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1 Introduction and summary of the results

The gravitino is massless in Minkowski space-time when supersymmetry is preserved, and

acquires a mass when it is spontaneously broken [1–5]. Supersymmetry breaking is nec-

essary for a theory to be relevant to the real world, making its study being of much

importance.

In the global supersymmetry limit, the breaking is associated with a non-vanishing

vacuum expectation value of the Hamiltonian. Lorentz invariance implies that kinetic terms

do not contribute. Promoting supersymmetry to be local, the contribution of the scalar

potential to vacuum energy can be cancelled by the presence of an additional cosmological

constant of opposite sign. The latter term breaks explicitly supersymmetry unless it comes

along with a mass term for the gravitino, whose size is related to the scalar potential

expectation value [5]. One ends up finally with a massive gravitino in a space-time with a

vanishing cosmological constant.

When supersymmetry is broken by the presence of a fluid, the kinetic energy is not nec-

essarily vanishing allowing Lorentz symmetry violation. This scenario has been considered

in [6], and the aim of this work is to study this generalisation in more detail.

For a perfect fluid at rest, the breaking of boost invariance implies that the longitudinal

and transverse modes of the gravitino satisfy different dispersion relations. The longitudinal

mode inherits its dispersion relation from that of the fluid goldstino [7–12] and is non-

relativistic. The transverse mode has the same mass but has a relativistic dispersion

relation [6]. At high energies compared to the gravitino mass but well below the energy
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scale of the fluid, the gravitino interactions with matter fields are mainly via its longitudinal

mode [1–4, 13, 14]. The latter propagates at a speed p
ρ , where p and ρ are the the fluid

pressure and energy density respectively. This speed is in general lower than the speed of

light when the fluid stress-energy tensor satisfies the appropriate energy conditions. We

therefore call it “slow gravitino”.

In [6], the gravitino mass term has been constructed in terms of the fluid pressure

and energy density for an arbitrary perfect fluid stress-energy tensor. However, the field

equations were derived only for stress-energy tensors that are constant or slowly varying

only with time. In this work, we will generalise those results at quadratic order to a general

space-time dependent perfect fluid.

There are various relevant scales and it is of importance to outline the approximations

that will be made. First, there are the scales associated with the fluid. The character-

istic temperature scale T corresponds to the mean free path or correlation length of the

fluid microscopic degrees of freedom. L is the length scale over which the macroscopic

fluid variables, i.e. the energy density, pressure and fluid velocity, vary. In order for the

hydrodynamics approximation to be valid one requires 1
TL ≪ 1.

Second, there is the energy scale of the propagating gravitino E and the (reduced)

Planck mass Mp. T is also the supersymmetry breaking scale and we take T ≪ Mp.

We require the gravitino energy to be smaller than the supersymmetry breaking scale,

E ≪ T , in order to be able to keep only the goldstino interactions. Finally, we will require

the gravitino wavelength to be smaller than the fluid scale of changes in the macroscopic

variables, 1
EL ≪ 1. This is required in order to be able to consider the gravitino as a

localised particle with well defined helicity states.

Motivated by the implication of a vanishing mass super-traces for the spectrum of phe-

nomenological models, one usually assumes that supersymmetry is broken in a new sector

of the theory, hidden or secluded, and then transmitted to our visible sector by mediator

fields through gravitational or gauge interactions. In this work, the fluid under consider-

ation will describe the hidden or secluded sector, and the scale T is the supersymmetry

breaking scale, which should not be confused with a temperature of our visible sector.

Fluid variables, scales and approximations. We shall consider a gravitino propagat-

ing in a ideal fluid background specified by the energy density, pressure and velocity vector

uµ normalised as uµuµ = −1. The fluid variables are arbitrary slowly varying functions of

the space-time coordinates. The fluid stress-energy tensor reads

Tµν = [pηµν + (ρ+ p)uµuν ] . (1.1)

We will use the equation of state

w =
p

ρ
. (1.2)

For w 6= −1 both supersymmetry and invariance under Lorentz boosts are spontaneously

broken. The Lorentz invariant cases with F or D term breaking correspond to a cosmo-

logical constant i.e. w = −1. In the flat space-time limit approximation, the super-Higgs
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mechanism leads to a gravitino mass [6]

m =

√
3ρ

4MP

∣

∣

∣

∣

1

3
− w

∣

∣

∣

∣

. (1.3)

Note that, as discussed above, the gravitino mass is introduced in order to supersymmetrise

the term that cancels the contribution of ηµνTµν to the vacuum energy. Therefore, one

expects the mass to vanish when the trace of the stress-energy tensor vanish. This is indeed

the case in (1.3).

Using this explicit expression, imposing our last assumption 1
EL ≪ 1 for gravitinos

with energy of the order of their mass implies that

T 2L

Mp
≫ 1 . (1.4)

In this approximation, we can neglect all derivatives of the fluid variables compared to the

momentum or the mass of the gravitino. We will work in this approximation.

In our Lagrangian, we will trade the fluid variables ρ, p and use

m, ǫLV ≡ 1 + w, uµ , (1.5)

where m is the mass (1.3), and ǫLV is a dimensionless number that measures the size

of violation of Lorentz boost invariance. The Lorentz invariant solution corresponds to

w = −1.

The fluid velocity is a time-like vector. We can define at every point in space-time two

projectors r and t by

rµν ≡ ηµν + uµuν

tµν ≡ (1− r)µν = −uµuν .
(1.6)

t projects along uµ, i.e. in the time-like direction defined by the fluid velocity, while r

projects on the vector space orthogonal to uµ, i.e. on the spatial vector space defined by

the fluid.

In general, the fluid velocity does not define a foliation of space-time, unless the fluid

is irrotational. However, in the approximation (1.4) the twist u[µ∂νuρ] can be neglected.

We can then use wave-functions of the form ψµ ∝ eip
µxµ with pµ being functions of the

space-time coordinates, but their derivatives are neglected. We will call these wave func-

tions plane-waves. This will allow us to define helicitiy eigenstates and construct the

corresponding propagator.

It is practical to work with the spatial and temporal components of the gamma matrices

γµ and the momentum pµ, defined via the projectors r and t. They are constructed as

rµ = rµνγν kµ = rµνpν

tµ = tµνγν qµ = tµνpν . (1.7)

rµ and tµ behave as γi and γ0. They satisfy the relations rµrµ = −3, tµtµ = −1 and

tµrν = −rνtµ.
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Summary of the results. The Lagrangian describing the gravitino field takes the form:

L =
1

2
ψ̄µ

[

(γµγν + ηµν)(−i/∂ +m) +iγν∂µ− iγµ∂ν+
3ǫLVm

4− 3ǫLV
(rµtν + tµrν)

]

ψν . (1.8)

In (1.8) one identifies the first term with the usual Rarita-Schwinger Lagrangian [15]

and the term proportional to ǫLV as the correction due to violation of Lorentz invariance.

This expression is not singular for ǫLV = 4/3 because this corresponds to the traceless

energy-momentum tensor case where m = 0.

For general fluid variables, we will decompose ψµ (see (2.22)) into four spinors. They

correspond to the helicity-32 states ψµ
3/2 and helicity-12 states ψ1/2, and two remaining spinors

that are projected out by the constraints. Albeit ψµ
3/2 has a vector index which suggests

that it describes four spinors, these can be explicitly seen not to be independent in (2.9)

and in fact it only contains two degrees of freedom corresponding to the helicities ±3/2 as

expected from the overall counting.

In the approximation where the derivatives of the fluid variables can be neglected (1.4),

the motion of the gravitino in a general fluid background can be presented in a similar way

to its motion in a constant fluid background. The difference being that we will use the

time and space directions defined by the fluid instead of that of the laboratory frame. The

field equations take the form

(−itρ∂ρ − irρ∂ρ +m)ψµ
3/2 = 0 ,

(−itρ∂ρ + iwrρ∂ρ +m)ψ1/2 = 0 . (1.9)

These equations of motion need to be supplemented with two constraints that project out

the extra not-spin-3/2 degrees of freedom from ψµ. They read

− i [rµrν + rµν ] ∂µψν = nrρψρ , (1.10)

and

(wrν − tν)ψν = 0 , (1.11)

where

n ≡ m

1− 3
4ǫLV

. (1.12)

We find that the covariant propagator can be written as

Gµν =
Πµν

3/2

p2 +m2
+

Πµν
1/2

w2k2 + q2 +m2
+

3

4
ǫLV

/k

mk2
(tµkν − kµtν) . (1.13)

From this form one can see that the two parts corresponding to the helicity-3/2 and helicity-

1/2 components of the spinor-vector have different poles, thus different dispersion relations.

The quantities Πµν
3/2 and Πµν

1/2 are the corresponding polarisations.
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Plan of the paper. The plan of the paper is as follows. In section 2 we will derive the

constraints. They remove the non-spin-3/2 states that are present in the original product

of a vector and a spinor representations of the Lorentz group. Using the explicit form

of these constraints will allow us to decompose the gravitino field into its transverse and

longitudinal modes. We will then derive the equations of motion for these modes and write

the corresponding Lagrangian. In section 3 we will derive the propagator and compare it

with the usual Rarita-Schwinger one [16]. In the discussion section we will outline possible

implications to gravitino cosmology and phenomenology. Useful definitions, properties of

projectors and details of calculations are give in the appendices to ease the reading, while

keeping the paper self-contained.

2 Constraints and equations of motion

Lorentz invariance is spontaneously broken in the fluid background, however the notion of

a state with spin quantum number (3/2 here) is still well defined. A spin-3/2 field can

be built starting from a product of spin-1/2 and spin-1 states and is denoted as a fermion

field carrying a vector index ψµ. This is a reducible representation of the rotation group.

Constraints have to be used in order to extract the physical spin-3/2 degrees of freedom.

We present here the main aspects of such a construction of a theory of spin-3/2 fields in a

fluid background. Additional details are provided in the appendices.

2.1 The constraints equations

We shall derive here two constraints that enable to reduce ψµ to its four degrees of freedom

describing a massive spin-3/2 state. The equation of motion for ψµ, obtained from the

Lagrangian (1.8) is:

Kµνψν = 0 , (2.1)

with

Kµν ≡ (γµγν + ηµν)(−i/∂ +m) + iγν∂µ − iγµ∂ν + (n−m)(rµtν + tµrν) . (2.2)

In the Rarita-Schwinger case, a first constraint is obtained by noting that the La-

grangian is linear in ψ0, which therefore behaves as a Lagrange multiplier (see for exam-

ple [17]). The Euler-Lagrange equation for ψ0 gives the time component of the equation

of motion. This is used as a constraint as it contains no time-derivative.

In the fluid background case, we identify the time direction as the one given by the

fluid four-velocity uµ. We should therefore contract the equation of motion by uµ to obtain

the “zeroth-component”. For calculation purposes we contract instead by tµ = −/uuµ and

use tµν + tµtν = 0 to obtain (1.10), which indeed does not contain any time derivative (in

the fluid frame).

Another constraint is obtained by contracting the equations of motion with Dµ ≡
∂µ + Eµ with

Eµ = − i

2
n

[

γµ − 3

2
ǫLVtµ

]

. (2.3)
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Using the form (A.11) of Kµν , the contraction gives

DµK
µνψν = −iǫµνρσDµγ

5γρDσψν

= −iǫµνρσγ5γρEµEσψν ,
(2.4)

and after some algebra, this constraint reduces to

Tµνγµψν = 0 , (2.5)

where replacing Tµν by its expression and dividing by the energy density ρ leads to (1.11).

For a fluid at rest, (2.5) reads

γ0ψ0 = −(1− ǫLV)γ
iψi . (2.6)

When taking ǫLV = 0, we recover the usual Rarita-Schwinger constraint:

γµψµ = 0 . (2.7)

To summarise, we have exhibited two constraints (1.10) and (1.11) projecting out

two spin-1/2 states. It is useful to note the similarities (up to derivatives terms) of our

constraints with those obtained for the case of a gravitino in a Friedmann-Robertson-Walker

(FRW) space in [18–22].

2.2 Identification of the spin-3/2 degrees of freedom

We will now use the above constraints to identify the four degrees of freedom of our spin-3/2

state and write them as two transverse (helicity-3/2) and two longitudinal (helicity-1/2)

modes.

We first focus on the case where the fluid parameters are constant and work in the

frame defined by the fluid background. In the last part of this section, we will gener-

alise the result for an arbitrary fluid where both translation and rotational invariance are

lost but with the extra assumption (1.4) implying that we can neglect derivatives in the

hydrodynamics parameters.

In the constant fluid rest frame, the three-dimensional space is invariant under rota-

tional and translation symmetries therefore both spin and helicity quantum numbers are

well defined. We start with representations of the Lorentz group but, as the boosts trans-

formations are no more symmetries, we will work with representations of the rotations

symmetry group i.e. spin representations. The left-handed spinor-vector representation of

the Lorentz group (written as an SU(2)L×SU(2)R representation) can be decomposed into

spin representations as
(

1

2
,
1

2

)

⊗
(

1

2
, 0

)

=
1

2
⊕
(

1⊗ 1

2

)

=
1

2
⊕ 1

2
⊕ 3

2
. (2.8)

The l.h.s. expresses ψµ as a tensorial product of a vector times a spinor while the last

expression is a spin decomposition that can be written explicitly as a linear combination

of normalised spin eigenstates. Using the Clebsch-Gordon decomposition this leads to:

ψµ = ǫ′0
µ
ã1ξ

′
− + ǫ′0

µ
a1ξ

′
+

+
1√
3
ǫ0

µ(ã2ξ− − a2ξ+) +

√

2

3
(ǫµ+ a2ξ− − ǫµ− ã2ξ+)
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+

√

2

3
ǫ0

µ(ã3ξ− + a3ξ+) +
1√
3
(ǫµ+ a3ξ− + ǫµ− ã3ξ+)

+ǫµ− ã4ξ− + ǫµ+ a4ξ+ . (2.9)

The two first lines correspond the extra spin-1/2 representations that need to be projected

out of the spectrum. The third line is the helicity ±1/2 part, while the last line is the

helicity ±3/2 part of the spin-3/2 representation of interest. The coefficients ai and ãi
parametrise the decomposition as function of the product of polarisation vectors ǫµi and

spinors ξi and ξ
′
i. The indices of the latter vectors and spinors give their respective helicity

eigenvalues in a self-explanatory way. The physical degrees of freedom must satisfy both

constraints (1.10) and (1.11).

It is convenient to introduce a spinor that describes the longitudinal degrees of freedom

of our spin-3/2 field. This is achieved by defining ψ1/2 from our explicit construction (2.9) as

ψ1/2 ≡ n

w|p|(a3ξ+ + ã3ξ−) , (2.10)

where |p| =
√

−p2. The overall coefficient ensures that ψ1/2 has the canonically normalised

kinetic term for a Majorana spinor. We shall show below that this can be written as

ψ1/2 =

√

3

2

n

k
γ0γ

iψi . (2.11)

We consider now the case of a generic fluid under the assumption (1.4). It is possible

to find the corresponding form of ψ1/2 either from the requirement that the constraints are

satisfied or through an explicit construction. We shall use the former.

In order to identify among the physical spin-1/2, we consider an operator Πµ that

satisfies the constraints (1.10) and (1.11) written as:

Cµ
1Πµ = 0

Cµ
2Πµ = 0

with
Cµ
1 = wrµ − tµ

Cµ
2 = (kµ + /krµ)− nrµ .

(2.12)

Such Πµ is given by

Πµ =

(

rµ − 3
/kkµ

k2

)

− 2

n
kµ − 2w

n
/ktµ , (2.13)

and we will also define a conjugate operator as Π̄µ (note the change of sign of the last

term)

Π̄µ =

(

rµ − 3
/kkµ

k2

)

− 2

n
kµ +

2w

n
/ktµ , (2.14)

Solutions of the constraints can then be obtained through projection by the operator P1/2

( note that P1/2P1/2 = P1/2 ) defined by

Pµν
1/2 = Πµ(Π̄ρΠρ)

−1Π̄ν . (2.15)

Using the constraint (1.11) we can write

ψ1/2
µ ≡ Pµν

1/2 ψν =
Πµ

2

n/k

k2
rρψρ , (2.16)
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which define the helicity-1/2 part ψ1/2
µ of ψµ. We can write a corresponding spinor with

the same degrees of freedom, a canonically normalised kinetic term in the Lagrangian, but

without vector indices. It is obtained by contraction with uµ:

ψ1/2 = −
√

3

2

n

wk
uµP

µν
1/2 ψν =

√

3

2

n

k
/u rρψρ , (2.17)

and describes the longitudinal modes of the gravitino. Note that in the rest frame we

recover (2.11).

The helicity ±3/2 degrees of freedom can be identified as the remaining modes of ψµ

after removing all three independent spin-1/2 states of the vector-spinor state. Such spinors

can be constructed by applying on ψµ the three orthogonal projectors Pii:

P̃µν
ii =

π̃µi π̃
ν
i

π̃2i
, (2.18)

where π̃µ1 , π̃
µ
2 and π̃µ3 are orthogonal operators defined such that π̃µi π̃j,µ = 0 if i 6= j by:

π̃µ1 = tµ

π̃µ2 = rµ

π̃µ3 = rµ − 3
/kkµ

k2
.

(2.19)

Note that Πµ can be expressed as a linear combination of these. The corresponding pro-

jector P3/2 is given by

Pµν
3/2 = ηµν − P̃µν

33 − P̃µν
22 − P̃µν

11 , (2.20)

and ψµ
3/2 ≡ Pµν

3/2 ψν corresponds to the transverse degrees of freedom. This can be expressed

as

ψµ
3/2 = ψµ +

1

3
rµrνψν + tµtνψν +

1

6

(

rµ − 3
/kkµ

k2

)(

rν − 3
/kkν

k2

)

ψν . (2.21)

Using the fact that rµψ
µ
3/2 = tµψ

µ
3/2 = kµψ

µ
3/2 = 0, it is easy to check that ψµ

3/2 satisfies the

constraints (1.10) and (1.11) and also that Pµν
1/2 ψ 3/2 ν = 0. We chose to keep the vector

indices to remind of its spin-3/2 nature.

To summarise, in the space of solutions of the constraints (1.10) and (1.11), we have

the decomposition

ψµ = ψµ
3/2 +Πµ /k/u√

6k
ψ1/2 = Pµν

3/2 ψν + Pµν
1/2 ψν , (2.22)

where the two terms corresponds to the transverse and longitudinal modes of the spin-3/2

field.

While for the fluid at rest the helicity was defined as the projection on the globally

defined direction corresponding to the space component of the particle momentum, the

definition is more involved in the case of fluid not at rest as, in general, plane waves are

no longer solutions of the equation of motion. However, helicity can be defined under the

assumption (1.4).

– 8 –
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In the rest frame the helicity operator is defined as:

S =
1

2
ǫijkS

ij∂k , (2.23)

where the Sνρ are the Lorentz generators for the spin-3/2 representation. This generalises to

S ≡ 1

2
uµǫµνρσS

νρrσγ∂γ , (2.24)

as rσγ∂γ reduces to the space derivatives in the fluid rest frame. In a space-time varying

fluid but with the assumption (1.4), locally we can treat the eigenstates wave-functions as

plane waves. As a consequence, the above decomposition can be carried over and locally

ψ1/2
µ and ψ3/2

µ appear as helicity eigenstates with eigenvalues respectively ±1
2 and ±3

2 .

2.3 The equations of motion

In this section we will derive the equation of motions (1.9) for the fields ψ1/2 and ψµ
3/2

corresponding to the longitudinal and transverse modes of the massive spin-3/2 state as

defined above. We neglect the derivatives in the fluid parameters according to (1.4).

The equation of motion for ψµ derived from the Lagrangian are given in (2.1). In order

to extract those for the ψ1/2 and ψµ
3/2, it is useful to use the identity

[iγν∂µ − iγµ∂ν ]ψν = [tµrν + rµtν ](i/∂ − n)ψν − C̄µ
2 γ

νψν , (2.25)

where C̄µ
2 is given by:

C̄µ
2 = kµ + rµ/k − nrµ . (2.26)

Plugging (2.25) in (2.1) leads to

[

(rµrν + rµν)(−i/∂ +m) + C̄µ
2 γ

ν
]

ψν = 0 , (2.27)

which will be used to derive the equations of motion for both helicities 1/2 and 3/2.

We first focus on the helicity-1/2 degrees of freedom. We can get rid of the term

proportional to C̄µ
2 by contracting (2.27) with Π̄µ defined in (2.14). Two parts of the

equations are obtained through splitting the derivative in the l.h.s. to the time-like and

space-like parts. We consider plane waves solutions. A bit of algebra allows to rewrite the

space-like part, along with the mass term, as

Π̄µ(r
µrν + rµν)(/k +m)ψν =

√
6
/k/u

k
(v/k −m)ψ1/2 . (2.28)

On the other side, the time-like part, using the decomposition (2.22) , can be expressed

as

Π̄µ(r
µrν + rµν)/qψν = −

√
6
/k/u

k
/qψ1/2 . (2.29)

Putting back both parts together leads to the equation of motion for the longitudinal mode:

(−itρ∂ρ + iwrρ∂ρ +m)ψ1/2 = 0 . (2.30)
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In order to derive the equation of motion for the transverse degrees of freedom, we act

on (2.27) with the operator P3/2 to obtain

(/q + /k +m)ψ3/2
µ = 0 , (2.31)

which can be written:

(−itρ∂ρ − irρ∂ρ +m)ψ3/2
µ = 0 . (2.32)

An interesting consequence of these equations of motion is that helicity-1/2 and 3/2

cannot be on-shell simultaneously when ǫLV 6= 0.

The equations of motion (1.9) derived above can also be obtained from the Lagrangian

L =
1

2
ψ̄ 3/2 µ(−iγρ∂ρ +m)ψ3/2

µ +
1

2
ψ̄1/2(−itρ∂ρ + iwrρ∂ρ +m)ψ1/2 , (2.33)

where we verify that the factors in the definition of ψ1/2 were necessary for obtaining a

canonically normalised kinetic term. The two spinors have obviously different dispersion

relations. The hermiticity of the Lagrangian requires that derivatives of the fluid parame-

ters are neglected as we assumed in (1.4).

3 The covariant spin-3/2 propagator

In this section we aim at calculating the propagator of ψµ without using the on-shell

constraints. In order to work in the Fourier space and obtain an explicit form of the

propagator, we need to consider a constant fluid background or more generally work in the

approximation (1.4) where on can neglect derivatives in the fluid variables.

The calculations are long and tedious. We review here the main lines and present

many details in the appendix C. Our strategy will consist of writing the Lagrangian in a

basis of projectors adapted to the degrees of freedom of our problem. It is convenient to

use as basis the πµi , (i = 1, 2, 3) defined by

πµ1 = pµ

πµ2 = /k

(

tµ − /qpµ

p2

)

πµ3 = rµ − /kkµ

k2
.

(3.1)

The Lagrangian involves the quantities pµ, γµ, rµ and tµ that can be expressed as

pµ = πµ1

γµ =
/p

p2
πµ1 − /p

k2
πµ2 + πµ3

rµ =
/k

p2
πµ1 − /q

k2
πµ2 + πµ3

tµ =
/q

p2
πµ1 − /k

k2
πµ2 .

(3.2)
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We can define three projectors Pi,i as

Pµν
i,i =

πµi π
ν
i

π2i
, (3.3)

and supplement them by nilpotent operators Pi,j with i 6= j defined by

Pµν
i,j =

πµi π
ν
j

π2i π
2
j

, (3.4)

where π2i = πµi πi,µ. We then define similarly P3/2 orthogonal to all the other projectors by

Pµν
3/2 = ηµν − Pµν

33 − Pµν
22 − Pµν

11 , (3.5)

and we have checked this is the same projector as the one defined in equation (2.20). The

normalisation has been chosen to be similar for Pi,j and Pj,i, a choice which helps making all

the expression explicitly symmetric but slightly complicates the algebra of these operators.

This allows to write the quadratic operator Kµν as

Kµν = (/p+m)(Pµν
3/2 − Pµν

33 )− U(Pµν
13 − Pµν

31 ) + V (Pµν
23 − Pµν

32 )−W (Pµν
12 − Pµν

21 ) , (3.6)

with

W = nk2 (3.7)

U = 2(/km+ /qn) (3.8)

V = 2
k2

p2
(p2 −m/q − n/k) . (3.9)

The propagator Gµν is decomposed in the projector basis as

Gµν =
m− /p

m2 + p2
Pµν

3/2 +A Pµν
11 +B Pµν

22 + C Pµν
33 +D Pµν

13 +D′ Pµν
31 (3.10)

a+ E Pµν
23 + E′ Pµν

32 + F Pµν
12 + F ′ Pµν

21 , (3.11)

where A = A1 + /kA2 + /qA3 and similarly for all other coefficients. We look for a solution

of the equation defining the propagator in momentum space:

KµρG
ρν = η ν

µ (3.12)

The result can be expressed as:

Gµν =
Πµν

3/2

p2 +m2
+

Πµν
1/2

w2k2 + q2 +m2
+

3

4
ǫLV

/k

mk2
(tµkν − kµtν) . (3.13)

where the two polarisations take the form

Πµν
3/2 = (m− /p)Pµν

3/2 , (3.14)
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and

Πµν
1/2 = −2

3
Λµ (/p− ǫLV/k +m) Λν , (3.15)

where

Λµ = γµ +
pµ

n
− 3

2

(

rµ − /kkµ

k2

)

− 3

4
ǫLVt

µ , (3.16)

Note that we recover again that the part corresponding to the spin-1/2 components of the

spinor-vector has a pole for m2 + w2k2 + q2 = 0 due to a different dispersion relation. A

crucial observation is that the nominator of the helicity-1/2 poles indeed projects on the

physical degrees of freedom. More precisely one can show that

Πµν
1/2ψµ = Πµν

1/2ψ 1/2 µ . (3.17)

The modification of the Rarita-Schwinger propagator due to Lorentz symmetry break-

ing appears both in the spin-3/2 and 1/2 contributions. When ǫLV = 0, we recover the

usual Rarita-Schwinger formula [16].

We finally consider the limit of high momentum where we have the hierarchy

m ≪ |p| ≪ T , (3.18)

the propagator then simplifies to

Gµν → −Pµν
3/2

/p

p2
− 2

3

pµpν

n2
/q − w/k

q2 + w2k2
. (3.19)

4 Discussion

Two main tasks have been achieved in this paper. First, we have studied the propagation

of a gravitino in a fluid background responsible of the breaking of supersymmetry. We

exhibited a form of the Lagrangian where the Lorentz symmetry breaking terms are isolated

explicitly making it easy to compare to the well known Rarita-Schwinger case. The spin-3/2

propagating degrees of freedom have been identified and the constraints needed to remove

the other field components have been derived. The splitting of the degrees of freedom has

been carried on in the case of a generic fluid where the energy density, the pressure and the

fluid velocity are slowly varying functions of space-time coordinates so that we can neglect

fluid derivatives. This generalises the results of [6].

A second main result is the corresponding explicit formula for the propagator. This

is a prerequisite if one wants to compute amplitudes in covariant form where the spin-3/2

is involved. As an aside, we have introduced a set of projectors, quantities and notations

which seems to us helpful to carry on similar computations.

We end the paper by some comments on possible phenomenological implications. First,

note that if the fluid background responsible of the breaking of supersymmetry is to be

identified with our visible universe it has to be at the very early stages of its evolution. At

later time, temperature is too low to explain the experimentally required size of supersym-

metry breaking while the induced Lorentz violation will be too large. At early time, our

discussion should be extended to curved background which should be straightforward.
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We therefore consider, as stated in the introduction, that the fluid under discussion

describes a hidden sector gravitationally coupled to our universe. An important question

is then if in such a case the induced Lorentz violation is small enough to be allowed today,

or whether it should be restricted to early cosmological times. A definite answer to this

question requires computing this effect in a given model. We can nevertheless discuss it

qualitatively. Because the hidden sector fluid is only coupled gravitationally to the visible

sector, the induced Lorentz violation for Standard Model fields must go to zero when MP

is taken to be infinite. We parametrise the shift in the effective speed of light in visible

sector dispersion relations as ( T 2

M2

P

)αǫLV ∼ mα

Mα
P
ǫLV. This is constrained to not exceed about

∆c
c ≈ 10−22 [23]. It translates to a bound on a combination of ǫLV and m. Taking as an

example a reference value of m = 1TeV shows that an ǫLV ∼ O(1) is allowed for a value

of α = 3/2, which is not unreasonable. The Planck suppression and supersymmetry could

then account for a small Lorentz violation in our visible world.

When discussing gravitino interactions, one can consider two energy regimes. For

E < m all modes of the gravitino couple with similar Planck suppressed strength while

for E > m the coupling of the helicity 1/2 mode is enhanced, only suppressed by T −2.

This is important for early universe history as one usually assumes that gravitinos can

be very energetic and their interactions approximated by those of the longitudinal mode.

However, the violation of Lorentz invariance has also an important consequence for this

mode as it has been pointed out in [23]. At high energies, when the mass terms can be

neglected, the longitudinal mode of the gravitino could be stable because it can decay only

to particles with higher effective speed of light. The usual analysis of the effects of gravitino

in cosmology would need to be reconsidered.

Finally, we would like to stress that while our work often refers to the gravitino, the

Lagrangian might also describe the propagation of other (composite) spin-3/2 state in a

Lorentz symmetry violating background.
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A Super-Higgs mechanism in a fluid

We start by a brief review of some of the results obtained in [6]. These will be recast in

the form that will be used for the computations described in the paper.

We consider a supersymmetric fluid with stress-energy tensor Tµν . The presence of

a goldstino associated with the spontaneous breaking of supersymmetry is expected from
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the Ward-Takahashi identity. This Majorana state has been named phonino [7–11] and

satisfies the equation of motion:

Tµνγµ∂νG = 0 . (A.1)

which can be derived from the Lagrangian where we neglect derivatives of fluid variables:

LG = − i

2T 4T
µνḠγµ∂νG . (A.2)

Here, T 6= 0 can be chosen to be T = |Tr Tµν | 14 or T = | det Tµν | 1

16 and has dimension

of mass. Note that for Tµν = −|F |2ηµν , the Lagrangian (A.2) reduces to that of the usual

goldstino.

Within the hypothesis of working in the flat Minkowski space-time limit, we will study

the Lagrangian describing the system phonino-gravitino at the quadratic order and keep

the lowest order of an expansion in powers of the dimensionless parameter T

Mp
. It reads:

L = − i

2
ǫµνρσψ̄µγ

5γν∂ρψσ − 1

4
ǫµνρσnσλψ̄µγ

5γργ
λψν −

i√
2

T 2

MP

Tµν

T 4
ψ̄µγνG

+ i
Tµν

2T 4
Ḡγµ∂νG+

1

4

Tµνnµν
T 4

ḠG . (A.3)

This Lagrangian is invariant under the supersymmetry transformations with Lorentz vio-

lating coefficients

δG =
√
2T 2ε ,

δψµ = −MP (2∂µε+ inµνγ
νε) , (A.4)

if nµν satisfies:

− 1

2
ǫµνσρǫ λγκ

ρ nνλnσγ =
Tµκ

M2
P

. (A.5)

In the unitary gauge, G is set to zero through the supersymmetry transformation:

ψµ → ψµ +

√
2MP

T 2
∂µG+ i

MP√
2T 2

nµνγ
νG . (A.6)

For multiple fluids without interactions among them, one should only replace Tµν by

the sum
∑

i T
µν
i .

The above expression of the gravitino quadratic term did not assume a perfect fluid

or another specific form, but rests on the assumption of existence of a goldstino with the

appropriate dispersion relation. An explicit dependence of the mass on the fluid parameters

can be obtained for a perfect fluid with a four-velocity uµ such that uµu
µ = −1

Tµν = ρ [wηµν + (1 + w)uµuν ] . (A.7)

This expectation value of the stress-energy tensor breaks spontaneously both supersymme-

try and Lorentz symmetry.
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After choosing the unitary gauge, the Lagrangian (A.3) takes the form (1.8)

L =
1

2
ψ̄µK

µνψν , (A.8)

where Kµν can be split into a kinetic and mass term

Kµν = −i(γµγν + ηµν)/∂ + iγν∂µ − iγµ∂ν +Kµν
m , (A.9)

with

Kµν
m = m

[

γµγν + ηµν +
3ǫLV

4− 3ǫLV
(rµtν + tµrν)

]

. (A.10)

It will be useful to note that it can also be written as

Kµν = −iǫµνρσγ5γρDσ , (A.11)

where we use a derivative operator defined as

Dσ = ∂σ − i

2
n

[

rσλ +

(

1− 3

2
ǫLV

)

tσλ

]

γλ . (A.12)

The mass m is obtained from plugging (A.7) in (A.5). This leads to a second degree

equation. We arbitrarily choose the root leading to a positive mass

m =

√
3ρ

4MP

∣

∣

∣

∣

1

3
− w

∣

∣

∣

∣

. (A.13)

Notice that for ǫLV = 0 this expression is equal to the Hubble parameter of an FRW metric

that would be generated by having Tµν on the r.h.s. of Einstein equations.

B Explicit decomposition of a spin-3/2 in helicity-operator eigenstates

We review in this section the explicit decomposition of a spin-3/2 particle in the case

of a fluid at rest. We follow the Wess and Bägger notations in considering ηµν =

diag(−1,+1,+1,+1) and the gamma matrices in the Weyl basis such that

γ0 =

(

0 σ0

σ0 0

)

γi =

(

0 σi

−σi 0

)

γ5 = γ0γ1γ2γ3 =

(

−i1 0

0 i1

)

, (B.1)

with the anti-commutation relation {γµ, γν} = −2ηµν . With these conventions S̃µν and

Sµν defined by

S̃µν =
−i
4
(γµγν − γνγµ) , (B.2)

and

(Sµν)nm = i(δµmη
nν − δνmη

nµ) , (B.3)

form a representation of the Lorentz group on the spinor and vector space respectively.

The rotation generators on the spinor-vector representation are the Ji =
1
2ǫijk(S̃

jk + Sjk),

where ǫijk is the fully antisymmetric tensor such that ǫ123 = 1.
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In particular, considering a momentum pµ = (p0,~k) with p2 = k2 − (p0)2, the helicity

operator along ~k is

S ≡ ki

k
Ji =

ki

k

(

1

2
Σ̃i +Σi

)

, (B.4)

where k =
√
k2

Σ̃i = (S23, S31, S12)Σi =

(

σi 0

0 σi

)

= iγ5γ0γi . (B.5)

Eigenvectors of the helicity operator in the vector space are the ǫ′0 and ǫ0, ǫ+, ǫ− corre-

sponding to j = 0, h = 0 and j = 1, h = 0,+1,−1 respectively (with helicity eigenvalues

labeled by h and those of J2 by j(j + 1) ). They are easily obtained when ~k = (0, 0, k) as

ǫ0
µ =

(

k

|p| , 0, 0,
p0

|p|

)

(B.6)

ǫ′0
µ
=
pµ

|p| and ǫ+
µ =

1√
2
(0,−1, i, 0) (B.7)

ǫ−
µ =

1√
2
(0, 1, i, 0) , (B.8)

where we have taken |p| =
√

−p2. Also note that they are normalised by: ǫ′0
∗µǫ′0µ = −1

and ǫ∗0,+,−
µǫ0,+,−µ = 1. For a general ~k obtained by rotating with θ around the y axis and

−φ around the z axis

pµ =
(

p0, k cosφ sin θ, k sinφ sin θ, k cos θ
)

, (B.9)

helicity eigenvectors are given by:1

ǫ′0
µ
=
pµ

|p|

ǫ+
µ =

1√
2
(0,− cos θ cosφ− i sinφ,− cos θ sinφ+ i cosφ, sin θ)

ǫ−
µ =

1√
2
(0, cos θ cosφ− i sinφ, cos θ sinφ+ i cosφ,− sin θ)

ǫ0
µ =

(

k

|p| ,
p0

|p|
~k

k

)

.

(B.10)

Finally, the spinor-vector representation of the Lorentz group (written as represen-

tation of SU(2)L × SU(2)R for a left-handed Weyl spinor) can be decomposed into spin

representations as

(

1

2
,
1

2

)

⊗
(

1

2
, 0

)

=
1

2
⊕
(

1⊗ 1

2

)

=
1

2
⊕ 1

2
⊕ 3

2
, (B.11)

1Since we have chosen the opposite signature from [24] and [25], helicity +1 and -1 eigenvectors are

inverse compared to those of these authors.
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In term of states, we can therefore decompose |ψ〉 as

|ψ〉 = a1

∣

∣

∣

∣

1

2
,
1

2

〉′

+ ã1

∣

∣

∣

∣

1

2
,− 1

2

〉′

+ a2

∣

∣

∣

∣

1

2
,
1

2

〉

+ ã2

∣

∣

∣

∣

1

2
,− 1

2

〉

+ a3

∣

∣

∣

∣

3

2
,
1

2

〉

+ ã3

∣

∣

∣

∣

3

2
,− 1

2

〉

+ a4

∣

∣

∣

∣

3

2
,
3

2

〉

+ ã4

∣

∣

∣

∣

3

2
,− 3

2

〉

,

(B.12)

where the prime notes the first spin-1/2 representation. Using the Clebsch-Gordon decom-

position this last expression gives (2.9).

If we boost from the fluid rest frame to any frame, the eigenvector ǫ0 becomes:

ǫµ0 =
k

|p|u
µ +

q

|p|kk
µ , (B.13)

where we have qµ = tµνpν and kµ = rµνpν with q =
√

−q2. The form of ǫ+ and ǫ−
is complex in general, but we still have the property: uµǫ

µ
± = 0 since uµǫ

µ
± is a Lorentz

invariant.

C Computation of the covariant propagator

We assume the approximation (1.4) so that we can use plane wave solutions of momentum

pµ.

In making calculations, it is helpful to use the commutations or anti-commutations

properties of the operators πi with /k, /p and /q which are (omitting the Lorentz index for

clarity) given by:

π1/k = /kπ1 π1/q = /qπ1 (C.1)

π2/k = −/kπ2 π2/q = −/qπ2 (C.2)

π3/k = −/kπ3 π3/q = −/qπ3 . (C.3)

The contraction rules of this set of projectors is straightforward and can be summarised

in table 1. We supplemented this set of projector by P3/2 defined such that:

Pµν
3/2 + Pµν

33 + Pµν
22 + Pµν

11 = ηµν . (C.4)

We use the identities

pµ = πµ1 γµ =
/p

p2
πµ1 − /p

k2
πµ2 + πµ3 (C.5)

kµ =
k2

p2
πµ1 +

/k/q

k2
πµ2 rµ =

/k

p2
πµ1 − /q

k2
πµ2 + πµ3 (C.6)

qµ =
q2

p2
πµ1 −

/k/q

k2
πµ2 tµ =

/q

p2
πµ1 − /k

k2
πµ2 , (C.7)

and a bit algebra to express Kµν as a function of the Pµν
ij . We can write

Kµν = (/p+m)(Pµν
3/2 − Pµν

33 )− U(Pµν
13 − Pµν

31 ) + V (Pµν
23 − Pµν

32 )−W (Pµν
12 − Pµν

21 ) , (C.8)
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P11 P12 P13 P21 P22 P23 P31 P32 P33

P11 P11 P12 P13 0 0 0 0 0 0

P21 P21 P22/(π
2

1π
2

2) P23/(π
2

1) 0 0 0 0 0 0

P31 P31 P32/(π
2

1) P33/(π
2

1π
2

2) 0 0 0 0 0 0

P12 0 0 0 P11/(π
2

1π
2

2) P12 P13/(π
2

2) 0 0 0

P22 0 0 0 P21 P22 P23 0 0 0

P32 0 0 0 P31/(π
2

2) P32 P33/(π
2

1π
2

2) 0 0 0

P13 0 0 0 0 0 0 P11/(π
2

1π
2

3) P12/(π
2

3) P13

P23 0 0 0 0 0 0 P21/(π
2

3) P22/(π
2

3π
2

2) P23

P33 0 0 0 0 0 0 P31 P32 P33

Table 1. Contraction rules for the nine projectors Pi,j , the extra-factors of π2

i comes from the

normalisation of the nilpotent operators.

with

W = nk2 (C.9)

U = 2(/km+ /qn) (C.10)

V = 2
k2

p2
(p2 −m/q − n/k) . (C.11)

The second calculation trick is to define a conjugation relation by

A = A1 + /kA2 + /qA3 = A1 − /kA2 − /qA3 , (C.12)

this operation satisfies all the usual properties of conjugation AB = A B, A+B = A+B,

and we have also

|A|2 = AA = a21 + k2a22 + q2a33 , (C.13)

which enables us to obtain the inverse as

A−1 =
A

AA
=
A1 − /kA2 − /qA3

a21 + k2a22 + q2a33
. (C.14)

This formula uses the assumption that all parameters ai are scalars. If A is such that

a1 = a′1 + /k/qa′′1 the previous formula makes little sense. However, it is always possible in

this case to factorise A = A1A2 where A1 and A2 have only scalar coefficients.2

A crucial observation is that thanks to the relations (C.1), the (anti)commutation

relations between the operators πi and A are

πµ1A = Aπµ1

πµ2A = Aπµ2

πµ3A = Aπµ3 ,

(C.15)

2If we had C = c1 + c′1/k/q + c2/k+ c3/q, one can easily check that C = (c3 + c′1/k+ ( c2c3
c′
1

− c1)
1

q2 /q)(
c2
c′
1

+ /q)

is such a decomposition.
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which allows to make all calculations using the A form without decomposing it in /k or /q

parts. The decomposition of the propagator on the projectors basis can be written as

Gµν =
m− /p

m2 + p2
Pµν

3/2 +A Pµν
11 +B Pµν

22 + C Pµν
33 +D Pµν

13 +D′ Pµν
31

+ E Pµν
23 + E′ Pµν

32 + F Pµν
12 + F ′ Pµν

21 .

(C.16)

The propagator satisfies

KµρG
ρν = η ν

µ . (C.17)

Expanded it in the projectors basis leads to a system of nine equations

(33) −(/p+m)C − (π2π3)
−2V E + (π1π3)

−2UD = 1

(32) −(/p+m)E′ − (π1)
−2UF − V B = 0

(31) −(/p+m)D′ − (π2)
−2V F ′ + UA = 0

(23) (π1)
−2WD + V C = 0

(22) (π2π3)
−2V E′ + (π1π2)

−2WF = 1

(21) (π3)
−2V D′ +WA = 0

(13) −(π2)
−2WE − UC = 0

(12) −(π3)
−2UE

′ −WB = 0

(11) −(π1π3)
−2UD

′ − (π1π2)
−2WF

′
= 1 .

(C.18)

We make the assumption that U, V and W contains no terms in /k/q ( if it was not the

case, one should first factorised it, then inverse both terms using (C.14) and do the same

to inverse X). We define the quantity X by

X = −(/p+m) +
1

π3W
(VWU − UWV ) . (C.19)

This expression has no terms in /k/q. Indeed, if A and B do not have /k/q terms, then it is

easily seen that AB +BA also does not have /k/q terms and that AB +BA is a pure scalar

using the product formula

(a1 + a2/k + a3/q)(b1 + b2/k + b3/q) = (a1b1 − a2b2k
2 − a3b3q

2) + (a2b1 + a1b2)/k

+ (a3b1 + a1b3)/q + (a2b3 − b2a3)/k/q . (C.20)

Since we can write

VWU − UWV = V (WU) + (WU)V − (WU + UW )V , (C.21)

we conclude that one can apply the formula (C.14) on X and solve the system of equations
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A =
π21
π23

W

|W |2V
X

|X|2V
W

|W |2

B =
π22
π23

W

|W |2U
X

|X|2U
W

|W |2

C =
X

|X|2

D = −π21
W

|W |2V
X

|X|2 D′ = −π21
X

|X|2V
W

|W |2

E = −π22
W

|W |2U
X

|X|2 E′ = −π22
X

|X|2U
W

|W |2

F = π21π
2
2

(

W

|W |2 +
1

π23

W

|W |2V
X

|X|2U
W

|W |2
)

F ′ = π21π
2
2

(

− W

|W |2 +
1

π23

W

|W |2U
X

|X|2V
W

|W |2
)

(C.22)

Replacing these expression in the propagator, we can in fact factorise most of these terms

and obtain:

Gµν=
m−/p
p2+m2

Pµν
3/2 +

1

π23

[

W

|W |2V π
µ
1+

W

|W |2Uπ
µ
2−π

µ
3

]

X

|X|2
[

V
W

|W |2π
ν
1+U

W

|W |2π
ν
2−πν3

]

+
W

|W |2 (π
µ
1π

ν
2 − πµ2π

ν
1 ) .

(C.23)

If we replace U, V and W by their expression in our case we observe first that X simplifies

in

X = 3(m− w/k + /q) , (C.24)

which indeed does not include /k/q terms. Replacing in the propagator, we recover the

expression used previously

Gµν =
Πµν

3/2

p2 +m2
+

Πµν
1/2

m2 + w2k2 + q2
+

3

4
ǫLV

/k

mk2
(tµpν − pµtν) . (C.25)

where the two polarisations can be written

Πµν
3/2 = (m− /p)Pµν

3/2 (C.26)

and

Πµν
1/2 = −2

3
Λµ (/p+m− ǫLV/k) Λ

ν . (C.27)

where

Λµ = γµ +
pµ

n
− 3

2

(

rµ − /kkµ

k2

)

− 3

4
ǫLVt

µ . (C.28)
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We can relate Πµν
3/2 to the Rarita-Schwinger polarisation tensor Πµν

RS defined as

Πµν
RS = (m− /p)

[

ηµν +
1

3
γµγν + 2

pµpν

3m2
+
γµpν − γνpµ

3m

]

, (C.29)

by

Pµν
3/2 = Πµν

RS +
2

3

[

Λµ +
3

4
ǫLV

(

tµ +
pµ

m

)]

(/p+m)

[

Λν +
3

4
ǫLV

(

tν +
pν

m

)]

. (C.30)

This expression makes explicit the fact that our propagator reduces to the usual Rarita-

Schwinger result when ǫLV = 0. It is remarkable that Πµν
3/2 is directly related to Pµν

3/2 since

this implies that the helicity-3/2 components have a pole structure of a relativistic particle

corresponding to their origins as the gravitino. Similarly, albeit the expression of Πµν
1/2 looks

different from Pµν
1/2 , an explicit calculation using constraint (1.10) shows that we have:

Πµν
1/2ψν = Πµν

1/2ψ1/2ν
. (C.31)

Therefore, the helicity-1/2 part of the propagator projects naturally on the correct helicity-

1/2 degrees of freedom, which means that they have the pole structure of a spin-1/2

pseudo-particle of velocity w.
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