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1 Overview and results

A powerful attribute that the planar AdS4/CFT3 system [1] shares with its higher-

dimensional version, planar AdS5/CFT4 [2], is the conjectured integrability [3–6] of the

gauge and (free) string theory model that define it — respectively N = 6 super Chern-

Simons-matter (ABJM) theory in d = 3 and Type IIA superstrings in a AdS4 × CP
3

background with two- and four-form RR fluxes. The explicit realization of the integrable

structure is however non-trivial, due to significative peculiarites of this case. A first one is

the absence of maximal supersymmetry in the AdS4 × CP
3 background. This makes the

construction of the corresponding superstring action difficult, in particular with issues on

the κ-symmetry gauge-fixing suitable to describe strings moving only in AdS, the latter

being a relevant setting for the studies of quantum integrability [7–9].

A second, crucial, peculiarity of the AdS4/CFT3 system is that all integrability-based

calculations are given in terms of a non-trivial, interpolating function of the ’t Hooft cou-
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pling h(λ), appearing in the ABJM magnon dispersion relation1

ǫ =
1

2

√

1 + 16h2(λ) sin2
p

2
. (1.1)

Its knowledge is decisive to grant the conjectured integrability of ABJM theory a full

predictive power.

The first few orders of its weak coupling expansion were computed in [16–18] and

in [19–21]. At strong coupling, one way to obtain information on h(λ) is to evaluate in

string theory the universal scaling function2 for the ABJM theory fABJM(λ), and then

compare the result obtained with the asymptotic Bethe ansatz prediction of [4]. The latter

is based on the equivalence of the BES [24] equations for the N = 4 case and the ABJM

case and reads

fABJM(λ) =
1

2
fN=4(λYM)

∣

∣

∣

∣

√
λYM
4π

→h(λ)

, (1.2)

which implies

fABJM(λ) = 2h(λ)− 3 log 2

2π
− K

8π2
1

h(λ)
+ · · · , (1.3)

where fN=4(λYM) is the cusp anomaly of N = 4 SYM and K is the Catalan constant. The

leading strong coupling value for f(λ) has been given already in [1] and reads f(λ≫ 1)

=
√
2λ, from which via (1.3) one gets h(λ ≫ 1) =

√

λ/2. At one loop in sigma-model

perturbation theory, the scaling function has been evaluated in [25–37] via the energy of

closed spinning strings in the large spin limit or similar means, providing a first subleading

correction − log 2/(2π) to h(λ) on which some debate existed [38]. In these calculations no

issues were encountered in the action to use, as at one-loop only the quadratic part of the

fermion Lagrangian is necessary, with a structure which is well-known in terms of the type

IIA covariant derivative restricted by the background RR fluxes.3

We extend here the evaluation of the ABJM cusp anomaly to the two-loop order in

sigma-model perturbation theory using the open string approach [9, 23] (in Type IIA),

namely expanding the string partition function for the Euclidean surface ending on a

null cusp at the boundary of AdS4, as done in the AdS5 × S5 setting in [42]. As the

classical string lies solely in AdS4 and higher-order fermions are needed we must first

face the problem, mentioned above, of using the correct superstring action. The coset

OSp(6|4)/ (U(3)× SO(1, 3)) sigma-model formulation of it [39, 40] is built following the

lines of (flat space and) type IIB superstrings [43], and exhibits classical integrability.

1In the N = 4 SYM case the relation of h(λYM) with the coupling is trivial at all orders, h(λYM) =√
λYM/(4π), as shown in [10–12] by evaluating the so-called “Brehmstrahlung function” both via an ex-

trapolation on results of supersymmetric localization and via integrability. See also discussions in [13–15].
2Scaling function and cusp anomaly appear often as synonyms in the literature. At weak coupling and in

the N = 4 case the scaling function f(λYM), multiplying the logS in the large spin anomalous dimensions

of twist-two operators, equals twice the cusp anomalous dimension Γcusp of light-like Wilson loops [22]. The

same has been seen at strong coupling in [9, 23].
3Alternatively, one could still use the coset action of [39, 40] — which is not suitable when strings move

confined in AdS [40, 41] — starting with a classical solution spinning both in AdS4 with spin S and in CP
3

with spin J , and taking on the resulting expression for the one-loop energy a smooth J → 0 limit [26].
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It can be interpreted as a partially gauge-fixed type IIA Green Schwarz action, where the

κ-symmetry gauge-fixing sets to zero eight fermionic modes corresponding to the eight

broken supersymmetries. However, as first argued in [40] and later clarified in [41], it is

not suitable to describe the dynamics of a string lying solely in the AdS4 part4 of the

AdS4 × CP
3 superspace, in that in this case four of the eight modes set to zero are in

fact dynamical fermionic degrees of freedom of the superstring. Any action willing to

capture the semiclassical dynamics on these classical string configurations should contain

these physical fermions, and should therefore be found via another, sensible κ-symmetry

gauge-fixing of the full action. This has been done in [45, 46]5 , starting from the D = 11

membrane action [48] based on the supercoset OSp(8|4)/ (SO(7)× SO(1, 3)), performing

double dimensional reduction and choosing a κ-symmetry light-cone gauge for which both

light-like directions lie in AdS4. The output is an action, at most quartic in the fermions,

which is the AdS4 × CP
3 counterpart of the gauge-fixed action of [49, 50]. As the latter

was efficiently used in [42] to evaluate the strong coupling corrections to the N = 4 SYM

cusp anomaly up to two-loop order, the analysis of [45, 46] is the natural setup where to

perform our calculation.

Any known classical string solution found in AdS5, which can be embedded within an

AdS4 subspace, is immediately a solution for this theory [1]. Therefore we start using the

null cusp solution of [9, 42] in the AdS4 × CP
3 action of [45, 46] and proceed evaluating

corrections to the string path integral on it. These quantum string corrections are in

general non-trivial to calculate, in connection with issues of potential UV divergences and

the lack of manifest power-counting renormalizability of the string action when expanded

around a particular background (see discussion in [42, 51–53]),6 but have the additional

important role of establishing the quantum consistency of the proposed string actions. This

is a further motivation for the study at the quantum level of the action proposed in [45],

where the more complicated structure of the CP
3 background translates in a considerably

more involved expression with respect to [49, 50]. About the integrability of this string

non-coset model, the standard analysis of [57] — which applies to the action of [40] —

is not possible here. The classical integrability of strings generically moving in the full

AdS4 × CP
3 superspace has been however shown by constructing a Lax connection with

zero curvature up to quadratic order in the fermions [58].7

Similarly to the AdS5 × S5 case, the AdS light-cone approach to the evaluation of the

cusp anomaly turns out to be extremely efficient. The background solution is “homoge-

neous”, namely the fluctuation Lagrangian turns out to have only constant coefficients.

This makes immediate the study of the fluctuation spectrum and highly simplifies the

4The same is true when the string forms a worldsheet instanton by wrapping a CP
1 cycle in CP

3 [44].
5See also [47].
6In the evaluation of the worldsheet S-matrix starting from the light-cone gauge fixed AdS5 × S5 GS

superstring action, non-cancellation of UV divergences has been observed already beyond the tree-level

order (see discussion in [54]). These issues, non present in alternative perturbative methods based on

unitarity cuts [54–56], are still calling for an explanation.
7A study of classical integrability (prior to gauge-fixing) for general motion of the string in several

backgrounds of interest for the AdS/CFT correspondence is in [59].
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semiclassical analysis at higher orders.8 Additional simplifications come from the fact that

bosonic propagators in the AdS light-cone gauge are only diagonal, which limitates the

number of Feynman graphs to be considered.9 In general, the actual calculation inherits

from its AdS5 × S5 a similar mechanism of cancellation of divergences, and even the sig-

nificative difference given by the presence of massless fermions in the spectrum turns out

not to play a role (apart from the cancellation of UV divergences) in our final result, as

they behave like effectively decoupled. The relevant interaction vertices are the same and

no genuinely new contributions, in terms of scalar integrals, appears. This results in a

different weight factor in front of the same structures (log 2 at one loop and the Catalan

constant K at two loops) appearing in the AdS5 × S5 case, where the weight is in terms

of the ratio of the AdS4 and CP
3 radii, as well as the number of bosonic transverse AdS

directions and massive fermions.

An important further ingredient in the AdS4 × CP
3 calculation is the correction to

the effective string tension [64] which must be considered for the first time at this order in

sigma-model perturbation theory. The original “dictionary” proposal [1] for the effective

string tension in terms of the effective ’t Hooft coupling λ of ABJM reads

T =
R2

2πα′ = 2
√
2λ , λ =

N

k
, (1.4)

where R is the CP3 radius. As pointed out in [64], the geometry (and flux, in the ABJ [65]

theory) of the background induces higher order corrections to the radius of curvature in

the Type IIA description, which in the planar limit of interest here appear in the form of

a shift in the square root

T = 2

√

2

(

λ− 1

24

)

. (1.5)

We emphasize that the string perturbative expansion is an expansion in inverse string

tension whose coefficients are obviously not affected by the correction (1.5). The radius

shift is a (corrected) AdS4/CFT3 dictionary proposal, an assumed, new input which plays

a role when expressing the result in terms of the ’t Hooft coupling.

All this leads to the main result of this work, which is the evaluation of the first two

strong coupling corrections to the ABJM cusp anomalous dimension

fABJM(λ) =
√
2λ− 5 log 2

2π
−
(

K

4π2
+

1

24

)

1√
2λ

+O
(√

λ
)−2

. (1.6)

The formula can be rewritten in a more compact way defining the shifted coupling

λ̃ ≡ λ− 1

24
, (1.7)

8The evaluation of perturbative (sigma-model) string corrections for non-homogenous solutions is cur-

rently limited to one-loop order, as in these cases in the fluctuation spectrum (and thus in the propagator)

non-trivial special elliptic functions appear [37, 60–62] which depend on the worldsheet coordinates.
9In the first two-loop calculation of [63] the conformal gauge was used, in which propagators are non-

diagonal, implying the evaluation of a larger number of two-loop diagrams.

– 4 –



J
H
E
P
1
0
(
2
0
1
4
)
0
1
3

from which

fABJM

(

λ̃
)

=
√

2λ̃− 5 log 2

2π
− K

4π2
√

2λ̃
+O

(√

λ̃
)−2

. (1.8)

This form of the result makes evident the striking similarity with the AdS5 × S5 result

fYM(λYM) =

√
λYM

π
− 3 log 2

π
− K

π
√
λYM

+O
(

√

λYM

)−2
, (1.9)

where the change in the transcendentality pattern is due to the corresponding difference

in the effective string tensions.

From (1.6) and via (1.2) we get then the strong-coupling two-loop correction for

the interpolating function h(λ), that we report here together with the weak coupling re-

sults [16–21]

h2(λ) = λ2 − 2π3

3
λ4 +O

(

λ6
)

λ≪ 1 ,

h(λ) =

√

λ

2
− log 2

2π
− 1

48
√
2λ

+O
(√

λ
)−2

λ≫ 1 ,
(1.10)

where we emphasize the a priori non-obvious fact the two-loop coefficient at strong coupling

is only due to the anomalous radius shift.

A conjecture for the exact expression of h(λ) has been recently made [66], in a spirit

quite close to the one followed in [10, 11] on the comparison between two exact computations

of the same observable (see footnote 1). The authors of [66] elaborated on the similarity

between two all-order calculations in ABJM theory: one — the “slope function” [67] —

derived via integrability as exact solution of a quantum spectral curve [6] and one — a 1/6

BPS Wilson loop [68–70] — obtained with supersymmetric localization. As the first of the

two exact results is expressed in terms of the effective coupling h(λ), an “extrapolation”

for the latter has been derived in an exact, implicit, form.10 It is

λ =
sinh 2πh(λ)

2π
3F2

(

1

2
,
1

2
,
1

2
; 1,

3

2
;− sinh2 2πh(λ)

)

, (1.11)

with weak and strong coupling expansions

h(λ) = λ− π2

3
λ3 +

5π4

12
λ5 − 893π6

1260
λ7 +O(λ9) λ≪ 1 , (1.12)

h(λ) =

√

1

2

(

λ− 1

24

)

− log 2

2π
+O

(

e−2π
√
2λ
)

λ≫ 1 . (1.13)

We see that (1.13) above, expanded for large λ, agrees with (1.10).

In general, the mutual consistency of several ingredients — our direct perturbative

string calculation, the corrected dictionary of [64], the prediction (1.2)–(1.3) from the

Bethe Ansatz [4] and the conjecture of [66] for the interpolating function h(λ) — provides

10As noticed in [66], a more solid derivation of h(λ) would require comparison between the localization

results of [69, 70] and the ABJM Bremsstrahlung function [71–74], similarly to the case of the h(λYM) of

N = 4 SYM, see footnote 1.
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highly non-trivial evidence in support of the proposal (1.11) for the interpolating function

h(λ) of ABJM theory, and furnishes an indirect check of the quantum integrability of the

AdS4 × CP
3 superstring theory in this κ-symmetry light-cone gauge.

The paper proceeds as follows. In section 2 we introduce the AdS light-cone gauge-

fixed action which in section 3 we write in terms of fluctuations over the null cusp classical

solution. In section 4 we compute the one-loop correction to the cusp anomaly. In section 5

we extend the computation of the string partition function to one more order, verifying the

cancellation of UV divergences and obtaining the strong coupling two-loop correction to the

ABJM cusp anomaly. In appendix A we present for completeness a different parametriza-

tion of the κ-symmetry gauge-fixed action of [46] which can be transparently compared

with its AdS5 × S5 counterpart. Appendices B and C contain, respectively, details on

the expanded Lagrangian and explicit reductions for the relevant integrals which we use

in section 5.

2 AdS light-cone gauge in AdS4 × CP
3

Our starting point is the AdS4 × CP
3 Lagrangian in the κ-symmetry light-cone gauge

proposed in [45, 46]. This is obtained by double dimensional reduction from the eleven-

dimensional membrane action [48] based on the supercoset OSp(8|4)/ (SO(7)× SO(1, 3)),

and choosing a κ-symmetry light-cone gauge for which both light-like directions lie in

AdS4. In the spirit of [49, 50] (and of earlier studies of brane models on the AdS × S

backgrounds) the construction of [45, 46] formulates the bulk string theory in a way which

is naturally related to the boundary CFT theory. In particular, the 32-dimensional spinors

whose components are the coordinates associated to the odd generators of OSp(8|4) are

divided in θ and η fermions corresponding, respectively, to super-Poincaré generators and

superconformal generators. The AdS κ-symmetry light-cone gauge consists in setting to

zero that half of the fermions which correspond to fermionic generators having negative

charge w.r.t. the SO(1, 1) generator M+− from the Lorentz group acting on the Minkowski

boundary of AdS4.
11 As our analysis below explicitly shows, it has the advantage of

encompassing a quantum analysis of string configurations classically moving in the AdS4
sector of AdS4 × CP

3.12

The AdS4 × CP
3 background metric is

ds210 = R2

(

1

4
ds2AdS4

+ ds2
CP

3

)

, (2.1)

where R is the CP
3 radius. For AdS4 the Poincaré patch is used and the parametrization

of CP3 is at this stage arbitrary

ds2AdS4
=
dw2 + dx+dx− + dx1dx1

w2
x± ≡ x2 ± x0 , (2.2)

ds2
CP

3 = gMN dz
MdzN M = 1, . . . , 6 . (2.3)

11Another κ-symmetry gauge condition based on a similar “superconformal” basis has been considered

in [75].
12An alternative κ-symmetry gauge fixing of the complete AdS4 × CP

3 superspace [41] which is suitable

for studying regions of the theory that are not reachable by the supercoset sigma model of [39, 40] (see

Introduction) has been considered in [47].
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Above, x± are the light-cone coordinates, xm = (x0, x1, x2) parametrize the three-

dimensional boundary of AdS4 and w ≡ e2ϕ is the radial coordinate. The κ-symmetry

light-cone gauge-fixed Lagrangian of [45, 46] can be written as follows13

S =− T

2

∫

dτ dσ L (2.5)

L = γij
{

e−4ϕ

4

(

∂ix
+∂jx

− + ∂ix
1∂jx

1
)

+ ∂iϕ∂jϕ+ gMN∂iz
M∂jz

N

+ e−4ϕ
(

∂ix
+̟j + ∂ix

+∂jz
MhM + e−4ϕB∂ix

+∂jx
+
)

}

− 2 εije−4ϕ
(

ωi∂jx
+ + e−2ϕC∂ix

1∂jx
+ + ∂ix

+∂jz
MℓM

)

,

where the string tension T has been defined in (1.5) and the following quantities

̟i = i
(

∂iθaθ̄
a − θa∂iθ̄

a + ∂iθ4θ̄
4 − θ4∂iθ̄

4 + ∂iηaη̄
a − ηa∂iη̄

a + ∂iη4η̄
4 − η4∂iη̄

4
)

, (2.6)

ωi = η̂a∂̂iθ̄
a + ∂̂iθa ˆ̄η

a +
1

2

(

∂iθ4η̄
4 − ∂iη4θ̄

4 + η4∂iθ̄
4 − θ4∂iη̄

4
)

, (2.7)

B = 8
[

(η̂a ˆ̄η
a)2 + εabc ˆ̄η

a ˆ̄ηb ˆ̄ηcη̄4 + εabcη̂aη̂bη̂cη4 + 2η4η̄
4
(

η̂a ˆ̄η
a − θ4θ̄

4
)

]

, (2.8)

C = 2 η̂a ˆ̄η
a + θ4θ̄

4 + η4η̄
4 , (2.9)

hM = 2
[

ΩaMεabc ˆ̄η
b ˆ̄ηc − ΩaMε

abcη̂bη̂c + 2
(

ΩaM ˆ̄ηaη̄4 − ΩaM η̂aη4
)

+ 2
(

θ4θ̄
4 + η4η̄

4
)

Ω̃ a
a M

]

,

(2.10)

ℓM = 2 i
[

ΩaM ˆ̄ηaθ̄4 +ΩaM η̂aθ4 +
(

θ4η̄
4 − η4θ̄

4
)

Ω̃ a
a M

]

(2.11)

include fermions up to the fourth power. As in the AdS5 × S5 case [49, 50], the action is

quadratic in the θ-fermions and quartic in the η-fermions.

Above, the fermionic coordinates ηa and θa (and their conjugates) transform in the

fundamental (antifundamental) representation of SU(3) (a = 1, 2, 3), and correspond to

the unbroken 24 supersymmetries of the AdS4×CP
3 background. The remaining fermions

η4, θ4 and their conjugates originate from the eight broken supersymmetries. The manifest

symmetry of the action is thus only the SU(3) subgroup of the SU(4) global symmetry of

CP
3. This feature, as we will see, will be inherited by the quantum fluctuations around

the light-like cusp (see also discussion in appendix A). The ΩaM and ΩaM appearing in the

Lagrangian are the complex vielbein of CP3, ds2
CP

3 = ΩaMΩaN dz
M dzN , namely compo-

nents of the Cartan one-forms of SU(4)/U(3), Ωa = ΩaM dzM and Ωa = ΩaM dzM . In the

construction of [45], Ω̃ a
a is associated to a one-form corresponding to the fiber direction of

S7. Its expression is given explicitly below in terms of the CP
3 coordinates. The ΩaM and

Ω̃ a
a appear in [45] in a “dressed” OSp(6|4)/(U(3) × SO(1, 3)) supercoset element where

the dressing incorporates the information on the broken supersymmetries and U(1) fiber

13Inspired by [49] we modify the action proposed in [45, 46] with a convenient rescaling of the fermions

θa →
√
2 θa θ4 →

√
2 e−ϕθ4 ηa →

√
2 e−2ϕηa η4 →

√
2 e−ϕη4 (2.4)

and similar ones for the complex conjugates. With respect to [45, 46], we also partially change notation.

– 7 –
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direction. In (2.6), hatted quantities are related to unhatted ones via a rotation by ma-

trices T (similar matrices were conveniently introduced in [50]) which depend on the CP
3

coordinates and act as follows on e.g. a ηa fermion

η̂a = T b
a ηb + Tab η̄

b , ˆ̄ηa = T ab η̄
b + T ab ηb . (2.12)

In appendix A we rewrite the Lagrangian (2.5) in a form that is more similar to the

AdS5 × S5 of [49], and comment more on the Cartan forms Ω and T -matrices.

The parametrization for CP
3 chosen in [76] consists of complex variables za and z̄a,

transforming in the 3 and 3̄ of SU(3) respectively. Then the metric reads

ds2
CP

3 = gab dz
a dzb + gab dz̄a dz̄b + 2 g b

a dza dz̄b , (2.13)

where

gab =
1

4|z|4
(

|z|2 − sin2 |z|+ sin4 |z|
)

z̄a z̄b , gab =
1

4|z|4
(

|z|2 − sin2 |z|+ sin4 |z|
)

za zb ,

g b
a =

sin2 |z|
2|z|2 δba +

1

4|z|4
(

|z|2 − sin2 |z| − sin4 |z|
)

z̄a z
b and |z|2 ≡ za z̄a . (2.14)

For the one-forms appearing in the Lagrangian explicit expressions then follow, which can

be derived from their definition

Ωa = Ωa,b dz
b +Ωa,b dz̄b , Ωa = Ωa,b dz

b +Ω ,b
a dz̄b , Ω̃ a

a = Ω̃ a
a ,b dz

b + Ω̃ a,b
a dz̄b , (2.15)

using (A.7). For example,

Ω̃ a
a = i

sin2 |z|
|z|2 (dza z̄a − za dz̄a) . (2.16)

In this parametrization, the T-matrices introduced in (2.12) can be grouped in a unitary

matrix Tâ
b̂ which reads explicitly [76]

Tâ
b̂ =

(

T b
a Tab
T ab T ab

)

=

(

δba cos |z|+ z̄a z
b 1−cos |z|

|z|2 i εacb z
c sin |z|

|z|
−i εacb z̄c sin |z|

|z| δab cos |z|+ za z̄b
1−cos |z|

|z|2

)

. (2.17)

The action (2.5) has gauge-fixed local fermionic symmetry. To fix bosonic local symmetry

and further proceed with our analysis it is convenient to use, as discussed in [49] and used

in [42, 52, 53], a “modified” conformal gauge

γij = diag
(

−e4ϕ, e−4ϕ
)

, (2.18)

in combination with the standard light-cone gauge

x+ = p+ τ , p+ = const . (2.19)

In what follows we will give directly the expression of the Euclidean version of the ac-

tion (2.5) in this gauge (choosing p+ = 1) and on the null cusp background [9, 42].
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3 The null cusp fluctuation action

In this section we consider the Wick-rotated, Euclidean formulation of the Lagrangian (2.5)

in the bosonic light-cone gauge (2.18)–(2.19) and compute its fluctuations about the null

cusp background. The equations of motion derived from the (Euclidean) AdS light-cone

gauge Lagrangian (2.5) admit a classical solution for which the on-shell action is the area of

the minimal surface ending on a null cusp on the AdS4 boundary. This configuration is just

the AdS4 embedding of the classical string solution found in the AdS5 background [9, 42],

and reads

w ≡ e2ϕ =

√

τ

σ
x1 = 0

x+ = τ x− = − 1

2σ
zM = 0 . (3.1)

The requirement that the open string Euclidean world-sheet described by these coordinates

ends on a cusp at the boundary of AdS4 at w = 0 is manifestly enforced by the relation

x+ x− = −1
2w

2. In the AdS/CFT dictionary of [7, 77], the Wilson loop evaluated on a

light-like cusp contour is then given by the superstring partition function

〈Wcusp〉 = Zstring ≡
∫

D[x,w, z, η, θ] e−SE . (3.2)

In order to compute it perturbatively, we first construct the Euclidean action SE for fluc-

tuations about the background (3.1). Following [42], we will use a suitable parametrization

of fluctuations which, combined with a further redefinition of the worldsheet coordinates

t = log τ and s = log σ, is such that the coefficients of the fluctuation action become

constant, namely (τ, σ)-independent. It reads14

x1 = 2

√

τ

σ
x̃1 w =

√

τ

σ
w̃ w̃ = e2ϕ̃

za = z̃a z̄a = ˜̄za a = 1, 2, 3

η =
1√
σ
η̃ θ =

1√
σ
θ̃ . (3.3)

After the Wick rotation τ → −i τ, p+ → ip+ and having set p+ = 1, we end up with the

following action for fluctuations over the null-cusp background (3.1)

SE =
T

2

∫

dt dsL , L = LB + L(2)
F + L(4)

F , (3.4)

where

LB =

(

∂tx̃
1 +

1

2
x̃1
)2

+
1

w̃4

(

∂sx̃
1 − 1

2
x̃1
)2

+ w̃2 (∂tϕ)
2 +

1

w̃2
(∂sϕ)

2+
1

16

(

w̃2 +
1

w̃2

)

+

+ w̃2 g̃MN ∂tz̃
M ∂tz̃

N +
1

w̃2
g̃MN ∂sz̃

M ∂sz̃
N (3.5)

14The factor 2 in the fluctuation of the field x1 is introduced to normalize the kinetic term of x̃1.
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L(2)
F = i

[

∂tθ̃a
˜̄θa − θ̃a∂t

˜̄θa + ∂tθ̃4
˜̄θ4 − θ̃4∂t

˜̄θ4 + ∂tη̃a ˜̄η
a − η̃a∂t ˜̄η

a + ∂tη̃4 ˜̄η
4 − η̃4∂t ˜̄η

4
]

+

+
2i

w2

[

η̂a

(

∂̂sθ̄
a − 1

2
ˆ̄θa
)

+

(

∂̂sθa −
1

2
θ̂a

)

ˆ̄ηa+
1

2

(

∂sθ4η̄
4 − ∂sη4θ̄

4 + η4∂sθ̄
4 − θ4∂sη̄

4
)

]

+ ∂tz̃
M h̃M +

4 i

w̃3
C̃

(

∂sx̃
1 − 1

2
x̃1
)

− 2i

w̃2
∂sz̃

M ℓ̃M (3.6)

L(4)
F =

1

w̃4
B̃ . (3.7)

In the expressions above, with B̃, C̃, h̃M and ℓ̃M we indicate the quantities B, C, hM and

ℓM in (2.6) where a tilde over each field appears (namely, the weighting factors for the

fluctuations in (3.3) have already been made explicit in the derivatives of products).

Since the Lagrangian has now constant coefficients and is thus translationally invariant,

the (infinite) world-sheet volume factor V factorizes. The scaling function is then defined

via the string partition function as [42]

W = − lnZ =
1

2
f(λ)V =W0 +W1 +W2 + . . . , V =

1

4
V2 ≡

1

4

∫

dt ds (3.8)

where W0 ≡ SE coincides with the value of the action on the background, W1,W2, . . . are

one-, two- and higher loop corrections, and for the ratio V/V2 we use the same convention

as in [42].15 From (3.8) we explicitly define f(λ) in terms of the effective action W

f(λ) =
8

V2
W . (3.9)

We are now ready to compute the effective action perturbatively in inverse powers of the

effective string tension g ≡ T
2 . From this we will extract the corresponding strong coupling

perturbative expansion for the scaling function

f(g) = g

[

1 +
a1
g

+
a2
g2

+ . . .

]

, g =
T

2
. (3.10)

where we have factorized the classical result from W0 = SE [1] and the effective string

tension T is defined in (1.5).

4 Cusp anomaly at one loop

We start considering one-loop quantum corrections to the free energy (3.2), which are

derived expanding the fluctuation Lagrangian (3.4) to second order in the fields.

For the bosonic part we obtain

L(2)
B =

(

∂tx̃
1
)2

+
(

∂sx̃
1
)2

+
1

2

(

x̃1
)2

+ (∂tϕ̃)
2 + (∂sϕ̃)

2 + ϕ̃2 + |∂tz̃a|2 + |∂sz̃a|2 . (4.1)

The bosonic degrees of freedom consist of six real massless scalars (associated to the CP
3

coordinates), one real scalar x̃1 with mass m2 = 1
2 and one real scalar ϕ̃ with mass m2 = 1.

15This is related to coordinate transformation and field redefinitions occurring between the GKP [8]

string, whose energy is given in terms of f(λ), and the null cusp solution in the Poincaré patch here used,

see discussion in [53].
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This is a simple truncation (one less transverse degree of freedom in the AdS space) of the

bosonic spectrum found in the AdS5 × S5 [42]. For the fermions one gets an off-diagonal

kinetic matrix

L(2)
F = iΘKF ΘT where Θ ≡

(

θ̃a, θ̃4,
˜̄θa, ˜̄θ4, η̃a, η̃4, ˜̄η

a, ˜̄η4
)

, (4.2)

which reads

KF =





























0 0 −∂t 0 0 0 −∂s − 1
2 0

0 0 0 −∂t 0 0 0 −∂s
−∂t 0 0 0 ∂s +

1
2 0 0 0

0 −∂t 0 0 0 ∂s 0 0

0 0 ∂s − 1
2 0 0 0 −∂t 0

0 0 0 ∂s 0 0 0 −∂t
−∂s + 1

2 0 0 0 −∂t 0 0 0

0 −∂s 0 0 0 −∂t 0 0





























. (4.3)

Fermions contribute to the partition function with the determinant (∂µ = i pµ , µ = 0, 1)

det KF =
(

p2
)2
(

p2 +
1

4

)6

, (4.4)

from which we read that the fermionic spectrum is composed of six massive degrees of

freedom with mass m2 = 1/4 and two massless ones. The latter are of η4 and θ4 type,

namely those fermionic directions corresponding to the broken supersymmetries. The pres-

ence of massless fermions marks a difference with respect to the N = 4 SYM case, already

noticed in this theory when studying fluctuations over classical string solutions only lying

in AdS4 [28, 32, 36, 37] (see comments in section 5.4).

The one-loop effective action is computed as

W1 = − logZ1 (4.5)

where Z1 is the ratio of fermionic over bosonic determinants. Therefore

W1=
1

2
V2

∫

d2p

(2π)2

{

log
(

p2+1
)

+ log

(

p2+
1

2

)

+4 log
(

p2
)

− 6 log

(

p2+
1

4

)}

= −5 log 2

16π
V2 .

(4.6)

The one-loop correction to the scaling function reads, according to (3.9),

a1 = −5 log 2

2π
(4.7)

and agrees with previous independent results [28, 32, 36].

5 Cusp anomaly at two loops

In this section we provide the details on the computation of the two-loop coefficient of the

scaling function. The calculation follows the lines of [42], with some important differences

which we point out in section 5.4. In particular the aim is to compute the connected vacuum
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Figure 1. Sunset, double bubble and double tadpole are the diagrams appearing in the two-loop

contribution to the partition function.

diagrams of the fluctuation Lagrangian around the null cusp background. Denoting by W

the free energy of the theory, W = − logZ, the two-loop contribution is given by

W2 = 〈Sint〉 −
1

2
〈S2

int〉c , (5.1)

where Sint is the interacting part of the action at cubic and quadratic order (see ap-

pendix B). The subscript c indicates that only connected diagrams need to be included.

In the following we use Sint = T
∫

dt dsLint and we give the expressions of the vertices as

they appear in Lint. Throughout this section we drop tildes from fluctuation fields in order

not to clutter formulae. Also, we neglect the string tension T and the volume V2 in the

intermediate steps and reinstate them at the end of the calculation.

5.1 Bosonic sector

Let us first consider the purely bosonic sector. As pointed out in section 4, the spectrum

of the theory contains one real boson of squared mass 1, one real boson of squared mass
1
2 and three complex massless bosons. The interaction among these excitations involves

cubic and quartic vertices which give rise to the diagrams in figure 1.

We observe that the AdS light-cone gauge Lagrangian contains only diagonal bosonic

propagators, which introduces considerable simplifications in the perturbative computa-

tion. The explicit expressions of the propagators are

Gϕϕ(p) =
1

p2 + 1
Gzaz̄b(p) =

2 δba
p2

Gx1x1(p) =
1

p2 + 1
2

. (5.2)

The cubic interactions involving only bosonic fields are of three different kinds

Vϕx1x1 = −4ϕ
[

(∂s − 1
2)x

1
]2

Vϕ3 = 2ϕ
[

(∂tϕ)
2 − (∂sϕ)

2
]

Vϕ|z|2 = 2ϕ
[

|∂tz|2 − |∂sz|2
]

.

(5.3)

When combining vertices and propagators in the sunset diagrams they originate various

non-covariant integrals with components of the loop momenta in the numerators. Stan-

dard reduction techniques allow to rewrite every integral as a linear combination of the

two following scalar ones (explicit reductions for the relevant integrals are spelled out in

appendix C)

I
(

m2
)

≡
∫

d2p

(2π)2
1

p2 +m2
(5.4)

I
(

m2
1,m

2
2,m

2
3

)

≡
∫

d2p d2q d2r

(2π)4
δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)
. (5.5)
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The latter integral is finite, provided none of the masses vanishes, and is otherwise IR

divergent. The former is clearly UV logarithmically divergent, and also develops IR singu-

larities in the massless case. In our computation we expect all UV divergences to cancel

and therefore no divergent integral to appear in the final result. Nonetheless, performing

reduction of potentially divergent tensor integrals to scalar ones still implies the choice of

a regularization scheme. In our case we use the one adopted in [42, 51, 78]. This prescrip-

tion consists of performing all manipulations in the numerators in d = 2, which has the

advantage of simpler tensor integral reductions. In this process we set to zero power UV

divergent massless tadpoles, as in dimensional regularization

∫

d2p

(2π)2
(

p2
)n

= 0 , n ≥ 0. (5.6)

All remaining logarithmically divergent integrals happen to cancel out in the computation

and there is no need to pick up an explicit regularization scheme to compute them.

As an explicit example, we consider the contribution to the sunset coming from the

first vertex in (5.3)

− 1

2
〈V 2
ϕx1x1〉 = −

∫

d2p d2q d2r

(2π)4
(1 + 4q21) (1 + 4r21) δ

(2)(p+ q + r)

(p2 + 1)
(

q2 + 1
2

) (

r2 + 1
2

) =
1

2
I
(

1, 12 ,
1
2

)

. (5.7)

The reason why the coefficient of the integral in the second term of (5.7) is exactly (−1) is

the topic of section 5.4. We note that the integral I
(

1, 12 ,
1
2

)

already appeared in [42] and

is a particular case of the general class

I
(

2m2,m2,m2
)

=
K

8π2m2
, (5.8)

where K is the Catalan constant

K ≡
∞
∑

n=0

(−1)n

(2n+ 1)2
. (5.9)

The contribution of the sunset diagram involving the second vertex in (5.3) is proportional

to I(1)2, whereas the contribution of the third vertex vanishes

− 1

2
〈V 2
ϕ3〉 = 2 I(1)2 − 1

2
〈V 2
ϕ|z|2〉 = 0 (5.10)

The final contribution of the bosonic sunset diagrams is

W2,bos. sunset =
1

2
I
(

1, 12 ,
1
2

)

+ 2 I(1)2 . (5.11)

The first two vertices in (5.3) can also be contracted to generate non-1PI graphs, namely

double tadpoles. However the resulting diagrams turn out to vanish individually.
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Next we consider bosonic double bubble diagrams. The relevant quartic vertices are

Vϕ2x1x1 = 16ϕ2
[

(∂s − 1
2)x

1
]2

(5.12)

Vϕ4 = 4ϕ2

[

(∂tϕ)
2 + (∂sϕ)

2 +
1

6
ϕ2

]

(5.13)

Vϕ2|z|2 = 4ϕ2
[

|∂tz|2 + |∂sz|2
]

(5.14)

Vz4 =
1

6

[

(z̄a∂tz
a)2 + (z̄a∂sz

a)2 + (za∂tz̄a)
2 + (za∂sz̄a)

2

−|z|2
(

|∂tz|2 + |∂sz|2
)

− |z̄a∂tza|2 − |z̄a∂sza|2
]

. (5.15)

Despite the lengthy expressions of the vertices, the only non-vanishing contribution comes

from Vϕ4 and gives

W2,bos. bubble = −2 I(1)2 (5.16)

and cancels the divergent part of (5.11). As a result, the bosonic sector turns out to be

free of divergences without the need of fermonic contributions (as it happens at one loop),

which was already observed in the AdS5 × S5 case [42].

5.2 Fermionic contributions

We compute the diagrams arising from interactions involving fermions. The fermionic

propagators can be read from the inverse of the kinetic matrix KF (4.3)

Gη4η̄4(p) = Gθ4θ̄4(p) =
p0
p2

Gη4θ̄4(p) = Gθ4η̄4(−p) = −p1
p2

Gηaη̄b(p) = Gθaθ̄b(p) =
p0

p2 + 1
4

δba Gηaθ̄b(p) = Gθaη̄b(−p) = −p1 +
i
2

p2 + 1
4

δba (5.17)

The main difference between the spectrum of AdS5×S5 and the one introduced in section 4

resides in the fermionic part. Although both theories have eight fermionic degrees of

freedom, in AdS4×CP
3 they are split into six massive and two massless excitations, which

interact non-trivially among themselves.

We start by considering diagrams involving at least one massless fermion. The relevant

cubic vertices are (we denote by ψ the fermions η and θ collectively)

Vzηaη4 = −2 ∂tz
aηaη4 + h.c. Vzηaθ4 = 2 ∂sz

aηaθ4 − h.c.

Vϕη4θ̄4 = −2 i ϕ (θ̄4∂sη4 − ∂sθ̄
4η4)− h.c. Vx1ψ̄4ψ4

= −2 i (η̄4η4 + θ̄4θ4)(∂s − 1
2)x

1 . (5.18)

The quartic interactions are either not suitable for constructing a double tadpole diagram

or they produce vanishing integrals. These include vector massless tadpoles, which vanish

by parity, and tensor massless tadpoles, which have power UV divergences and are set to

zero. For completeness we list them in appendix B.

Focussing on the Feynman graphs which can be constructed from cubic interaction we

also note that the only double tadpole diagrams that can be produced using (5.18) involve

tensor massless tadpole integrals and therefore vanish. In the sector with massless fermions
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we are therefore left with the sunset diagrams, which, thanks to the diagonal structure of

the bosonic propagators, turn out to be only five

W2,ψ4
= −1

2
〈Vzηaη4Vzηaη4+Vzηaθ4Vzηaθ4+2Vzηaη4Vzηaθ4+Vϕη4θ̄4Vϕη4θ̄4+Vx1ψ̄4ψ4

Vx1ψ̄4ψ4
〉 .

(5.19)

The explicit computation of the individual contributions shows that they are all vanishing.

As an example we consider

− 1

2
〈Vϕη4θ̄4Vϕη4θ̄4〉 = 4

∫

d2p d2q d2r

(2π)4
(p1 − q1)

2(p0q0 − p1q1) δ
(2)(p+ q + r)

p2q2(r2 + 1)
= 0 (5.20)

and similar cancellations happen for the other diagrams. Therefore we conclude that

W2,ψ4
= 0 and that massless fermions are effectively decoupled at two loops.

We then move to consider massive fermions, starting from their cubic coupling to

bosons

Vzηη = −ǫabc∂tz̄aηbηc + h.c. Vzηθ = −2 ǫabcz̄aηb(∂s − 1
2)θc − h.c.

Vϕηθ = −4 i ϕ ηa(∂s − 1
2)θ̄

a − h.c. Vx1ηη = −4 i η̄aηa
(

∂s − 1
2

)

x1 . (5.21)

Precisely as in the massless case, this generates five possible sunset diagrams. None of

them is vanishing. We present the details of a particularly relevant example, i.e. the one

involving the vertex Vx1ηη. This gives

−1

2
〈Vx1ηηVx1ηη〉 = 24

∫

d2p d2q d2r

(2π)4

(

p21 +
1
4

)

q0 r0 δ
(2)(p+ q + r)

(

p2 + 1
2

) (

q2 + 1
4

) (

r2 + 1
4

)

= −3

8
I
(

1
2 ,

1
4 ,

1
4

)

+
3

4
I
(

1
4

)2
. (5.22)

We note the appearance of another integral in the class (5.8). The coefficient in front of

this integral depends on the degrees of freedom of the theory and is thoroughly discussed

in section (5.4). The partial results of the remaining sunset diagrams are

−1

2
〈(Vzηη + Vzηθ)(Vzηη + Vzηθ)〉 = 3 I

(

1
4

)2 − 6 I
(

1
4

)

I(0)

−1

2
〈VϕηθVϕηθ〉1PI = 6 I

(

1
4

)

I(1) +
3

4
I
(

1
4

)2
. (5.23)

The latter vertices can be contracted also in a non-1PI manner

− 1

2
〈VϕηθVϕηθ〉non−1PI = −1

2
Gϕϕ(0)× 26 × 32 ×

∫

d2p

(2π)2
p21 +

1
4

p2 + 1
4

= −9

2
I
(

1
4

)2
(5.24)

where the factor in front of the integrals comes from the expression of the vertex and

from counting the degrees of freedoms that can run in the loops. As in [42], the divergent

contribution proportional to I
(

1
4

)2
cancels exactly those coming from (5.22) and (5.23).

The total cubic fermionic part reads

W2,ferm. cubic = −3

8
I
(

1
2 ,

1
4 ,

1
4

)

+ 6 I
(

1
4

)

I(1)− 6 I
(

1
4

)

I(0) . (5.25)
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Finally we consider the fermionic double bubble diagrams. These involve the fermionic

quartic vertices. However, most of the vertices appearing in the Lagrangian cannot con-

tribute to the partition function either because the bosonic propagators are diagonal or

because they would produce vanishing integrals. We present the whole list of quartic

vertices in appendix B and we spell out here only the relevant ones for our computation

Vϕ2ηθ = 8 i ϕ2 ηa
(

∂s − 1
2

)

θ̄a − h.c.

Vzzηθ = −2 i
[

|z|2ηa
(

∂s − 1
2

)

θ̄a − z̄bz
aηa
(

∂s − 1
2

)

θ̄b
]

− h.c. . (5.26)

Although we can build a diagram with Vη4 , fermion propagators carry one component of

the loop momentum in the numerator and produce vector tadpole integrals, which vanish

by parity. We conclude that the contribution from fermionic double bubble graphs is

W2,ferm. bubbles = −6 I
(

1
4

)

I(1) + 6 I
(

1
4

)

I(0) . (5.27)

Summing all the partial results and reinstating the dependence on the string tension

and the volume, we obtain

W2 =
V2
T

[

1

2
I
(

1, 12 ,
1
2

)

− 3

8
I
(

1
2 ,

1
4 ,

1
4

)

]

= −1

4

V2
T
I
(

1, 12 ,
1
2

)

= − K

16π2
V2
T

(5.28)

where T is defined in (1.5). Finally we can plug this expression into equation (3.9) and read

out the second order of the strong coupling expansion (3.10) of the ABJM cusp anomalous

dimension

a2 = − K

4π2
. (5.29)

5.3 The cusp anomalous dimension

We summarize the results of our superstring computation, presenting the strong coupling

expansion of the ABJM cusp anomalous dimension up to two-loop order. Reinstating

the definition of the string tension (1.5) in terms of the ABJM ’t Hooft coupling and

plugging (4.7) and (5.29) into (3.10), we find

fABJM(λ) =
√
2λ− 5 log 2

2π
−
(

K

4π2
+

1

24

)

1√
2λ

+O
(

λ−1
)

, (5.30)

which is the main result of the paper. From the string dual point of view it looks convenient

to define the shifted coupling

λ̃ ≡ λ− 1

24
, (5.31)

in terms of which we can rewrite the scaling function more compactly as

fABJM

(

λ̃
)

=
√

2λ̃− 5 log 2

2π
− K

4π2
√

2λ̃
+O

(

λ̃−1
)

. (5.32)
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5.4 Comparison with AdS5 × S5

In this section we point out similarities and differences between the calculation we per-

formed and its AdS5 × S5 analogue [42]. The starting points, i.e. the Lagrangians in AdS

light-cone gauge, look rather different. Yet the final results of the two-loop computations

are strikingly similar. More precisely, when written in terms of the string tension, the two

expressions have exactly the same structure up to the numerical coefficients in front of the

integrals. Indeed the AdS5 computation gives

W
(AdS5)
2 =

V2
T

[

1

4
I
(

1, 12 ,
1
2

)

− 1

4
I
(

1
2 ,

1
4 ,

1
4

)

]

, (5.33)

which looks very similar in structure to (5.28). Furthermore, using (5.8), both combinations

sum up to

W2 = −V2
T

1

4
I
(

1, 12 ,
1
2

)

(5.34)

and only the different relation between the string tension and the ’t Hooft couplings distin-

guishes the final results. It is easy to trace the origin of the integrals and their coefficients

back in the vertices of the Lagrangian and to understand their meaning. In particular

in both computations only the sunset diagrams involving the interactions Vϕxx and Vxψψ
(with massive fermions) seem to effectively contribute. All other terms are also important,

but just serve to cancel divergences. Hence we can now focus on the relevant interactions

and point out the differences between the AdS5 and the AdS4 cases.

We start from the bosonic sectors. The two theories differ for the number of scalar

degrees of freedom with given masses. Focussing on massive fluctuations, after gauge

fixing we have one scalar with m2 = 1 associated to the radial coordinate of AdSd+1 and

(d− 2) real scalars with m2 = 1
2 . In the metric we chose for the AdS4 × CP

3 background,

the size of the AdS4 part is rescaled by a factor of r2 = 4. We have compensated this,

parametrizing the radial coordinate as w = erϕ and introducing a factor r in the fluctuation

of x1, so as to have the same normalization for their kinetic terms as in AdS5 × S5. This

causes some factors r to appear in interaction vertices in our Lagrangian. Apart from

this, the relevant interaction vertices are exactly the same. Then, the number of x fields

(d − 2) and this factor r determine the coefficient of the integral I
(

1, 12 ,
1
2

)

appearing in

equations (5.28) and (5.33).

Turning to fermions, the first striking difference between the AdS5 and AdS4 cases

is the presence of massless ones. As pointed out at the beginning of section 5.2 their

contribution is effectively vanishing at two loops (though they do contribute at first order).

Focussing on massive fermions, the relevant cubic interactions giving rise to I
(

1
2 ,

1
4 ,

1
4

)

look

again similar in the AdS4 and AdS5 cases. The difference is given once more by the ratio

of the radii r (through the normalization of ϕ and x coordinates) and the number nf of

massive fermions in the spectrum (nf = 8 for AdS5 × S5 and nf = 6 for AdS4 × CP
3).
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The final results (5.28) and (5.33) can be re-expressed in the general form

W
(AdSd+1)
2 =

V2
T

(d− 2)r2

8

[

I
(

1, 12 ,
1
2

)

− nf
8
I
(

1
2 ,

1
4 ,

1
4

)

]

=
V2
T

(d− 2)r2

8

(

1− nf
4

)

I
(

1, 12 ,
1
2

)

, d = 3, 4 , (5.35)

where the cases at hand are d = 4, nf = 8, r = 1 for N = 4 SYM and d = 3, nf = 6, r = 2

for ABJM.

6 Concluding remarks

In this work we have computed the cusp anomalous dimension of ABJM theory up to

second order in its strong coupling expansion. This result has been determined considering

the AdS4 × CP
3 κ-symmetry gauge-fixed action of [45, 46] and studying its fluctuations

about the null cusp background (3.1), which is a classical solution thereof. As in the

AdS5 × S5 counterpart of this calculation [42], the AdS light-cone gauge approach [49]

makes the explicit evaluation rather manageable, allowing us to push the expansion of the

string partition function up to second order.

While at one loop we confirm a known result [28, 32, 36], at two-loops we provide a new

important piece of data, see (1.6), which we combine with a proposal based on the Bethe

Ansatz of AdS4/CFT3 [4] to give our two-loop correction to the so-called interpolating

function h(λ) of ABJM theory, equation (1.10). Importantly, the recent conjecture of [66]

for an all-order expression of h(λ), implicitly given in terms of a non-trivial hypergeometric

function, agrees with our result, which is a relevant perturbative test of validity for the

conjecture. In particular, at this level of perturbation theory we must implement in our

calculation a “correction” to the string tension in terms of the ’t Hooft coupling, which was

pointed out in [64] to be due to higher order corrections (in curvature) to the background.

We show that the strong coupling two-loop correction for h(λ) is only due to the anomalous

shift of the curvature radius in the Type IIA description [64]. This supports the observation

in [66] on the origin of the shift appearing in its proposal (1.13), which knows nothing about

the gravity side but coincides in fact with the correction of [64].

In perspective, we observe that the light-cone gauge approach could be pushed to a

much stronger check of (1.11), by testing its finite coupling regime. Following [79], one

could discretize the light-cone Lagrangian (3.4), put it on a lattice and perform numerical

simulations to determine the ABJM scaling function in terms of the coupling constant,

for any value thereof. By comparison with the same results for N = 4 SYM one could

then provide numerical values of h(λ) at some finite values of λ, which could then be

contrasted with (1.11).

The manifest cancellation of UV divergences that we find here provides a direct demon-

stration of the quantum consistency of the AdS4×CP
3 action of [45, 46], and shows that it

can be readily used for non-trivial strong coupling computations in the AdS4/CFT3 frame-

work (following for example [52, 53]). In particular, the consistency of the result with

predictions coming from integrability, the conjecture [66] and the “corrected” dictionary

of [64] can be taken as evidence, albeit indirect, of quantum integrability for the Type IIA

AdS4 × CP
3 superstring in this gauge.
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A Lagrangian in the Wess-Zumino type parametrization

In this appendix we rewrite the Lagrangian (2.5) in a form that resembles the Wess-Zumino

type parametrization introduced in [49], and compare it to the AdS5 × S5 case. In [49]

the authors found two possible ways to eliminate the fermion rotation (2.12), either by a

change of parametrization for S5 or by the introduction of a covariant derivative for the

terms quadratic in fermions. Here we explore only the second option and we leave the

first one for future development. We first introduce a collective index for upper and lower

indices so that

ηâ =

(

ηa
η̄a

)

. (A.1)

In this notation the action of the matrix T on the fermions (2.12) can be rewritten as

η̂â = Tâ
b̂η
b̂

(A.2)

where the matrix Tâ
b̂ is given in (2.17). We also introduce the shorthand notation

∂iηaη̄
a − ηa∂iη̄

a = −ηâ∂iηâ , (A.3)

where ηâ = (η̄a, ηa). In [49] a recipe for going from the Killing parametrization to a Wess-

Zumino type gauge was given, which consists of rotating back the fermions. This generates

additional terms coming from derivatives that can be reabsorbed into a covariant derivative.

In particular, we apply the transformation

ηâ →
(

T−1
)b̂

â
η
b̂
. (A.4)

In contrast with the AdS5 × S5 case the matrix T is not block diagonal, therefore one

has ηâ∂iηâ = η̂â∂̂iηâ, where it is crucial to use hatted indices. This transformation removes

all the hats from fermions, at the price of introducing the covariant derivative

D = d− Ω , (A.5)

where Ω ≡ Ωâ
b̂ = dTâ

ĉ (T−1)ĉ
b̂
and dΩ−Ω∧Ω = 0. More explicitly,16 the (matrix) Cartan

form entering the definition of the (dimensionally reduced) supercoset element reads

Ωâ
b̂ = i

(

Ω b
a − δbaΩ

c
c ǫacbΩ

c

−ǫacbΩc −Ωab + δabΩ
c
c

)

, (A.6)

16The matrix Ω was already introduced in [76] however there it was defined as Ωâ
b̂ = iTâ

ĉdT−1
ĉ
b̂
=

−idTâ
ĉT−1

ĉ
b̂
, differing from ours by a factor of i. To make contact with the expressions of [76] we add such

a factor in formula (A.6).
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with components given by

Ω b
a = i

(1− cos |z|)
|z|2 (z̄adz

b − dz̄az
b)− iz̄az

b (1− cos |z|)2
2|z|4 (dzcz̄c − zcdz̄c), (A.7)

Ωa = dz̄a
sin |z|
|z| + z̄a

sin |z|(1− cos |z|)
2|z|3 (dzcz̄c − zcdz̄c) + z̄a

(

1

|z| −
sin |z|
|z|2

)

d|z|, (A.8)

Ωa = dza
sin |z|
|z| + za

sin |z|(1− cos |z|)
2|z|3 (zcdz̄c − dzcz̄c) + za

(

1

|z| −
sin |z|
|z|2

)

d|z|. (A.9)

Above, Ω c
c is the trace of (A.7) and is related to Ω̃ c

c defined in (2.16) via Ω̃ c
c = 2Ω c

c .

We can also decompose the matrix Ω in order to separate the contributions from the

vielbein and from the spin connection17

Ωâ
b̂ = Ωĉ(Eĉ)â

b̂ +Ωcd(J
d
c )â

b̂
(A.10)

with18

(Eĉ)â
b̂ = i

(

0 ǫacb
−ǫacb 0

)

(Jdc )â
b̂
= i

(

δdaδ
b
c − δbaδ

d
c 0

0 −δdb δac + δab δ
d
c

)

. (A.12)

This decomposition provides a way to project out the spin connection and find the exact

relation between the vielbein Ωâ and the matrix Ω

Ωĉ =
1

2
Tr(EĉΩ) . (A.13)

After having introduced all the necessary ingredients, we are ready to rewrite the La-

grangian in a form which resembles the AdS5 × S5 case. We separate it into

L = LB + L
(2)
F + L

(4)
F (A.14)

where the bosonic contribution is simply given by the standard bosonic sigma model with

AdS4 × CP
3 as target space

LB = γij
[

e−4ϕ

4

(

∂ix
+∂jx

− + ∂ix
1∂jx

1
)

+ ∂iϕ∂jϕ+ΩaiΩaj

]

(A.15)

where the vielbein Ωai are defined in the natural way Ωa = Ωai dσ
i with σi = (τ, σ). Notice

also that ΩâiΩâj = 2ΩaiΩaj for the symmetry of the worldsheet metric. The quadratic

17A similar procedure was applied in [49] where in that case the decomposition is expressed in terms of

the SO(5) γ-matrices.
18Let us stress that the meaning of the first term of equation (A.10) in matrix form is the following

Ωĉ(Eĉ)â
b̂ =

(

Ωc(Ec)a
b +Ωc(E

c)a
b Ωc(Ec)ab +Ωc(E

c)ab
Ωc(Ec)

ab +Ωc(E
c)ab Ωc(Ec)

a
b
+Ωc(E

c)a
b

)

(A.11)

and the explicit expression of (Eĉ)â
b̂ shows that the only non-vanishing elements are (Ec)ab and (Ec)ab.
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part in the fermion fields can be expressed as

L
(2)
F =− 2 e−4ϕ∂ix

+

[

i

2
γij
(

ηâDjηâ + θâDjθâ − 2Ωĉj ηEĉη
)

+ εijηâCâ
b̂
(

Djθb̂ + e−2ϕη
b̂
∂jx

1)

+
i

2
γij
(

η̄4∂jη4 + θ̄4∂jθ4 − 4 i ηaΩ
a
jη4 + 2 iΩ a

a jΘ− h.c.
)

+
1

2
εij
(

η̄4∂jθ4 − θ̄4∂jη4 + 4 i ηaΩ
a
j θ4 + 2 iΩ a

a jΘ̃− e−2ϕΘ∂jx
1 + h.c.

)

]

. (A.16)

Here we have introduced the charge conjugation matrix C, given explicitly by19

Câ
b̂ =

(

δba 0

0 −δab

)

, (A.17)

and the combinations Θ = θ4θ̄
4 + η4η̄

4 and Θ̃ = θ4η̄
4 − η4θ̄

4. The first line of this La-

grangian (A.16) closely resembles expression (1.6) of [49], that is the AdS5×S5 Lagrangian

in Wess-Zumino type parametrization. This is the part of the Lagrangian that does not

contain the fermions η4 and θ4, which emerge [45] when obtaining the AdS4 × CP
3 action

from dimensional reduction of the AdS4 × S7 supermembrane action. The main difference

with respect to AdS5 × S5 is that the SU(4) R-symmetry is not explicitly realized on the

fermionic Lagrangian (A.16). This feature is inherited by the quantum fluctuations around

the light-like cusp. As a result of the broken symmetry, the spectrum contains fermionic

degrees of freedom with different masses (one gets 6 massive and 2 massless excitations).

Our one- and two-loop calculations have explicitly shown that the role of the massless

fermions (η̃4 and θ̃4) is crucial for compensating the bosonic degrees of freedom, making

the one-loop partition function UV-finite. At two loops their interactions with the other ex-

citations would in principle start playing a part. Nevertheless it turns out that the massless

fermions decouple from the computation and do not contribute to the two-loop result.

The last term of the superstring Lagrangian is quartic in fermions

L
(4)
F = 4 e−8ϕγij∂ix

+∂jx
+[(ηaη̄

a)2 + 2 εabcηaηbηcη4 + 2η4η̄
4ηaη̄

a −Θ2 + h.c.] . (A.18)

As discussed for the quadratic part, the first terms clearly reminds the expression for

AdS5×S5 (equation (1.10) of [49]), whereas the others contain the non-trivial interactions

of η4 and θ4.

B Details on the expanded Lagrangian

In this appendix we provide the details of the Lagrangian (3.4) expanded up to quartic

order. As in section 5 we list the vertices as they appear in Lint, namely with an extra

factor 1
2 with respect to the original Lagrangian. We drop tildas, understanding that we

are dealing with the fluctuation fields of (3.4). The cubic vertices are

Vϕx1x1 = −4ϕ
[(

∂s − 1
2

)

x1
]2

Vϕ3 = 2ϕ
[

(∂tϕ)
2 − (∂sϕ)

2
]

Vϕ|z|2 = 2ϕ
[

|∂tz|2 − |∂sz|2
]

19The fact that the matrix is diagonal and not anti-diagonal is a consequence of our conventions for

grouping the spinors. Notice also that for our conventions ηâηâ = 0 whereas ηâCâ
b̂ηb̂ = −2ηaη̄

a.
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Vzηη = −ǫabc∂tz̄aηbηc + h.c. Vzηθ = −2 ǫabcz̄aηb(∂s − 1
2)θc − h.c.

Vϕηθ = −4 i ϕ ηa
(

∂s − 1
2

)

θ̄a − h.c. Vx1ηη = −4 i η̄aηa
(

∂s − 1
2

)

x1

Vzηaη4 = −2 ∂tz
aηaη4 + h.c. Vzηaθ4 = 2 ∂sz

aηaθ4 − h.c.

Vϕη4θ̄4 = −2 i ϕ (θ̄4∂sη4 − ∂sθ̄
4η4)− h.c. Vx1ψ̄4ψ4

= −2 i (η̄4η4 + θ̄4θ4)
(

∂s − 1
2

)

x1 (B.1)

The quartic vertices read

Vz4 =
1

6

[

(z̄a∂tz
a)2 + (z̄a∂sz

a)2 + (za∂tz̄a)
2 + (za∂sz̄a)

2

−|z|2
(

|∂tz|2 + |∂sz|2
)

− |z̄a∂tza|2 − |z̄a∂sza|2
]

(B.2)

Vϕ2x1x1 = 16ϕ2
[

(

∂s − 1
2

)

x1
]2

Vϕ4 = 4ϕ2

[

(∂tϕ)
2 + (∂sϕ)

2 +
1

6
ϕ2

]

(B.3)

Vϕ2|z|2 = 4ϕ2
[

|∂tz|2 + |∂sz|2
]

Vżz̄ψ̄4ψ4
= −2 i (η̄4η4 + θ̄4θ4)z̄b∂tz

b + h.c. (B.4)

Vη2η4η̄4 = 8 η̄4η4η̄
aηa Vz′z̄ψ̄4ψ4

= −2 i (η̄4θ4 − θ̄4η4)z̄b∂sz
b − h.c. (B.5)

Vη4 = 4(η̄aηa)
2 Vϕ2η4θ̄4

= 4 i ϕ2 (θ̄4∂sη4 − ∂sθ̄
4η4)− h.c. (B.6)

Vη4η̄4θ4θ̄4 = −8 η̄4η4θ̄
4θ4 Vϕx1ψ̄4ψ4

= 12 i ϕ (η̄4η4 + θ̄4θ4)
(

∂s − 1
2

)

x1 (B.7)

Vη3η4 = 4 ǫabcηaηbηcη4 + h.c. Vzzη̄aη4 = −2 i ǫabc∂tz
azbη̄cη4 + h.c. (B.8)

Vϕzηaθ4 = −8ϕ∂sz
aηaθ4 − h.c. Vϕzηθ= 8ϕǫabcz̄aηb

(

∂s − 1
2

)

θc − h.c. (B.9)

Vzzη̄aθ4 = 2 i ǫabc∂sz
azbη̄cθ4 − h.c. Vzzηη=−2i(z̄a∂tz

aη̄bηb−z̄b∂tzaη̄bηa)+h.c. (B.10)
Vϕx1ηη= 24 i ϕ η̄aηa

(

∂s − 1
2

)

x1

Vzzηθ= −2 i [|z|2ηa
(

∂s − 1
2

)

θ̄a − z̄bz
aηa
(

∂s − 1
2

)

θ̄b]− h.c. (B.11)

Vϕ2ηθ= 8 i ϕ2 ηa
(

∂s − 1
2

)

θ̄a − h.c. Vx1zηη= −4
(

∂s − 1
2

)

x1ǫabcz̄aηbηc − h.c. (B.12)

C Integral reductions

In this appendix we provide the relevant tensor integral reductions in two dimensions that

we used in the computation of the two-loop correction to the partition function. We define

the two basic scalar integrals

I
(

m2
)

≡
∫

d2p

(2π)2
1

p2 +m2
(C.1)

I
(

m2
1,m

2
2,m

2
3

)

≡
∫

d2p d2q d2r

(2π)4
δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)
. (C.2)

Then we have (the factors (2π)4 in the denominator of the integrands are understood)
∫

d2p d2q d2r pµqν δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= (C.3)

=
δµν

4

[

I(m2
1)I(m

2
2)−I(m2

1)I(m
2
3)−I(m2

2)I(m
2
3)+(m2

1 +m2
2 −m2

3)I(m
2
1,m

2
2;m

2
3)
]

(C.4)

Iµµ (m
2
1,m

2
2;m

2
3) =

∫

d2p d2q d2r (p · q) δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= (C.5)

=
1

2

[

I(m2
1)I(m

2
2)− I(m2

1)I(m
2
3)− I(m2

2)I(m
2
3) + (m2

1 +m2
2 −m2

3)I(m
2
1,m

2
2;m

2
3)
]

(C.6)
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∫

d2p d2q d2r pµ pν δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
δµν

2

[

I(m2
2)I(m

2
3)−m2

1 I(m
2
1,m

2
2;m

2
3)
]

(C.7)

J ≡
∫

d2p d2q d2r p2q2 δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= m2
1m

2
2 I(m

2
1,m

2
2;m

2
3)−m2

1 I(m
2
1)I(m

2
3)

−m2
2 I(m

2
2)I(m

2
3) (C.8)

K ≡
∫

d2p d2q d2r (p · q)2 δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
1

2

[

−m2
2 I(m

2
2)I(m

2
3)−m2

1 I(m
2
1)I(m

2
3)+

+(m2
1 +m2

2 −m2
3)I

µ
µ (m

2
1,m

2
2;m

2
3)
]

(C.9)
∫

d2p d2q d2r pµ pν qρ qσ δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=

(

3

8
J − 1

4
K

)

δµνδρσ

+

(

1

4
K − 1

8
J

)

(δµρδνσ + δµσδνρ) (C.10)

∫

d2p d2q d2r pµ pν pρ qσ δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
1

8
(δµνδρσ + δµρδνσ + δµσδνρ)

[

m2
2 I(m

2
2)I(m

2
3)−m2

1 I
µ
µ (m

2
1,m

2
2;m

2
3)
]

(C.11)

L ≡
∫

d2p d2q d2r p2 (q · r) δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= −m2
1 I

µ
µ (m

2
3,m

2
2;m

2
1) (C.12)

M ≡
∫

d2p d2q d2r (p · q)(p · r) δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
1

2

[

(m2
1 +m2

3 −m2
2)I

µ
µ (m

2
1,m

2
2;m

2
3)+

+m2
1 I(m

2
1)I(m

2
3)−m2

2 I(m
2
2)I(m

2
3)
]

(C.13)
∫

d2p d2q d2r pµ pν qρ rσδ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=

(

3

8
L− 1

4
M

)

δµνδρσ

+

(

1

4
M − 1

8
L

)

(δµρδνσ + δµσδνρ) . (C.14)
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[39] B. Stefański Jr., Green-Schwarz action for Type IIA strings on AdS4 × CP 3,

Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [INSPIRE].

[40] G. Arutyunov and S. Frolov, Superstrings on AdS4 × CP 3 as a Coset σ-model,

JHEP 09 (2008) 129 [arXiv:0806.4940] [INSPIRE].

[41] J. Gomis, D. Sorokin and L. Wulff, The Complete AdS4 × CP 3 superspace for the type IIA

superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [INSPIRE].

– 25 –

http://dx.doi.org/10.1016/j.nuclphysb.2007.09.005
http://arxiv.org/abs/0707.4254
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.4254
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1088/1126-6708/2008/12/101
http://arxiv.org/abs/0807.3965
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3965
http://dx.doi.org/10.1088/1126-6708/2008/11/089
http://arxiv.org/abs/0807.4400
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4400
http://dx.doi.org/10.1088/1126-6708/2008/09/092
http://arxiv.org/abs/0807.4561
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4561
http://dx.doi.org/10.1088/1126-6708/2008/11/069
http://arxiv.org/abs/0809.4038
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4038
http://dx.doi.org/10.1088/1126-6708/2009/04/083
http://arxiv.org/abs/0807.4897
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4897
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.020
http://arxiv.org/abs/0807.1527
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1527
http://dx.doi.org/10.1007/JHEP04(2010)059
http://arxiv.org/abs/0911.4061
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4061
http://dx.doi.org/10.1007/JHEP12(2010)040
http://arxiv.org/abs/1006.2174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2174
http://dx.doi.org/10.1088/1751-8113/45/2/025401
http://arxiv.org/abs/1106.0737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0737
http://dx.doi.org/10.1007/JHEP05(2011)128
http://arxiv.org/abs/1101.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0004
http://dx.doi.org/10.1007/JHEP04(2012)005
http://arxiv.org/abs/1111.6628
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6628
http://dx.doi.org/10.1142/S0217751X13500589
http://arxiv.org/abs/1203.4777
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4777
http://dx.doi.org/10.1088/1751-8113/46/11/115402
http://arxiv.org/abs/1204.3302
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3302
http://arxiv.org/abs/0807.2861
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2861
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.015
http://arxiv.org/abs/0806.4948
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4948
http://dx.doi.org/10.1088/1126-6708/2008/09/129
http://arxiv.org/abs/0806.4940
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4940
http://dx.doi.org/10.1088/1126-6708/2009/03/015
http://arxiv.org/abs/0811.1566
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1566


J
H
E
P
1
0
(
2
0
1
4
)
0
1
3

[42] S. Giombi, R. Ricci, R. Roiban, A.A. Tseytlin and C. Vergu, Quantum AdS5 × S5

superstring in the AdS light-cone gauge, JHEP 03 (2010) 003 [arXiv:0912.5105] [INSPIRE].

[43] R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS5 × S5 background,

Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].

[44] A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS4 × CP 3,

JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].

[45] D.V. Uvarov, AdS4 ×CP 3 superstring in the light-cone gauge, Nucl. Phys. B 826 (2010) 294

[arXiv:0906.4699] [INSPIRE].

[46] D.V. Uvarov, Light-cone gauge Hamiltonian for AdS4 × CP 3 superstring,

Mod. Phys. Lett. A 25 (2010) 1251 [arXiv:0912.1044] [INSPIRE].

[47] P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in

AdS4 × CP 3 superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [INSPIRE].

[48] B. de Wit, K. Peeters, J. Plefka and A. Sevrin, The M-theory two-brane in AdS4 × S7 and

AdS7 × S4, Phys. Lett. B 443 (1998) 153 [hep-th/9808052] [INSPIRE].

[49] R.R. Metsaev and A.A. Tseytlin, Superstring action in AdS5 × S5. Kappa symmetry light

cone gauge, Phys. Rev. D 63 (2001) 046002 [hep-th/0007036] [INSPIRE].

[50] R.R. Metsaev, C.B. Thorn and A.A. Tseytlin, Light cone superstring in AdS space-time,

Nucl. Phys. B 596 (2001) 151 [hep-th/0009171] [INSPIRE].

[51] R. Roiban, A. Tirziu and A.A. Tseytlin, Two-loop world-sheet corrections in AdS5 × S5

superstring, JHEP 07 (2007) 056 [arXiv:0704.3638] [INSPIRE].

[52] S. Giombi, R. Ricci, R. Roiban, A.A. Tseytlin and C. Vergu, Generalized scaling function

from light-cone gauge AdS5 × S5 superstring, JHEP 06 (2010) 060 [arXiv:1002.0018]

[INSPIRE].

[53] S. Giombi, R. Ricci, R. Roiban and A.A. Tseytlin, Two-loop AdS5 × S5 superstring: testing

asymptotic Bethe ansatz and finite size corrections, J. Phys. A 44 (2011) 045402

[arXiv:1010.4594] [INSPIRE].

[54] O.T. Engelund, R.W. McKeown and R. Roiban, Generalized unitarity and the worldsheet S

matrix in AdSn × Sn ×M10−2n, JHEP 08 (2013) 023 [arXiv:1304.4281] [INSPIRE].

[55] L. Bianchi, V. Forini and B. Hoare, Two-dimensional S-matrices from unitarity cuts,

JHEP 07 (2013) 088 [arXiv:1304.1798] [INSPIRE].

[56] L. Bianchi and B. Hoare, AdS3 × S3 ×M4 string S-matrices from unitarity cuts,

JHEP 08 (2014) 097 [arXiv:1405.7947] [INSPIRE].

[57] I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS5 × S5 superstring,

Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].

[58] D. Sorokin and L. Wulff, Evidence for the classical integrability of the complete AdS4 × CP 3

superstring, JHEP 11 (2010) 143 [arXiv:1009.3498] [INSPIRE].

[59] L. Wulff, Superisometries and integrability of superstrings, arXiv:1402.3122 [INSPIRE].

[60] M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of

one-loop correction to energy of spinning folded string in AdS5 × S5,

J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [INSPIRE].

– 26 –

http://dx.doi.org/10.1007/JHEP03(2010)003
http://arxiv.org/abs/0912.5105
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.5105
http://dx.doi.org/10.1016/S0550-3213(98)00570-7
http://arxiv.org/abs/hep-th/9805028
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805028
http://dx.doi.org/10.1007/JHEP05(2010)009
http://arxiv.org/abs/0911.5228
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5228
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.006
http://arxiv.org/abs/0906.4699
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4699
http://dx.doi.org/10.1142/S0217732310033153
http://arxiv.org/abs/0912.1044
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1044
http://dx.doi.org/10.1088/1126-6708/2009/08/060
http://arxiv.org/abs/0903.5407
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.5407
http://dx.doi.org/10.1016/S0370-2693(98)01340-9
http://arxiv.org/abs/hep-th/9808052
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808052
http://dx.doi.org/10.1103/PhysRevD.63.046002
http://arxiv.org/abs/hep-th/0007036
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007036
http://dx.doi.org/10.1016/S0550-3213(00)00712-4
http://arxiv.org/abs/hep-th/0009171
http://inspirehep.net/search?p=find+EPRINT+hep-th/0009171
http://dx.doi.org/10.1088/1126-6708/2007/07/056
http://arxiv.org/abs/0704.3638
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3638
http://dx.doi.org/10.1007/JHEP06(2010)060
http://arxiv.org/abs/1002.0018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0018
http://dx.doi.org/10.1088/1751-8113/44/4/045402
http://arxiv.org/abs/1010.4594
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4594
http://dx.doi.org/10.1007/JHEP08(2013)023
http://arxiv.org/abs/1304.4281
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4281
http://dx.doi.org/10.1007/JHEP07(2013)088
http://arxiv.org/abs/1304.1798
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1798
http://dx.doi.org/10.1007/JHEP08(2014)097
http://arxiv.org/abs/1405.7947
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7947
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://arxiv.org/abs/hep-th/0305116
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305116
http://dx.doi.org/10.1007/JHEP11(2010)143
http://arxiv.org/abs/1009.3498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3498
http://arxiv.org/abs/1402.3122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3122
http://dx.doi.org/10.1088/1751-8113/43/16/165402
http://arxiv.org/abs/1001.4018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.4018


J
H
E
P
1
0
(
2
0
1
4
)
0
1
3

[61] V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079

[arXiv:1009.3939] [INSPIRE].

[62] N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling,

JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].

[63] R. Roiban and A.A. Tseytlin, Spinning superstrings at two loops: Strong-coupling corrections

to dimensions of large-twist SYM operators, Phys. Rev. D 77 (2008) 066006

[arXiv:0712.2479] [INSPIRE].

[64] O. Bergman and S. Hirano, Anomalous radius shift in AdS4/CFT3, JHEP 07 (2009) 016

[arXiv:0902.1743] [INSPIRE].

[65] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924] [INSPIRE].

[66] N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in ABJM Theory,

arXiv:1403.1894 [INSPIRE].

[67] B. Basso, An exact slope for AdS/CFT, arXiv:1109.3154 [INSPIRE].

[68] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal

Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[69] M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings,

JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].

[70] N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory,

Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

[71] L. Griguolo, D. Marmiroli, G. Martelloni and D. Seminara, The generalized cusp in ABJ(M)

N = 6 Super Chern-Simons theories, JHEP 05 (2013) 113 [arXiv:1208.5766] [INSPIRE].

[72] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy

radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].

[73] M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and

Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP 06 (2014) 123

[arXiv:1402.4128] [INSPIRE].

[74] D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS4 × CP 3 Wilson loops in

N = 6 super Chern-Simons-matter and bremsstrahlung functions, JHEP 06 (2014) 139

[arXiv:1405.1396] [INSPIRE].

[75] K. Zarembo, Worldsheet spectrum in AdS4/CFT3 correspondence, JHEP 04 (2009) 135

[arXiv:0903.1747] [INSPIRE].

[76] D.V. Uvarov, AdS4 × CP 3 superstring and D = 3 N = 6 superconformal symmetry,

Phys. Rev. D 79 (2009) 106007 [arXiv:0811.2813] [INSPIRE].

[77] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[78] R. Roiban and A.A. Tseytlin, Strong-coupling expansion of cusp anomaly from quantum

superstring, JHEP 11 (2007) 016 [arXiv:0709.0681] [INSPIRE].

[79] R.W. McKeown and R. Roiban, The quantum AdS5 × S5 superstring at finite coupling,

arXiv:1308.4875 [INSPIRE].

– 27 –

http://dx.doi.org/10.1007/JHEP11(2010)079
http://arxiv.org/abs/1009.3939
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3939
http://dx.doi.org/10.1007/JHEP06(2011)131
http://arxiv.org/abs/1105.5144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5144
http://dx.doi.org/10.1103/PhysRevD.77.066006
http://arxiv.org/abs/0712.2479
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2479
http://dx.doi.org/10.1088/1126-6708/2009/07/016
http://arxiv.org/abs/0902.1743
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.1743
http://dx.doi.org/10.1088/1126-6708/2008/11/043
http://arxiv.org/abs/0807.4924
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4924
http://arxiv.org/abs/1403.1894
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1894
http://arxiv.org/abs/1109.3154
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3154
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
http://dx.doi.org/10.1007/JHEP06(2010)011
http://arxiv.org/abs/0912.3074
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3074
http://dx.doi.org/10.1007/s00220-011-1253-6
http://arxiv.org/abs/1007.3837
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
http://dx.doi.org/10.1007/JHEP05(2013)113
http://arxiv.org/abs/1208.5766
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.5766
http://dx.doi.org/10.1007/JHEP05(2014)025
http://arxiv.org/abs/1312.5682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5682
http://dx.doi.org/10.1007/JHEP06(2014)123
http://arxiv.org/abs/1402.4128
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4128
http://dx.doi.org/10.1007/JHEP06(2014)139
http://arxiv.org/abs/1405.1396
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1396
http://dx.doi.org/10.1088/1126-6708/2009/04/135
http://arxiv.org/abs/0903.1747
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1747
http://dx.doi.org/10.1103/PhysRevD.79.106007
http://arxiv.org/abs/0811.2813
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2813
http://dx.doi.org/10.1007/s100520100799
http://arxiv.org/abs/hep-th/9803001
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803001
http://dx.doi.org/10.1088/1126-6708/2007/11/016
http://arxiv.org/abs/0709.0681
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.0681
http://arxiv.org/abs/1308.4875
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4875

	Overview and results
	AdS light-cone gauge in AdS(4) x CP*3
	The null cusp fluctuation action
	Cusp anomaly at one loop
	Cusp anomaly at two loops
	Bosonic sector
	Fermionic contributions
	The cusp anomalous dimension
	Comparison with AdS(5)xS*5

	Concluding remarks
	Lagrangian in the Wess-Zumino type parametrization
	Details on the expanded Lagrangian
	Integral reductions

