i = 1, 2, 3 of the equation obtained by extremizing (5.1) with respect to X can be
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shown to take the form

Diiγ
0α
(
g−1∂αg

)(i)
+R(i)

g

(
D22

(
g−1∂σg

)(2))

=
(
g−1Xg

)(i) −R(i)
g R

(2)
g

(
g−1Xg

)
+R(i)

g

(
g−1Xg

)(1) −R(i)
g

(
g−1Xg

)(3)

− D11γ
00

√
1 + η2

(
R(i)
g µ

(1) −R(i)
g µ

(3) + µ(i)
)
, (5.3)

where for notational simplicity we have introduced µ(2) = 0. The rest of the notation is

defined as follows. We have introduced the diagonal matrix

D =

(
1 + η2

)2

2 (1− η2) diag
(
1,

2

1− η2 , 1
)
,

and the following shorthands

R(1)
g = −ηP1 ◦Rg , R(2)

g = − 2η

1− η2P2 ◦Rg , R(3)
g = −ηP3 ◦Rg , (5.4)

where

Rg = Ad g−1 ◦R ◦Ad g .
As recalled above, to perform the inverse Legendre transform, the last ingredient we need

is an expression relating X to the temporal derivative g−1∂τg of the group valued field g.

This can be extracted from the field equations (5.3) along with the constraints C(1) and

C(3) as we now explain. Consider the field equation (5.3) for i = 2, namely

D22γ
0α
(
g−1∂αg

)(2)
+R(2)

g

(
D22

(
g−1∂σg

)(2))

=
(
g−1Xg

)(2)−R(2)
g

(
R(2)
g

(
g−1Xg

)
−
(
g−1Xg

)(1)
+
(
g−1Xg

)(3)
1+

D11γ
00

√
1+η2

(
µ(1)−µ(3)

))
,

and compare this to the difference between the field equations in (5.3) for i = 1 and i = 3,

which can be written as

D11γ
0α
(
g−1∂αg

)(1) −D33γ
0α
(
g−1∂αg

)(3) −D22

(
g−1∂σg

)(2)
+ Eg

(
D22

(
g−1∂σg

)(2))

= R(2)
g

(
g−1Xg

)
−Eg

(
R(2)
g

(
g−1Xg

)
−
(
g−1Xg

)(1)
+
(
g−1Xg

)(3)
+
D11γ

00

√
1 + η2

(
µ(1)−µ(3)

))
,

where we have defined Eg = 1+R
(1)
g −R(3)

g . In view of the similarity of some of the terms

in the above two equations, it is natural to introduce the following operator

Q = R(2)
g ◦ E−1

g . (5.5)

Using this we obtain the following equation for the grade 2 part of the dynamics of g,

D22γ
0α
(
g−1∂αg

)(2)
+Q

(
−D11γ

0α
(
g−1∂αg

)(1)
+D22

(
g−1∂σg

)(2)
+D33γ

0α
(
g−1∂αg

)(3))

=
(
g−1Xg

)(2) −Q ◦R(2)
g

(
g−1Xg

)
. (5.6a)
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Notice that the Lagrange multipliers µ(1) and µ(3) are no longer present in this equation.

We have made use of the grade 1 and grade 3 parts of the field equations to eliminate them.

To solve for g−1Xg we will combine this equation with the two fermionic constraints (5.2)

which can respectively be rewritten using C(0) = −
(
g−1Xg

)(0) ≃ 0 as

−D11

(
g−1∂σg

)(1) ≃
(
g−1Xg

)(1)
+R(1)

g

((
g−1Xg

)(1)
+
(
g−1Xg

)(2)
+
(
g−1Xg

)(3))
, (5.6b)

D33

(
g−1∂σg

)(3) ≃
(
g−1Xg

)(3)−R(3)
g

((
g−1Xg

)(1)
+
(
g−1Xg

)(2)
+
(
g−1Xg

)(3))
. (5.6c)

Now we claim that the system of equations (5.6) can be written in the following matrix

form

D



−
(
g−1∂σg

)(1)

γ0α
(
g−1∂αg

)(2)
(
g−1∂σg

)(3)


 = K




(
g−1Xg

)(1)
(
g−1Xg

)(2)
(
g−1Xg

)(3)


− K̃D



−γ0α

(
g−1∂αg

)(1)
(
g−1∂σg

)(2)

γ0α
(
g−1∂αg

)(3)


 , (5.7)

where the various matrices are defined as

K =




1 +R
(1)
g R

(1)
g R

(1)
g

−Q ◦R(2)
g 1−Q ◦R(2)

g −Q ◦R(2)
g

−R(3)
g −R(3)

g 1−R(3)
g


 , K̃ =



0 0 0

Q Q Q

0 0 0


 .

To solve the system (5.7) for g−1Xg we should invert the matrix K. Although this matrix

has non-commuting entries, it has the (right) Manin matrix property: entries of the same

row commute [Kij ,Kik] = 0 and cross-commutators are equal [Kij ,Kkl] = [Kil,Kkj ] for all

i, j, k, l (in other words the transpose K⊤ is a usual (left) Manin matrix). In particular, its

row ordered determinant is given simply by

rdetK = Eg −Q ◦R(2)
g =

(
Eg −R(2)

g

)
E−1
g

(
Eg +R(2)

g

)
.

Now provided this operator is invertible, we can construct the inverse of K. Supposing

that Eg ± R(2)
g are invertible, it is straightforward to show that the inverse matrix K−1

exists and is given explicitly by K−1 = 1
2(K

−1
+ +K−1

− ) where the matrices K−1
± read

K−1
± = 1−



R

(1)
g R

(1)
g R

(1)
g

∓R(2)
g ∓R(2)

g ∓R(2)
g

−R(3)
g −R(3)

g −R(3)
g




1

Eg ∓R(2)
g

.

Note that multiplication by the inverse of Eg∓R(2)
g is on the right. Moreover, one can also

show that K−1K̃ = 1
2

(
K−1

+ −K−1
−

)
. We can thus invert the above system (5.7) and write



(
g−1Xg

)(1)
(
g−1Xg

)(2)
(
g−1Xg

)(3)


=

1

2

(
K−1

+ +K−1
−

)
D



−
(
g−1∂σg

)(1)

γ0α
(
g−1∂αg

)(2)
(
g−1∂σg

)(3)


+

1

2

(
K−1

+ −K−1
−

)
D



−γ0α

(
g−1∂αg

)(1)
(
g−1∂σg

)(2)

γ0α
(
g−1∂αg

)(3)


 .

Alternatively, introducing the usual combinations Pαβ± = 1
2

(
γαβ ± ǫαβ

)
we can also write

this as



(
g−1Xg

)(1)
(
g−1Xg

)(2)
(
g−1Xg

)(3)


 = K−1

+ D



−P 0α

+

(
g−1∂αg

)(1)

P 0α
+

(
g−1∂αg

)(2)

P 0α
+

(
g−1∂αg

)(3)


+K−1

− D



P 0α
−

(
g−1∂αg

)(1)

P 0α
−

(
g−1∂αg

)(2)

−P 0α
−

(
g−1∂αg

)(3)


 . (5.8)
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Finally, by adding the three components of the vector equation (5.8) and using the

constraint C(0) = −
(
g−1Xg

)(0) ≃ 0 we obtain the desired equation

g−1Xg ≃
(
1 + η2

)2

2 (1− η2)

(
P 0α
+

1

1 + η d̃ ◦Rg
d̃
(
g−1∂αg

)
+ P 0α

−

1

1− η d ◦Rg
d
(
g−1∂αg

)
)
, (5.9)

where the following combinations of the projectors onto f(i) have been defined:

d = P1 +
2

1− η2P2 − P3 , d̃ = −P1 +
2

1− η2P2 + P3 .

5.2 Deformed action

The last step is to plug the relation (5.9) and the constraints into the functional (5.1). This

means in particular that we need to compute (see (2.2d))

hǫ = λ+T+ + λ−T− ≃ λ+ str
(
A

(2)
+ A

(2)
+

)
+ λ− str

(
A

(2)
− A

(2)
−

)
(5.10)

with A
(2)
± defined in (2.3). Recall that the fields λ± are related to the worldsheet metric

by equation (2.7). At this point, it is useful to introduce

Jα =
1

1− ηRg ◦ d
(
g−1∂αg

)
, J̃α =

1

1 + ηRg ◦ d̃
(
g−1∂αg

)
. (5.11)

With such definitions, the equation (5.9) for g−1Xg may be rewritten as

g−1Xg =

(
1 + η2

)2

2 (1− η2)
(
P 0α
+ d̃J̃α + P 0α

− dJα

)
. (5.12)

The Lagrangian expressions for A
(2)
± are then computed from (3.13) and (5.12). The result

of this computation is:

A
(2)
+ = −1 + η2

1− η2P
0α
− J (2)

α , A
(2)
− = −1 + η2

1− η2P
0α
+ J̃ (2)

α . (5.13)

To bring the action into its final form, we will make use of the following identities,

str
(
g−1∂αgdJβ

)
= str

(
g−1∂βgd̃J̃α

)
,

str
(
g−1∂(αgdJβ)

)
= str

(
J(αdJβ)

)
=

2

1− η2 str
(
J (2)
α J

(2)
β

)
=

2

1− η2 str
(
J̃ (2)
α J̃

(2)
β

)
.

They can be proved by using the antisymmetry of R and the property str(MdN) =

str
((
d̃M

)
N
)
. We then find on one hand,

hǫ =

(
1 + η2

1− η2
)2 [

λ+P 0α
− P 0β

− + λ−P 0α
+ P 0β

+

]
str
(
J (2)
α J

(2)
β

)
, (5.14a)

= −1

2

(
1 + η2

1− η2
)2 [

γ00 str
(
J
(2)
0 J

(2)
0

)
− γ11 str

(
J
(2)
1 J

(2)
1

)]
. (5.14b)
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On the other hand, we get

str
(
g−1∂τgg

−1Xg
)
=

(
1 + η2

)2

2 (1− η2) str
(
Pα0− g−1∂αgdJ0 + P 0α

− g−1∂0gdJα
)
, (5.15a)

=

(
1 + η2

)2

2 (1− η2)P
αβ
− str

(
g−1∂αgdJβ

)
− hǫ. (5.15b)

As a consequence, the deformed action stemming from (5.1) is

Sǫ[g] = −
(
1 + η2

)2

2 (1− η2)

∫
dσdτ

(
Pαβ− str

(
g−1∂αgdJβ

))
. (5.16)

This action is the starting point of the analysis carried in [9].

5.3 Comments on invertibility of 1 − ηRg ◦ d

An interesting feature of this computation is that to perform the inverse Legendre transform

and therefore define the theory at the lagrangian level, we have to take the inverse of the

operators 1 − ηRg ◦ d and 1 + ηRg ◦ d̃. This is necessary in order to invert the relation

between g−1∂τg and g−1Xg, as can be seen from equation (5.9). And these operators

appear in the deformed action (5.16) via the definitions (5.11) of Jα and J̃α. It is therefore

important to study the invertibility of these operators. This is discussed in appendix D.

Let us briefly summarize the situation here. The invertibility depends on the choice made

for R and must be studied case by case. It is known [1] that the invertibility holds in the

compact bosonic sector regardless of the choice made for R. It is also known from the

results of [11] that for the choice made in [9], the operator 1 − ηRg ◦ d is not invertible

everywhere on the bosonic non-compact sector. As a consequence, the deformed metric

associated with the action (5.16) exhibits a singularity [11], whose meaning is not yet clear

(see also [26] for a related discussion). In appendix D, we study different choices of R in

the bosonic non-compact and fermionic sectors.

5.4 κ-symmetry

At the hamiltonian level, the κ-symmetry transformations are generated by

g−1δg =

{∫ ∞

−∞
dσ str

(
ψ(1)K(3) + ψ(3)K(1)

)
, g

}

ǫ

.

The first class constraints K(1) and K(3) are given by (2.4) while ψ(1) and ψ(3) are the

parameters of this transformation. This variation can be easily computed by using the

expressions (5.2) of C(1) and C(3) and the Poisson brackets (2.15). One finds

g−1δg ≃ − 2i√
1 + η2

(
(1 + ηRg)

[
A

(2)
− , ψ(3)

]

+
+ (1− ηRg)

[
A

(2)
+ , ψ(1)

]

+

)
.

The corresponding transformation at the lagrangian level is then obtained by substituting

the lagrangian expressions (5.13) of A
(2)
± into this result. This leads to

g−1δg ≃ 2i
√
1 + η2

1− η2
(
(1 + ηRg)

[
P 0α
+ J̃ (2)

α , ψ(3)
]

+
+ (1− ηRg)

[
P 0α
− J (2)

α , ψ(1)
]

+

)
.

Note that the variation g−1δg does not lie purely in the odd part of psu(2, 2|4) contrary to

what happens in the underformed case.
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6 Conclusion

In this article we gave a direct derivation of the integrable q-deformation of the AdS5×S5

superstring action. Its tree-level light-cone S-matrix in the bosonic sector was determined

in [11] and shown to match the large string tension limit of the S-matrix with q-deformed

centrally-extended [psu(2|2)]2 symmetry [27–29] for q real. The relation found in [11]

between the real parameters q and η is exactly as in equation (4.16). Furthermore, we

have shown that the deformed theory, before gauge-fixing, admits a symmetry which is the

classical analog of the quantum group Uq(psu(2, 2|4)). Let us note that, for simplicity, we

have worked under the technical assumption that the string is of infinite spatial extend

with fields decaying at infinity. It would be interesting to obtain a proof which works

also for the closed string with periodic boundary conditions. These results leave no doubt

that the conclusion of [11] should extend to the full light-cone S-matrix. An interesting

duality was also found in [30, 31], relating the deformed superstring for two values of the

deformation parameter η through mirror duality. It would be interesting to understand if

such a duality admits a classical interpretation using the hamiltonian framework.

An interesting limit of the deformed theory is its “maximally deformed” limit given

by η → 1, or equivalently κ → ∞ where κ = 2η/(1 − η2). We have identified this

limit at the hamiltonian level in subsection 3.5. It is in agrement with the conjecture

we made in [9]. Note, however, that this limit cannot be taken straightforwardly at the

lagrangian level. This can already be understood from the relations (3.13) between (A,Π)

and (g,X). Nevertheless, there has been significant progress in understanding the nature

of the geometry corresponding to the bosonic part of the deformed action in this limit. In

particular, it was studied in [32] using the parameterization of [11], where it was found that

the deformed metric in the limit κ →∞ only corresponds to dS5×H5 after applying some

T -duality transformations. Furthermore, the same conclusion was reached more recently

in [31] but with a different combination of T -dualities. What distinguishes the results

of [32] and [31] is the way the various fields are scaled in the limit κ →∞.

We believe that the situation may be clarified from the hamiltonian perspective. In-

deed, it is expected from the hamiltonian analysis carried out in subsection 3.5 that in the

limit κ →∞ one should introduce another field ĝ taking values in PSU∗(4|4). This limit

and the precise relation between the fields g and ĝ within the present formalism deserve

further study. It is worth also noting that for some deformed symmetric space σ-models,

the maximally deformed limit of the geometry is relatively simple. This is the case of

the SU(2)/U(1) example considered in [1]. But the inspection of other low dimensional

cases suggests that for spheres S2n and anti-de Sitter spaces AdS2n of even dimension, the

curvature of the maximally deformed background is constant and negative, respectively

positive, without the need of performing any T -duality.

One of our original motivations for deforming the AdS5 × S5 superstring came from

the desire to understand the classical theory which may underly the q-deformed S-matrix

of [29, 33–36]. In fact, the linear combination of compatible Poisson brackets used in

constructing the deformed theory is very reminiscent of the interpolating nature of this

S-matrix [29], between the S-matrix of the AdS5 × S5 superstring in light-cone gauge
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and the S-matrix of the Pohlmeyer reduced theory [37, 38]. However, the deformation

parameter q entering this S-matrix is taken to be a root of unity. Hence a natural question

concerns the possibility of constructing a deformation for which q and η are complex.

Constructing such a deformation in the present framework would require using a split

solution of mCYBE on psu(2, 2|4). However, skew-symmetric split solutions of the modified

classical Yang-Baxter equation are known to exist mostly for split real forms. Let us also

note that the real form Uq(psu(2, 2|4)) requires q to be real. This problem deserves further

investigation.

Despite these issues regarding the reality conditions on q and the connection with

Pohlmeyer reduced theory, the authors of [32] considered the bosonic light-cone theory

associated with the deformed AdS5 × S5 geometry defined by (5.16), for the standard

choice of R, in the limit where η = i, or equivalently κ = i. More precisely, the part

of the full geometry relevant for this computation contains the deformed metric and the

B-field. When taking κ = i, the deformed metric remains real but the B-field becomes

imaginary. Interestingly, it was found in [32] that, when discarding the imaginary B-field,

the expansion up to quartic order in certain fields of the bosonic light-cone action associated

with the deformed metric agrees with that of the Pohlmeyer reduction of the AdS5 × S5

superstring [39]. Furthermore, it was shown that when truncating the deformation to

AdS3 × S3, this agreement even holds [39] to all orders for the bosonic fields but also

for the quadratic fermionic terms. Note that there is in this case no need to discard

the imaginary B-field as it vanishes for the deformed AdS3 × S3 geometry. It would be

interesting to understand this within the present hamiltonian formalism. Some progress in

this direction was made in [40] at the level of the generalised sine-Gordon theories.

The deformed action (5.16) is a generalisation of the Yang-Baxter σ-model action [41].

In particular, it is also characterised by a non-split solution of the modified classical Yang-

Baxter equation. It is possible to extend this action to the case where the R-matrix involved

is a solution of the classical Yang-Baxter equation (CYBE). Such an action was studied

in [42–46]. It was shown in particular that the γ-deformation [47–49] falls within this class

of deformations. It would be interesting to derive such deformed actions from first principle

in the spirit of the present article.

All these remarks lead in fact to the same and therefore important question of un-

derstanding how the choice of R-matrix used in the construction affects the deformation.

Indeed, the deformed action depends on a non-split solution of the modified classical Yang-

Baxter equation, which in turn can be associated with any choice of system of positive roots

of psu(2, 2|4). Let us emphasise that the deformed geometry may typically depend on this

choice. An important and related question is whether the resulting deformed geometry

defines a background of Type IIB supergravity. This remains an open question.
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A The real Lie algebras f and pf

A.1 The Lie superalgebras gl(4|4), sl(4|4) and psl(4|4)

Let Eab be the standard basis of generators for the Lie superalgebra gl(4|4) with defining

Z2-graded commutation relations

[Eab, Ecd] = δbcEad − (−1)|Eab||Ecd|δadEcb . (A.1)

The parity of Eab is defined as |Eab| = |a| + |b| ∈ Z2 where |a| = 0 if a ≤ 4 and |a| = 1 if

a ≥ 5. Let H be the span of the generators Eaa for 1 ≤ a ≤ 8. We denote by gl(4|4)[k],
k = 0, 1 the subspaces of gl(4|4) spanned by all Eab with |Eab| = k.

The subalgebra sl(4|4) is spanned by all generators Eab with a 6= b together with the

following combinations of the Cartan generators

3H1 = E11 − E22, H2 = E22 − E33, H3 = E33 − E44, H4 = E44 + E55,

H5 = E55 − E66, H6 = E66 − E77, H7 = E77 − E88. (A.2)

Introduce the corresponding subspaces sl(4|4)[k] = sl(4|4) ∩ gl(4|4)[k] for k = 0, 1. The

generator I =
∑8

a=1Eaa ∈ sl(4|4) is central in sl(4|4) and the quotient by the ideal spanned

by I defines the Lie superalgebra psl(4|4).
In the fundamental representation of gl(4|4), Eab is represented by the 8 × 8 matrix

eab whose only non-zero entry is a 1 in the ath row and bth column. We equip gl(4|4) with
a non-degenerate bilinear graded-symmetric invariant form (·, ·) : gl(4|4) × gl(4|4) → C

defined by taking the supertrace of the product in the fundamental representation. It is

given in the basis Eab by

(Eab, Ecd) = str(eabecd) = δbcδad(−1)|a|. (A.3)

Z4-automorphism. Recall that gl(4|4) is equipped with an automorphism Ω : gl(4|4)→
gl(4|4) of order 4. Letting t be the permutation (12)(34)(56)(78), it can be defined on the

generators Eab as

Ω(Eab) = (−1)a+b+1+|a|(1−|b|)Et(b)t(a). (A.4)

Let gl(4|4)(j), 0 ≤ j ≤ 3 denote the eigenspace of Ω with eigenvalue ij , so that for

X(j) ∈ gl(4|4)(j),
Ω
(
X(j)

)
= ijX(j). (A.5)

Noting Ω2(Eab) = (−1)|Eab|Eab it follows that gl(4|4)(0), gl(4|4)(2) are both subspaces of

gl(4|4)[0] and gl(4|4)(1), gl(4|4)(3) are subspaces of gl(4|4)[1]. The automorphism Ω preserves

the subalgebra sl(4|4) and since Ω(I) = −I it also induces an automorphism on psl(4|4).

Root system. With respect to the Cartan subalgebra H, the root space of gl(4|4) (and
sl(4|4)) is given by Φ = {ǫa−ǫb | 1 ≤ a 6= b ≤ 8} where ǫa = (−1)|a|(Eaa, ·). The root ǫa−ǫb
is called even if |a| = |b| and odd if |a| 6= |b|. A positive system of roots in Φ is uniquely

specified by a permutation (a1, . . . , a8) of (1, . . . , 8) and is given as Φ+ = {ǫaµ − ǫaν | 1 ≤
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µ < ν ≤ 8}. The corresponding set of simple roots then reads ∆ = {αµ | 1 ≤ µ ≤ 7} where
we have defined αµ = ǫaµ − ǫaµ+1

.

Given any root α ∈ Φ we denote the corresponding root vector as Eα, which has the

property that

[H,Eα] = α(H)Eα (A.6)

for any Cartan generator H. In particular, Eǫa−ǫb for a 6= b is proportional to Eab. In

order to fix the normalisation we will use equation (A.3). Specifically, given any positive

root α = ǫa − ǫb ∈ Φ+ we define

Eα = Eǫa−ǫb = Eab, E−α = Eǫb−ǫa = (−1)|a|Eba.

It then follows that for any α ∈ Φ+, equation (A.3) takes the form

(
Eα, Eβ

)
= δα,−β . (A.7)

For each positive root α ∈ Φ+ we then define the Cartan element

Hα = [Eα, E−α].

Explicitly, for a positive root of the form α = ǫa − ǫb ∈ Φ+ we have Hǫa−ǫb = (−1)|a|Eaa−
(−1)|b|Ebb, with the property that (Hα, H) = α(H) for any Cartan element H. A useful

basis of the Cartan subalgebra H of sl(4|4) is given by the generators Hµ = Hαµ for each

simple root αµ ∈ ∆, µ = 1, . . . , 7. We also define the symmetric bilinear pairing on roots

as (α, β) = α(Hβ) = (Hα, Hβ) for any α, β ∈ Φ.

Cartan matrix. The symmetrised Cartan matrix (Bµν)
7
µ,ν=1 is defined as Bµν=αµ(H

ν).

It is singular since αµ(I) = 0 for 1 ≤ µ ≤ 7 using the fact that I =
∑8

a=1Eaa ∈ H is central

in sl(4|4). Writing the latter as I =
∑7

ν=1 xνH
ν for some xν ∈ Z we have

7∑

ν=1

Bµνxν = 0. (A.8)

In order to deal with the Cartan matrix being singular we enlarge the Cartan subalge-

bra H of sl(4|4) to H by adding the extra generator H8 = 1
2

∑8
i=1(−1)|a|Eaa, which amounts

to working instead with gl(4|4). The symmetrised Cartan matrix may now be extended

using the commutation relations (A.6) for H8 to obtain the extended symmetrised Cartan

matrix
(
Bab

)8
a,b=1

. Specifically, we have

[
Ha, E±αµ

]
= ±BµaE

±αµ , Bµa = αµ(H
a)

for 1 ≤ µ ≤ 7 and 1 ≤ a ≤ 8. The remaining components B8ν with 1 ≤ ν ≤ 7 are then

defined by symmetry and we set B88 = 0. Explicitly, we have

(
Bab

)8
a,b=1

=

(
Bµν αµ

(
H8
)

αν
(
H8
)

0

)
. (A.9)
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Since the generators Ha, a = 1, . . . , 8 form a basis of H it is clear that this matrix is

non-degenerate. Its inverse can also be written explicitly as

(
B

−1
ab

)8
a,b=1

=

(
Yµν ω−1xµ
ω−1xν 0

)
(A.10)

where ω =
∑7

µ=1 xµαµ
(
H8
)
and the matrix (Yµν)

7
µ,ν=1 satisfies the following relation

7∑

ρ=1

BµρYρν + ω−1xναµ
(
H8
)
= δµν . (A.11)

Of course, the matrix (Yµν)
7
µ,ν=1 is also singular since we have

∑7
ν=1 Yµναν

(
H8
)
= 0.

Tensor Casimir. The tensor Casimir Cgl
12

of gl(4|4), with the property that
(
Cgl
12
, X2

)

2

=

X1 for any X ∈ gl(4|4), reads

Cgl
12

=
8∑

a,b=1

(−1)|b|Eab ⊗ Eba.

It will be convenient for us to also rewrite this Casimir in terms of Cartan-Weyl generators,

which can be done as follows. The generators Eab with a 6= b already correspond to root

generators since Eab = Eǫa−ǫb . As for the Cartan part of Cgl
12
, it can also be re-expressed

in terms of the basis Ha, a = 1, . . . , 8 of H by using the extended symmetrised Cartan

matrix, namely

Cgl
12

=

8∑

a,b=1

B
−1
ab H

a ⊗Hb +
∑

α>0

(
(−1)|Eα|Eα ⊗ E−α + E−α ⊗ Eα

)
. (A.12)

In fact, by using the explicit form (A.10) for the inverse of the extended symmetrised Cartan

matrix, we may rewrite (A.12) more explicitly as Cgl
12

= C12+κ
−1
(
I ⊗H8 +H8 ⊗ I

)
where

C12 =
7∑

µ,ν=1

YµνH
µ ⊗Hν +

∑

α>0

(
(−1)|Eα|Eα ⊗ E−α + E−α ⊗ Eα

)
. (A.13)

This is the Casimir for psl(4|4).

Examples. The standard positive system corresponds to the permutation

(1, 2, 3, 4, 5, 6, 7, 8). In this case, the root vectors associated with positive roots are

just the generators Eab with a < b and the Cartan generators Hµ are identified with

the generators Hµ defined in (A.2). The corresponding Dynkin diagram and extended
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symmetrised Cartan matrix are

(
Bab

)8
a,b=1

=




2 −1
−1 2 −1
−1 2 −1
−1 0 1 1

1 −2 1

1 −2 1

1 −2
1 0




,

where a node (resp. ) represents an even (resp. odd) simple root.

By contrast, the positive system defined by the permutation (5, 6, 1, 2, 3, 4, 7, 8) corre-

sponds to the “Beauty” Dynkin diagram [50] and has the following extended symmetrised

Cartan matrix

(
Bab

)8
a,b=1

=




−2 1

1 0 −1 −1
−1 2 −1
−1 2 −1
−1 2 −1
−1 0 1 1

1 −2
−1 1 0




.

A.2 The real forms su(2, 2|4) and psu(2, 2|4)

The real form su(2, 2|4) of sl(4|4) is defined as follows. Let s be the function on {1, . . . , 8}
such that s(a) = 1 if a = 3, 4 and s(a) = 0 otherwise. We introduce an anti-linear involutive

automorphism τ of sl(4|4) by defining it on generators as

τ(Hµ) = −Hµ, τ(Eab) = −(−1)s(a)+s(b)i−|Eab|Eba, (A.14)

where 1 ≤ µ ≤ 7, 1 ≤ a 6= b ≤ 8 and then extending it to all of sl(4|4) by anti-linearity. It

has the properties

τ(λX + µY ) = λ τ(X) + µ τ(Y ), τ2 = 1, τ ([X,Y ]) = [τ(X), τ(Y )] ,

for any λ, µ ∈ C and X,Y ∈ sl(4|4). The real Lie superalgebra su(2, 2|4) can now be

defined as the subalgebra of sl(4|4) consisting of τ -invariant elements. A basis of su(2, 2|4)
is given by

Tµ = iHµ, Bα = i (Eα − τ(Eα)) , Cα = Eα + τ(Eα), (A.15)

where 1 ≤ µ ≤ 7 and α ∈ Φ+. We define su(2, 2|4)[k] = su(2, 2|4) ∩ sl(4|4)[k], k = 0, 1. A

basis for su(2, 2|4)[0] is then given by Tµ and Bα, Cα for any even positive root α ∈ Φ+,

while a basis for su(2, 2|4)[1] consists of all remaining generators Bα and Cα with odd

positive root α ∈ Φ+. Finally, the real Lie superalgebra psu(2, 2|4) is obtained as a quotient

of su(2, 2|4) by the ideal spanned by I. It also admits a Z2-grading psu(2, 2|4)[k] with
k = 0, 1 induced from that of su(2, 2|4).
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Z4-automorphism. It follows from the definitions (A.4) of the Z4-automorphism Ω

and (A.14) of the anti-linear automorphism τ that Ω ◦ τ(Eab) = (−1)|Eab|τ ◦Ω(Eab). Com-

bining this with the definition (A.5) of the eigenspaces of Ω, it follows that τ preserves

each of the graded components sl(4|4)(j), 0 ≤ j ≤ 3. We may therefore define the real

subspaces su(2, 2|4)(j) = su(2, 2|4) ∩ sl(4|4)(j) so that for any X(j) ∈ su(2, 2|4)(j) we have

τ(X(j)) = X(j). Note from the property (A.5), however, that Ω does not preserve the odd

subspaces su(2, 2|4)(1) and su(2, 2|4)(3).

A.3 The Grassmann envelopes f and pf

Let GrC be a Grassmann algebra, namely an algebra over C generated by anti-commuting

variables ξa, a = 1, . . . , N . A general ξ ∈ GrC is a finite linear combination of products of

the ξa. Denote by (GrC)[k], k = 0, 1 the subspaces of sums containing only products of an

even (respectively odd) number of generators ξa.

We equip GrC with an anti-linear involution ξ 7→ ξ∗ for any ξ ∈ GrC satisfying

(c ξ)∗ = c ξ∗, (ξ∗)∗ = ξ, (ξζ)∗ = ξ∗ζ∗,

for ξ, ζ ∈ GrC and c ∈ C. Define the real Grassmann algebra Gr as the subalgebra of

elements ξ ∈ GrC such that ξ∗ = ξ. Correspondingly, the real Grassmann envelope of

su(2, 2|4) is defined as

f = (Gr ⊗ su(2, 2|4))[0] = Gr[0] ⊗ su(2, 2|4)[0] ⊕ Gr[1] ⊗ su(2, 2|4)[1].
This is an ordinary Lie algebra with Z2-grading f[k] = Gr[k] ⊗ su(2, 2|4)[k] for k = 0, 1. We

denote its complexification by fC =
(
GrC ⊗ sl(4|4)

)[0]
. If we extend τ to an anti-linear

homomorphism of fC by setting τ(ξ ⊗ X) = ξ∗ ⊗ τ(X) for ξ ∈ GrC and X ∈ sl(4|4),
then f becomes the fixed point subalgebra of fC, namely f = {x ∈ fC | τ(x) = x}. We

introduce also the Lie algebra pf = (Gr ⊗ psu(2, 2|4))[0] with Z2-graded subspaces pf[k] =

Gr[k] ⊗ psu(2, 2|4)[k] for k = 0, 1.

The graded-symmetric bilinear form (A.3) on sl(4|4) extends to a symmetric bilinear

form (·, ·) : fC × fC → GrC on the Grassmann envelope fC by letting (ξ ⊗ X, ζ ⊗ Y ) =

(−1)|ζ||X|ξζ(X,Y ) for any ξ, ζ ∈ GrC and X,Y ∈ sl(4|4). Restricting to the real Grassmann

envelope f we obtain a symmetric bilinear form (·, ·) : f× f→ Gr.
In the fundamental representation of su(2, 2|4), the Lie algebra f consists of block

diagonal even supermatrices

M =

(
a ψ

χ b

)

where a, b are 4× 4 matrices with entries in Gr[0] and ψ, χ are 4× 4 matrices with entries

in Gr[1], and satisfying the relation

(M∗)stS + SM = 0, M st =

(
aT −χT

ψT bT

)
, S = diag(12,−12, i14).

Here aT denotes the transpose of a 4× 4 matrix with entries in Gr. We therefore have

τ(M) = −S−1(M∗)stS (A.16)

in the fundamental representation of su(2, 2|4).
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Likewise, the Z4-automorphism of sl(4|4), defined on generators in (A.4), can be ex-

pressed in the fundamental representation as

Ω(M) = −K−1M stK, K = diag(k, k, k, k), k =

(
0 −1
1 0

)
. (A.17)

B Non-split R-matrix

Following the conventions laid out in appendix A, we fix a positive system Φ+ of roots in Φ.

Let B denote the corresponding Borel subalgebra of sl(4|4) which by definition is spanned

by the Cartan generators Hµ ∈ H along with the positive root vectors Eα, α ∈ Φ+. It is

clear from (A.14) that τ sends B into its opposite Borel subalgebra τ(B), spanned by Hµ

and E−α for α ∈ Φ+.

Conjugate Borel subalgebras. We define a subalgebra b of fC by letting

b =
(
GrC ⊗B

)[0]
. (B.1)

Explicitly, b is spanned by elements of the form ξ ⊗Hµ with |ξ| = 0 and ξ ⊗ Eα, α ∈ Φ+

with |ξ| = |Eα|. Since B and τ(B) are opposite Borel subalgebras of sl(4|4) it follows that

b+ τ(b) = fC. (B.2)

Let h = b∩ τ(b) which is spanned by elements ξ⊗Hµ with |ξ| = 0 and define the nilpotent

subalgebra n = [b, b]. Then b = h ⊕ n and we have the vector space decomposition

fC = n⊕ τ(b).

Decomposition of fC relative to f. Let h0 = {h ∈ h | τ(h) = −h}. Using the first

relation in (A.14) it follows that h0 is the linear span over the real Grassmann envelope of

the Cartan generators in (A.2). That is, h0 consists of elements of the form ξµ⊗Hµ where

ξµ ∈ Gr[0] and 1 ≤ µ ≤ 7. Now we claim that as vector spaces,

fC = f⊕ h0 ⊕ n. (B.3)

Indeed, using the decomposition fC = n⊕ τ(b) we may write any x ∈ fC as x = n+ h+X

where n ∈ n, X ∈ τ(n) and h ∈ τ(h). On the other hand we have

X + h =

((
X +

1

2
h

)
+ τ

(
X +

1

2
h

))
+

1

2
(h− τ(h))− τ(X) ∈ f⊕ h0 ⊕ n,

so that x ∈ fC can be written as a sum in f⊕h0⊕n. Such a decomposition is clearly unique

since the three subalgebras f, h0 and n have pairwise trivial intersection.
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Non-split R-matrix. We introduce a Gr-linear operator R : f→ f defined relative to a

choice of subalgebra b in (B.1) as follows. First note that any x ∈ f can be written uniquely

in the form x = i
2(b−τ(b)) for some b ∈ h0⊕n. Indeed, such an expression can be obtained

by decomposing −ix ∈ fC relative to (B.3) as −ix = y + b with y ∈ f and b ∈ h0 ⊕ n.

Moreover, it is unique since if x = i
2(c − τ(c)) for some c ∈ h0 ⊕ n then it follows that

b− c ∈ f and therefore b = c. We now define R as

R (i(b− τ(b))) = b+ τ(b) (B.4)

for all b ∈ h0 ⊕ n. It is straightforward to check that this is a skew-symmetric ‘non-

split’ solution of the modified classical Yang-Baxter equation, that is to say it satisfies

(Rx, y) = −(x,Ry) and

[Rx,Ry]−R ([Rx, y] + [x,Ry]) = [x, y], (B.5)

for any x, y ∈ f. Indeed, writing x = i(b− τ(b)) and y = i(c− τ(c)) for b, c ∈ h0⊕n we have

(R (i(b− τ(b))) , i(c− τ(c))) + (i(b− τ(b)), R (i(c− τ(c)))) = 2i(b, c)− 2i(τ(b), τ(c)),

which vanishes since b, c ∈ h0 ⊕ n. Moreover, for each term in (B.5) we find

[Rx,Ry] = [b, c] + τ ([b, c]) + [b, τ(c)] + τ ([b, τ(c)]) ,

R ([Rx, y] + [x,Ry]) = 2[b, c] + 2τ ([b, c]) ,

[x, y] = −[b, c]− τ ([b, c]) + [b, τ(c)] + τ ([b, τ(c)]) .

The R-matrix also has the property that (R ∓ i) : f → fC project onto the positive and

negative Borel subalgebras b and τ(b) of fC, respectively. More specifically, for any x ∈ f

we have

(R− i)x ∈ h0 ⊕ n, (R+ i)x ∈ h0 ⊕ τ(n). (B.6)

Given a particular choice of Borel subalgebra B, the R-matrix (B.4) may be written

explicitly as follows. We first introduce an R-linear operator R : su(2, 2|4)→ su(2, 2|4) by
defining it on the basis generators (A.15) of su(2, 2|4). For the Cartan generators we set

R(Tµ) = 0. Next, for every positive root α ∈ Φ+ we define

R(Bα) = Cα, R(Cα) = −Bα. (B.7)

These expressions can be obtained from an analogous formula to (B.4) but for b ∈ B. In

particular, this is a non-split solution of the super mCYBE, namely

[RX,RY ]−R ([RX, Y ] + [X,RY ]) = [X,Y ]. (B.8)

Extending R to the real Grassmann envelope by letting R(ξ ⊗ X) = ξ ⊗ R(X) for any

ξ ∈ Gr and X ∈ su(2, 2|4), we obtain a skew-symmetric operator R : f → f satisfying the

usual mCYBE (B.5).
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C q-Poisson-Serre relations

In this appendix, we prove the standard q-Poisson-Serre relations (4.21) and the non-

standard one (4.23).

C.1 First set of standard q-Poisson-Serre relations

We start by proving that

{
QEαν

, QEαµ

}

ǫ
= 0 when (αν , αµ) = 0. (C.1)

The charge QEαν
defined by (4.14), with JEαν

(σ) given by (4.4), is merely the integral of the

density eαν (σ)e
−γχαν (σ)eγχαν (−∞). Thus, when computing the Poisson bracket of QEαν

and

QEαµ
, we have three different kinds of terms. It is however clear that they all vanish. Indeed,

the first kind of terms comes from Poisson brackets of χαν with χαµ . They vanish by using

the definition (4.5) of χαν and the Poisson bracket (4.10). The second kind of terms comes

from Poisson brackets of eαν (σ) with e−γχαµ (σ
′) and those with (ν, σ) and (µ, σ′) flipped.

However, the result (4.12) indicates that these Poisson brackets are both proportional to

the element Bνµ of the symmetrized Cartan matrix, and therefore vanish in the case at

hand. Finally, the last kind of term originates from the Poisson bracket of eαν (σ) with

eαµ(σ
′). This Poisson bracket has to be extracted from the Poisson bracket of X(σ) with

X(σ′) and may be read off from (4.9b) by using (4.8). But more generally, the Poisson

bracket (2.15c) of X with itself is just a Kirillov-Kostant Poisson bracket associated with

psu(2, 2|4). It is therefore clear that the Poisson bracket of eαν (σ) with eαµ(σ
′) vanishes in

the present case. This ends the proof of (C.1).

C.2 Second set of standard q-Poisson-Serre relations

Next, we prove that {{
QEαµ

, QEαµ+1

}

q ǫ
, QEαµ+1

}

q ǫ

= 0 (C.2)

with αµ < αµ + αµ+1 < αµ+1. The relation

{
QEαµ

,
{
QEαµ

, QEαµ+1

}

q ǫ

}

q ǫ

= 0 (C.3)

is proved in a similar way.

Intermediate results. We begin by listing some of the properties that will be used in

proving (C.2). These properties all hold when αµ + αν is a root.

We define Nαµ,αν by

[Eαµ , Eαν ] = Nαµ,ανE
αµ+αν . (C.4)

Starting from the relation (4.9b) one can then show that

Nαµ,αν

{
eαµ(σ), eαν (σ

′)
}
ǫ
= 2i(−1)|Eαµ ||Eαν |(αµ, αν)eαµ+αν (σ)δσσ′ . (C.5)
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Let α and β be two positive roots. It immediately follows from the generalisation of

the Poisson bracket (4.12) to arbitrary positive roots α and β that
{
e−γ(χα(σ)−χα(−∞)), eβ(σ

′)
}

ǫ
= iγ(α, β)e−γ(χα(σ)−χα(−∞))eβ(σ

′)θσσ′ , (C.6)

where θσσ′ = 1
2(ǫσσ′ + 1) is the Heaviside step function.

The results (C.5) and (C.6) may be combined to prove that
{
JEαν

(σ), JEαµ
(σ′)

}

ǫ
= −2iNαµ,αν (αν , αµ)J

E
αν+αµ

(σ)δσσ′ + iγ(αν , αµ)J
E
αν
(σ)JEαµ

(σ′)ǫσσ′ ,

(C.7a)

when Nαµ,αν 6= 0. We have made use of the definition (4.4) of JEα (σ), the (anti)-symmetry

property (−1)|Eαν ||Eαµ |Nαν ,αµ = −Nαµ,αν and the relation N2
αµ,αν

= 1. In particular, it

follows that

{
JEαν

(σ), JEαµ
(σ′)

}

ǫ
+ iγ(αν , αµ)J

E
αν
(σ)JEαµ

(σ′)

= −2iNαµ,αν (αν , αµ)J
E
αν+αµ

(σ)δσσ′ + 2iγ(αν , αµ)J
E
αν
(σ)JEαµ

(σ′)θσσ′ . (C.7b)

We will also make use of the following results:

{
eαµ(σ), eαµ(σ

′)
}
ǫ
= 0, (C.8a)

{
eαµ+1

(σ), eαµ+αµ+1
(σ′)

}
ǫ
= 0. (C.8b)

The first relation comes from the fact that 2αµ is not a root. The second relation is a

consequence of (4.9b) and the ordinary Serre relation [Eαµ+1 , [Eαµ+1 , Eαµ ]] = 0.

A consequence of (C.8a) and (C.6) is that we have
{
JEαµ

(σ), JEαµ
(σ′)

}

ǫ
= iγ(αµ, αµ)J

E
αµ

(σ)JEαµ
(σ′)ǫσσ′ . (C.9)

q-Poisson-Serre relation. Following the approach of [1], we first show that
{
QEαµ

, QEαµ+1

}

q ǫ
= −2iNαµ+1,αµ (αµ+1, αµ)Q

E
αµ+αµ+1

. (C.10)

This is simply done by integrating (C.7b) in the case ν = µ + 1 and remembering that

(see (4.18)) the density QE
αµ+αµ+1

(σ) is defined by

QE
αµ+αµ+1

(σ) = JEαµ+αµ+1
(σ)− γ Nαµ,αµ+1

JEαµ+1
(σ)

∫ σ

−∞
dσ′JEαµ

(σ′). (C.11)

With the help of (C.10), proving the q-Poisson-Serre relation (C.2) means showing that
{
QEαµ+αµ+1

, QEαµ+1

}

q ǫ
= 0. (C.12)

This is equivalent to proving
{
QEαµ+1

, QEαµ+αµ+1

}

q−1 ǫ
= 0, or, in other words,

∫ ∞

−∞
dσ

∫ ∞

−∞
dσ′
({

JEαµ+1
(σ),QE

αµ+αµ+1
(σ′)
}

ǫ
+iγ(αµ+1, αµ+αµ+1)J

E
αµ+1

(σ)QE
αµ+αµ+1

(σ′)
)
=0.

(C.13)
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Let us first evaluate
{
JEαµ+1

(σ),QE
αµ+αµ+1

(σ′)
}

ǫ
. Using the definition (4.4), the prop-

erty (C.6) for α = αµ and β = αµ+1 + αµ and the result (C.8b) leads to

{
JEαµ+1

(σ), JEαµ+αµ+1
(σ′)

}

ǫ
= iγ(αµ + αµ+1, αµ+1)J

E
αµ+1

(σ)JEαµ+αµ+1
(σ′)ǫσσ′ . (C.14)

We then obtain

{
JEαµ+1

(σ),QE
αµ+αµ+1

(σ′)
}

ǫ

= iγ(αµ + αµ+1, αµ+1)J
E
αµ+1

(σ)JEαµ+αµ+1
(σ′)ǫσσ′

− γ Nαµ,αµ+1

{
JEαµ+1

(σ), JEαµ+1
(σ′)

}

ǫ

∫ σ′

−∞
dσ′′JEαµ

(σ′′)

− γ Nαµ,αµ+1
(−1)|Eαµ+1 |JEαµ+1

(σ′)

∫ σ′

−∞
dσ′′

{
JEαµ+1

(σ), JEαµ
(σ′′)

}

ǫ
.

The complete integrand in (C.13) may then be written as

iγ(αµ + αµ+1, αµ+1)J
E
αµ+1

(σ)JEαµ+αµ+1
(σ′)ǫσσ′

− iγ2Nαµ,αµ+1
(αµ+1, αµ+1)J

E
αµ+1

(σ)JEαµ+1
(σ′)ǫσσ′

∫ σ′

−∞
dσ′′JEαµ

(σ′′)

+ (−1)|Eαµ+1 |2iγ(αµ+1, αµ)J
E
αµ+1

(σ′)JEαµ+αµ+1
(σ)θσ′σ

− (−1)|Eαµ+1 |iγ2Nαµ,αµ+1
(αµ+1, αµ)J

E
αµ+1

(σ′)JEαµ+1
(σ)

∫ σ′

−∞
dσ′′JEαµ

(σ′′)ǫσσ′′

+ iγ(αµ+1, αµ + αµ+1)J
E
αµ+1

(σ)JEαµ+αµ+1
(σ′)

− iγ2Nαµ,αµ+1
(αµ+1, αµ + αµ+1)J

E
αµ+1

(σ)JEαµ+1
(σ′)

∫ σ′

−∞
dσ′′JEαµ

(σ′′),

where we have successively used (C.11), (C.14), (C.7a) and (C.9). Adding the terms linear

in γ on the one hand and those in γ2 on the other hand, we find that both sums are

proportional to

(αµ + αµ+1, αµ+1) + (−1)|Eαµ+1 |(αµ, αµ+1).

However, the value of this coefficient is:

(αµ+1, αµ+1) + 2(αµ, αµ+1) = 0, for Eαµ+1 even. (C.15)

(αµ+1, αµ+1) = 0, for Eαµ+1 odd. (C.16)

This shows that
{
QEαµ+αµ+1

, QEαµ+1

}

q ǫ
= 0.

C.3 Non-standard q-Poisson-Serre relation

In an analogous way, one can also check the non-standard q-Poisson-Serre relation (4.23),

namely {{
QEαµ

, QEαµ−1

}

q ǫ
,
{
QEαµ

, QEαµ+1

}

q ǫ

}

ǫ

= 0. (C.17)
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We will not give full details but just sketch the proof. When computing the left hand side

of this relation, one typically gets multiple integrals of terms that are linear, quadratic,

cubic and quartic in JEαρ
and which contain products of Heaviside step functions. It is clear

that the linear term vanishes. This is so because αµ−1+2αµ+αµ+1 is not a root. One can

show that all other multiple integrals vanish. Let us illustrate this on one type of cubic

term and on the quartic term.

The computation leads to a cubic term proportional to

∫ ∞

−∞
dσ

∫ ∞

−∞
dσ′
∫ ∞

−∞
dσ′′JEαµ−1

(σ′)JEαµ+αµ+1
(σ)JEαµ

(σ′′)
(
θσσ′′θσ′σ′′ − θσσ′θσ′σ′′ − θσ′σθσσ′′

)
.

The appearance of the first product of Heaviside functions means that the domain of

integration corresponds to σ > σ′′ and σ′ > σ′′. The two other products with the minus

sign correspond to the domain {σ > σ′ > σ′′}∪{σ′ > σ > σ′′}. Therefore, the two domains

coincide and this cubic term vanishes.

The quartic term is proportional to

∫ ∞

−∞
dσ

∫ ∞

−∞
dσ′
∫ ∞

−∞
dσ′′

∫ ∞

−∞
dσ′′′JEαµ+1

(σ)JEαµ−1
(σ′)JEαµ

(σ′′)JEαµ
(σ′′′)θσσ′′θσ′σ′′θσ′σ′′′θσσ′′′ .

(C.18)

The product of Heaviside functions in (C.18) is symmetric in the exchange of σ′′ and

σ′′′ while the product JEαµ
(σ′′)JEαµ

(σ′′′) is antisymmetric since Eαµ is odd. Therefore, the

quartic contribution vanishes as well.

Comment on literature. Let us note that the set of defining relations for (quantum)

superalgebras are sometimes written differently in the literature (see for instance [51, 52]).

Therefore, for completeness, we will also prove that

{
QEαµ

,

{
QEαµ−1

,
{
QEαµ

, QEαµ+1

}

q ǫ

}

q ǫ

}

ǫ

= 0 (C.19)

by showing that

{
QEαµ

,
{
QEαµ−1

, QEαµ+αµ+1

}

q ǫ

}

ǫ

=

{{
QEαµ

, QEαµ−1

}

q ǫ
, QEαµ+αµ+1

}

ǫ

. (C.20)

To do this, let us start with the left hand side of this equality. By using the definition (4.20)

of the q-bracket and the Jacobi identity, one gets

{
QEαµ

,
{
QEαµ−1

, QEαµ+αµ+1

}

q ǫ

}

ǫ

=
{
QEαµ−1

,
{
QEαµ

, QEαµ+αµ+1

}

ǫ

}

ǫ

+
{{

QEαµ
, QEαµ−1

}

ǫ
, QEαµ+αµ+1

}

ǫ
− iγ(αµ−1, αµ)

{
QEαµ

, QEαµ−1
QEαµ+αµ+1

}

ǫ
. (C.21)

We then use the q-Poisson-Serre relation (C.3), which can be written as{
QEαµ

, QEαµ+αµ+1

}

q ǫ
= 0 using (C.10), to rewrite the first term on the right hand side
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of (C.21). This leads to
{
QEαµ

,
{
QEαµ−1

, QEαµ+αµ+1

}

q ǫ

}

ǫ

=
{{

QEαµ
, QEαµ−1

}

ǫ
, QEαµ+αµ+1

}

ǫ
(C.22)

+ iγ(αµ, αµ+1)
{
QEαµ−1

, QEαµ
QEαµ+αµ+1

}

ǫ
− iγ(αµ−1, αµ)

{
QEαµ

, QEαµ−1
QEαµ+αµ+1

}

ǫ
.

Finally, since (αµ, αµ+1) = −(αµ, αµ−1), the last two terms in the right hand side of (C.22)

combine together and give −iγ(αµ−1, αµ)
{
QEαµ

QEαµ−1
, QEαµ+αµ+1

}

ǫ
. One then recognizes

the right hand side of (C.20). Note that we have used many times that the parity of Eαµ

is odd. Thus equation (C.19) coincides with equation (C.17).

D On the invertibility of 1 − ηRg ◦ d

We are interested in discussing the invertibility of the linear operator O = 1 − ηRg ◦ d
acting on the Lie algebra f when |η| < 1. Recalling the Z2-grading of the Lie algebra f from

appendix A, we denote by P[0] = P0+P2 and P[1] = P1+P3 the projectors on each graded

components f[0] and f[1]. The operator O is invertible if and only if its two “diagonal” blocks

O0 = P[0](1− ηRg ◦ d)P[0] O1 = P[1](1− ηRg ◦ d)P[1] (D.1)

are invertible on f[0] and f[1] respectively. Moreover, the group element g in (D.1) can be

restricted to the even subgroup SU(2, 2)×SU(4). In this case, Ad g respects the Z2-grading.

We will only consider R-matrices which also respect the Z2-grading. Therefore, in the cases

considered below, the operator Rg = Ad g−1 ◦ R ◦ Ad g respects the Z2-grading. Because

of this, the operators O0 and O1 may be rewritten as

O0 = 1− κRg ◦ P2 O1 = 1− ηRg ◦ (P1 − P3), (D.2)

considered as linear operators acting respectively on f[0] and f[1]. In this appendix we

make use of the notation and parametrisation in [11]. In particular we have introduced

κ = 2η/(1− η2).

D.1 Bosonic sector

If we restrict attention to deformations of the non-linear σ-model on the bosonic symmetric

space SU(2,2)×SU(4)
SO(1,4)×SO(5) ≡ AdS5 × S5 then only the operator O0 is present. The latter was

computed in [11] for a standard choice of R and with an element g which parameterises the

coset AdS5 × S5. It is non-invertible for a particular value of a radial parameter of AdS5
called ρ. The singularity takes place at ρ = 1/κ and affects only the deformed metric on

the non-compact factor AdS5. Indeed, a general proof of the invertibility of O0 in the case

of a compact symmetric space is given in [1].

One might hope that modifying the operator R could improve the situation. Let us

discuss this point in the case of the Lie superalgebra su(2, 2). Denote by R̂ the standard

antisymmetric non-split solution of mCYBE acting on su(2, 2). Let us consider a permuta-

tion P of 4 objects, and the corresponding 4×4 matrix Pij = δiP(j). We may then construct

another solution of mCYBE as

R̂P = AdP−1 ◦ R̂ ◦AdP.
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The reality condition satisfied by any element M ∈ su(2, 2) reads M †H +HM = 0, where

H = diag(1, 1,−1,−1). If the permuted matrix HP = P−1HP coincides with H, up to an

overall sign, then the matrix R̂P leads to the same deformation of AdS5 as R̂ does. This is

so because P belongs to SU(2, 2), after a possible rescaling by a phase, and the deformed

actions associated with R̂ and R̂P are related by

S
R̂P [g] = S

R̂
[Pg].

There are therefore only two permutations which lead to operators R̂P that are inequivalent

to R̂. They are

P1 =

(
1 2 3 4

1 3 2 4

)
and P2 =

(
1 2 3 4

1 3 4 2

)
.

By contrast, permutations do not make any difference in the case of the deformation of S5.

Below we give the metric and the B-field associated with the choices R̂, R̂P1 and

R̂P2 . To fix notations, the restriction to the bosonic non-compact sector of the deformed

Lagrangian corresponding to the action (5.16), is written as

−1

2

(
1 + κ2

)
γαβ∂αX

M∂βX
NGMN +

1

2

(
1 + κ2

)
ǫαβ∂αX

M∂βX
NBMN .

For convenience, we start by recalling the results of [11]. The coordinates XM used to

describe AdS5 are (t, ρ, ζ, ψ1, ψ2). The metric and the B-field associated with the standard

choice R̂ take the form

GR̂tt = −
1 + ρ2

1− κ2ρ2
, GR̂ρρ =

1

(1 + ρ2) (1− κ2ρ2)
, GR̂ζζ =

ρ2

1 + κ2ρ4 sin2 ζ
,

GR̂ψ1ψ1
=

ρ2 cos2 ζ

1 + κ2ρ4 sin2 ζ
, GR̂ψ2ψ2

= ρ2 sin2 ζ,

BR̂
ρt =

1

κ
∂ρ log

(
1− κ2ρ2

)
, BR̂

ψ1ζ
= κ

ρ4 sin(2ζ)

1 + κ2ρ4 sin2 ζ
.

To write down the metrics and B-fields associated with the choices of R-matrices R̂P1 and

R̂P2 more succinctly, we introduce the following functions

f(ρ, ζ) = 1 + κ2 + κ2ρ2 cos2 ζ, s(ρ, ζ) = 1− κ2ρ2
(
1 + ρ2 cos2 ζ

)
sin2 ζ,

h(ρ, ζ) = 1 + κ2
(
1 + ρ2

)
+ κ2ρ2

(
1 + ρ2

)
cos2 ζ.

For the choice of R-matrix R̂P1 , the non-zero components of the metric read

GP1

tt = −
(
1 + ρ2

)

s(ρ, ζ)
, GP1

ρρ =
1 + κ2 sin2 ζ − κ2ρ2

(
1 + ρ2

)
cos2 ζ sin2 ζ

(1 + ρ2) f(ρ, ζ)s(ρ, ζ)
,

GP1

ζζ =
ρ2
(
1 + κ2

(
1 + ρ2

)
cos2 ζ − κ2ρ2 sin4 ζ

)

f(ρ, ζ)s(ρ, ζ)
,

GP1

ψ1ψ1
=
ρ2 cos2 ζ

f(ρ, ζ)
, GP1

ψ2ψ2
= ρ2 sin2 ζ, GP1

ρζ =
κ2ρ

(
1 + ρ2 sin2 ζ

)
cos ζ sin ζ

f(ρ, ζ)s(ρ, ζ)
.
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It turns out that this deformed AdS5 geometry corresponding to the operator R̂P1 has a

curvature singularity at ρ = ∞ and another singularity at a value of ρ which depends on

the angle ζ. When ζ = π/2 this singularity is at ρ = 1/κ. The correspondingly B-field has

the following non-vanishing components

BP1

ρψ1
= − 1

2κ
∂ρ log f(ρ, ζ), BP1

ψ1ζ
=

1

2κ
∂ζ log f(ρ, ζ),

BP1

ρt = −κρ sin
2 ζ

s(ρ, ζ)
, BP1

ψ2ζ
= κ

ρ2
(
1 + ρ2

)
sin ζ cos ζ

s(ρ, ζ)
.

For the choice of R-matrix R̂P2 , the non-zero components of the metric are

GP2

tt = −(1 + ρ2), GP2
ρρ =

1+κ2+κ2ρ2
(
2+ρ2

)
cos2(ζ)

(1 + ρ2) f(ρ, ζ)h(ρ, ζ)
, GP2

ζζ =
ρ2
(
1+κ2

(
1+ρ2

))

f(ρ, ζ)h(ρ, ζ)
,

GP2

ψ1ψ1
=
ρ2 cos2 ζ

f(ρ, ζ)
, GP2

ψ2ψ2
=
ρ2 sin2 ζ

h(ρ, ζ)
, GP2

ρζ = − κ2ρ3 sin(2ζ)

2f(ρ, ζ)h(ρ, ζ)
.

This deformation of AdS5 associated with the operator R̂P2 has no singularity for finite

values of ρ. However, the metric and the curvature scalar diverge when ρ tends to infinity.

The result for the B-field is

BP2

ρψ1
= − 1

2κ
∂ρ log f(ρ, ζ), BP2

ψ1ζ
=

1

2κ
∂ζ log f(ρ, ζ),

BP2

ψ2ζ
=

κρ2
(
1 + ρ2

)
sin(2ζ)

2h(ρ, ζ)
, BP2

ρψ2
= −κρ sin

2 ζ

h(ρ, ζ)
.

Finally, let us mention that all three matrices R̂, R̂P1 and R̂P2 may be extended to solutions

of the mCYBE equation on the whole of su(2, 2|4).

D.2 Fermionic sector

The standard choice for the R-matrix acting on f[1] simply corresponds to

∀M ∈ f[1], R(M) = [J,M ], J = diag(i, i, i, i, 0, 0, 0, 0).

Because of this very simple form, and as already noticed in [11], one has

∀M ∈ f[1], ∀g ∈ SU(2, 2)× SU(4), Rg(M) = R(M).

Thus, for this R-matrix one simply has to check the invertibility of the operator 1− ηR ◦
(P1 − P3) on f[1]. This is easily shown to hold.

One may be interested to know, however, what happens in the fermionic sector when

one chooses another R-matrix. Once again, the various cases may be described in terms of

permutations Q, but this time of 8 objects. Since in this paragraph we are only interested

in what happens in the fermionic sector, we consider permutations which do not modify the

action of R in the bosonic sector. That is to say that we restrict attention to permutations

Q which neither modify the order of the indices 1, 2, 3, 4, nor that of the indices 5, 6, 7, 8.
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Any such permutation corresponds to a given Dynkin diagram of the Lie superalgebra

sl(4|4).1 Consider, for instance, the permutation

Q1 =

(
1 2 3 4 5 6 7 8

1 2 5 6 7 8 3 4

)
,

corresponding to the Dynkin diagram

.

The corresponding operator RQ1 has a simple restriction to f[1] which reads

∀M ∈ f[1], RQ1(M) = [J1,M ], J1 = diag(i, i,−i,−i, 0, 0, 0, 0).

Because the matrix J1 does not commute with SU(2, 2), the operator RQ1
g depends on g.

One finds that the restriction to f[1] of the operator 1 − ηRQ1
g ◦ (P1 − P3) is singular for

ρ = 1/κ. For comparison, let us consider another possible permutation

Q2 =

(
1 2 3 4 5 6 7 8

5 6 1 2 3 4 7 8

)
,

which corresponds to the same Dynkin diagram. The restriction of RQ2 to f[1] again has a

simple form

∀M ∈ f[1], RQ2(M) = [J2,M ], J2 = diag(0, 0, 0, 0, i, i,−i,−i).

In this case, one finds that the restriction to f[1] of the operator 1 − ηRQ2
g ◦ (P1 − P3) is

regular for finite values of ρ. Yet another example of a permutation is

Q3 =

(
1 2 3 4 5 6 7 8

1 5 6 7 2 3 4 8

)
,

corresponding to the Dynkin diagram

.

The restriction of RQ3 to f[1] cannot be written as a commutator. Nevertheless, one can

show that the restriction to f[1] of the operator 1 − ηRQ3
g ◦ (P1 − P3) is regular for finite

values of ρ.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

1Strictly speaking, the permutations which differ simply by the interchange of the set of indices 1, 2, 3, 4

with 5, 6, 7, 8 correspond to the same Dynkin diagram. However, they should generically be considered

as leading to different deformations, because the two blocks 1, 2, 3, 4 and 5, 6, 7, 8 are subject to different

reality conditions when restricting to the real form su(2, 2|4).
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