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1 Introduction

The most compelling argument for the possibility of supersymmetry near the weak scale is

that it allows for the possibility of natural electroweak symmetry breaking. This possibil-

ity, however, hinges on a number of conditions [1–4]. The tree-level electroweak symmetry

breaking conditions show that the Higgs VEV should not be much larger than the hig-

gsino mass parameter µ, so naturalness requires light higgsinos [1, 5–9]. At one loop, the

top quark correction to the up-type Higgs mass parameter m2
Hu

must be approximately

canceled, requiring light stop squarks [5–8, 10–14]. Finally, the stops themselves suffer

from large corrections due to a gluino loop, requiring that the gluinos must also not be

too heavy [7, 8]. Although higgsinos are difficult to constrain experimentally, the search

for natural SUSY has driven an extensive effort to discover stops or gluinos at the LHC.

This effort has succeeded in placing stringent bounds on their possible masses and decay

modes. For an up-to-date review of the implications of LHC data for SUSY, see ref. [15].

(Also see refs. [16] and [17] for recent overviews of the status of SUSY naturalness.)

When we discuss natural SUSY, we will always have in mind a scenario with relatively

light stops. Loop corrections from the stops in natural scenarios are not sufficient to lift

the SM-like Higgs mass to 125 GeV. As a result, we will assume that new physics beyond

the MSSM provides a new contribution to the Higgs quartic coupling and raises the Higgs
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mass at the tree level. Many options are available for this, including new F or D-term

quartics [18–20].

In this paper we explore to what extent the heavy Higgs bosons of the MSSM and

its extensions, H0, H±, and A0, could also constitute probes of naturalness. As with the

higgsino mass parameter µ, their mass terms appear in the tree-level conditions for EWSB,

so naturalness will not be consistent with arbitrary values of these parameters. The reason

that heavy Higgses have not joined the usual pantheon of naturalness signatures is that, in

the MSSM, it is only the ratio mA/ tanβ of their mass scale to tanβ that is constrained,

so at large tanβ they can be out of reach of colliders without requiring any fine-tuning [6].

On the other hand, in scenarios like λSUSY where tanβ is order-one [19], it is known that

naturalness requires the other Higgs bosons to be light [21]. The tuning cost of raising the

heavy Higgs masses when tanβ is not large was recently emphasized in ref. [22].

Our goal in this paper is to construct an argument that, in any given extension of the

MSSM, even at large tanβ, there is an upper bound on the heavy Higgs masses arising

from naturalness. We derive simple expressions for the fine-tuning when different possible

quartic couplings are added to raise the Higgs mass to 125 GeV. The only case in which

there is not an immediate bound is the MSSM-like case of an |Hu|4 quartic, for which the

heavy Higgses can be made heavy while simultaneously going to large tanβ. However, we

will argue that measurement of b → sγ, together with a combination of naturalness and

direct constraints on other superpartner masses, allows us to cut off the large-tanβ tail

of the natural parameter space. The fact that b → sγ is difficult to suppress in natural

SUSY due to a contribution from a loop of stops and higgsinos was emphasized in ref. [23].

Our discussion will be somewhat more general because we assume that the Higgs mass is

lifted by quartic couplings beyond the MSSM, relaxing constraints on At assumed in that

reference. Nonetheless, we will find a constraint.

Thus, there is a bound from a combination of tree-level naturalness and b → sγ

measurements on the mass scale of heavy Higgs bosons in a natural supersymmetric theory.

Unlike the tree-level constraint on higgsinos, which is difficult to exploit because they can

be essentially invisible at colliders, the parameter space for natural heavy Higgses can be

significantly constrained by data. Both direct searches and O(v2/m2
H) corrections to the

light Higgs boson decay widths play a part in this. We close our paper with a brief look at

the prospects for experimental tests of natural SUSY in these heavy Higgs search channels.

2 Tree-level fine-tuning

The most general renormalizable potential for the two Higgs doublets Hu and Hd is [24–26]:

V (Hu, Hd) =M2
u |Hu|2+M2

d |Hd|2+(bHu ·Hd+h.c.)+
1

4
λ1 |Hu|4+λ2H

†
uHu (Hu ·Hd+h.c.)

+λ3 |Hu|2 |Hd|2 +
1

2
λ4 (Hu ·Hd + h.c.)2 + λ5 |Hu ·Hd|2

+λ6H
†
dHd (Hu ·Hd + h.c.) +

1

4
λ7 |Hd|4 . (2.1)

Here Hu · Hd denotes the SU(2)-invariant contraction with an antisymmetric ε symbol.

One may be tempted to write another term (H†dHu)(H†uHd), but this is just the linear
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combination |Hu|2 |Hd|2 − |Hu ·Hd|2 and can be absorbed into λ3 and λ5. For simplicity

we use the notation M2
u ≡ |µ|

2 + m2
Hu

and M2
d ≡ |µ|

2 + m2
Hd

. In the MSSM, the nonzero

tree-level quartic couplings are:

λ1 = λ7 =
g2 + g′2

2
; λ3 =

g2 − g′2

4
; λ5 = −g

2

2
. (2.2)

However, in the MSSM at tree level the Higgs mass is always smaller than the measured

value, so we must raise it. For the most part, in this paper, we will simply assume that

the Higgs mass is lifted by a new, hard SUSY-breaking contribution to one of the quartic

couplings λi, and that beyond-MSSM physics otherwise does not affect the Higgs potential.

The new term could arise from new F -terms in higher-dimension operators [20, 27] or from

nondecoupling D-terms from new gauge groups [18, 28, 29].

In some cases, the detailed physics lifting the Higgs mass will also affect Higgs proper-

ties in more significant ways, e.g. when mixing with a singlet [21, 30–32] or triplet [20, 33] is

important. We will not consider these models in detail, but we expect that although they

may provide further experimental search channels they will not alter the basic conclusion

about whether decoupling the heavy Higgs bosons is natural.

In this section we will focus on the quartic couplings λ1 |Hu|4 and λ5 |Hu ·Hd|2, which

we view as well-motivated possibilities. We will not discuss the other cases, but a similar

exercise can be carried out for all of them. The quartics λ6 and λ7 have effects only

at small tanβ, which is disfavored because it requires a very large top Yukawa coupling.

The couplings λ3 and λ4 have a similar effect to λ5, since they involve two up-type Higgs

bosons and two down-type Higgs bosons. The coupling λ2 is an interesting intermediate

case, favoring moderate tanβ, but we don’t know of a model in which in dominates.

2.1 Reminder: EWSB and tuning in the tree-level MSSM

Given the potential in eq. (2.1), we can vary with respect to the VEVs of H0
u and H0

d to

obtain the conditions for an electroweak symmetry breaking vacuum of VEV v. These

equations, for the case of the MSSM, are:

M2
U = b cotβ +

1

2
m2
Z cos(2β) (2.3)

M2
D = b tanβ − 1

2
m2
Z cos(2β). (2.4)

The appearance of m2
Z here comes from assuming that only the tree-level D-term quartic

couplings are present. Of course, this assumption is not consistent with the observed Higgs

mass in our universe, since m2
h < m2

Z in the tree-level MSSM. Nonetheless, it is useful

to take a quick look at tuning in this case because it is familiar and it offers a useful

starting point before proceeding to theories with more general quartic terms. Adding the

two EWSB equations gives

M2
U +M2

D =
2b

sin(2β)
= m2

A, (2.5)
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using the result one obtains by diagonalizing the pseudoscalar mass matrix. On the other

hand, multiplying eq. (2.3) by tan2 β and subtracting from eq. (2.4), we obtain:

1

2
m2
Z =

M2
D −M2

U tan2 β

tan2 β − 1
. (2.6)

In order to have a theory that is not fine-tuned, we would like the individual terms on the

right-hand side to be not much larger than the terms on the left-hand side. Recalling that

M2
U = m2

Hu
+ |µ|2, we can extract three conditions:

|µ|2 . m2
Z∣∣m2

Hu

∣∣ . m2
Z

m2
Hd

. m2
Z tan2 β. (2.7)

The first of these equations is the very familiar condition that higgsinos should not be

much heavier than the Z boson to prevent tree-level tuning [1, 6–9, 34]. The second is

unsurprising, since tanβ > 1 so that the Higgs that gets a VEV has a significant component

in H0
u. In order to obtain a VEV at the weak scale, this Higgs should have a mass near the

weak scale. The final condition receives the least attention, although it has been discussed

at times in the literature (e.g. [6, 22]). It tells us that the down-type Higgs soft mass —

which, at large tanβ, is approximately a measure for the mass of the states A0, H0, and

H± — cannot be much larger than mZ tanβ. The reason this bound typically receives less

attention is that it is usually assumed that tanβ can naturally be very large, allowing the

heavy Higgs bosons to be very heavy without a large amount of fine-tuning. We think that

it is timely to revisit this tree-level naturalness constraint for two reasons. First, many of

the models that are frequently studied as ways of lifting the Higgs mass to 125 GeV operate

best at small-to-moderate tanβ. Second, we will argue that the measurement of b → sγ

prevents theories with very large values of tanβ from being natural. Given such an upper

bound on tanβ, a fine-tuning argument can then impose an upper bound on mA as well.

One of the main goals of this paper is to quantify this upper bound: given what we now

know about b→ sγ, how heavy can the other Higgs bosons be without fine-tuning?

The fine-tuning of EWSB is typically measured in terms of the variation of either the

Higgs VEV [1, 6] or the soft mass m2
Hu

[5, 7] with respect to the input parameters. We

will mostly follow the first, Barbieri-Giudice, definition to quantify the tuning of the Higgs

VEV with respect to a parameter x:

∆x ≡
∣∣∣∣∂ log v2

∂ log x

∣∣∣∣ . (2.8)

If ∆x � 1 for some parameter x, we will say that the theory is fine-tuned. This actually

measures the sensitivity of the Higgs VEV (or, equivalently, the Z mass) to an underlying

parameter. We generally think of tuning as occurring when there must be a cancelation

between different contributions, requiring a delicate adjustment of different input parame-

ters with respect to one another to achieve a result near the experimentally observed value.

For recent discussions of definitions of tuning and how this computation may not always
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reflect what we think of as fine-tuning, see refs. [9, 35, 36]. We expect that the Barbieri-

Giudice measure is typically a fairly good, albeit imperfect, proxy for our intuitive notions

of tuning.

We will now explore the tuning measure in various extensions of the MSSM. In each

case, we will assume that a particular new hard-SUSY-breaking quartic coupling has been

added. We will not worry much about the details of the UV completion, which we expect

to have only a mild effect on the fine-tuning bounds that we infer.1

2.2 The λ1

(
H†uHu

)2
extension

First we will assume that the new quartic coupling that has been added is dominantly up-

type. The usual loop corrections in the MSSM obtained by integrating out stops [37–40] are

of this form. It could also arise from new D-terms in conjunction with other quartics [18,

28, 29, 41–43]; its effects would dominate over those of the other quartics at large tanβ.

Finally, we could consider a new source of tree-level F -terms by adding a new triplet T with

appropriate hypercharge to allow anHu·THu Yukawa coupling, and pairing T with a vector-

like partner T with a supersymmetric mass term [20, 33]. For now we will remain agnostic

about the UV completion, simply assuming that such a quartic is present in the potential.

Given a new contribution δλ1 to the up-type Higgs quartic (beyond the D-term con-

tribution in eq. (2.2)), the two EWSB equations become

M2
U = b cotβ +

1

2
m2
Z cos(2β)− δλ1

2
v2 sin2 β,

M2
D = b tanβ − 1

2
m2
Z cos(2β). (2.9)

The new quartic term shifts the mass of the light scalar Higgs eigenstate. The full analytic

formula is not very enlightening, but in the λ� 1, mA � mZ limit we can expand it as:

δm2
h =

δλ1v
2
(

1− 2
tan2 β

(
1 + 2

m2
Z

m2
A

)
+ · · ·

)
, if tanβ � 1.

1
4δλ1v

2
(

1 + (tanβ − 1)
(

2− 2
m2

Z

m2
A

)
+ · · ·

)
, if tanβ ≈ 1.

(2.10)

Alternatively, for any tanβ we can expand the mass formula for m2
A � m2

Z as

m2
h ≈ m2

Z cos2(2β) + δλ1v
2 sin4 β −

(
2m2

Z cos 2β − δλ1v
2 sin2 β

)2
sin2(2β)

4m2
A

+O(m6
Z/m

4
A).

(2.11)

We show the contours of the lifted Higgs mass as a function of δλ1 and tanβ in figure 1.

As we expect for a term involving only the up-type Higgs, the new quartic is more

efficient at raising the light Higgs boson mass to 125 GeV in the limit of large tanβ.

1In some examples, e.g. quartic which is generated from non-decoupling D-terms, one would often need

an additional fine tuning beyond the MSSM to produce the desired quartic. In the D-term scenario this

is related to the fact that that the non-decoupling D-term is proportional to the soft masses of heavy

W ′/Z′-inos. Of course we do not take this potentially model-dependent tuning into account in our analysis.

However one should bear in mind that the fine tuning that we estimate is the lowest possible bound within

the low energy effective theory.
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Figure 1. Contours of lifted Higgs mass when adding a new |Hu|4 quartic coupling δλ1, for two

different choices of mA. As expected from eq. (2.10), the dependence on mA is small. For large

tanβ we need δλ1 ≈ 0.24 to lift the Higgs mass.

Furthermore, because the MSSM tree-level contribution is suppressed at small tanβ, it

becomes even more difficult to obtain δλ1 large enough in that case. This is illustrated by

the contours of constant Higgs mass in the (tanβ, δλ1) plane in figure 1.

To evaluate the tuning, we first take a derivative with respect to M2
d . We use the

fact that b = m2
A sinβ cosβ (a result that is unchanged from the MSSM case) and thus

that M2
d can be written in terms of the physical parameters m2

Z ,m
2
A, and tanβ as M2

d =

m2
A sin2 β − 1

2m
2
Z cos(2β). The resulting expression is:∣∣∣∣ ∂ log v2

∂ logM2
d

∣∣∣∣ =
cos2 β

[
2m2

A +m2
Z

(
1− cot2 β

)] [
m2
A csc2 β + 2m2

Z + δλ1v
2
]

m2
A

(
m2
Z + δλ1v2

)
+m2

Z cot2 β
[
m2
A (cot2 β − 2) + δλ1v2

] . (2.12)

This expression is not very enlightening on its own, but the main question we are interested

in is: if we allow at most a given amount of fine-tuning, can we infer a bound on the physical

masses of heavy particles? For this question, it is reasonable to expand the tuning measure

at large m2
A. We will also assume that the value of δλ1 is chosen to fix the Higgs mass m2

h

as in eq. (2.11). The result is:∣∣∣∣ ∂ log v2

∂ logM2
d

∣∣∣∣ ≈ 1

2
sin2 2β

m2
A +m2

h

m2
h

+
1

2
cos2 β (1− 4 cos 2β + cos 4β)

m2
Z

m2
h

+O(m2
h/m

2
A)

−→tanβ→∞
2m2

A + 2m2
h + 3m2

Z

m2
h tan2 β

. (2.13)

From this we can see that if m2
A � m2

h, the theory becomes very fine-tuned unless sin(2β)

is small, which happens in the tanβ � 1 limit. We explicitly illustrate this point in figure 2

where we plot the contours of fine tuning as a function of mA and tanβ. The precise value

of δλ1 on this plot is set by demanding mh = 125 GeV.

As expected, one gets very low fine tuning for very large values of tanβ. Even now the

large tanβ region can be partially explored by the LHC, due to a robust H0, A0 → τ+τ−

– 6 –
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Figure 2. Contours of fine tuning of EWSB with an extra quartic |Hu|4. The exact value of λ1
is determined by demanding mh = 125 GeV. The shaded green region is directly excluded by the

CMS search for H → τ+τ− decay (see text for explanation).

decay mode which can be directly probed. In figure 2 we show a green region, which has

been directly excluded by the CMS search [44] for H0 → τ+τ−. We anticipate that much

more significant gains will be made by LHC14.

However, another important constraint on the large tanβ region comes from the mea-

surement of the flavor-violating decay b→ sγ, which we will explore in detail in section 3.

There we will find that, for very low-scale SUSY breaking (mediated at Λ = 10 TeV),

one can accommodate tanβ ≈ 30 if one allows a factor of 10 tuning in the stop sector.

(Indirect constraints from Higgs decays already force us to accept a minimum factor of

about 5 tuning in the stop sector [36].) Using the formula above, we find that if we allow

at most an additional factor of 10 tuning in EWSB, for a combined 1% tuning, we have

mA . 8.4 TeV. Probing such large values of mA will require future hadron colliders, more

powerful than the LHC. On the other hand, we will find in section 3.3 that with even

a slightly higher mediation scale Λ = 30 TeV the bound from b → sγ becomes notably

stronger: tanβ . 10. In this case, allowing for at most an additional factor of 10 tuning

in EWSB implies mA . 2.8 TeV. If we view the factor of 10 tuning in the stop sector as

already deviating from naturalness, and want to ask for no additional tuning in EWSB,

we have the stronger condition mA . 0.9 TeV. Furthermore, higher mediation scales only

strengthen the tanβ upper bound from b→ sγ, so although parts of the natural parameter

space may require future colliders to probe, in much of the parameter space the heavy

Higgs bosons should be accessible at the LHC. Measurements of the light Higgs boson de-

cay modes at the 14 TeV LHC with 300 fb−1 of data will probe the range of mA up to about

450 GeV [45]. Heavier masses can be probed only by direct searches or higher precision

measurements at the high luminosity LHC or especially future e+e− colliders.
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Figure 3. Contours of lifted Higgs mass when adding a new |Hu ·Hd|2 quartic coupling δλ5, for

two different choices of mA. Only moderate tanβ values are allowed by 125 GeV Higgs.

2.3 The λ5 |Hu ·Hd|2 extension

This is the quartic extension that arises in the NMSSM or λSUSY. It does not change the

pseudoscalar mass relation m2
A = 2b/ sin(2β). In this case, we find that the light Higgs

mass is corrected as:

m2
h = m2

Z cos2(2β) + δλ5v
2 sin2(2β)−

(
m2
Z − δλ5v

2
)2

sin2(4β)

4m2
A

+O(m6
Z/m

4
A). (2.14)

In this case moderate values of tanβ are most effective for raising the Higgs mass, because

the correction term involves vd and is suppressed in the large tanβ limit. In fact, it is im-

possible to get mh = 125 GeV with large tanβ. On top of that, we often need large, almost

non-perturbative values of δλ5 in order to get the correct value of the SM-like Higgs mass.

The tuning measure in this case is:∣∣∣∣ ∂ log v2

∂ logM2
d

∣∣∣∣= M2
d sin2(2β)

(
m2
A csc2 β + 2m2

Z − 2δλ5v
2
)

m2
Am

2
Z +

(
m2
A − δλ5v2

) (
m2
Z − δλ5v2

)
cos(4β) + δλ5

(
m2
A +m2

Z

)
v2 − δλ2

5v
4
.

(2.15)

Again, this expression simplifies in the limit m2
A � m2

h,m
2
Z , choosing δλ5 to fix the Higgs

mass m2
h as in eq. (2.14):∣∣∣∣ ∂ log v2

∂ logM2
d

∣∣∣∣ ≈ 1

2
sin2 2β

m2
A

m2
h

− 3− 2 cos(2β) + cos(4β)

4
+

+
m2
Z (1− 4 cos(2β) + cos(4β))

4m2
h

+O(m2
Z,h/m

2
A). (2.16)

This suggests that λ5 extension is typically fine tuned, since it is not easy to find a

perturbative δλ5 for a light pseudo-scalar A. We show this point explicitly in figure 4.

Most of the solutions for δλ5 are already fine tuned, and those which are technically not

fine tuned require very large values of δλ5. The region with order-one values of δλ5 and

low fine-tuning has mA . 1 TeV, so the heavy Higgs bosons may be accessible at the LHC.
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Figure 4. Contours of fine tuning of EWSB when adding a new |Hu ·Hd|2 coupling δλ5. Most

of the parameter space is already fine tuned. The purple contours denote the δλ5 value needed to

get a 125 GeV SM-like Higgs mass. In the black region it is difficult to rely on the perturbative

calculation, since it demands δλ5 > 2.

×
µ

×At

Hu

bL sR

γ

t̃R t̃ L

H̃−
u H̃−

d

×M3

×
ybµ

Hu

bL sR

γ

b̃L b̃R

g̃ g̃

Figure 5. Diagrams contributing to the b→ sγ process in natural SUSY theories. The higgsino has

flavor violating couplings through the CKM matrix just as the W boson does, so the stop-higgsino

loop at left has the same flavor factors as the SM amplitude.

3 How large can tanβ be in natural SUSY?

The role of b → sγ in natural SUSY was recently emphasized in refs. [23, 46, 47]. The

process receives multiple contributions in supersymmetric theories that involve an insertion

of the VEV of Hu and thus are enhanced by a factor of tanβ relative to the Standard Model

amplitude [48–54]. Two of these diagrams, one with stops and higgsinos running in the

loop and one with gluinos and sbottoms, are shown in figure 5. (Other diagrams involve a

wino or bino running in the loop; we will ignore these terms, which are small corrections in

natural parts of parameter space.)2 From the loop diagram containing stops and higgsinos,

2The contributions of the charged Higgs loop is also small in most parts of the natural parameter space

of mA, if the charged Higgs is nearly degenerate with the neutral heavy Higgses. We are trying to argue
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we have a correction to the matrix element scaling like:

Mt̃;h̃(b→ sγ) ∼ m2
t

Atµ

m4
t̃

tanβ. (3.1)

The measurement of the rate for b → sγ puts an upper bound on this correction, which

we would like to interpret as an upper bound on tanβ. Such a bound would be very weak

if the coefficient of tanβ could be very small. Thus, we would like to have a lower bound

on the factor Atµ
m4

t̃

in front of tanβ. Fortuitously, there is an argument for each parameter

that goes in the correct direction:

• mt̃ cannot be too large because stops are needed for one-loop naturalness (canceling

the top loop divergence in m2
Hu

).

• µ cannot be too small because we have a direct constraint from LEP on the possibility

of light charged particles; hence µ & 100 GeV [55–58]. The LHC will potentially

strengthen this constraint, although even raising the bound to 150 or 200 GeV will

require a large luminosity at 14 TeV [59–62].

• Finally, At cannot be too small because it receives loop corrections proportional to

the gluino mass M3. If it takes a value much smaller than these loop corrections, this

would be a new source of fine-tuning. Bounds on the gluino mass are in the vicinity of

1 TeV for a variety of scenarios, both with traditional missing momentum signatures

and in cases where the gluino decays to multiple jets [63–67], so it is reasonable to

think that At should not be smaller than the radiative contribution from a 1 TeV

gluino.

This tells us that naturalness, used in conjunction with the measurement of b → sγ and

experimental bounds on the gluino mass, implies an upper bound on tanβ. We should now

evaluate what this bound is, numerically. The full formula is given in a convenient form in

ref. [68] (using the results of ref. [69]) and we will use it in the numerics, but first to get

some intuition we will give some approximations that indicate how the correction depends

on the soft parameters. We work in the limit µ2 � m2
Q3
,m2

uc3
, introducing the notation

mt̃ ≡
(
mQ3muc3

)1/2
for the geometric mean of the two stop soft masses and r = mQ3/muc3

for their ratio. Then if we assume that only the stop-higgsino loop gives a significant

contribution, the general formula approximately reduces to:

Br(B→Xsγ)

Br(B→Xsγ)SM
−1≈2.55 tanβ

Atµm
2
t

mt̃
4

[
log

mt̃

µ

(
1+2.1

r2+1

r

µ2

mt̃
2

)
−0.52+

1+r2

2−2r2
log r

− µ2

mt̃
2

(
0.76

3(r2 + 1)

4r
+ 2.1

r4 + 1

2r(r2 − 1)
ln(r)

)
. . .

]
, (3.2)

where omitted terms are subleading in tanβ or in µ2/mt̃
2.

that mA cannot naturally be too large, so while the charged Higgs contribution can matter at small mA, it

is not very relevant for our argument. Therefore we will also neglect it here.
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There are other loop corrections to b→ sγ, but they depend on masses that can natu-

rally be heavy. The gluino loop shown at right in figure 5 can feel flavor violation through

the squark soft mass matrices; even in an MFV scenario, these need not be universal,

because — for example — m2
Q can contain a piece proportional to V †y2

uV where y2
u is a di-

agonal matrix of up-type Yukawas [68]. However, the gluino loop involves the right-handed

sbottom, which need not be light for naturalness. In fact, in some natural SUSY scenarios

it must be heavy to avoid FCNCs [8, 70]. Even if we assume that the right-handed sbot-

tom mass is near the left-handed sbottom and stop masses, we find that the gluino loop

is usually subdominant to the stop-chargino loop for natural parameter values. The wino

loop is suppressed by a smaller coupling as well as potentially the heaviness of the wino

mass. Thus, it is reasonable for us to focus on the stop-chargino loop. In principle, other

loop corrections could cancel it, but this is in itself a tuning.

3.1 Natural choices for At

The simplest estimate for the smallest natural choice of At, assuming running from a

relatively low scale Λ, is

Aloop
t ≈ − 2

3π2
g2

3M3 log
Λ

M3
≈ −230 GeV

(
M3

1 TeV

)
log10

Λ

M3
. (3.3)

If we run from a higher scale, we can do a somewhat more careful estimate by resumming

large logarithms.

What we have called At is really at/yt, where at is the coefficient of the three-scalar

operator in the Lagrangian. Keeping only the one-loop terms involving g3 or yt, the RG

evolution of at is related to that of the gluino mass by the equation (e.g. [71])

d

d logµ
at =

1

16π2

((
18y2

t −
16

3
g2

3

)
at +

32

3
ytg

2
3M3

)
. (3.4)

If we assume that at ≈ 0 at some mediation scale Mmed (as is true in a number of models,

including gauge mediation), we can use this equation together with the RGEs for g3, yt, and

M3 to plot the low-scale value of At as a function of the low-scale gluino mass parameter

M3 and the mediation scale. We show this in figure 6.

What we learn from this is that typically, the RG contribution to At ranges from

−200 GeV to −750 GeV over a wide range of mediation scales and for gluinos near 1 TeV.

Thus, a smaller trilinear coupling At will generally imply some tuning of a positive tree-

level value at the mediation scale against a negative loop correction from gluinos. (Here

we use “tree-level” loosely for the value of At at the mediation scale; in a given model, it

may arise from loops, but we distinguish it from the contribution generated in the RGE.)

We will quantify this tuning in an intuitive way. Given that At is a sum At = Atree
t +Aloop

t ,

we can measure a tuning by the amount of cancelation:

∆At ≡

∣∣Atree
t

∣∣+
∣∣∣Aloop

t

∣∣∣∣∣∣Atree
t +Aloop

t

∣∣∣ . (3.5)
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Figure 6. The low-scale value of At generated from solving the RGE with At = 0 at a scale Mmed

and a low-scale gluino mass M3.

×
µ

×At

Hu

bL bR
t̃R t̃ L

H̃−
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d

×M3

×
ybµ

Hu

bL bR
b̃L b̃R

g̃ g̃

Figure 7. Diagrams contributing to the “wrong-Higgs” Yukawa coupling H†uQd
c, which can be a

dominant contribution to the b-quark mass for very large tanβ.

In the regime where the two terms nearly cancel, this behaves similarly to other tuning

measures like that of Barbieri and Giudice [1]. If there is no significant cancelation (e.g.

if At at the mediation scale is much larger than the gluino-generated term), it asymptotes

to 1. This is a desirable property for a tuning measure to have, because we would like to

be able to compute a combined tuning in multiple variables as a product of independent

tunings in each variable.

3.2 The uplifted Higgs region

As tanβ increases, the Yukawa couplings needed to generate the b and τ masses from the

VEV of Hd become large. However, a new source of masses arises from loop effects that

generate the “wrong-Higgs” Yukawa couplings H†uQdc and H†uLec. For sufficiently large

tanβ we can think of the b and τ masses as arising entirely for these effects, in what has

been called the uplifted supersymmetric Higgs region of parameter space [72, 73]. In this

part of parameter space, we must exercise some caution in our argument about the size

of the b→ sγ amplitude. The same loop diagram that generates the wrong-Higgs bottom

quark Yukawa coupling also generates b→ sγ, when one external b quark is replaced by a

strange quark and a photon is attached to an internal line. (Compare the loops generating
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Yukawas in figure 7 to those for b → sγ in figure 5.) As a result, b → sγ is no longer

enhanced by a factor of tanβ relative to the b-quark mass, and we should be concerned

that data on b→ sγ can’t actually rule out very large values of tanβ.

This concern is conceptually reasonable but proves to be numerically unfounded. The

uplifted region of parameter space lies at very large values of tanβ and also requires large

values of µ, putting it outside of what we consider to be natural SUSY parameter space.

In all of our computations, we will use the formulas of ref. [68], in which the corrections

to the b → sγ amplitude are proportional to tanβ/(1 + εb tanβ), where εb in the denom-

inator is a loop factor correcting for the wrong-Higgs contribution to the b-quark mass.

The statement that the uplifted regime does not change our conclusion is that εb tanβ is

at most O(1) for reasonable input parameters, whereas removing the bound at large tanβ

would require that it be � 1.

It is easy to see that naturalness is in tension with the uplifted regime by inspection of

the loop corrections. The approximate result for εb in the limit m2
Q3

= m2
uc3

= m2
dc3
≡ m2

q̃

assuming M2
3 � m2

q̃ � µ2 is

εb ≈
1

16π2

{
8g2
s

3

µ

M3

[
log

M2
3

m2
q̃

(
1 + 2

m2
q̃

M2
3

)
− 1

]
+
y2
t s

2
βAtµ

m2
q̃

(
1− µ2

m2
q̃

log
m2
q̃

µ2

)
+ . . .

}
.

(3.6)

Numerically, we expect the gluino loop contribution to εb, which is ∼ µ/M3, to dominate

in most of the natural SUSY parameter space. Note that for naturalness, we prefer µ as

small as possible (close to 100 GeV), whereas experimentally we know that M3 & 1 TeV.

Furthermore, the gluino loop drags the stop and sbottom soft masses up, so the log is

rarely large. Estimating µ/M3 . 0.2 and log(M2
3 /m

2
q̃) . 3, we see that εb . 10−2, so that

εb tanβ becomes an order-one number only at tanβ ∼ 100. One could try to get around

this conclusion by choosing very large values of At to enhance the second term, but this

is not very well-motivated and potentially runs into problems with vacuum stability [74].

Increasing the first term requires going to large µ and thus indicates significant tree-level

tuning for electroweak symmetry breaking. In short, the uplifted regime is of little rele-

vance for a study of natural SUSY, and will not interfere with our inference of a bound on

tanβ from b→ sγ and naturalness.

3.3 Interpreting the experimental results on b→ sγ

For the experimental bound on b→ sγ, we will follow ref. [68] in taking the SM prediction to

be [75] Br(B → Xsγ)SM = (3.15± 0.23) × 10−4 and the experimental value to be [76, 77]

Br(B → Xsγ)exp = (3.43± 0.22) × 10−4. Given these values, we estimate that at 95%

confidence level the ratio Rbsγ of the true value of the branching ratio to its Standard

Model value lies in the range

0.90 ≤ Rbsγ ≤ 1.32. (3.7)

Because the data prefer a slightly high value relative to the Standard Model, constraints are

weaker on the scenario where new physics constructively interferes with the SM amplitude.

This happens when µAt > 0. Because small At is easiest to achieve if the RG contribution
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Figure 8. Constraints arising from b→ sγ. Here we have fixed µ = 100 GeV (and |M3| = 1.3 TeV)

and plot blue solid lines for contours of the largest allowed tanβ as a function of the stop mixing

parameter At and the stop soft mass parameter. The shaded regions are disfavored by naturalness:

the purple regions at small At involve tuning ∆At = 5 (lighter region) and 10 (darker region). The

red shaded regions correspond to ∆t̃ = 5 (lighter) and 10 (darker) tuning in m2
Hu

from the stop

loop contribution. The region above the black dashed lines has combined tuning ∆ > 10. The plots

with different signs of M3 have different tuning measures because the loop-generated At always has

the opposite sign to M3.

from the gluino dominates, this corresponds to a negative sign for µM3. The case µAt < 0,

arising if µ and the gluino mass term have the same sign, is more strongly constrained.

We have plotted the largest allowed value of tanβ, with various naturalness constraints

superimposed, in figure 8. In this figure µ is fixed to 100 GeV. We have also fixed |M3| =
1.3 TeV, md3 = 2 TeV, M2 = 0.5 TeV, and ζ (a parameter defined in ref. [68] related to

the relative size of various MFV terms in the soft mass matrices) equal to 0.5. We assume

that running begins at Λ = 10 TeV, a fairly extreme limit of low-scale SUSY breaking, in

order to be conservative about tuning measures. Bounds on tanβ become stronger if µ

increases. The plot is relatively insensitive to the other parameters, but we have included

them for concreteness. We have checked that including the stop-chargino loop alone, with
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Figure 9. Constraints arising from b→ sγ. The upper plot is just like the lower panel of figure 8,

except that we set the supersymmetry mediation scale Λ to 30 TeV instead of 10 TeV. The extra

running means that increased tuning is required: both ∆At
and ∆t̃ are larger. As a result, requiring

∆ < 10 now imposes a stronger constraint, tanβ < 9.5. In the lower plot we show how this

constraint evolves with the mediation scale, allowing for stop-sector tuning by a factor of either 10

(solid orange line) or 30 (dashed orange line). Already for a 100 TeV mediation scale the constraint

is tanβ < 3.4 if we require ∆ < 10.

all other superpartners decoupled, makes very little difference in the result. We plot two

cases with two different signs of M3 (relative to µ). The sign of M3 determines the sign of

Aloop
t which enters in the tuning measure eq. (3.5).

The naturalness constraints are defined in terms of two tunings. First, large stop soft

masses correspond to a tuning of the up-type Higgs soft mass parameter, which is quantified

by [5, 6]

∆t̃ =

∣∣∣∣∣3y2
t

4π2

m2
Q3

+m2
u3 +A2

t

m2
h

log
Λ

mt̃

∣∣∣∣∣ . (3.8)

The second tuning arises for small values of At, as quantified in the expression ∆At of

eq. (3.5). In figure 8, regions of large ∆t̃ are shaded red and regions of large ∆At are

shaded purple. One can see that large values of tanβ are allowed only if At is small or the
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stop masses are large, indicating that at least one of these tuning measures is becoming

large. For instance, there are two corners of parameter space where ∆At = ∆t̃ = 5, one

at negative At and one at positive At (where the sign is understood relative to that of µ).

In the case M3 < 0, at the former point, the largest 95% CL allowed value of tanβ is less

than 10; at the latter, it is about 25. Thus, as noted above, the case of positive At is less

strongly constrained.

We have no particular reason to think that cancellations in m2
Hu

and in At will happen

at the same point in parameter space, although perhaps one could imagine a model in which

this is true. If the tunings are independent, we can think of an overall tuning ∆ = ∆t̃∆At

which is simply the product of the two individual tunings. In other words, if we have to

adjust two unrelated parameters to the 10% level, this may reasonably be thought of as a

1% tuning in parameter space. With such independent tunings in mind, we have plotted

dashed black contours in figure 8 that show where ∆ = 10. We see that the combined

tuning is mildest whenever M3At < 0, which is driven by the fact that ∆At prefers At to

be either near its loop-generated value or much bigger.

The most optimistic region of parameter space has µAt > 0 (so that the new physics

contribution constructively interferes with the SM and improves agreement with data) and

AtM3 < 0 (so that the trilinear can be mostly generated from the RG). From the figure,

we can see that this marginally allows tanβ ≈ 28 with a combined tuning ∆ ≈ 10 coming

almost entirely from the stop mass mt̃ ≈ 600 GeV. The plots make it clear that allowing

tanβ > 30 will require either quite heavy stops — out of the range that can be considered

truly natural — or a cancelation in At, or both. We think that it is very conservative to

conclude that generic natural SUSY requires tanβ < 30.

In fact, we are usually understating the required cancelation in At, because most

reasonable models will run from a higher UV scale and generate values of At a factor of 2

or more larger than we have considered. Even a slightly larger amount of running produces

a significantly stronger conclusion, as we illustrate in figure 9. Beginning the RGE at 30 TeV

instead of 10 TeV produces a larger value of Aloop
t and also increases the stop-generated

contribution to m2
Hu

. In this case, the conclusion is already that tanβ < 10. We show

how the bound on tanβ changes with the mediation scale in the lower panel of figure 9.

Running from 100 TeV already requires tanβ < 3.4 for consistency with an overall tuning

∆ < 10. (In fact, the bound already hits tanβ = 1 when the mediation scale Λ ≈ 350 TeV,

indicating that models of high-scale SUSY breaking will require significant fine-tuning for

compatibility with the b→ sγ measurement.) Although the choice of a tuning measure is

to some extent a matter of taste, it is clear that accommodating tanβ & 10 requires both

very low-scale mediation and a mild tuning. We also show, with the dashed orange line in

the lower panel of figure 9, that allowing for more tuning significantly increases the range

of allowed tanβ. If we allow ∆ = 30 rather than 10, we can accommodate tanβ = 30 even

with running from 100 TeV, and tanβ = 10 even with running from 1000 TeV. Still, high-

scale SUSY breaking is highly constrained even allowing for this larger amount of tuning.

As a simpler estimate, we can use the one loop RG approximation eq. (3.3) for Aloop
t ,

write the average stop mass in terms of the tuning ∆t̃ from eq. (3.8), and use the leading
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term in equation (3.2) to estimate that

2.55 tanβ
Atµm

2
t

mt̃
4 log

mt̃

µ
. 0.32, (3.9)

implying

tanβ . 28

(
∆t̃

10

)2(100 GeV

µ

)(
1.3 TeV

|M3|

)
2

log
mt̃
µ

2

log Λ
|M3|

(
2

log Λ
mt̃

)2

. (3.10)

This is a useful check that the more detailed numerical results are reasonable. The (log Λ)−3

behavior explains the rapid improvement of the bound as we increase Λ above 10 TeV that

we saw in figure 9.

3.4 Comment on Bs → µ+µ−

This very rare process is often quoted as the best possible constraint on SUSY with large

tanβ. Indeed the most important SUSY contribution to Bs → µ+µ− is proportional to

tan3 β [78, 79], and therefore is naively expected to be very sensitive to natural SUSY.

However we find that all the constraints that we get from this process are subdominant

to b→ sγ constraints. There is a simple explanation for why this happens. Although the

matrix element is enhanced by tan3 β, it is also suppressed by m2
A. As we have learned in

section 2, in the large tanβ limit the fine tuning of EWSB stays approximately constant

along the contours of mA tanβ = const. Therefore, effectively the matrix element is

enhanced only by a single power of tanβ, precisely as is b→ sγ.

On the other hand, the rate of Bs → µ+µ− is measured to much worse precision than

b→ sγ. While the process b→ sγ is measured to the precision of better than 10%, ref. [80]

gives the following 95% CL bound on Bs → µ+µ−:

1.1× 10−9 < BR(Bs → µ+µ−)exp < 6.4× 10−9 (3.11)

Based on the SM prediction [81]

BR(Bs → µ+µ−)SM = (3.32± 0.17)× 10−9, (3.12)

from these equations we estimate that at 95% confidence level

0.31 < RBs→µ+µ− < 1.95. (3.13)

The lower bound is meaningless in large tanβ regime: in SUSY one cannot get RBs→µ+µ−

smaller than 0.5, unless the SUSY contribution is dominated by the Z-penguin.3 On the

3The reason for this is that there is a contribution with H0 exchange that interferes destructively with

the Standard Model, and a contribution with A0 exchange that does not interfere and is equal to the H0

amplitude to the extent thatmA ≈ mH0 . Thus the squared matrix element goes as |ASM −ANP|2+|ANP|2 ≥
1
2
|ASM|2. If the Z penguin contribution matters, this argument is no longer strictly true. But the Z penguin

goes only as tan2 β and is suppressed by the mass insertion δLR in the up sector (see [82] for relevant

expressions), so is generally expected to be less important.
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Figure 10. Constraints arising from Bs → µ+µ− for mA = 400 GeV.

other hand the upper bound is weak, allowing O(1) deviations from the SM-predicted

values. Therefore the bounds on tanβ one gets from this process are much weaker than

those one gets from b→ sγ. To illustrate these points we show these bounds, considering

(as in the b → sγ example) only the higgsino loop contribution, in figure 10, showing the

maximal allowed values of tanβ for mA = 400 GeV. We see that these constraints are very

clearly subdominant to the b→ sγ constraints in figure 8. At higher mA these constraints

quickly decouple.

3.5 The Dirac loophole

If the gluino has a Dirac mass rather than the standard Majorana mass, our argument

breaks down because At can naturally be smaller, protected by R-symmetry. Supersym-

metry with Dirac gauginos has received a great deal of recent attention: see (for example)

refs. [8, 83–94]. An R-symmetry forbids a µ-term as the higgsino mass, so these models typ-

ically involve new doublets that pair with the usual Higgs doublets to form massive higgsi-

nos. The A-term is also forbidden. Depending on how and to what extent the R-symmetry

is broken, a remnant of our argument may survive in these models. For the most part, how-

ever, we expect that these models evade our argument and that a detailed look at the EWSB

conditions and naturalness in these theories will require a completely different perspective.

Some aspects of naturalness in such theories have been addressed in refs. [91, 92, 94].

Although this loophole exists, models with Dirac gauginos are necessarily more baroque

than traditional SUSY models, and we do not feel that they undermine the motivation for

viewing heavy Higgs bosons as key channels in which to search for naturalness.

4 Outlook

The traditional harbingers of SUSY naturalness are higgsinos at tree level, stops at one

loop, and gluinos at two loops. Higgsinos, being produced only through the electroweak

interactions, are difficult to constrain at hadron colliders. Stops and, especially, gluinos

– 18 –



J
H
E
P
1
0
(
2
0
1
4
)
1
0
2

are easier to search for directly due to their large QCD cross sections. But if R-parity is

violated, the spectrum is compressed, or decays go through a hidden sector, traditional

missing momentum searches for stops and gluinos can be dramatically weakened. Opti-

mized searches for these “hidden SUSY” cases are receiving increased attention. One of

our goals in this paper is to argue that searches for heavy Higgs bosons provide another

way to address such scenarios.

Heavy Higgs bosons, unlike superpartners, have predictable decays to pairs of Standard

Model particles. The neutral boson H0 will decay to τ ’s and b’s at large tanβ, and to tops,

light Higgs bosons, Z bosons and W bosons at smaller tanβ. The ZZ “golden channel”

is one interesting search mode, and its rate is linked to the hh channel by the Goldstone

equivalence theorem, as explained in appendix A. Although extensions of the MSSM might

open new decay modes of the heavy Higgses, it seems unlikely that these decays dominate,

especially given the SM-like nature of the light Higgs as measured so far. Thus, heavy Higgs

searches offer a window on naturalness that is less easily dodged by clever model-building

than other SUSY searches.

One recent survey of the reach of LHC Run II for heavy Higgs bosons is ref. [95], which

shows that the H → τ+τ− channel can reach above 1 TeV for large tanβ while H → tt̄ can

reach above 1 TeV at small tanβ. The intermediate tanβ regime is more difficult to probe

and could deserve increased effort, given the added motivation that arises when viewing

these searches as an additional probe of naturalness. Other recent theoretical work on

signals of heavy Higgs bosons includes refs. [96–101].

It is interesting to ask to what extent our naturalness bounds on heavy Higgs masses

can be improved in the future. We do not expect significant theoretical improvements in the

Standard Model prediction of b → sγ in the future, due to irreducible uncertainties [102,

103]. The currently less constraining measurement of Bs → µ+µ− might play a more

interesting role in the future. The LHCb result [80] is dominated by statistical uncertainties.

Future data is expected to improve the error bar to 10% precision [104]. With such an

improved measurement, the constraints from Bs → µ+µ− would become an important

supplement to the b→ sγ bound in naturalness arguments regarding the large tanβ region.

Another way that our arguments could become somewhat stronger in the future is

through an improved lower bound on the higgsino mass parameter µ, which will in turn

require smaller values of tanβ to accommodate the same constraint on b→ sγ. However,

higgsino searches are difficult. A more promising route to a stronger bound is through

improved bounds on gluino masses, since these feed into At at loop level. Although gluino

signals are susceptible to being “hidden” in various ways, they are less so than stops, and in

fact bounds on gluinos exist even with complicated decay chains lacking missing energy [67].

These bounds should improve early in Run 2 of the LHC, which will allow a stronger

statement to be made about the heavy Higgs masses expected from naturalness arguments.

We emphasize that heavy Higgs boson searches provide a robust way to constrain

natural models of supersymmetry. Although they are already a part of the LHC’s suite

of new physics searches, we believe that they should be viewed as part of the naturalness

program and accorded a correspondingly intense focus.
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A H → hh, H → ZZ, and Goldstone equivalence: a comment on

branching ratios

One interesting search channel for a heavy Higgs is H → hh, which is particularly appealing

since the Standard Model rate for events with two Higgs bosons is very small [98, 105–

112]. On the other hand, the dominant Higgs decay is to bb̄, a challenging signal to

pull out of background. Given that the very clean h → ZZ∗ → 4` channel played a

key role in the discovery of the 125 GeV Higgs boson, it is interesting to ask when, and

to what extent, the H → hh decay mode dominates over H → ZZ. Answers to this

question may be extracted from the literature, but are often expressed in rather tech-

nical forms. For example, in ref. [98], we learn that the coupling gHhh is proportional

to
(
3m2

A − 2m2
h −m2

H

)
(cos(2β − 2α)− cot(2β) sin(2β − 2α)) − m2

A. Even an MSSM afi-

cionado might have to resort to numerical estimates to have much intuition for what such an

expression means. On the other hand, numerically, one can see from plots (e.g. in refs. [95]

or [98]) that Γ(H → hh) is typically about an order of magnitude larger than Γ(H → ZZ).

In fact, in most models it will be true that Γ(H → hh) ≈ 9 Γ(H → ZZ), which follows

straightforwardly from the Goldstone boson equivalence theorem. Corrections are expected

to be of order m2
h/m

2
H . This result is likely known to experts but we have not seen it in the

literature, so we will explain it here. It offers a useful rule-of-thumb for experimentalists

considering whether to undertake a search for Higgs pair production. Assuming this factor

of 9 between the heavy Higgs branching ratios, one can ask whether a planned search for

Higgs pair production can beat the cleaner, but rarer, ZZ → 4` signal.

The factor of 9 in the rate comes from a combinatoric factor of 3 in the amplitude that

we can explain using a strategy that has appeared in ref. [45], namely working in the basis

of VEV eigenstates. We will denote by h the linear combination of fields that has a VEV,

and H the orthogonal combination:

h = sinβ Hu + cosβ H†d =

(
iG+

(v + h0 + iG0)/
√

2

)
, (A.1)

H = − cosβ Hu + sinβ H†d =

(
iH+

(H0 + iA0)/
√

2

)
. (A.2)

Notice that we are working not just with the real components of the Higgs fields but with

entire SU(2)L doublets. Furthermore, the real scalar Higgs modes h0 and H0 contained in
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Figure 11. Left: the decay H → ZZ in unitary gauge, for which the VEVless eigenstate H first

mixes into the eigenstate h and then couples through its VEV to ZµZ
µ. Right: the decay H → hh

and the related decay to two Goldstone modes. A relative factor of 3 arises from the combinatoric

choice of which h leg to replace by a vev in H → hh.

h and H will not be mass eigenstates, in general. On the other hand, the three Goldstone

degrees of freedom G0, G± for electroweak symmetry breaking are entirely contained in

h, and only the real scalar mode h0 in h has couplings to W± and Z bosons of the form

h0VµV
µ. Given LHC data, we know that the VEV eigenstates are approximately the same

as the mass eigenstates; in other words, we are in the “alignment limit” cos(β − α) � 1,

because the light Higgs is observed to couple to particles proportional to their masses as in

the SM [98]. As a result we can think of the heavy Higgs boson as living mostly in H. The

decays H0 → h0h0 and H0 → ZLZL, where we use the Goldstone equivalence theorem to

relate the decay rate to longitudinal Z bosons to decays to the Goldstone mode G0 inside

h, both arise from a quartic term in the potential containing one copy of H and three of h:

V ⊃ λ̃1

(
H†h+h†H

)
h†h⊃ λ̃1

(
vH0G+G−+

v

2
H0G0G0+

3v

2
H0h0h0+H0h0G+G−+. . .

)
.

(A.3)

Thus, there is a relative factor of 3 in the Feynman rule for H0 to two Higgs bosons relative

to H0 to two Goldstones. In the first case we have three h factors in the potential, one of

which must be replaced by a VEV and two with a physical Higgs boson. The combinatoric

factor of 3 comes from the fact that we can replace any of the three h’s with a VEV. In

the second case we again replace one with a VEV, but the other two with Goldstones. The

difference is that H0 lives in the real part of H and so must be paired with either an h

or a v in the hermitian H†h + h†H factor; the two Goldstones must go in the h†h factor,

and so we have no combinatoric freedom in this case. (Let us also mention in passing that

eq. (A.3) leads to several three-body decays of the heavy Higgs, suppressed by phase space

but not by couplings; the phenomenology of such decays could be interesting, and is as far

as we know unexplored.)

The relative decay rate is also easy to understand in unitary gauge, as shown in fig-

ure 11. In this case another contribution arises from the mass mixing of H and h, but

this is related to the coupling λ̃1 by a tadpole cancelation condition. In other words, our

choice of H as the eigenstate with zero VEV relates the terms m2
Hh(H†h + h†H) and

λ̃1(H†h + h†H)(h†h) in the potential. In particular, the coupling for H → hh vanishes

in the limit m2
Hh → 0, which is the exact alignment limit where VEV eigenstates are

mass eigenstates; this is reflected in the factors of cos(β − α) in the gHhh coupling in e.g.
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ref. [98]. A little algebra shows that the unitary gauge calculation matches the Goldstone

equivalence estimate up to terms of order m2
Z,h/m

2
H , as expected on general grounds.

The case of a singlet scalar decaying to hh and ZZ is similar, but the combinatoric

factor of 3 no longer exists, so we expect the branching ratios to be approximately equal.
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