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1 Topology of black hole spacetimes

Topological censorship implies that the domain of outer communication of any globally

hyperbolic asymptotically flat spacetime is simply connected [1]. In four dimensions this is

sufficient to guarantee that any spatial hypersurface Σ has the trivial topology R
3\B, where

B is the black hole region. This can then be used to show that ∂B must be homeomorphic

to a sphere S2, an important ingredient of the black hole uniqueness theorem [2].

For higher dimensional spacetimes, topological censorship is not as restrictive. In

particular, spatial hypersurfaces Σ may have non-trivial higher homology groups Hp(Σ),

for p ≥ 2. This raises the question: are there black hole spacetimes whose domain of outer

communication is topologically non-trivial?

For static black holes this cannot be the case; there is a uniqueness theorem [3, 4] that

generalises the four dimensional case which shows the only solution is the Schwarzschild

metric, or charged versions thereof, so Σ ∼= R
D−1\B. Therefore, if there are any solutions

with Σ non-trivial they must be not be static.

In this note we will focus on five-dimensional asymptotically flat stationary spacetimes

with two commuting rotational Killing fields, containing a single black hole. In this case it

has been shown that the topology of the domain of outer communication is R×Σ, where1

Σ ∼=
(

R
4#n(S2 × S2)#n′(±CP

2)
)

\B, (1.1)

1In fact, the statement regarding Σ is still true if only one rotational Killing field is assumed, although

then there are more possibilities for the horizon topology [7].
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for some n, n′ ∈ N and B is the black hole region, where the horizon H ∼= ∂B must be one

of S3, S1 × S2, L(p, q) [5–8]. The integers n, n′ determine the 2-cycle structure of Σ.

The known solutions consist of the Myers-Perry black holes and the black rings, which

have horizon topologies H ∼= S3 and H ∼= S1 × S2 respectively, see [9] for a review. Both

of these solutions have trivial topology in the exterior, i.e. n = n′ = 0 (see [10] for more

detail on their topology). Thus, a more refined question is: are there black hole spacetimes

with a domain of outer communication given by (1.1) for some n, n′ 6= 0?

The above class of spacetimes belong to the generalised Weyl solutions [11]. These

have been well studied and their classification is understood in terms of a so-called ‘rod

structure’ [5, 11, 12]. The rod structure is equivalent to the specification of the orbit space

Σ̂ ∼= Σ/U(1)2, which turns out to be a manifold with boundaries and corners, together with

a pair of integers and a real number for each boundary segment. These numbers correspond

to the linear combination of Killing fields which vanishes along a given boundary segment

and the length of the boundary segment.

In particular, it has been shown that vacuum black hole spacetimes in this class are

uniquely specified by their angular momenta and their rod structure (their mass is deter-

mined by these) [5, 6, 13]. The known solutions mentioned above possess the simplest

possible rod structure compatible with their horizon topology. However, these results do

not address the general existence problem: that is, for what rod structures do black hole

solutions actually exist? In fact, this is a further refinement of the question posed above.

This is because the orbit space and the integers for each boundary segment determine the

manifold Σ together with the U(1)2-action, which in turn gives the integers n, n′ in the

decomposition (1.1).

An analogous uniqueness result for Einstein-Maxwell theory is known, under some

restrictive assumptions, which reveals one must also specify the magnetic flux through

any 2-cycles to uniquely characterize the solution [14]. Various uniqueness results are also

known in minimal supergravity (Einstein-Maxwell with a Chern-Simons term) for spherical

black holes [15], for black rings [16] and for multiple black holes [17]. However, all of these

assume the simplest possible rod structure — and hence exterior topology — which is

compatible with the assumed horizon topology.

It is clear that the existence of black hole spacetimes containing non-trivial 2-cycles,

often termed ‘bubbles’, would represent a gross violation of black hole uniqueness beyond

black rings. We emphasise this is even compatible with the R×U(1)2 symmetry possessed

by the known explicit solutions. This possibility does not appear to have been discussed

before.

For vacuum gravity, the only mechanism available to ‘support’ the bubbles from col-

lapsing is rotation. However, it is unclear whether new vacuum black holes of this kind

actually exist. We emphasise though that there does not appear to be any convincing

reason why not; indeed, it is tempting to conjecture their existence. For Einstein gravity

coupled to a Maxwell field, a more obvious mechanism is available for supporting bubbles:

magnetic flux. Indeed, it is much easier to envisage a vast set of black hole solutions with

bubbles in the exterior supported by magnetic flux.

In the absence of black holes, soliton spacetimes with bubbles supported by flux are

well known to exist, with a number of supersymmetric (see the review [18]) and non-
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supersymmetric examples [19–21]. These spacetimes carry positive energy. The relation-

ship between the mass of these spacetimes and their fluxes is expressed in a Smarr-type

formula, as observed for BPS-solitons by Gibbons and Warner [22]. Recently, it was shown

that on-shell variations of the mass and magnetic fluxes for general soliton spacetimes are

governed by a ‘first law’ formula [23].

Furthermore, one can derive a generalised mass and mass variation formula for R ×
U(1)2-invariant spacetimes containing a black hole with an arbitrary number of bubbles

in the exterior region. Similarly to the soliton case it was found that on top of the usual

terms for a black hole, extra terms due to the bubbles are present. However, in contrast,

these bubble terms are most naturally expressed in terms of an ‘electric’ flux charge. For

Einstein-Maxwell theory, possibly with a Chern-Simons term, the mass formula is [23],

M =
3κAH
16π

+
3

2
ΩiJi +ΦHQ+

1

2

∑

[C]

Q[C]Φ[C] +
1

2

∑

[D]

Q[D]Φ[D] (1.2)

and the first law of black hole mechanics is,

δM =
κδAH
8π

+ΩiδJi +ΦHδQ+
∑

[C]

Q[C]δΦ[C] +
∑

[D]

Q[D]δΦ[D] . (1.3)

In the above [C] is a basis for the second homology of Σ, [D] are certain disc topology sur-

faces which extend from the horizon, Φ are magnetic potentials and Q are certain ‘electric’

fluxes defined on these surfaces. This shows that non-trivial spacetime topology plays an

important role even in black hole thermodynamics, thus providing further motivation to

study such objects beyond the question of black hole uniqueness.

The purpose of this note is to point out that asymptotically flat black solutions with

non-trivial exterior topology do exist. We will illustrate this by writing down and analysing

an explicit supersymmetric example.

2 A supersymmetric example

Large families of supersymmetric smooth solitons with bubbles have been constructed in

the ‘fuzzball’ literature [24]. Because of supersymmetry, it is a simple matter to ‘add’

a black hole to such ‘bubbling’ geometries. This has not really been emphasised in the

literature, presumably because the focus of the fuzzball program has been on smooth

geometries rather than black holes.

We will discuss the simplest possibility of an asymptotically flat black hole solution

to minimal supergravity with S3 horizon topology possessing one exterior bubble. We will

first write down the solution and then discuss its salient features.

2.1 Solution

Supersymmetric solutions of ungauged minimal supergravity are well understood: they

take the form

ds2 = −f2(dt+ ω)2 + f−1ds2M , (2.1)

– 3 –
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where V = ∂/∂t is the supersymmetric Killing vector field and ds2M is a hyper-Kähler

base [25]. We choose the base M to be a Gibbons-Hawking space

ds2M = H−1(dψ + χidx
i)2 +Hdxidxi , (2.2)

where xi, i = 1, 2, 3, are Cartesian coordinates on R
3, the function H is harmonic on R

3

and χ is a 1-form on R
3 satisfying ⋆3dχ = dH.

As is well known [25], such solutions are then specified by 4 harmonic functions

H,K,L,M , in terms of which

f−1 = H−1K2 + L , ω = ωψ(dψ + χidx
i) + ω̂idx

i , (2.3)

where

ωψ = H−2K3 +
3

2
H−1KL+M , (2.4)

⋆3dω̂ = HdM −MdH +
3

2
(KdL− LdK) . (2.5)

The Maxwell field is then

F =

√
3

2
d
[

f(dt+ ω)−KH−1(dψ + χidx
i)− ξidx

i
]

, (2.6)

where the 1-form ξ satisfies ⋆3dξ = −dK.

Now we write the R
3 in polar coordinates

dxidxi = dr2 + r2(dθ2 + sin2 θdφ2) . (2.7)

Following [24], consider the solution given by the harmonic functions

H =
1

r
− 1

r1
+

1

r2
, K =

k0
r

+
k1
r1

+
k2
r2
, (2.8)

L = 1 +
ℓ0
r
+
ℓ1
r1

+
ℓ2
r2
, M = m+

m0

r
+
m1

r1
+
m2

r2
, (2.9)

where

r1 =
√

r2 + a21 − 2ra1 cos θ, r2 =
√

r2 + a22 − 2ra2 cos θ (2.10)

are the distances from the origin to the ‘centres’ x1 = (0, 0, a1) and x2 = (0, 0, a2) respec-

tively. We assume 0 < a1 < a2. We will use a shift freedom in the harmonic functions to

set m0 = 0 without any loss of generality [24].

The explicit form of the solution involves determining the 1-forms χ and ω̂ defined

above. Integrating, we find

χ =

[

cos θ − r cos θ − a1
r1

+
r cos θ − a2

r2

]

dφ , (2.11)

where we have absorbed any integration constants by suitably shifting ψ. Finally, integrat-

ing (2.4) we get

ω̂ = ω̂φdφ, (2.12)
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where,

ω̂φ =
1

2ra1

[(

m1 +
3

2
(ℓ1k0 − ℓ0k1)

)(

r1 +
(r2 − a21)

r1

)

−
(

m− 3

2
k1

)

r

(

r1 −
(r2 − a21)

r1

)]

+
1

2ra2

[(

m2+
3

2
(ℓ2k0−ℓ0k2)

)(

r2+
(r2−a22)

r2

)

+

(

m+
3

2
k2

)

r

(

r2−
(r2−a22)

r2

)]

−
(

m1 +m2 +
3
2(ℓ1k2 − ℓ2k1)

)

r1r2(a2 − a1)

[

a1a2 − (a1 + a2)r cos θ + r2
]

−
(

m+
3

2
k0

)

cos θ + c

and c is an integration constant. It is also worth noting that the 1-form ξ which determines

the Maxwell field is

ξ = −
[

k0 cos θ +
k1(r cos θ − a1)

r1
+
k2(r cos θ − a2)

r2
+ c′

]

dφ , (2.13)

where c′ is a constant.

For a suitable choice of constants this solution is asymptotically flat. Defining r = ρ2/4,

it is easy to check the Gibbons-Hawking base for ρ→ ∞ looks like

ds2M =
ρ2

4

(

1 +O(ρ−2)
)

[dψ + (cos θ +O(ρ−2))dφ]2

+
(

1 +O(ρ−2)
)

(

dρ2 +
ρ2

4
(dθ2 + sin2 θdφ2)

)

, (2.14)

which is therefore asymptotically R
4 provided ∆ψ = 4π, ∆φ = 2π and 0 ≤ θ ≤ π. Now, it

is also clear that f = 1 +O(ρ−2). Furthermore, it is easily verified that ωψ = O(ρ−2) and

ω̂φ = O(ρ−2) provided one chooses the constants

m = −3

2
(k0 + k1 + k2) (2.15)

and

c =
1

2(a1 − a2)

[

3a1
a2

(

ℓ0k2 − ℓ2k0 −
2

3
m2

)

− 3a2
a1

(

ℓ0k1 − ℓ1k0 −
2

3
m1

)

+ 3ℓ0(k1 − k2)− 3ℓ1(k0 + k1)− 4m1

]

, (2.16)

respectively. With these choices, which will be assumed henceforth, our five dimensional

spacetime is asymptotically flat R1,4.

The above solution to supergravity is simply the explicit form for a supersymmetric

solution whose harmonic functions possess three ‘centres’. If the parameters of the solu-

tion are chosen so the three centres are smooth timelike points, the resulting solution is

the known soliton with two bubbles [24]. Instead, we will choose one of the centres to cor-

respond to a horizon, and the other two to be smooth points. We note the above 3-centred

solution is the simplest possibility for a black hole with an exterior 2-cycle.

Before moving on, we observe that if we ‘remove’ two of the centres by taking the

limit a1 → a2 and setting k1 = k2 = ℓ1 = ℓ2 = m1 = m2 = 0 the solution reduces to the

1-centred BMPV black hole [26, 27].
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2.2 Regularity and causality

Let us first examine regularity at the centres x1 and x2. We wish to impose that the

spacetime metric at these centres is timelike and smooth.

To examine the behaviour of the metric near each of the centres we first introduce

spherical polar coordinates for the R
3 base adapted to each centre: ri = |x− xi|, cos θi =

(z − ai)/ri and φi = (−1)iφ for i = 1, 2. Now define Ri = 2
√
ri. Then one finds the

Gibbons-Hawking base

ds2M = Fi

[

dR2
i +

1

4
R2
i

(

dθ2i + sin2 θidφ
2
i +

1

F 2
i

(dψ + (cos θi +Gi)dφi)
2

)]

, (2.17)

where we have defined Fi ≡ 1
4R

2
iH and Gi ≡ (−1)iχφ − cos θi. It is convenient to rewrite

the base as

ds2M = Fi

[

dR2
i +

1

4
R2
i

(

(dψ + cos θidφi)
2 + dθ2i + sin2 θidφ

2
i

)

]

(2.18)

+
1

4
Fi

[

R2
i

(

1

F 2
i

− 1

)

(dψ + cos θidφi)
2 +

2R2
iGi
F 2
i

(dψ + cos θidφi)dφi +
R2
iG

2
i

F 2
i

dφ2i

]

.

Observe that the metric in the square brackets on the first line is R4 in spherical polar coor-

dinates, provided we make the same identifications on the angles as required for asymptotic

flatness discussed above. Also, it is easily verified that Fi = (−1)i+O(R2
i ) and Gi = O(R4

i )

as Ri → 0, so that the terms in the square brackets on the second line are subleading. This

shows that, up to an overall sign, the base near the centres looks like a regular origin of

R
4. Of course, we only require the spacetime metric to have the correct signature.

To examine smoothness near the centres it is useful to introduce the coordinates

Xi = Ri cos

(

1

2
θi

)

, Yi = Ri sin

(

1

2
θi

)

, φ±i =
1

2
(ψ ± φi) , (2.19)

in terms of which

ds2(R4) = dX2
i +X2

i (dφ
+
i )

2 + dY 2
i + Y 2

i (dφ
−
i )

2 . (2.20)

Observe that ∆φ±i = 2π and Xi, Yi are radial variables in two orthogonal planes of R4,

so any U(1)2-invariant smooth function on R
4 must be a smooth function of X2

i , Y
2
i

alone. Indeed, it can be checked that Fi, Gi are analytic in X2
i and Y 2

i and in partic-

ular Gi = O(X2
i Y

2
i ). In these coordinates, the terms in the square brackets on the second

line of (2.18) are,

4

R2
i

(

1

F 2
i

− 1

)

(X2
i dφ

+
i + Y 2

i dφ
−
i )

2 +
1

F 2
i

(Gidφ
+
i −Gidφ

−
i )

2

+
4

F 2
i

(X2
i dφ

+
i + Y 2

i dφ
−
i )(Gidφ

+
i −Gidφ

−
i )

= O(X4
i )(dφ

+
i )

2 +O(X2
i Y

2
i )dφ

+
i dφ

−
i +O(Y 4

i )(dφ
−
i )

2 , (2.21)

where to obtain the equality we have used the behaviour of Fi, Gi near the centre. This is

indeed smooth at the origin of R4 and thus shows that the base metric is smooth at each

centre.
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Now, since V 2 = −f2, demanding the centres to be timelike requires f 6= 0 at the

centres, which corresponds to setting

ℓ1 = k21, ℓ2 = −k22 . (2.22)

Then we see that in order to get the correct signature for the spacetime metric we will

need f |x=x2
> 0 and f |x=x1

< 0. Again, subleading terms of f are analytic in X2
i , Y

2
i , so

the function f is smooth at these centres.

Enforcing smoothness of the metric near the centres also requires the invariant V ·∂ψ =

f2ωψ to vanish at these points (since ∂ψ degenerates at these points). Firstly, requiring ωψ
to be non-singular at the centres, and using (2.22), implies

m1 =
k31
2
, m2 =

k32
2
. (2.23)

Then, requiring that ωψ actually vanishes as x → x1 and x → x2, implies

a1(k2 + k1)
3 + (a2 − a1)(3k0k

2
1 + k31 − 3(k0 + k2 + 2k1)a1 − 3k1ℓ0) = 0 , (2.24)

and

a2(k2 + k1)
3 + (a2 − a1)(3k0k

2
2 − k32 − 3(k0 + k1)a2 + 3k2ℓ0) = 0 , (2.25)

respectively. Note that these two constraints on the parameters have been simplified us-

ing (2.15), (2.22), (2.23). These are the analogs of the ‘bubble’ equations for solitons [24].

Using the constraints on the parameters (2.24), (2.25), it may now be verified that

near the centres,

ω = O(X2
i )dφ

+
i +O(Y 2

i )dφ
−
i , (2.26)

with higher order terms analytic in X2
i , Y

2
i . Hence the 1-form ω is also smooth at the

centres. We have thus derived necessary and sufficient conditions for the spacetime metric

to be smooth and timelike at the centres.

Next, we examine the Maxwell field (2.6) near the centres. From the discussion above

d(f(dt+ ω)) is smooth at each centre. One can also verify that

d

[

−K
H

(dψ + χ)− ξ

]

= d[O(X2
i )dφ

+
i +O(Y 2

i )dφ
−
i ] , (2.27)

with subleading terms analytic in X2
i , Y

2
i ; hence this 2-form is smooth at the centres. We

deduce that the full Maxwell field is smooth at the centres.

Next we consider regularity of the spacetime away from the centres. It is clear

from (2.3) that f is smooth everywhere away from the centres provided,

K2 +HL > 0 . (2.28)

Notice that this also implies that f has the same zeroes as H. Remarkably, it turns out

that (2.28) also guarantees that the full spacetime metric away from the centres is smooth

and Lorentzian with a smooth inverse, even on surfaces where f = 0. Furthermore, this

condition also guarantees the Maxwell field is smooth away from the centres. It is clear

– 7 –
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that (2.28) is satisfied asymptotically r → ∞ and we will examine this condition in the

interior later.

Let us now turn to causality of our spacetime. We will require our spacetime to be

stably causal with respect to the time function t. The condition for this is

gtt = −f−2 + fHω2
ψ + fH−1ω̂iω̂i < 0 . (2.29)

Clearly this is satisfied in the asymptotically flat region since gtt → −1 as r → ∞. We

will examine this condition in the interior explicitly later. At this stage we remark that

generically it imposes inequalities on the parameters of the solutions.

To summarise, we have found a family of asymptotically flat spacetimes which are

smooth even at the centres x1 and x2 and look like the origin of R1,4 near these points. The

solutions are parameterised by (a1, a2, k0, k1, k2, ℓ0) subject to the constraints (2.24), (2.25)

and any inequalities arising from (2.28), (2.29). Thus, generically we have a 4-parameter

family of solutions. Generically, the constraints can be easily solved for (k0, ℓ0) since they

are linear in these parameters. However, we will refrain from doing so at this stage, since

this involves imposing certain restrictions on the parameters. Later we will discuss various

non-trivial special cases in which they can be solved.

2.3 Black hole and near-horizon geometry

We will now show that one can choose the parameters in our solution such that r = 0 is

an event horizon. As we will see, this actually imposes less constraints on the parameters,

than had we imposed this to be a smooth centre. It is convenient to define the constants

j = k20 + ℓ0, λ = j − k20(k
2
0 +

3
2ℓ0)

2

j2
. (2.30)

Near r → 0, to leading order we find

K2 +HL =
j

r2
+O(r−1), gtt = −λj

r2
+O(r−1) . (2.31)

Hence our spacetime is smooth and stably causal near r = 0 if and only if j > 0, λ > 0.

Furthermore, we will show that r = 0 is a regular horizon if and only if

j > 0, λ > 0 , (2.32)

are both satisfied.

To this end, we transform to new coordinates (v, r, ψ′, θ, φ) defined by

dt = dv +

(

A0

r2
+
A1

r

)

dr dψ = dψ′ +
B0

r
dr (2.33)

where A0, A1, B0 are all constants. We will need the following Laurent expansions about

r = 0,

f2 =
r2

j2
+
βr3

j3
+O(r4) (2.34)

H

f
=

j

r2
+
γ

r
+O(1) , (Hf)−1 = j + γ̃r +O(r2) (2.35)

χφ = cos θ +O(r) , ωψ =
k0

(

k20 +
3
2ℓ0

)

r
+ δ +O(r) , ω̂φ = O(r) (2.36)
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where β, γ, γ̃, δ are constants whose precise form we will not need. It is then easy to check

gvv = −f2 = −r
2

j2
+O(r3) , gvψ′ = −f2ωψ = −rk0

(

k20 +
3
2ℓ0

)

j2
+O(r2) , (2.37)

gψ′ψ′ = λ+O(r) . (2.38)

The grr component of the metric contains singular terms 1/r2 and 1/r, whereas the grψ′

component contains 1/r terms. Demanding that the 1/r2 term in grr and the 1/r term in

grψ′ vanish, is equivalent to choosing the constants A0, B0 to be

A2
0 = j2λ, B0 =

k0
(

k20 +
3
2ℓ0

)

j2λ
A0 . (2.39)

This gives

gvr = ± 1√
λ
+O(r) , gψ′r = O(1) , (2.40)

where the sign of gvr is positive (negative) if A0 < 0 (A0 > 0). Finally, demanding that

the 1/r term in grr is absent determines A1 to be

A1 =
jλ

2A0

(

γ + γ̃B2
0 −

βj

λ

)

−B0δ . (2.41)

We now have

grr = O(1) . (2.42)

The metric and its inverse are now analytic at r = 0 and can therefore be extended to a

new region r < 0. The supersymmetric Killing field V = ∂/∂v is null at r = 0 and

Vµdx
µ|r=0 = ±

(

dr√
λ

)

r=0

. (2.43)

This shows that the hypersurface r = 0 is a degenerate Killing horizon of V . The upper

sign choice corresponds to a future horizon, whereas the lower sign choice to a past horizon.

It remains to verify that the Maxwell field is regular on the horizon. In fact the gauge

field A may be read off from (2.6). Changing to the above coordinates we find

Av = f =
r

j
+O(r) , Aψ′ =

k0
(

k20 +
3
2ℓ0

)

j
− k0 +O(r) . (2.44)

The Ar component of the gauge field has a singular 1/r term; however the coefficient

multiplying this is a constant and therefore it is pure gauge. We conclude that there is a

gauge in which A is analytic at r = 0 and therefore F is analytic at r = 0, as required.

The near-horizon geometry is now easily extracted from the above by replacing (v, r) →
(v/ǫ, ǫr) and letting ǫ→ 0. The result can be written as

ds2NH =−r
2dv2

jλ
± 2dvdr√

λ
+ λ

[

dψ′ + cos θdφ− k0
(

k20 +
3
2ℓ0

)

j2λ
rdv

]2

+ j(dθ2 + sin2 θdφ2) ,

FNH =

√
3

2
d

[

rdv

j
+
k0

(

k20 +
3
2ℓ0

)

j
(dψ′ + cos θdφ)

]

. (2.45)

It is easy to see this is isometric to the near-horizon geometry of the BMPV black hole.

This was in fact guaranteed by a near-horizon uniqueness theorem proved in [28].

– 9 –



J
H
E
P
1
0
(
2
0
1
4
)
0
8
2

2.4 Geometry of the axes

The axes of rotation corresponds to the z-axis of the R3 base of the Gibbons-Hawking base.

Due to the sources in the various harmonic functions, this axis naturally splits into four

intervals:

I+ = {z ≥ a2}, (2.46)

IC = {a1 ≤ z ≤ a2}, (2.47)

ID = {0 ≤ z ≤ a1}, (2.48)

I− = {z ≤ 0}. (2.49)

In polar coordinates (2.46), (2.47), (2.48) correspond to θ = 0, whereas (2.49) to θ = π.

It is easy to see that along this axis

χ = ±dφ (2.50)

where the + sign occurs for I+ and ID and the − sign for IC and I−. Remarkably, it can

be checked that anywhere along the z-axis the one-form

ω̂ = 0 . (2.51)

This is a non-trivial identity which requires use of the constraints (2.24), (2.25) in various

combinations depending on the interval one is in. It then follows that the induced metric

on the axis is

ds23 = −f2(dt+ ωψdψ
±)2 +

Hdz2

f
+

1

fH
(dψ±)2 (2.52)

where ψ± = ψ ± φ and φ± = φ depending on which interval we are in. We also find the

induced Maxwell field is

F3 =

√
3

2
d[fdt+ (fωψ −KH−1)dψ±] . (2.53)

Note that ∂ψ± = ∂ψ and ∂φ± = ∂φ ∓ ∂ψ and

|∂ψ± |2 = 1

fH
− f2ω2

ψ . (2.54)

We remark that the stably causal condition (2.29) on the axis reduces to just −f−2 +

fHω2
ψ < 0. Therefore, we deduce that, at least away from fixed points of ∂ψ± , stable

causality follows from simply imposing |∂ψ± | > 0.

We will now examine the geometry on the axis in detail. The precise details depend

on the interval in question, although in all cases we show that regularity and causality

reduce to the positivity of various polynomials in the given interval. Later we will examine

various special cases where one can demonstrate positivity of the various above polynomials

is equivalent to certain inequalities on the parameters.
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2.4.1 Semi-infinite axes

The semi-infinite intervals I± correspond to the two axes of rotation which extend out to

asymptotic infinity. In particular, along I+ the Killing field ∂φ+ = 0, whereas along I− it

is ∂φ− = 0. At the endpoint z = a2 of I+ the Killing field ∂ψ+ must degenerate smoothly

due to the general regularity conditions we imposed at the centres. On the other hand, at

the endpoint z = 0 of I− this axis meets the horizon.

We now examine the geometry on I+ in detail. At z = a2 the Killing field ∂ψ+

degenerates resulting in a conical singularity; it is easy to see this is removable since

∆ψ+ = 4π. Now consider z > a2. One finds, using (2.22),

H =
z2 − 2a1z + a1a2
z(z − a1)(z − a2)

, f =
z(z2 − 2a1z + a1a2)

P+(z)
, (2.55)

where P+(z) is a cubic. Observe thatH > 0 for z > a2. Smoothness of f requires P+(z) > 0

and therefore we also deduce f > 0 on I+. We also find,

|∂ψ+ |2 = Q+(z)

P+(z)2
, (2.56)

where Q+(z) is a 7th-order polynomial. Therefore we also require Q+(z) > 0 for all

z > a2. We thus deduce that (2.52) is a smooth Lorentzian metric for z > a2 if and only if

P+(z) > 0, Q+(z) > 0. Finally, the Maxwell field (2.53) is also smooth on I+. To see this,

note f is smooth and the following holds:

fωψ −KH−1 =
R+(z)

P+(z)
, (2.57)

where R+(z) is a cubic. Hence, given P+(z) > 0, this function is smooth for all z > a2 and

smoothness of the Maxwell field follows.

Similar conclusions hold for I−. Consider first z
′ = −z > 0. One finds, using (2.22),

H =
z′2 + 2a1z

′ + a1a2
z′(z′ + a2)(z′ + a1)

, f =
z′(z′2 + 2a1z

′ + a1a2)

P−(z′)
, (2.58)

where P−(z
′) is a cubic. For z′ > 0, note that H > 0. Smoothness of f requires P−(z

′) > 0

and thus f > 0 for z′ > 0. Also we find,

|∂ψ− |2 = Q−(z
′)

P−(z′)2
, (2.59)

where Q−(z
′) is a 7th-order polynomial. Thus we also require Q−(z

′) > 0 for z′ > 0.

We deduce that (2.52) is a smooth Lorentzian metric for z < 0 if and only if P−(z
′) >

0, Q−(z
′) > 0. As z′ → 0 we see f vanishes; this corresponds to where I− meets the event

horizon. Turning to the Maxwell field, one finds that the identity (2.57) holds with P+(z)

and R+(z) replaced by P−(z
′) and a cubic R−(z

′) respectively. Therefore, the requirement

P−(z
′) > 0 is sufficient to ensure smoothness of the Maxwell field on I−.
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2.4.2 Bubble

Now consider the interval IC . Along this interval ∂φ− = 0, whereas ∂ψ− must degenerate at

the endpoints z = a1, a2 smoothly due to regularity at these centres. To see this explicitly

define ρ2 = |z − ai| and fi = fz=ai for i = 1, 2. We then find that as ρ→ 0

ds33 ∼ −f2i dt2 +O(ρ2)dtdψ− +
4

|fi|

[

dρ2 +
ρ2

4
(dψ−)2

]

(2.60)

is indeed free of conical singularities at both endpoints since from above ∆ψ− = 4π.

However, since regularity at the centres requires f1 < 0 and f2 > 0 there must be a point

z0 ∈ (a1, a2) where fz=z0 = 0. Using (2.22) we find that

f =
z(z2 − a1a2)

PC(z)
(2.61)

where

PC(z) = z3 + [ℓ0 − k20 + 2(k1k2 + k0k2 − k0k1)]z
2

+[a1(k0 − k2)
2 + a2(k0 + k1)

2 − a1a2]z − a1a2(k
2
0 + ℓ0) . (2.62)

Therefore, we deduce that z0 =
√
a1a2 and PC(ai) > 0 to ensure the correct signs of f at

the endpoints. Furthermore, smoothness of the invariant V 2 = −f2 requires PC(z) > 0 for

all z ∈ [a1, a2]. We also find,

H =
z2 − a1a2

z(z − a1)(a2 − z)
, (2.63)

which therefore also changes sign in the interval in such a way that gzz = H/f > 0 and

smooth for z ∈ (a1, a2). Next, we find the remarkable simplification

|∂ψ− |2 = QC(z)

PC(z)2
, (2.64)

where QC(z) is a complicated 7th order polynomial. Therefore smoothness requires

QC(z) > 0 for all z ∈ (a1, a2). Putting all this together, we find that (2.52) is a smooth

Lorentzian metric for all z ∈ (a1, a2) if and only if PC(z) > 0 and QC(z) > 0.

Given these inequalities, we have shown that any constant time slice extends to a

smooth inhomogeneous S2. Therefore our black hole solution possesses a non-trivial 2-

cycle C in the domain of outer communication.

Furthermore, the Maxwell field (2.53) is also smooth on C. To see this it is sufficient

to note the identity

fωψ −KH−1 =
RC(z)

PC(z)
, (2.65)

where RC(z) is a cubic. Therefore, given PC(z) > 0, this function is smooth for all

z ∈ [a1, a2], which guarantees the Maxwell field is smooth on C.
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2.4.3 Disc

Finally consider the interval ID. Along this interval ∂φ− = 0, whereas ∂ψ− must degenerate

at the endpoint z = a1 smoothly due to regularity at this centre. Indeed defining ρ2 =

|z − a1| we find that as ρ→ 0

ds33 ∼ −f21dt2 +O(ρ2)dtdψ+ +
4

|f1|

[

dρ2 +
ρ2

4
(dψ+)2

]

(2.66)

is indeed smooth since ∆ψ+ = 4π. On the other hand, as we approach the other endpoint

z → 0 we find

|∂ψ+ |2 = (4ℓ0 + 3k20)ℓ
2
0

4(ℓ0 + k20)
2

+O(z) (2.67)

so ∂ψ+ does not have a fix point there. In fact this endpoint corresponds to the horizon

and it is easily see that this agrees with the norm in the near-horizon geometry. Now, since

f > 0 just outside the horizon and f1 < 0, again we deduce there must be a point in the

interval z0 ∈ (0, a1) where f = 0. In this case we find

f =
z(z2 − 2a2z + a1a2)

PD(z)
, (2.68)

where PD(z) is a cubic. The quadratic z2 − 2a2z + a1a2 is negative at z = a1 and positive

at z = 0, with one root in between at z0 = a2 −
√

a2(a2 − a1). Hence we also require

PD(z) > 0 for all z ∈ (0, a1]. Similarly, we also find

H =
z2 − 2a2z + a1a2
z(a1 − z)(a2 − z)

, (2.69)

and remarkably

|∂ψ+ |2 = QD(z)

PD(z)2
(2.70)

where QD(z) is a 7th order polynomial. Thus we require QD(z) > 0 for all z ∈ (0, a1).

Putting all this together we find that again (2.52) is a smooth Lorentzian metric for all

z ∈ (0, a1) if and only if PD(z) > 0 and QD(z) > 0.

Given these inequalities, we deduce that constant time slices extend to a smooth posi-

tive definite metric on a topologically disc surface D in the spacetime, whose centre touches

C at a point (z = a1) and ends on the horizon. However, note that since H/f ∼ j/z2 as

z → 0, the proper radius of this disc is infinite; this of course should be the case since our

horizon is degenerate.

Again, it is easily checked the Maxwell field is smooth on D. Just note the identity

fωψ −KH−1 =
RD(z)

PD(z)
, (2.71)

where RD(z) is a cubic. It follows that, given PD(z) > 0, this function is smooth for all

z ∈ (0, a1], which guarantees the Maxwell field is also smooth on D.

We observe that from the above analysis we see that the supersymmetric Killing field

V is in fact null on the circle z =
√
a1a2 in C, and also on the circle z = a2−

√

a2(a2 − a1)

in D. This is why our black hole solution evades the black hole uniqueness theorem for

BMPV [28], since that assumes V is strictly timelike in the exterior region.
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2.5 Physical properties

The conserved global charges of our asymptotically flat solution are easily computed. We

find the electric charge is,

Q =
1

4π

∫

S3

⋆F = 2
√
3π[(k0 + k1 + k2)

2 + ℓ0 + ℓ1 + ℓ2] . (2.72)

It is easily checked the massM = − 3
32π

∫

S3 ⋆dV =
√
3
2 Q satisfies the BPS bound. The angu-

lar momentum with respect to a rotational Killing field m is given by J [m] = 1
16π

∫

S3 ⋆dm.

We find that with respect to ∂ψ and ∂φ it is given by,

Jψ = π

[

(k0 + k1 + k2)
3 +m1 +m2 +

3

2
(ℓ0 + ℓ1 + ℓ2)(k0 + k1 + k2)

]

, (2.73)

Jφ = π

[

3a1k1 +
3

2
(a1(k2 + k0)− a2(k0 + k1))

]

, (2.74)

respectively.

It is easily seen that for any BPS black hole in minimal supergravity the surface gravity

κ and angular velocities Ωi of the horizon all vanish, whereas the electric potential on the

horizon ΦH =
√
3
2 . Also we find that the area of the horizon is

AH = 16π2j
√
λ (2.75)

and the electric charge and angular momentum of the horizon are

QH = 2
√
3π

√
λ (2.76)

and

JHψ = −π
√
λk0

(

k20 +
3
2ℓ0

)

j
, JHφ = 0 , (2.77)

respectively. Thus we see that the parameters k0, ℓ0 are related to the conserved charges

on the horizon.

Our black hole solution also carries local magnetic flux charge due to the presence of

a non-trivial 2-cycle C in the domain of outer communication of the black hole. Using the

expression for the Maxwell field induced on this bubble (2.53) we find the magnetic flux is

q[C] =
1

4π

∫

C

F = −
√
3

2
(k1 + k2) . (2.78)

Furthermore, due to the presence of a horizon and 2-cycle, a disc topology region D con-

necting the two also exists on which we can define a flux charge [23]. Similarly, we find

this is

q[D] =
1

4π

∫

D

F =

√
3

2
(k1 + k0) . (2.79)

This gives a physical interpretation to the parameters k1, k2 in our solution.

We have not been able to prove smoothness and stable causality away from the axis

for general values of r (of course in the two asymptotic regions r → ∞ and r → 0 we

– 14 –



J
H
E
P
1
0
(
2
0
1
4
)
0
8
2

have showed this earlier for the general solution). However, we have performed extensive

numerical checks and not found any violation of the inequalities (2.28) and gtt < 0 for this

solution. In brief, our strategy was to treat K2+HL and gtt as a function of four variables

(r, θ, a1, a2) and sample it over a variety of hyper-grids in the domain r > 0, 0 < θ < π and

a2 > 2a1 > 0. Therefore, we believe that this solution is indeed smooth and stably causal

if and only if (2.86) is satisfied.

Recently, a Smarr relation and first law of black hole mechanics were derived for

black hole spacetimes with non-trivial topology, see equations (1.2), (1.3). For minimal

supergravity, the ‘electric’ flux charge appearing in these laws is given by

Q[C] =
1

2

∫

C

(

iV ⋆ F +
8√
3
(ΦH − Φ)F

)

, (2.80)

and similarly for Q[D]. Using the general form for a supersymmetric solution [25], it is a

simple exercise to check the integrand iV ⋆ F + 8√
3
(ΦH − Φ)F =

√
3d(f2(dt + ω)). Then,

using the behaviour of the solution near the various centres, it follows that

Q[C] = 0 , Q[D] = 0 . (2.81)

Therefore, the extra terms in the Smarr relation and first law in fact vanish for such

supersymmetric black holes. Thus these mass formulae reduce to the standard BPS bound.

2.6 Static horizon

Consider the special case in which the horizon carries no angular momentum. From (2.77),

we deduce that this special case can be achieved by setting2

k0 = 0 . (2.82)

Inspecting the near-horizon geometry of the general solution, we see that in this case it

reduces to the static AdS2 × S3 near-horizon geometry, as one would expect. Thus we

obtain a three parameter family of stationary, but non-static, black hole solutions with the

same near-horizon geometry as extreme Reissner-Nordström solution. This illustrates the

point that a static near-horizon geometry [29] need not arise as the near-horizon limit of a

static black hole. We believe this is the first such example with spherical horizon topology.3

In fact, further setting,

k2 = 0 , (2.83)

gives a two parameter family which is particularly amenable to analysis. Observe that phys-

ically, this corresponds to setting the magnetic flux through the bubble and disc to be equal

and opposite, q[C] = −q[D]. Indeed, in this case we may solve the constraints (2.24), (2.25)

explicitly to find

k21 = 3(a2 − a1) , (2.84)

ℓ0 = a2 − 2a1 . (2.85)

2Another possibility is ℓ0 = − 2

3
k
2
0 , which also has a regular horizon. We have not investigated this case.

3The BPS black ring is non-static, but possesses a static locally AdS3 × S
2 near-horizon geometry [30].
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We see that the conditions for regularity of the horizon (2.32) reduce to simply ℓ0 > 0.

Therefore, we deduce a stronger inequality on the parameters,

a2 > 2a1 . (2.86)

For definiteness we will take the positive root k1 > 0.

We now turn to the regularity conditions for the axis, derived in section 2.4. In

particular, we have proved that in this special case, the polynomials P±(z), Q±(z), PC(z),

QC(z), PD(z) and QD(z) are strictly positive in their respective intervals, provided (2.86)

is satisfied. This establishes smoothness of the spacetime on the bubble C and the disc D

and the two semi-infinite axes I±. As discussed in section 2.4, these conditions are also

sufficient to ensure stable causality on the whole z-axis (i.e. θ ∈ {0, π}).
We have not been able to prove smoothness and stable causality away from the axis

for general values of r (of course in the two asymptotic regions r → ∞ and r → 0 we

have showed this earlier for the general solution). However, we have performed extensive

numerical checks and not found any violation of the inequalities (2.28) and gtt < 0 for this

solution. In brief, our strategy was to treat K2+HL and gtt as a function of four variables

(r, θ, a1, a2) and sample it over a variety of hyper-grids in the domain r > 0, 0 < θ < π and

a2 > 2a1 > 0. Therefore, we believe that this solution is indeed smooth and stably causal

if and only if (2.86) is satisfied.

It is worth noting some of the physical properties of this special case. Although the

near-horizon geometry is not rotating, the black hole spacetime in fact possesses non-zero

angular momenta given by

Jψ =
3k1π

2
(7a2 − 8a1) , Jφ = −3k1π

2
(a2 − 2a1) , (2.87)

from which it follows that Jψ > 0 and Jφ < 0. As we discuss in the next section, this in

particular means that this black hole spacetime never possesses equal angular momenta

with respect to the orthogonal U(1)2 Killing fields of R4. Therefore, its conserved charges

are never the same as that of the BMPV black hole (including the non-rotating Reissner-

Nordström solution).

2.7 Equal angular momenta and black hole non-uniqueness

Here we consider solutions with equal angular momenta with respect to the standard

U(1)2 rotational Killing fields of R1,4. Recall that the BMPV black hole solution has this

property [26, 27]. Define the quantity

η =
Q3

24
√
3π

− J2
ψ . (2.88)

The BMPV solution exists only if it is ‘under-rotating’ η > 0. Interestingly, we will show

that there exist regular black hole solutions with equal angular momenta which are under-

rotating η > 0, critical η = 0, or over-rotating η < 0.
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In our coordinates equal angular momenta can be achieved by setting Jφ = 0.

From (2.74) this allows us to solve for k0:

k0 =
(2a1 − a2)k1 + a1k2

a2 − a1
. (2.89)

We thus obtain a three-parameter family of black hole solutions with equal angular mo-

menta and the same near-horizon geometry as the BMPV black hole.

For simplicity consider the two-parameter subset of solutions with

k2 = 0 . (2.90)

In this case we must have k1 6= 0 as otherwise the solution is singular. Then the unique

solution to the constraints is given by

k21 = 3a1 (2.91)

ℓ0 =
3a1(2a1 − a2)

a2 − a1
. (2.92)

The conditions for regularity of the horizon (2.32) are positivity of the quantities

k20 + ℓ0 =
3a21(2a1 − a2)

(a2 − a1)2
, k20 +

4

3
ℓ0 =

a1(2a1 − a2)(2a1 + a2)

(a2 − a1)2
. (2.93)

Therefore we deduce these are met if and only if,

a1 < a2 < 2a1 . (2.94)

For definiteness we take the positive root k1 > 0 (the choice k1 < 0 leads to a solution with

equal and opposite angular momenta).

The analysis of this solution is more involved than the special case described in the

previous section. We can prove that the polynomial PC(z) > 0, but for the remaining

polynomials Q±, P±, QC , PD, QD we have relied on numerical methods to demonstrate

positivity. Turning to checking smoothness and stable causality away from the axis for

general (r, θ), we have done a careful search for violations of (2.28) and gtt < 0. As in the

previous case, the method is to sample a large number of points in the parameter space

(r, θ, a1, a2) with r > 0, 0 < θ < π and 0 < a1 < a2 < 2a1. We have found no evidence for

violations of (2.28) or gtt < 0 and believe the solution is smooth and stably causal if and

only if (2.94) holds.

Let us now briefly discuss the physical properties of this solution. We find the angular

momentum,

Jψ =
3
√

3a31π

2(a2 − a1)3
[

a32 − 3a1a
2
2 + 6a21a2 − 2a31

]

, (2.95)

and electric charge,

Q =
6
√
3a2a

2
1π

(a2 − a1)2
. (2.96)

It is easily checked that in our parameter domain (2.94) Jψ > 0, so these solutions always

have non-zero angular momentum.
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Furthermore, it may be verified that

η =
27π2a31

[√
3a2(2a1 − a2) + 2(a2 − a1)

2
][√

3a2(2a1 − a2)− 2(a2 − a1)
2
]

4(a2 − a1)4
. (2.97)

The first factor in the square brackets is always positive in our domain. Therefore the sign

of (2.97) is the same as the sign of the quadratic in the second factor in square brackets.

We thus find that (2.97) is positive if and only if

0.32 ≈ 1−
√

−3 + 2
√
3 <

a2
a1

< 1 +

√

−3 + 2
√
3 ≈ 1.68 . (2.98)

Remarkably, this overlaps with our parameter domain (2.94). Therefore, we have shown

there exist black hole solutions with the same conserved charges as the BMPV black hole,

the same near-horizon geometry, but are distinct to the BMPV black hole.

This explicitly demonstrates non-uniqueness of supersymmetric black holes in minimal

supergravity. Furthermore, in the complement of (2.98) within the domain (2.94) we may

also have black holes for which (2.97) vanishes or is negative. Therefore we have also shown

there exist spherical black hole solutions which fill out parts of the (Q, Jψ)-phase space not

occupied by the BMPV solution.

2.8 A decoupling limit

Above we showed that the near-horizon geometry of our black hole solution is the same

as that of the BMPV black hole. In particular, the non-trivial 2-cycles in the exterior to

the black hole are not captured in this limit. Indeed, a general feature of the near-horizon

limit of extremal black holes is that it only retains properties of the spacetime intrinsic to

the horizon [31]. It is natural to wonder if there is a limit of the solution which focuses

near the horizon in such a way to keep the 2-cycles in the exterior. Indeed, it is easy to

write down a decoupling limit with this property.4

Let ǫ > 0 and define new coordinates and parameters by

t =
t̄

ǫ
, r = ǫr̄, ai = ǫāi (2.99)

leaving all other coordinates and parameters the same. It is then easy to see that the

solution is equivalent to that constructed from the Gibbons-Hawking base

ds
2
M = H̄−1(dψ + χ̄φdφ)

2 + H̄(dr̄2 + r̄2dΩ2
2) , (2.100)

and the four harmonic functions

H̄ =
1

r̄
− 1

r̄1
+

1

r̄2
, K̄ =

k0
r̄

+
k1
r̄1

+
k2
r̄2
, (2.101)

L̄ǫ = ǫ+
ℓ0
r̄
+
ℓ1
r̄1

+
ℓ2
r̄2
, M̄ǫ = ǫm+

m0

r̄
+
m1

r̄1
+
m2

r̄2
, (2.102)

4Decoupling limits which preserve the number of centres in the harmonic functions have been previously

considered, see e.g. [40]. We thank Joan Simon for pointing this out.
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where we have defined r̄i as in (2.10) with r → r̄ and ai → āi, provided the integration

constants in χ̄, ¯̂ω, ξ̄ are chosen to be the same as those in χ, ω̂, ξ under the replacement

ai = ǫāi.

We may now take the limit ǫ → 0. Observe that this leaves H̄ and K̄ unchanged,

whereas

L̄ǫ → L̄ =
ℓ0
r̄
+
ℓ1
r̄1

+
ℓ2
r̄2
, M̄ǫ → M̄ =

m0

r̄
+
m1

r̄1
+
m2

r̄2
. (2.103)

The limiting solution is thus equivalent to that constructed from the GH base (2.100) and

the harmonic functions H̄, K̄, L̄, M̄ , with the integration constants in χ̄, ¯̂ω, ξ̄ chosen to be

the ǫ → 0 limits of those for the full solution. In particular, the limit of the 1-form ω̂ is

given by

¯̂ωφ =
1

2r̄ā1

[(

m1 +
3

2
(ℓ1k0 − ℓ0k1)

)(

r̄1 +
(r̄2 − ā21)

r̄1

)]

+
1

2r̄ā2

[(

m2 +
3

2
(ℓ2k0 − ℓ0k2)

)(

r̄2 +
(r̄2 − ā22)

r̄2

)]

−
(

m1 +m2 +
3
2(ℓ1k2 − ℓ2k1)

)

r̄1r̄2(ā2 − ā1)

[

ā1ā2 − (ā1 + ā2)r̄ cos θ + r̄2
]

+ c̄ , (2.104)

where c̄ is the ‘barred’ version of the constant (2.16). It is clear this limiting solution

belongs to the family of solutions one would obtain by simply dropping the constants ‘1’

and ‘m’ in the original harmonic functions L,M .

Let us now examine the r̄ → ∞ asymptotics of this new solution. It is easy to show that

f̄ =
r̄

j′
+O(1), ω̄ψ =

δ′

r̄
+O(r̄−2), ¯̂ωφ = O(r̄−2) , (2.105)

where we have defined the constants

j′ = ℓ0 + ℓ1 + ℓ2 + (k0 + k1 + k2)
2 , (2.106)

δ′ =
3

2
(ℓ0 + ℓ1 + ℓ2)(k0 + k1 + k2) + (k0 + k1 + k2)

3 +m1 +m2 . (2.107)

This allows us to deduce the r̄ → ∞ asymptotics of our new spacetime to be

ds2 =

(

− r̄2

j′2
+O(r̄)

)

dt̄2 +

(

j′

r̄2
+O(r̄−3)

)

dr̄2 +

(

−2δ′r̄

j′2
+O(1)

)

σ3dt̄+O(1)dφdt̄

+
(

λ′ +O(r̄−1)
)

σ23 +
(

j′ +O(r̄−1)
)

dΩ2
2 +O(r̄−1)σ3dφ+O(r̄−2)dφ2 , (2.108)

where σ3 = dψ + cos θdφ and we have defined the constant

λ′ = j′ − δ′2

j′2
. (2.109)

We recognise the leading order metric as the near-horizon geometry for the BMPV black

hole (written in Poincaré AdS2 coordinates). Indeed, comparing to section 2.3, we see that
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it a BMPV near-horizon geometry with the constants j → j′ and k0(k
2
0+

3
2ℓ0) → δ′. Notice

that this is equivalent to the replacements

k0 → k0 + k1 + k2, ℓ0 → ℓ0 + ℓ1 + ℓ2 . (2.110)

Let us now turn to regularity of our spacetime. One can repeat all the steps performed

for the black hole solution and one finds it is smooth with the same topology provided the

parameters satisfy (2.22), (2.23) and

ā1(k2 + k1)
3 + (ā2 − ā1)(3k0k

2
1 + k31 − 3k1ℓ0) = 0 , (2.111)

and

ā2(k2 + k1)
3 + (ā2 − ā1)(3k0k

2
2 − k32 + 3k2ℓ0) = 0 , (2.112)

together with inequalities arising from the smoothness and stably causal conditions (2.28)

and (2.29). Hence we again have a 4-parameter family of solutions. In fact this is guar-

anteed by regularity of the black hole solution for ǫ > 0 and continuity in the limit

ǫ → 0. Indeed, the constraints on the parameters (2.111), (2.112) are limits of the con-

straints (2.24), (2.25). Similarly, our spacetime possesses a regular degenerate horizon with

the same near-horizon geometry as obtained in section 2.3. Again, this can be shown by

repeating the near-horizon analysis, or more simply appealing to continuity of our limit.

It is worth noting that not all solutions to the regularity constraints (2.24), (2.25)

of the asymptotically flat solution admit the above decoupling limit. For example, the

special cases we examined in sections 2.6 and 2.7 do not, because scaling the ai to zero

is not compatible with keeping the ki fixed for those solutions. It may be interesting to

investigate other decoupling limits, which in particular are well defined for these special

cases.

To summarise, we have obtained a spacetime with the following properties. It is asymp-

totically the near-horizon geometry of a BMPV solution, possesses an event horizon with a

near-horizon geometry of a different BMPV solution (with parameters related by (2.110)),

and a 2-cycle in the exterior region. In effect we have thus merely ‘decoupled’ the asymp-

totically flat region from our black hole solution, while keeping the exterior topology and

near-horizon region intact. We emphasise that this solution is different to the decoupling

limit of a multi-centred BMPV black hole in that it represents a single black hole in a

near-horizon BMPV background. We also note it differs from the smooth solitons that are

asymptotic to a near-horizon BMPV solution previously obtained [32].

Black holes in spacetimes asymptotic to near-horizon geometries of black holes have

of course been previously obtained. For example, multi-black holes in AdS2 × S2 [39] and

AdS3 × S2 [40] have been constructed. More recently, a 2-centred solution describing a

single black hole in AdS3 × S2 has been written down [41].

3 Discussion

We have presented an asymptotically flat supersymmetric black hole solution to minimal

supergravity with spherical horizon topology distinct from the well known BMPV black
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hole [26]. In contrast to the BMPV black hole, the topology of the domain of outer com-

munication is non-trivial and given by (1.1) with n = 1 and n′ = 0. We have also showed

there are regimes in parameter space where the two solutions have identical mass, electric

charge and angular momentum. The solutions may be distinguished by local magnetic

flux charges defined on the non-trivial 2-cycles in the spacetime. This is the first proof

of non-uniqueness of supersymmetric black holes with a connected horizon in minimal su-

pergravity.5 Furthermore, we believe this provides the first explicit counterexample to

spherical black hole uniqueness (for connected horizons) in a theory containing only a

Maxwell field.

In fact a uniqueness theorem for the supersymmetric black holes with spherical horizon

topology has been demonstrated [28], which assumes the supersymmetric Killing field V is

strictly timelike everywhere outside the black hole. This is not the case for our solution; V

is null on a circle on the bubble exterior to the black hole, which is how it may evade this

uniqueness theorem. We observe that this is not so surprising, due to the fact that soliton

spacetimes are also not strictly stationary but have regions where V is null, referred to as

‘evanescent horizons’ [22].

Although we have only focused on a simple example, it is clear there are more general

possibilities. Working within minimal supergravity, it is a simple matter to add more

smooth centres to the Gibbons-Hawking base, following the method for pure solitons [24].

This should result in large classes of black holes with more general 2-cycle structure in the

exterior region. Furthermore, it should be possible to construct black rings with exterior

bubbles using the same method.

More broadly, and as argued in section 1, analogous solutions should exist for non-

supersymmetric black holes both within minimal supergravity but also other five-dimen-

sional Einstein-Maxwell type theories. This could be of particular interest since non-trivial

spacetime topology plays a role in black hole thermodynamics [23]. Clearly, however, in

the absence of supersymmetry, constructing explicit solutions will be significantly harder.

Perhaps progress for extremal, but non-supersymmetric, black holes can be made along

the lines of [34, 35].

An interesting open question is whether vacuum spacetimes can ‘support’ non-trivial

topology. We emphasise there are no theorems ruling out this possibility. In the context of

Weyl solutions this would correspond to taking more complicated spacelike rod structure

than has been previously considered.

It would be interesting to investigate the implications of our results for the string theory

derivation of the entropy of the BMPV black hole [26, 36]. Implicit in these calculations is

the assumption that black holes are uniquely specified by their conserved charges. We have

demonstrated explicitly this assumption is false, even for spherical black holes in minimal

supergravity.

We have also written down a decoupling limit of our solution which focuses near the

horizon while retaining the non-trivial topology of the spacetime. It is worth emphasising

5The BMPV black hole [26] and BPS black ring [30] never possess overlapping conserved charges and

are each uniquely specified by these charges. On the other hand, in U(1)3-supergravity the BPS black rings

also carry independent dipole charges which is sufficient to exhibit non-uniqueness [33].
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that this decoupling limit may be of interest in its own right. This spacetime can be

thought of as interpolating between the near-horizon geometries of two different BMPV

black holes. It would be interesting to interpret this as a holographic renormalisation group

flow in the context of AdS2/CFT [37, 38].

Our decoupling limit can also be thought of as a black hole sitting in the near-horizon

geometry of a BMPV black hole. It is natural to expect non-BPS generalisations of such

solutions, presumably arising as the decoupling limit of a non-BPS version of our asymptot-

ically flat black hole solutions. Such geometries may indicate that the non-existence results

obtained for finite-energy excitations of AdS2 × S2 and the near-horizon geometry of ex-

tremal Kerr [39, 42–44], do not generalise to theories in which black hole uniqueness fails.
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