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double-trace operators. Together these two classes of examples exhibit a wide range of

scalings and shapes of the bispectrum, including nearly equilateral, orthogonal and local

non-Gaussianity in different regimes. Along the way, we compare and contrast the shape

and amplitude with previous results on weakly coupled fields coupled to inflation. This

signature provides a precision test for strongly coupled sectors coupled to inflation via

irrelevant operators suppressed by a high mass scale up to ∼ 103 times the inflationary

Hubble scale.
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1 Introduction and summary

In inflationary cosmology, the quantum fluctuations of the inflaton, and possibly other

fields, get imprinted on the power spectrum and higher point correlations accessible in the

CMB and large-scale structure. This basic idea goes back to the origins of the subject, and

has been explored in many illustrative examples. Recently there has been progress toward

a more systematic understanding of the observables and their implications, with input

both from bottom up effective field theory and from top down UV complete mechanisms

for inflation.
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In this paper, we mix in a basic class of interacting fields — field theories which are

conformal at the Hubble scale and their time-dependent deformations — and compute their

contribution to the perturbation spectrum and non-Gaussianity. We find characteristic

scaling behavior depending on the anomalous dimensions of operators, and compute in

detail the shape and amplitude of the non-Gaussianity. The results depend on some basic

properties of quantum field theory, such as unitarity bounds and crossing relations.

Aside from theoretical interest, this analysis is motivated by several considerations.

First, it is a canonical and calculable regime of field theory which belongs in a systematic

analysis of multifield signatures and their significance, particularly given the observational

handles on non-Gaussianity. Relatedly, as we will see, these sectors exhibit an interest-

ing partial degeneracy with massive fields in their predictions for the simplest practical

observables. Finally, from the top down, strongly coupled sectors play a useful role in

model-building, producing naturally small scales in the effective action for the inflaton,

and fields from this sector may participate in the perturbations. More generally, we can

use forthcoming non-Gaussianity data (whether a constraint or detection) to provide a

precision test of additional field theory sectors which couple to inflation via higher dimen-

sion operators.

To put this in context, one basic question probed by observations is the number of

fields which participate in generating the correlation functions of the curvature pertur-

bations. This is a different question from the question of how many fields are involved

in the underlying mechanism producing the inflationary background. One can separate

multi-field theories into two classes, depending on whether the additional fields themselves

acquire scale invariant perturbations that affect the curvature or the isocurvature fluctu-

ations. In the case we will be interested in here, the additional fields instead affect the

density perturbations through their couplings to the inflaton. Though not directly observ-

able, these additional fields cannot usefully be integrated out, as doing so would lead to a

non-local Lagrangian. Progress toward a general treatment of both types of theories can

be found in [1, 2], where the effects of additional sectors are packaged in terms of their

correlation functions.

A useful general theorem known as the consistency condition establishes that a single-

field theory of perturbations cannot generate non-Gaussianity in the ‘squeezed’ configura-

tion, with one mode much longer than the others [3]. Conversely, it has been long known

that non-Gaussianity peaked in the squeezed configuration can arise in the presence of

additional light fields [4–8]. For massless weakly interacting fields coupled to the inflaton,

the three point function of scalar perturbations behaves as

〈ζk1ζk2ζk3〉
k1� k2'k3−−−−−−−→

fNL∆4
ζ

k3
1k

3
2

(2π)3δ(3)(k1 + k2 + k3) (1.1)

where ∆ζ ≈ 10−5 is the amplitude of the scalar perturbation. Moreover, interesting power-

law deviations from this shape of non-Gaussianity arise for fields of nonzero mass m [9–11]

〈ζk1ζk2ζk3〉 = B(k1, k2, k3) (2π)3δ(3)(k1 + k2 + k3) (1.2)

k1� k2'k3−−−−−−−→
fNL∆4

ζ

k3
1k

3
2

×
(
k1

k2

)3/2−
√

9/4−m2/H2

(2π)3δ(3)(k1 + k2 + k3) (1.3)
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This scenario, known as quasi single-field inflation, is a feature of weakly coupled theories

with supersymmetry broken at the Hubble scale [12].

In the present work, we will analyze two simple cases where the additional fields af-

fecting the density perturbations are interacting, using conformal symmetry and related

methods to control the calculations. For our first class of examples, we will study infla-

tion coupled to a conformally coupled CFT, for which the conformal dimension ∆ of an

operator O plays the role of the mass-dependent exponent in (1.3). For our second class of

examples we will consider a simple time-dependent flow away from a large-N CFT, which

gives unitary theories realizing a larger range of exponents, including local fNL.

For our first class of examples, a conformally coupled CFT linearly mixes with inflaton

perturbations,1 giving rise to a bispectrum of the form

B(k1, k2, k3)
k1� k2'k3−−−−−−−→

fNL∆4
ζ

k3
1k

3
2

×
(
k1

k2

)∆

(∆ ≤ 2) (1.4)

k1� k2'k3−−−−−−−→
fNL∆4

ζ

k3
1k

3
2

×
(
k1

k2

)2

(∆ ≥ 2) .

For this case, the standard unitarity bound implies ∆ ≥ 1. As a result, the shape is peaked

at equilateral/flattened triangles in momentum space, with the scaling behavior (1.4) as one

approaches the squeezed limit determined by the dimension of the most relevant operator

that couples in. Moreoever, we will find a range of exponents arising from dimensions

3/2 ≤ ∆ ≤ 2 which cannot be obtained in quasi-single field models, producing a scale-

dependent bias which could distinguish them. For the range of exponents where the two

are degenerate, it is intriguing that our intrinsically gapless CFT fields behave like massive

weakly coupled fields with respect to the squeezed limit; the origin of this effect is the

redshifting of conformally rescaled correlators of our conformally coupled operators. The

conformal coupling to curvature which goes into this analysis is a special choice, and we

expect a wider range of behaviors in the presence of more general curvature couplings.

Indeed, our second class of examples will give rise to the same scaling2 as (1.4) while

allowing for ∆ < 1. These examples make use of the fact that time-dependent couplings

in quantum field theory can strongly affect infrared physics and shift unitarity bounds,

as studied recently in [13]. This is important in the present context since time dependent

couplings can arise very easily via couplings of the rolling inflaton field to other sectors such

as a CFT. In the examples in [13], time dependent couplings can introduce flows between

a unitary CFT containing an operator O of dimension ∆+ and an infrared theory with

two-point correlators falling off like 1/distance2∆− times powers of the time-dependent

coupling, where ∆− = 4−∆+. In particular a theory with a marginal scalar operator with

∆+ ≈ 4 can flow in this way to a theory with ∆− � 1, giving nearly local non-Gaussianity,

not suppressed in the squeezed limit by any additional powers of k1/k2.

Finally, let us discuss the amplitude fNL of the bispectrum. As we will see, this can

be substantial, and will give us sensitivity to higher dimension couplings of the inflationary

1Note that our CFT lives in the four-dimensional spacetime, and is not to be confused with conjectural

lower-dimensional holographic duals for de Sitter.
2Up to logarithmic factors.
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sector to other fields. To give a rough illustration of this last point, consider, for example,

a dimension ∆ = 2 operator O2 in a CFT, coupled to the inflaton φ via the dimension

six operator ∫
d4x
√
−g (∂φ)2O2

M2
∗

. (1.5)

Let us evaluate one factor of ∂φ on the backround rolling scalar field, which in slow-roll

inflation given in terms of the inflationary Hubble scale H by φ̇0 ∼ H2/∆ζ ∼ 105H2.

This gives us a linear mixing
∫

∆−1
ζ (H/M∗)

2δφ̇O between the canonical perturbation δφ

and O.3 The CFT three-point function combined with three of these mixing interactions

generates a contribution to the three-point function of the inflationary perturbations. This

leads to an amplitude fNL behaving parametrically like

fNL ∼ C∆−4
ζ f(2)

(
H

M∗

)6

(1.6)

where C is the amplitude of the CFT three-point function (2.1), and the function f(∆),

plotted below in figure 6, gives a substantial numerical factor.4 Since current measurements

are projected to be sensitive to fNL . 10, they provide a precision test of this higher

dimension coupling up to a value of M∗ ∼ 103H. This high mass scale (relative to Hubble)

is generally below the Planck scale (Mpl), but can exceed the GUT scale in simple examples

such as chaotic inflation. In string-theoretic ultraviolet completions of inflation, higher

dimension operators suppressed by a scale M∗ � Mpl of order the Kaluza-Klein or string

scale may be probed.5 That is, while an observation of non-Gaussianity may be explained

by contributions from additional fields (weakly or strongly coupled), a null result would

conversely provide a precision constraint on very high-energy physics. Of course sensitivity

to high energy physics arises already in single field inflation (see e.g. [26–30]). A feature

of the present case is that observations will constrain hidden sectors of additional fields

coupled to inflation via higher dimension operators such as (1.5). Similar constraints arise

in other models involving a linear mixing with the inflaton (e.g. [9–11, 31–34]).

Both of our main examples are just calculable examples of a wider point: additional

fields active during inflation may include strongly coupled sectors with characteristic signa-

tures. It will be interesting to analyze this more generally and systematically, and also to

incorporate the particular couplings arising in complete models of inflation which involve

couplings to strong dynamics to obtain their specific multifield signatures.

3For the purposes of finding a simple estimate of our sensitivity to high dimension couplings, we will

tune away the relevant perturbation of the CFT that we get from (1.5) if we evaluate both factors of ∂φ on

the rolling inflaton background. In the detailed examples to be discussed in the main body of this paper

and appendix A, we will find similar results without such tuning.
4Below we will describe our normalization conventions which go into this.
5In several of the UV completions of inflation explored extensively in string theory, reviewed for exam-

ple in [14, 15], strongly coupled sectors play a useful role in producing dynamically small scales [16–18].

Operators suppressed by the Kaluza-Klein scale are ubiquitous there [19, 20]. (See [21–25] for some more

recent examples in which interacting field theory plays a role in the inflationary mechanism.)
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2 Conformally coupled examples

In this section, we will consider theories which behave like a CFT near the inflationary

Hubble scale. In flat spacetime, CFTs are one of the best studied classes of interacting

field theories. Due to the high degree of symmetry, much is known about the spectrum of

operators and their correlations functions. Because de Sitter space is conformally flat, a

CFT can be coupled to gravity such that correlation functions in de Sitter space preserve the

flat space results up to an overall rescaling. This choice is related to the choice of curvature

couplings involving operators in the CFT (or equivalently to the choice of improvement

terms for the stress tensor that we couple to gravity). In this section, we will assume these

couplings are chosen to preserve conformal invariance.

2.1 Setup

We are interested in the possibility that a CFT is weakly coupled to the inflaton and its

perturbation. As a result, the CFT will influence the correlation functions of the curvature

perturbation we observe at late times. For this purpose, it is not necessary to specify the

underlying dynamics leading to inflation; instead it is most convenient to work directly

in terms of the perturbations π(t, ~x) as in the effective field theory treatment developed

in [29]. Indeed, the effects we wil compute could accompany a wide variety of underlying

inflationary mechanisms.

In the absence of inflation, a CFT is described by a list of local, primary operators

O(j,j̃),∆i

i (x, t) and their correlation functions, where (j, j̃) ∈ (Z2 ,
Z
2 ) is the spin and ∆i is

the dimension of the i-th operator. For simplicity we will focus on a single scalar operator

O(x, t) with dimension ∆. In flat space, the two- and three-point functions of O(x, t) are

fixed up to a constant. Specifically, the correlation functions in Euclidean signature take

the form

〈O(x, t)O(0)〉 =
1

|x2 + t2|∆
, (2.1)

〈O(x1, t1)O(x2, t2)O(x3, t3)〉 =
C

|x2
12 + t212|

∆
2 |x2

23 + t223|
∆
2 |x2

31 + t231|
∆
2

, (2.2)

where xij = xi − xj , tij = ti − tj and C is a constant. The normalization of the two-point

function is a convention.6

The metric of de Sitter space is given by

ds2 = a(τ)2(−dτ2 + dx2) . (2.3)

where a(τ) = −1/(Hτ). This metric is conformally flat in terms of the conformal time τ .

Therefore, we get the CFT correlation functions in de Sitter space from the flat space result

by replacing t→ τ and a Weyl transformation of O(x, t)→ a(τ)−∆O(x, τ). In particular,

6In the limit ∆ = 1, the CFT becomes free. In this case, the convention for the two-point function

differs from the one of a free scalar field a factor of 4π2. This explains why our dimensionless functions

have sometimes large numerical values.
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the two and three point functions are given by (in Euclidean time):

〈O(τ,x)O(τ ′,x′)〉 =
a(iτ)−∆a(iτ ′)−∆

[(τ − τ ′)2 + (x− x′)2]∆
(2.4)

〈O(x1, τ1)O(x2, τ2)O(x3, τ3)〉 =
C a(iτ1)−∆a(iτ2)−∆a(iτ3)−∆

|x2
12 + τ2

12|∆/2|x2
23 + τ2

23|∆/2|x2
31 + τ2

31|∆/2
. (2.5)

In particular, these correlation functions redshift at late times much like those of a weakly

interacting massive field. These correlators are different from those that arise in the weakly

coupled massive fields [9–12]; the position space two point function for massive fields is a

nontrivial hypergeometric function, distinct from the simpler function (2.4) except for the

special case of a conformally coupled free scalar.

We will now couple the inflationary perturbation π to this CFT via the interaction

Hamiltonian

Hint =
1

2
µ2−∆Mpl|Ḣ|1/2(2π̇ − ∂µπ∂µπ)O +

1

4
M2

pl|Ḣ|µ̃−∆(−2π̇ + ∂µπ∂
µπ)2O . (2.6)

Here and elsewhere, ḟ = −Hτ dfdτ is a derivative with respect to FRW time t =

− log(−Hτ)/H. The scalar π ∼ δt is not canonically normalized; it is related to the

canonically normalized7 perturbation πc via π = πc/
√

2M2
plḢ. It is also related to the

conventionally normalized scalar perturbation ζ via ζ = −Hπ (at linear order). We also

note here that at freezeout, the corresponding field amplitudes which will enter into the

calculations below are ζ ∼ ∆ζ ∼ 10−5 and πc ∼ H. In the whole paper we will neglect the

mixing with gravity, as it will give subleading corrections.

In a slow-roll model like (1.5), the parameters µ and µ̃ may be related to φ̇ and some

higher scale, M∗ (e.g. µ = φ̇/M∗ with M2
∗ � φ̇ when ∆ = 1). However, there may be many

other UV completions that also give rise to (2.6) where these scales have different origins.

For this reason, we will work directly with µ and µ̃ throughout, as they are the parameters

relevant to the phenomenology.

When ∆ < 2 the leading contribution from the first term is a relevant deformation and

therefore is perturbative when µ � H. On the other hand, the second term is irrelevant

for all dimensions consistent with unitarity and is therefore perturbative the µ̃ � H. A

priori, the second term may or may not contribute significantly to the bispectrum. We will

therefore consider the two cases separately in section 2.4 and 2.5. For the special case of ∆ =

2, we should replace (µ/H)2−∆ with a dimensionless coupling λ: λ = lim∆→2(µ/H)2−∆,

with log(µ/H) → (λ − 1)/(∆ − 2). This replacement should be unambiguous so we will

not do it explicitly.

In appendix A, we analyze the radiative stability of this setup. One result of that

analysis is that under appropriate conditions the term ∼
∫
m4−∆O generated by π loops

satisfies m � H, meaning that even for relevant operators (∆ < 4) we do not generate a

flow away from the CFT over the scales of interest. This analysis is self-contained up to

7Here we are assuming unit speed of sound, cs ∼ 1. For general sound speed, the canonically normalized

field is given by π = csπc/
√

2M2
plḢ.
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a scale Λ which can be � H, leading to precision tests of higher dimension operators as

anticipated in the introduction. Although It would be interesting to include the possibility

of m ∼ H, there is no general procedure for computing the correlation functions when

conformal invariance is broken and must be performed on a case by case basis.

2.2 Calculating in-in correlators in Euclidean signature

Throughout the paper, we will be interested in calculating in-in correlations functions of

ζ evaluated at equal times. These can be computed perturbatively, using the interaction

picture fields, stating from [35],

〈T̄ exp[i

∫ τ0

−∞(1+iε)
Hint(τ)a(τ)dτ ]

(
ζint(k1, τ0)..ζint(kn, τ0)

)
T exp[−i

∫ τ0

−∞(1−iε)
Hint(τ)a(τ)dτ ]〉 , (2.7)

where we have assumed the Bunch-Davies vacuum and Hint(τ) =
∫
d3x a3(τ)Hint(τ, x).

In order to simplify these calculations, we will follow the strategy suggested in [36]. The

basic idea is that, after rotating the conformal time integrals via τ → ±iτE + τ0, the in-in

correlation becomes a (Euclidean) anti-time-ordered correlation function.

Starting from the iε prescription in (2.7), which projects onto the interacting vacuum,

the time and anti-time ordered exponentials should be rotated to opposite values of the

Euclidean time. After doing this, we obtain

〈T̄ exp[i

∫ τ0

−i∞+τ0

Hint(τ)a(τ)dτ ]
(
ζint(k1, τ0)..ζint(kn, τ0)

)
T exp[−i

∫ τ0

i∞+τ0

Hint(τ)a(τ)dτ ]〉 .

(2.8)

This we recognize as simply the anti-time ordered correlation function in Euclidean time

〈T̄
(
ζint(k1, τ0)..ζint(kn, τ0) exp[i

∫ i∞+τ0

−i∞+τ0

Hint(τ)a(τ)dτ ]
)
〉 (2.9)

= 〈T̄
(
ζint(k1, τ0)..ζint(kn, τ0) exp[−

∫ ∞
−∞

Hint(iτE + τ0)a(iτE + τ0)dτE ]
)
〉 . (2.10)

Provided we use the anti-time ordered, Euclidean Green’s function which we will compute

momentarily, the operator ordering is automatic. This analytic continuation is illustrated

in figure 1.

The anti-time-ordered Green’s functions for any two operators can be written as

〈T̄O1(τ)O2(τ ′)〉 ≡ θ(τ ′E − τE)〈O1(τ)O2(τ ′)〉+ θ(τE − τ ′E)〈O2(τ ′)O1(τ)〉 , (2.11)

where θ(x) is the Heaviside step function. Following the usual quantization of a scalar in de

Sitter space, we write the operator π̂k = πk(τ)â†k + π∗k(τ)âk with [âk, â
†
k′ ] = (2π)3δ(k + k′)

and

πk(τ) =
H

2Mpl|Ḣ|1/2
(1− ikτ)

k3/2
eikτ ; π∗k(τ) =

H

2Mpl|Ḣ|1/2
(1 + ikτ)

k3/2
e−ikτ . (2.12)

– 7 –
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Figure 1. The analytic continuation of the contour in conformal time (τ) from Lorentzian signature

(blue) to Euclidean signature (red). We calculate the correlation functions for operators at τ0 <

0. Our expressions involve branch cuts only when Reτ > 0, which ensures this continuation is

well defined.

(As usual, we conjugate π to obtain π∗ in our original Lorentzian signature calculation,

before deforming our contour to lie along τE .) Notice that external factors of πk(τ0) only

have nonzero contractions with factors of π̇c in Hint, so that we will only need

〈T̄
(
π̇c(iτE+τ0,k1)πc(τ0,k2)

)
〉=−H

3

2k1

(
1+ik1τ0

τE
|τE |

)
(−iτE−τ0)2e−k1|τE |(2π)3δ(k1+k2) .

(2.13)

The appearance of the absolute values in the above expression does not obstruct the analytic

continuation we performed in writing (2.8); the only non-analytic behavior appears at the

location of the operator insertions, τ = τ0, which is fixed in our continuation. Alternatively,

one can choose the domains of integration in (2.7) to be manifestly time-ordered, which

ensures the integrands are analytic in τ .

As we discussed in the previous section, the CFT correlation functions in Euclidean

signature may be be taken to be anti-time ordered. Therefore, when evaluating correlation

functions we can use equations (2.4) and (2.5) with τi = iτi,E + τ0 (we will drop the E in

remainder of this section). Since we are interested in behavior the correlation functions at

late times, we will take τ0 → 0 at the end of all our calculations.

2.3 Corrections to the power spectrum

With the coupling Hint ⊃ 1√
2
µ2−∆π̇cO, we expect a correction to the power spectrum

Pζ ∼ ∆2
ζ/k

3 at order ( µH )4−2∆. The action does not depend explicitly on time and therefore

we expect this correction to be scale invariant on general grounds. In this subsection, we

will confirm this intuition with an explicit calculation.

– 8 –
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The correction to the power spectrum arises from

δPζ = M2
pl|Ḣ|µ4−2∆〈ζk(τ0)ζ−k(τ0)

∫
dτ1dτ2 a(τ0 + iτ1)4a(τ0 + iτ2)4 (2.14)

× π̇k(τ0 + iτ1)π̇−k(τ0 + iτ2)〉 〈O−k(τ0 + iτ1)O−k(τ0 + iτ2)〉′ ,

where the prime on 〈OO〉′ indicates that we drop the (2π)3 times a delta function in

momentum. We will use the identity

1

(x2)∆
=

(2π)2

4∆−1

Γ(2−∆)

Γ(∆)

∫
d4k

(2π)4
eik·x(k2)∆−2 , (2.15)

where x is a 4-vector. The two-point function of O can be written in momentum space as

〈Ok(τ0 + iτ1)O−k(τ0 + iτ2)〉′ = (2.16)

(2π)2

4∆−1

Γ(2−∆)

Γ(∆)
a(τ0 + iτ1)−∆a(τ0 + iτ2)−∆

∫
dω

2π
eiωτ12(k2 + ω2)∆−2 .

Plugging back in (2.14) the two integrals in τ1 and τ2 can be done analytically, and we are

left with the integral in ω to be done numerically. The correction to the power spectrum

is then given by

δPζ ≡ Pζ(k)
( µ
H

)4−2∆
t(∆) (2.17)

where

t(∆) =− π241−∆Γ(2−∆)

Γ(∆)
e−i(2τ̃0+π∆)

∫
dω̃

1

(ω̃2 + 1)2+∆
× (2.18)[

(τ̃0 + i)(ω̃ − i)ei(2τ̃0+π∆)(1− iω̃)∆Γ(∆− 1,−τ̃0(ω̃ − i))

+(τ̃0 − i)(ω̃ + i)(1 + iω̃)∆Γ(∆− 1,−τ̃0(ω̃ + i))
]
×[

(τ̃0 − i)(ω̃ − i)(1− iω̃)∆Γ(∆− 1, τ̃0(ω̃ − i))

+(τ̃0 + i)(ω̃ + i)ei(2τ̃0+π∆)(1 + iω̃)∆Γ(∆− 1, τ̃0(ω̃ + i))
]
,

where Γ[s, x] ≡
∫∞
x ts−1e−tdt is the upper incomplete gamma function, and where we take

τ̃0 = τ0/k → 0 at the end of the calculation. In the limit τ̃0 → 0, t(∆) is independent of

k and therefore the power spectrum remains scale invariant. The function t(∆) is plotted

in figure 2. Notice that its numerical value is quite large, though the correction to the

power spectrum is safely much smaller than one for a large range of values for µ. The

large value is partly related to our conventions in equation (2.1), which differ from free

field conventions by a factor of 4π2 ' 39.5. Further, notice the divergence as ∆→ 2. This

is due to the necessity of a divergent counter-term for the two point function for ∆ ≥ 2. In

the language of the EFT of Inflation, the unitary gauge operator that provides the counter-

term is (δg00)2 [37, 38]. Upon re-insertion of π, this terms contains indeed the quadratic

term π̇2. We see that a speed of sound different from unity is generated. We discuss about

radiative corrections and renormalization in larger detail in appendix A (the specific case

of ∆ ≥ 2 is discussed in appendix A.2.2). We conclude that the corrections to the power

spectrum here are degenerate with renormalization of cs (see e.g. equation (A.24)) and may

cancelled entirely using the appropriate renormalization scheme.
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Figure 2. Numerically computed t(∆).

2.4 Bispectrum from 〈OO〉

Let us begin to explore signatures in the bispectrum. The simplest case to compute is when

the bispectrum in π (and so in ζ) is induce by the power spectrum (two point function) of

O’s. This arises from a combination of two types of vertices from the following interaction

Hamiltonian density

Hint =
1

2
µ2−∆Mpl|Ḣ|1/2(2π̇ − ∂µπ∂µπ)O +

1

4
M2

pl|Ḣ|µ̃−∆(−2π̇ + ∂µπ∂
µπ)2O . (2.19)

Here our operator O couples to π both linearly and quadratically. A bispectrum can

therefore be induced by the power spectrum of O’s. Notice that this possibility arises

already in the case in which only the first operator in (2.19) is present. However, as we

explain in appendix A, this combination cannot give rise to a large fNL. We therefore

concentrate in the combination of the two operators. For simplicity we work just with the

operators π̇ and π̇2, and neglect the (∂iπ)2.

The induced bispectrum takes the following form

B(k1, k2, k3) ≡ 〈ζk1ζk2ζk3〉′ = (M2
pl|Ḣ|)3/2µ2−∆µ̃−∆ (2.20)

× 〈ζk1(τ0)ζk2(τ0)ζk3(τ0)

∫
dτ1dτ2 a(τ0 + iτ1)4a(τ0 + iτ2)4

× π̇−k1(τ0 + iτ1)π̇−k2(τ0 + iτ2)π̇−k3(τ0 + iτ2)〉′

× 〈Ok1(τ0 + iτ1)O−k1(τ0 + iτ2)〉′ + permutations .

A detailed understanding of the shape of this bispectrum will be the focus of remainder of

this subsection. For our analysis it will be useful to work with the equivalent expression

B =
( µ
H

)2−∆
(
µ̃

H

)−∆ ∆3
ζ

8

1

k1k2k3

∫
dτ1 (−iτ1 − τ0)∆−2

(
1 + ik1τ0

τ1

|τ1|

)
e−k1|τ1| (2.21)∫

dτ2 (−iτ2 − τ0)∆

(
1 + ik2τ0

τ2

|τ2|

)
e−k2|τ2|

(
1 + ik3τ0

τ2

|τ2|

)
e−k3|τ2|

× (2π)

4∆−1

Γ(2−∆)

Γ(∆)

∫
dω ei ω τ12 (ω2 + k2

1)∆−2 + permutations ,
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Here we have used (2.15) to express the 〈OO〉′ correlation function in Fourier space (and

have also introduced more compact notation B ≡ B(k1, k2, k3)).

2.4.1 The squeezed limit

Let us start by analyzing the squeezed limit. Understanding the scaling behavior of the

bispectrum in the squeezed limit is instructive, both because it is an important signature

of these models and because it is possible to perform analytically.

Before beginning to analyse the formula (2.21), let us give a bit of intuition on how a

contribution in the squeezed that is larger than in single clock inflation is generated. Let

us concentrate in the squeezed limit k1 � k2 ' k3. The reason why in single clock inflation

there is a vanishingly small squeezed limit is that a long mode is locally unobservable, and so

it cannot physically affect the correlation of two short modes. This determines the squeezed

limit behavior. If we want to have a different squeezed limit, we need therefore to have

locally observable long wavelength fluctuations. These are given by the long wavelength

correlation of the O’s.8 This means that the leading contribution in the squeezed limit

arises when the correlation function of the O’s is evaluated at momentum k1 (i.e. we can

drop the permutations in equation (2.20)). Let us therefore concentrate of these terms. The

ω integral is clearly peaked at ω ∼ 1/τ12. Furthermore, because the integral has support

only for |τ1,2| . (k1,2)−1 respectively, τ2
12 & 1/k2

1. We therefore can schematically write

B ∼ 1

k1k2k3

∫
dτ1 (−iτ1 − τ0)∆−2

(
1 + ik1τ0

τ1

|τ1|

)
e−k1|τ1| (2.22)∫

dτ2 (−iτ2 − τ0)∆

(
1 + ik2τ0

τ2

|τ2|

)
e−k2|τ2|

(
1 + ik3τ0

τ2

|τ2|

)
e−k3|τ2| τ−1

12 τ
2(2−∆)
12 .

Let us consider the case ∆ < 2 first. First consider the τ2 integral. The integrand

grows at least as fast as |τ2|∆, which means that it is dominated by the largest possible

values of τ2: |τ2| ∼ 1/k2. At this point, the integral in τ1 goes as |τ1|∆−1 for |τ1| . 1/k2,

and as |τ1|2−∆ for |τ1| & |τ2|. The τ1 is dominated by the largest possible value of τ1 as

well: τ1 ∼ 1/k1. Putting these scaling together, we obtain the squeezed limit of the three

point function to take the form

B(k1, k2, k3) ∝ 1

k3
1k

3
2

(k1

k2

)∆
for ∆ ≤ 2 . (2.23)

As advertised, this scaling depends directly on the conformal dimension of O.

For the case ∆ > 2, the τ2 integral behaves in the same way, being peaked at |τ2| ∼
1/k2. Instead, the τ1 integral becomes a decreasing function of |τ1| for |τ1| & |τ2|. This

8In the intuitive language described in [37, 38] and in [2], one can interpret the induced three-point

function in the following way. The long-wavelength vacuum fluctuations of O’s generate a long π mode

by the coupling π̇O, and affects the evolution of a short π mode by its coupling π̇2O. In the example

of section 2.5 it will instead be the correlated vacuum fluctuations of three O’s to generate directly a

correlation between three πs though the mixing. The scaling in the squeezed limit can then be intuitively

understood from the time-dependence of O [12].
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means that even the τ1 integral is now peaked at |τ1| ∼ 1/k2. This gives the following

squeezed limit

B(k1, k2, k3) ∝ 1

k3
1k

3
2

(k1

k2

)2
for ∆ > 2 . (2.24)

Notice that for ∆ > 2 the integral has a UV divergence for τ12 → 0. We discuss this more

in detail in appendix A, but here we just notice that the counterterm is π̇3, which has the

same squeezed limit as (2.24) [30].

The distinctive squeezed limit that we find here and also in the next section has

interesting consequences from the observational point of view. As noticed for the first

time in [39] in the case non-Gaussianities of the local kind, when the squeezed limit of

the bispectrum goes as k−3
1 k−3

2 , the bias of dark matter halos receives a contribution that

scales as 1/k2 relative to the standard bias (see [40] for a generalization to the full general

relativistic setting). This is opened up the possibility to measure non-Gaussianities from

the power spectrum of large scale structures. Analysis on the power spectra from current

data in [41] have produced constraints comparable to the ones from CMB, while analysis

of the bispectrum including the scale-dependent bias are expected to improve these limits

even by about an order of magnitude [42]. Models of quasi single field inflation have a

more general squeezed limit, so that the scale dependence of the bias goes as 1/kα with

1/2 ≤ α ≤ 2. Non-Guassianities from our conformally coupled sector are able to generate a

scale dependent bias in the different interval 0 ≤ α = 2−∆ ≤ 1: in a sense, they allow us to

fill the whole range. While a detection of the non-Gaussianity induced by these operators

can be clearly within reach, the actual detection of these smaller values of α in the data

seems to be quite hard; see [43, 44] for first forecasts using the scale dependent bias of the

power spectrum of galaxies. It would be interesting to see if the prospects of detection

will improve upon inclusion in the forecasts of the bispectrum of galaxies, as it was done

for local non-Gaussianities in [42], as well as of techniques that tend to reduce the cosmic

variance [45].

2.4.2 The shape and amplitude of the bispectrum

In the previous subsection, we set up the calculation of the bispectrum and analyzed its

squeezed limit analytically. Here we will compute its shape numerically for various values

of ∆ and discuss the observational implications.

The bispectra that arise here are exactly scale invariant to the level of approximation

we are considering. As a result, the shape function defined in [46] determimes the signal-

to-noise of the bispectrum. It is given by S(x1, x2) ≡ B(x1, x2, 1)x2
1x

2
2, where x1 = k1/k3

and x2 = k2/k3; the squeezed limit corresponds to x1 → 0 and x2 → 1. In the examples

we have discussed here, the shape functions scales as

lim
x1→0,x2→1

S(x1, x2) ∝ x∆−1
1 . (2.25)

As a result, there is very little signal-to-noise in the squeezed limit for CFTs satisfy-

ing the unitarity bound ∆ ≥ 1, apart from the introduction of a scale dependent bias.
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Figure 3. Numerically computed shape function, S(x1, x2) evaluated for two values of ∆

Dimension cos(S∆, Sequilateral) cos(S∆, Sorthogonal) cos(S∆, Slocal)

∆ = 1 0.95 -0.07 0.45

∆ = 5
4 0.05 0.78 0.59

∆ = 3
2 0.93 -0.15 0.45

Table 1. Cosine of shape with standard templates for operators of various dimensions.

For this reason, one should suspect that these models give equilateral or orthogonal type

non-gaussianity.9 Evaluating the integrals in our expression (2.21) for bispectrum is not

straightforward to do analytically in general, so we will compute it numerically. The two

time integrals in (2.21) can be done analytically, and one is left to perform only the ω

integral numerically.10 A plot of the shape for ∆ = 1 and 3/2 is shown in figure 3. It is

difficult to discern by eye the distinction between the squeezed limit in this figure and the

one of single clock inflation. This is an artefact of the plot related to the fact that the

shapes starts to have the correct asymptotic squeezed limit only for x3 . 10−1,−2. Such a

delayed onset of the asymptotic squeezed limit makes it hard to read it in the plot, but we

have verified it numerically.

Next, we will employ the optimal method for comparing shapes developed in [46],

to which we refer the reader for details. The cosines, defined in equation (19) of [46],

between our shape for various values of ∆ and the equilateral [47], orthogonal [30], and

local templates are shown in table 1. We find that the results are consistent with equilateral

or orthogonal shapes for the range of ∆ allowed by the unitarity bound.

The appearance of the orthogonal shape for ∆ ∼ 5
4 is a special feature of the bispectrum

generated by the 〈OO〉 two-point function, something which will not have a parallel in the

next subsection when we consider the bispectrum generated by 〈OOO〉.
The value of fNL can be defined in the standard way:

fNL∆ζ =
5

18

〈ζkζkζk〉′

∆3
ζ

. (2.26)

9In section 3 we will exhibit unitary theories with more general scaling, including ones which simply

generate local fNL to good approximation, with support in the squeezed limit.
10We do not give here the result after the two time integrations, as it is just better to let your favorite

Mathematica-like code do them for you.
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Figure 4. fNL as a function of ∆.

From the interaction terms leading to our general expression (2.21), it is easy to read off that

fNL scales as (µ/H)2−∆ (µ̃/H)−∆. We plot the value of fNL∆ζ/
(

(µ/H)2−∆ (µ̃/H)−∆
)

as

a function of ∆ in figure 4.

We see the expected divergence as ∆ → 2, discussed above in the in the previous

subsection and appendix A. Note that the vanishing value of fNL around ∆ ' 5/4 does

not indicate that the non-gaussianity vanishes, just that it goes to zero in the equilateral

limit (as shown in figure 5). We see this explicitly from full shape for ∆ ' 5/4, which is

similar to the orthogonal template.

Finally, let us briefly comment on the size of fNL in a simple example like (1.5). If

both µ and µ̃ were generated at a common scale, M∗, it is natural to expect µ2−∆ =

φ̇/M∆
∗ and µ̃−∆ = φ̇2/M4+∆

∗ . However, for ∆ < 2, the constraint µ < H implies that

(µ/H)2−∆ (µ̃/H)−∆ . ∆
4
∆
−1

ζ and therefore the bispectrum generated by 〈OO〉 satisfies

fNL . 1. Achieving large fNL is still possible but requires multiple scales (e.g. M∗ and M̃∗)

or a different UV completions altogether.

2.5 Bispectrum from 〈OOO〉

In this subsection, we will consider the bispectrum of π that is generated by Hint =
1√
2
µ2−∆π̇cO and the three point function of O. The leading contribution to the bispectrum

is given by

B = −M3
pl|Ḣ|3/2µ6−3∆ (2.27)

× 〈ζk1(τ0)ζk2(τ0)ζk3(τ0)

∫
dτ1dτ2dτ3 a(τ0+iτ1)4a(τ0+iτ2)4a(τ0+iτ3)4

× π̇−k1(τ0+iτ1)π̇−k2(τ0+iτ2)π̇−k3(τ0+iτ3)〉′ 〈Ok1(τ0+iτ1)Ok2(τ0+iτ2)Ok3(τ0+iτ3)〉′,
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Figure 5. The shape function for ∆ = 5/4.

where, again, B ≡ B(k1, k2, k3) ≡ 〈ζk1ζk2ζk3〉′. As in the previous subsection, we will start

by considering the squeezed limit before discussing the full shape.

2.5.1 The squeezed limit

The calculation of the bispectrum simplifies in the squeezed limit, k1 � k2, k3, if this

limit also corresponds in the OPE limit of the 3 point function of O in position space:

|x2−x3| � |x1−x2| ∼ |x1−x3| and similarly |τ2− τ3| � |τ1− τ2| ∼ |τ1− τ3|. To estimate

when these limits coincide, let us write

B = −
( µ
H

)6−3∆ ∆3
ζ

8

1

k1k2k3

(
3∏
i=1

∫
dτi (−iτi − τ0)∆−2

(
1 + ikiτ0

τi
|τi|

)
e−ki|τi|

)
(2.28)

×
∫
d3x13d

3x23
Ceik1·x13+ik2·x23

(|x13 − x23|2 + τ2
12)

∆
2 (x2

23 + τ2
23)

∆
2 (x2

13 + τ2
13)

∆
2

.

The integrals over x13 and x23 will receive most of their support from x23 . k−1
2 and

x13 . k−1
1 due to the oscillations at larger values. Similarly, the integrals over τi are

exponentially suppressed unless |τi| . k−1
i . In the squeezed limit, k1 � k2, k3. As a result,

the integral receives support from τ1 � τ2, τ3 and x1 � x2, x3. If these configurations

dominate the integral, then we can use the OPE limit of the three point function to

approximate the squeezed limit.

We want to determine if the integral receives its dominant contribution in the OPE

limit. To do so, we may assume that x2, x3, τ2, τ3 ∼ k−1
2 ∼ k−1

3 � k−1
1 as larger values

are suppressed. Now we will integrate over x13 at fixed τ1, assuming x12 ∼ x13. This

assumption is reliable is the integral is dominated by x1 � x2, x3. For x13 � τ13 the

integral scales as x3
13 and therefore it is dominated by the largest values of x13. For

x13 � τ13 the integral scales as x3−2∆
13 . For ∆ < 3

2 , the largest values of x13 still dominate

up to the cutoff, yielding x13 ∼ k−1
1 . Having performed the x13 integral, we now perform
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the integral over τ1 to find τ1 ∼ k−1
1 . As a result, when ∆ < 3

2 the integrals are dominated

where the OPE limit of the CFT is applicable.

For ∆ > 3
2 , the integral over x13 is peaked at x13 ∼ τ13. Now we perform the integral

τ1 with x13 ∼ τ13, which scales as
∫
dτ1|τ1|1−∆ ∼ τ2−∆

1 . For ∆ < 2, this integral is peaked

at τ1 ∼ k−1
1 where the integral is cutoff by the exponential. In this case, the OPE limit is

again applicable. However, for ∆ > 2, the integral is peaked around τ1 ∼ k−1
2 where the

OPE limit does not apply.11 Schematically, these results imply

B ∝ 1

k3
1k

3
2

(k1

k2

)∆
for ∆ ≤ 2 (2.29)

∝ 1

k1k5
2

=
1

k3
1k

3
2

(k1

k2

)2
for ∆ ≥ 2 . (2.30)

Now let us compute the ∆ < 2 case more carefully for the squeezed limit. We have es-

tablished that the OPE limit of the three-point function is where the integral is dominated,

so we can take

B = −
( µ
H

)6−3∆ ∆3
ζ

8

1

k1k2k3

(
3∏
i=1

∫
dτi(−iτi − τ0)∆−2

(
1 + ikiτ0

τi
|τi|

)
e−ki|τi|

)
(2.31)

×
∫
d3x13d

3x23
Ceik1·x13+ik2·x23

(x2
13 + τ2

13)∆(x2
23 + τ2

23)
∆
2

= −
( µ
H

)6−3∆ ∆3
ζ

8

1

k1k2k3

(
3∏
i=1

∫
dτi(−iτi − τ0)∆−2

(
1 + ikiτ0

τi
|τi|

)
e−ki|τi|

)
(2.32)

× (2π)4 Γ(2−∆)

22∆−2Γ(∆)

Γ(2− ∆
2 )

2∆−2Γ(∆
2 )

∫
dω1dω2

(2π)2
ei(ω1τ13+ω2τ23)(ω2

1 + k2
1)∆−2(ω2

2 + k2
2)

∆
2
−2 .

We can evaluate the τi integrals using

J (k, ω, τ0) ≡
∫ ∞
−∞

dτ(−iτ − τ0)∆−2

(
1 + ikτ0

τi
|τi|

)
e−k|τ |+iωτ (2.33)

=
ie−(ikτ0+τ0ω+ iπ

2
∆)

(k2 + ω2)∆

[
e2ikτ0+iπ∆(k + iω)(k − iω)∆(i+ kτ0)Γ[∆− 1, iτ0(k + iω)]

−(k − iω)(k + iω)∆(−i+ kτ0)Γ[∆− 1,−iτ0(k − iω)]
]
. (2.34)

The squeezed bispectrum is then given by

B = −
( µ
H

)6−3∆ ∆3
ζ

8

Cκ

k1k2k3

∫
dω1dω2

(2π)2
(ω2

1 + k2
1)∆−2(ω2

2 + k2
3)

∆
2
−2 (2.35)

×J (k1, ω1, τ0)J (k2, ω2, τ0)J (k3,−ω1 − ω2, τ0) ,

where

κ = (2π)4 Γ(2−∆)

22∆−2Γ(∆)

Γ(2− ∆
2 )

2∆−2Γ(∆
2 )

(2.36)

11In a correlation function in a CFT involving more than two operators inserted at various points, the

OPE between two operators inserted at two points is convergent as long as there is ball that contains those

two points but no other one.
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Figure 6. Numerically computed f(∆).

In the squeezed limit, the integral is dominated by ω2 ∼ k2 and ω1 ∼ k1 so we may set

ω1 +ω2 → ω2 and k3 ∼ k2. The remaining k1,2 is dependence determined in the τ0 → 0 by

rescaling ωi by ki, such that the integrals are k-independent. The squeezed limit is then

determined by

B =
( µ
H

)6−3∆
∆3
ζ

α

k3−∆
1 k3+∆

2

f(∆) (2.37)

where the function f(∆) is shown in figure 6 in the blue un-dotted line. In the last passage,

we have parametrized C = 5α(∆− 1). This parametrization originates from the fact that

consistency of the CFT under crossing symmetry,12 requires the following numerically-

found upper bound C ≤ 5α (∆ − 1), where α is bounded above by a number numerically

close to one [49, 50]. This result is relatively intuitive, as ∆ = 1 represents a free theory,

and the bound just quoted implies that the C is continuous in the limit ∆→ 1.

The rapid growth of f(∆) near ∆ = 2 is not physical, but represents the increase in the

error we are making by using only the leading term in the OPE. The breakdown in the OPE

at ∆ = 2 appears as a logarithmic divergence in f(∆) at ∆ = 2. This divergence is removed

if we compute the squeezed limit using the generally valid formula that we explain in the

next section. We plot this function in figure 6 in the red dotted line, where we see that the

limit ∆→ 2 is smooth and the contribution remains finite. We expect that the difference

between the analytic and the numerical functions for ∆→ 1 is a numerical uncertainty.

2.5.2 The shape and amplitude of the bispectrum

Now let us consider the shape of the bispectrum as a function of ∆. As we did in sec-

tion 2.4.2, we will numerically plot the shape function, S(x1, x2), and compare it to the

standard templates using the cosines defined in equation (19) of [46]. We will also de-

termine the value of fNL, finding it to be naturally substantial while at the same time

12This is sometimes referred to as ‘bootstrap’ or as ‘OPE associativity constraint’.
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Figure 7. Numerically computed shape function, S(x1, x2) evaluated for ∆ = 2 (top) and ∆ = 1

(bottom).

Dimension cos(S∆, Sequilateral) cos(S∆, Sorthogonal) cos(S∆, Slocal)

∆ = 1 0.94 -0.11 0.47

∆ = 2 0.90 -0.25 0.56

Table 2. Cosine of shape with standard templates for operators of various dimensions.

bounded in an interesting way by limits on the size C of CFT three-point functions found

using crossing symmetry.

Computing the bispectrum analytically is not straightforward, but it can be computed

numerically. To speed up the integration, one can perform some of the integrations ana-

lytically, as we discussion in appendix B. Aside from the scaling in the squeezed limit, the

shapes do not change dramatically as a function of ∆. A plot of the shape for ∆ = 1 and

2 is shown in figure 7.

The cosine, defined in [46], between our shape for ∆ = 2 and the equilateral [47],

orthogonal [30], and local templates are shown in table 2. The cosine varies little as a

function of ∆ for all values consistent with the unitarity bound, ∆ ≥ 1. As a result, we

find that our bispectrum is largely equilateral in shape.

The amplitude of the bispectrum, fNL, clearly scales as C (µ/H)6−3∆ since it is propor-

tional to the CFT three-point function and three insertions of the mixing interaction. As

discussed above, C is bounded as C ≤ 5α (∆−1), where the coefficient α is bounded above

by a number numerically close to one [49, 50]. We plot the value of fNL∆ζ/(µ/H)6−3∆/α

as a function of ∆ in figure 8. Since α . 1, the curve can be thought as an upper bound

to the value of fNL. We see that for ∆ → 1, the fNL induced by 〈OOO〉 goes to zero.

However, C can be of order one already as soon as ∆ & 1.2, so large values of fNL easily

fit within the parameter range of consistent theories.

In particular, for C of order 1 the amplitude of the (nearly equilateral) non-Gaussianity

gives us a sensitive probe of higher dimension operators such as (1.5) suppressed by a high

scale M∗ which can be much larger than H. Similar remarks apply for all the cases we

analyze in this paper.
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Figure 8. fNL as a function of ∆.

2.6 The collapsed limit of the tri-spectrum

Another important signal of these models is the collapsed limit of the tri-spectrum. The

behavior in this limit is often parameterized for local-type non-gaussanity in terms of τNL

which is defined as

τNL =
1

4
lim

|k1+k2|→0

〈ζk1ζk2ζk3ζk4〉′

Pζ(k1)Pζ(k3)Pζ(|k1 + k2|)
. (2.38)

If τNL > (6
5fNL)2 (the 6

5 is a result of the conventions of fNL and τNL), then more than one

field must contribute to ζ [51–56]. Such models also have important consequences in large

scale structure, where they lead to scale-dependent stochastic bias [57, 58]. These result

generalize straightforwardly to tri-spectra that scale as any inverse power of |k1 + k2| in

the limit |k1 + k2| → 0 (see e.g. [55]). Our models include such generalizations so we will

define τNL to be

τNL =
1

4
lim

|k1+k2|→0

(k1k3)∆i

|k1 + k2|2∆i

〈ζk1ζk2ζk3ζk4〉′

Pζ(k1)Pζ(k3)Pζ(|k1 + k2|)
, (2.39)

where ∆i is a parameter that is determined from the leading contribution to this limit.

In section 2.6.2, we will find that ∆i is the lowest dimension appearing in the OPE

of O(x)O(0).

Whenever extra degrees of freedom contribute significantly to the squeezed limit of the

bispectrum without contributing significantly to the power spectrum, a large contribution

to τNL is expected [55]. Specifically, under such circumstances, one can expect to find

τNL � (6
5fNL)2, where fNL here is the one induced by 〈OOO〉. The basic intuition is

that generating fNL requires three π̇O mixing interactions, whereas τNL gets a leading

contribution from four mixing interactions combined with the CFT four-point function.

As a result, the tri-spectrum is enhanced by two inverse powers of the coupling controlling

the mixing. In this section, we will confirm this intuition for our CFT examples.

We will discuss two concrete possibilities for a large tri-spectrum. First, we will con-

sider the tri-spectrum induced by the nonlinear coupling of O to π̇2 that we discussed in
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section 2.4. The full tri-spectrum is computable in this case, but we will focus on the

collapsed limit. Second, we will consider the tri-spectrum induced by the linear mixing

interaction used in section 2.5. Here the tri-spectrum is determined by 〈OOOO〉 and is

not determined by conformal invariance alone. The collapsed limit can be understood in

terms of the OPE of O.

2.6.1 The 〈OO〉-induced tri-spectrum

From the discussion in appendix A, it is possible that the only interaction term is H =

π̇2
cO/2µ̃∆. Under these circumstances, the bispectrum would vanish, but a large tri-

spectrum could be generated as follows. We will define Y ≡ 〈ζk1ζk2ζk3ζk4〉′, and we get

Y = µ̃−2∆M4
pl|Ḣ|2

∫
dτ1

H3(−iτ1 − τ0)3

∫
dτ2

H3(−iτ2 − τ0)3
(2.40)

× 〈ζk1(τ0)π′−k1
(τ1)〉′〈ζk2(τ0)π′−k2

(τ1)〉′〈ζk3(τ0)π′−k3
(τ2)〉′〈ζk4(τ0)π′−k4

(τ2)〉′

× 〈Ok1+k2(τ1)O−k1−k2(τ2)〉′

where again 〈. . . 〉′ indicates dropping the momentum conserving delta function. It is

straightforward to plug in the two point functions of π and O to find

Y=

(
µ̃

H

)−2∆ ∆4
ζ

16

1

k1k2k3k4

∫
dτ1 (−iτ1 − τ0)∆

(
1+ik1τ0

τ1

|τ1|

)(
1+ik2τ0

τ1

|τ1|

)
e−(k1+k2)|τ1|∫

dτ2 (−iτ2 − τ0)∆

(
1 + ik3τ0

τ2

|τ2|

) (
1 + ik4τ0

τ2

|τ2|

)
e−(k3+k4)|τ2| (2.41)

× (2π)

4∆−1

Γ(2−∆)

Γ(∆)

∫
dω ei ω τ12 (ω2 + |k1 + k2|2)∆−2 + permutations .

From here, it is straightforward to compute the full tri-spectrum numerically but we will

not show the result here.

In order to gain more insight into the form of the tri-spectrum, we will consider the

collapsed limit, |k1 + k2| → 0, analytically. Because the exponential suppression, τ1 < k−1
1

and τ2 < k−1
3 . Using |k1 + k2| � k1, k3, we see that for ∆ < 3

2 the ω integral is dominated

by ω ∼ |k1 + k2|. Therefore, we can ignore the factor of eiωτ12 and compute all three

integrals analytically. As a result, we find

Y →
(
µ̃

H

)−2∆

∆4
ζ

π3/2

4∆
∆(1 + cos(π∆))Γ(3/2−∆)Γ(1 + ∆)

|k1 + k2|2∆−3

k3+∆
1 k3+∆

3

, (2.42)

We see that tri-spectrum scales as k−3−∆
1 k−3−∆

3 |k1 +k2|2∆−3 in the limit |k1 +k2| → 0. For

∆ > 3/2, the tri-spectrum scales as k6−∆
1 k6−∆

3 (Max[k3, k1])2∆−3. Using ∆i = ∆ in (2.39),

we see that τNL ∝
(
µ̃
H

)−2∆
∆−2
ζ and is potentially in the measurable range. Furthermore,

because the bispectrum vanishes at tree level and radiative corrections can be small, as

discussed in appendix A, this can be the leading source of non-gaussanity.
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2.6.2 The 〈OOOO〉-induced tri-spectrum

Now let us repeat the calculation of the tri-spectrum (again defining Y ≡ 〈ζk1ζk2ζk3ζk4〉′)
using only the interaction Hint = 1√

2
µ2−∆π̇cO. In this case, the tri-spectrum gets its

leading contribution from 〈OOOO〉 and can be written in general as

Y=µ8−4∆M4
pl|Ḣ|2

( 4∏
i=1

∫
dτi

H3(−iτi−τ0)3
〈ζki(τ0)π′−ki(τi)〉

′
)
〈Ok1(τ1)Ok2(τ2)Ok3(τ3)Ok4(τ4)〉′

(2.43)

where again 〈. . . 〉′ indicates dropping the momentum conserving delta function. Unlike the

2- and 3-point functions, the 4-point function in a CFT is not determined by symmetry in

general. However, we can say something general in the collapsed limit, where k1 + k2 → 0.

As with the squeezed limit of the bispectrum, for some range of ∆, we expect this will

correspond to the OPE limit of the 4 point function, where x1 → x2 and x3 → x4.

We will take the OPE limit first, using

O(x)O(0) ∼
∑
i

CiOi
x2∆−∆i

x→ 0, (2.44)

and then check the circumstances under which the corrections will be small. We can write

the 4-point function, in this limit as

〈Ok1(τ1)Ok2(τ2)Ok3(τ3)Ok4(τ4)〉′∼
∑
∆i

∫
d3x12d

3x24d
3x34e

ik1·x12+i(k1+k2)·x24+ik3·x34

×
|Ci|2H4∆

∏4
i=1(iτi + τ0)∆

(x2
12 + τ2

12)∆−∆i
2 (x2

34 + τ2
34)∆−∆i

2 (x2
24 + τ2

24)∆i

,

(2.45)

where the sum runs over scalar operators of dimension ∆i. We are ignoring operators with

spin because the unitarity bounds imply that their dimensions will be ≥ 3, and so, as we

will see, they contribute sub-dominantly in the collapsed limit. To make the collapsed limit

clear, we made the change of variables x14 → x12 + x24. In this limit, the tri-spectrum

takes the form

Y ∼
( µ
H

)8−4∆ ∆4
ζ

16

1

k1k2k3k4

∫
dτ1dτ2dτ3dτ4

(
4∏
i=1

(−iτi − τ0)∆−2

(
1 + ikτ0

τi
|τi|

)
e−ki|τi|

)

×
∑
∆i

∫
d3x12d

3x24d
3x34|Ci|2eik1·x12+i(k1+k2)·x24+ik3·x34

(x2
12 + τ2

12)∆−∆i
2 (x2

34 + τ2
34)∆−∆i

2 (x2
24 + τ2

24)∆i

. (2.46)

Because ki � |k1 + k2|, it is easy to see that |τi| . k−1
i . Therefore, τ24 ∼ k−1

2,4 and is

unimportant for the collapsed limit (notice the difference from the squeezed limit). There-

fore, the question of whether the OPE limit is applicable is determined entirely by the

x24 integral. For x24 > τ24 this integral scales as x3−2∆i
24 . When 2∆i > 3, this integral

is dominated by the smallest values, namely x24 ∼ τ24 and the OPE limit is not a good

approximation. To use the OPE to compute the collapsed limit, we must have a scalar

operator of dimension ∆i ≤ 3
2 .
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Following the same procedure as before, we can use equation (2.15) to rewrite this as

Y ∼
( µ
H

)8−4∆ ∆4
ζ

16

1

k1k2k3k4

∫
dτ1dτ2dτ3dτ4

(
4∏
i=1

(−iτi − τ0)∆−2

(
1 + ikiτ0

τi
|τi|

)
e−ki|τi|

)

×
∑
∆i

|Ci|2
( (2π)2Γ(2 + ∆i

2 −∆)

22∆−∆i−2Γ(∆− ∆i
2 )

)2
(2π)2 Γ(2−∆i)

22∆i−2Γ(∆i)

∫
dω1dω2dω3

(2π)3

×eiω1τ12+iω2τ24+iω3τ34(k2
1 + ω2

1)∆−∆i
2
−2(k2

3 + ω2
3)∆−∆i

2
−2(|k1 + k2|2 + ω2

2)∆i−2 .

We notice that the above time integrals simply give factors of J (k, ω, τ0) that we defined

in (2.33). Therefore, we can write

Y ∼
( µ
H

)8−4∆ ∆4
ζ

k1k2k3k4

∑
i

|Ci|2κ(∆,∆i)

∫
dω1dω2dω3

(2π)3
(k2

1 + ω2
1)∆−∆i

2
−2(k2

3 + ω2
3)∆−∆i

2
−2

× (|k1 + k2|2 + ω2
2)∆i−2J (k1, ω1, τ0)J (k2, ω2 − ω1, τ0)J (k3, ω3, τ0)J (k4,−ω2 − ω3, τ0)

(2.47)

where we have defined

κ(∆,∆i) =
1

16

(
(2π)2Γ(2 + ∆i

2 −∆)

22∆−∆i−2Γ(∆− ∆i
2 )

)2

(2π)2 Γ(2−∆i)

22∆i−2Γ(∆i)
. (2.48)

In the collapsed limit, we have k1 ∼ k2 and k3 ∼ k4. Furthermore, we see that the integral

over ω2 is dominated by regions where ω2 � ω1, ω3 (when ∆i <
3
2). The integral over ω2

is straightforward and is given by∫
dω2

(2π)
(|k1 + k2|2 + ω2

2)∆i−2 =
1

|k1 + k2|3−2∆i

Γ(3
2 −∆i)

2
√
πΓ(2−∆i)

. (2.49)

The other integrals factorize into two copies of∫
dω

(2π)
(k2 + ω2)∆−∆i

2
−2J (k, ω, τ0)J (k,−ω, τ0) ≡ 4π

k1+∆i
g̃(∆,∆i) . (2.50)

Here we have dropped the k-dependence of g̃(∆,∆i), as it vanishes in the τ0 → 0 limit.

Therefore, the tri-spectrum in the collapsed limit is given by

lim
|k1+k2|→0

〈ζk1ζk2ζk3ζk4〉′ =
( µ
H

)8−4∆
∆4
ζ

∑
∆i≤ 3

2

(4π)2|Ci|2

(k1k3)3+∆i |k1 + k2|3−2∆i
g(∆,∆i) . (2.51)

where g(∆,∆i) =
Γ( 3

2
−∆i)

2
√
πΓ(2−∆i)

κ(∆,∆i)g̃(∆,∆i)
2 . The function g(∆,∆) is plotted in fig-

ure 9. For a given value of ∆, the dependence of g(∆,∆i) on the value of ∆i is relatively

weak until we reach the regime ∆i → 3/2 where the OPE approximation (and hence this

calculation) breaks down. This origin of this breakdown is identical to the one we found in

section 2.5.1 when calculating the squeezed limit of the bispectrum. Notice that the col-

lapsed limit is dominated by the contribution of the O’s with the smallest ∆i that enters in
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Figure 9. Numerically computed g(∆,∆).

the OPE. So, whenever the OPE includes operators with ∆i < 3/2, we obtain the leading

collapsed limit. This additionally justifies our procedure to neglect operators with spin in

the OPE.

Finally, let us comment on the observability of the trispectrum. The signal-to-noise

in the trispectrum scales as 〈ζ4〉/〈ζ2〉2 and therefore the ratio of signal-to-noise in the

trispectrum relative to the 〈OOO〉-bispectrum is given by

(S/N)4

(S/N)3
∼ |Ci|

2

C

( µ
H

)2−∆
. (2.52)

For the trispectrum to give the dominant source of non-gaussianity, one requires that

|Ci|2 � C. This arises naturally in CFTs which contain an approximate Z2 symmetry

under which O → −O and Oi → Oi. When this symmetry is exact, C = 0 and (S/N)3

vanishes (ignoring the 〈OO〉-bispectrum for the moment). This is compatible with the

bounds that come from OPE associativity [50], which roughly bound Ci to be smaller than

order one unless ∆ or ∆′ are within order 10% of 1.13

3 Time dependent examples

In the conformally coupled CFT of the previous section, the unitarity bound ∆ > 1 plays an

important role, suppressing the squeezed limit of the bispectrum in favor of approximately

equilateral/orthogonal non-Gaussianity. One might naively conclude that this bound gen-

erally restricts the phenomenology arising from a CFT coupled to inflation. However, in

the presence of time dependent backgrounds, infrared physics and unitarity bounds are

modified [13]. Since the inflationary background is time dependent, it is important to con-

sider this more general case. In this section, we will see that, because of this scaling, the

squeezed limit may take the form (2.29) but with a larger range of powers ∆, including

13A very approximate fitting formula extrapolated from the figure 12 of [50] is Ci . (5∆′/2−3/2)(∆−1),

valid for ∆ < 2 and ∆′ < 2.
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∆ ≈ 0 which gives local non-Gaussianity. To establish this it suffices to exhibit a controlled

class of theories exhibiting this behavior; we will leave a more general analysis to future

work. (Non-conformal coupling of the CFT to the de Sitter curvature is a natural case for

further study, for example.)

In [13] the relevant effects of time-dependent couplings were analyzed in detail for a

particular class of calculable examples, the renormalization group flows generated by adding

a product of two single trace scalar operators O to the Lagrangian of a large-N CFT. In

the static version of this theory, these double trace flows connect a CFT in which an

operator O+ has scaling dimension ∆+ to one in which this operator has been replaced by

an operator O− with scaling dimension ∆− = 4−∆+. For the range of operator dimensions

1 < ∆+ < 2, the double-trace deformation by
∫
O2

+ is relevant, and the dimension of the

scalar operator flows from ∆+ in the ultraviolet to ∆− in the infrared. For higher ∆+, the

deformation is irrelevant and the dimension of the scalar operator becomes ∆− in the UV;

for ∆+ > 3 one has ∆− < 1 and this introduces unitarity violation at high energies. These

statements are straightforward to derive in the large-N limit, as we will explain shortly in

adapting the calculation to our application.

As in [13], we will be concerned with the generalization to the case where the dou-

ble trace coupling is time dependent: in particular, let us deform the CFT action by a

power-law coupling of the form
∫
λt2κO2

+ where t = H−1 log(Hτ). For sufficiently large κ,

specifically κ > ∆+ − 2, this renders the deformation relevant, and the theory flows to a

new non-conformal theory in the infrared. In the leading large-N limit, one can calculate

the two point function of the operator to which O flows in this new theory, finding a result

proportional to 1/distance∆− times powers of the time-dependent coupling. In the next

subsection, we will recover this result in our case in the process of generalizing the analysis

to the inflationary background geometry. This will give a similar result for the two point

function of the scalar operator, but now with an additional factor of (ττ ′)∆− reflecting the

de Sitter redshifting. Because of that, up to logs we will recover the behavior (2.29) but

with ∆ replaced by ∆−. This realizes a larger range of powers of kL/kS , including the local

shape for ∆− = 0.

Power-law time dependent couplings may be natural in inflation given couplings of

the inflaton to other fields. In say m2ϕ2 inflation, the inflaton rolls away from its ini-

tial value like φ − φ0 ∝ t, so a linear coupling to it would naturally produce a coupling

with κ = 1 and so on. For µ3ϕ inflation we have ϕ ∝ t2/3 and one could similarly get

an order-1 value of κ if powers of ϕ couple in. That said, we will not engage in serious

model-building in this work; the following scenario is just meant to establish that inter-

acting fields can introduce a wide range of scalings in the squeezed limit, including the

local shape.

3.1 Modular example

In this section, we will exhibit a concrete example which is essentially a hybrid of [9–12]

and [13]. The model includes a massive weakly interacting scalar field η which mixes linearly

both with an operator O of a large-N CFT of dimension ∆+ and with the time-derivative
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of the scalar perturbation πc. Specifically, we start from the action

S =

∫
dτd~x

H4τ4

{
1

2

(
H2τ2(∂η)2 −m2η2

)
+ g0 (H−1 log(Hτ))κηO

}
+ S

(+)
CFT (3.1)

+

∫
dτd~x

H4τ4

{
Hτρπ′cη + µη3

}
+ Sinfl (3.2)

with πc the canonically normalized scalar perturbation. The time-dependent coupling

g(τ) = g0(H−1 log(Hτ))κ = g0t
κ here could come from an interaction term such as

∫
(ϕ−

ϕ0)nηO between the inflaton ϕ and the CFT sector. As in [12] the mixing term
∫
ρπ̇cη

could come from a coupling
∫

(∂ϕ)2η with one factor of ∂ϕ evaluated on the background and

the other on the perturbation. Finally, we have included an interaction term
∫
µη3 which

will generate a simple contribution to the non-Gaussianity. (The CFT three-point function

is down by a factor of 1/N , so we will neglect it here but it would also be straightforward

to include.)

The top line generates a time-dependent double trace flow in the strongly-coupled

sector, relevant for κ > ∆+ − 2 as in [13]. In the regime where the mass term for η

dominates over its kinetic term, integrating out η produces an operator relation

η =
g(τ)

m2
O (3.3)

implying a double-trace deformation ∼
∫

(g2/2m2)O2.

The two-point function for η (equivalently O) is given in the large-N limit, and to

zeroth order in the cubic interaction µ/H, by summing up the diagrams generated by

linear mixing between η and O. In flat spacetime — applicable in our case for scales well

within the horizon — this gives

〈η(x)η(x′)〉 =
−1

cνc−νg2
0t
κt′κ|x− x′|2∆−

(3.4)

where ν = ∆+ − 2 = 2−∆− and

cν = 2−2νπ2 Γ(−ν)

Γ(2 + ν)
. (3.5)

It was shown in [13] how unitarity works out in the infrared in this theory. Using the

technique in [59], one finds that unitarity holds — it requires the positivity of the product

of the −1 in the numerator of (3.4) and a factor (∆− − 1). The consistency of the theory

at long distances is not a surprise; it is to be expected in a theory like this which is

well-defined at shorter distance scales. In principle, even ∆− < 0 is allowed by unitarity;

however, the associated de Sitter correlation functions will grown exponentially in time.

This is analogous to QSFI with m2 < 0 and may signal an instability. For this reason we

will focus on ∆− ≥ 0 but ∆− < 0 may be an interesting direction for future studies.

We will now derive the corresponding result in the inflationary background of interest

here, which will lead to the two-point function

〈η(τ, ~x)η(τ ′, ~x′)〉 =
−H2∆−+2κτ∆−τ ′∆−

cνc−νg2
0(logHτ)κ(logHτ ′)κ [(τ − τ ′)2 + (~x− ~x′)2]∆−

. (3.6)
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This is obtained as follows. First, we compute the correction ∼
∫
x

∫
x′ ηx〈OxOx′〉ηx′ to the

effective action in Seff for η which arises through its mixing with O, giving

Seff =S0+

∫
dτd~x

H4τ4

∫
dτ ′d~x′

H4τ ′4
η(τ, ~x)g2

0(H−1 logHτ)κ(Hτ)∆+(H−1 logHτ ′)κ(Hτ ′)∆+η(τ ′, ~x′)

[(τ−τ ′)2 + (~x−~x′)2]∆+

(3.7)

where S0 is the original effective action for η without the coupling to O. The trick is to note

that when the double-trace term is relevant (i.e. when κ > ∆+−2), the second term in Seff

(the one generated by 〈OO〉) will dominate in the infrared two-point function; in [13] this

was explicitly demonstrated by bounding the corrections to this approximation. Therefore,

to compute the two point function we need to just invert that term. To do that, we can

first absorb the τ and τ ′ dependences into a new variable

η̃ = g0(H−1 logHτ)κ(Hτ)∆+−4η = g0(H−1 logHτ)κ(Hτ)−∆−η . (3.8)

The second term is then simply∫
dτd~xdτ ′d~x′

η̃(τ, ~x)η̃(τ ′, ~x′)

[(τ − τ ′)2 + (~x− ~x′)2]∆+
(3.9)

and we can invert it to obtain the two point function for η̃ exactly as in Poincare invariant

Minkowski space CFT. (Specifically, one can go to momentum space where 〈OO〉 is ∼
k2∆+−4 and invert this to get k4−2∆+ = k2∆−−4 times appropriate constant factors [13].)

This gives the usual result for double trace deformations — a flow between ∆+ and ∆−:

〈η̃η̃〉 =
−1

cνc−ν [(τ − τ ′)2 + (~x− ~x′)2]∆−
. (3.10)

Finally, putting back the τ dependence from (3.8), we obtain the claimed result (3.6).

The correction we generated to the power spectrum in this theory behaves paremetri-

cally as

∆Pζ ∼ Pζ
( ρ
H

)2 H2∆−+2κ−2

ĝ2
0

1

logκ(H/k) logκ(H/k)
. (3.11)

As we will see, the non-Gaussianity is determined by similar factors, but is enhanced by

a factor of ∆−1
ζ ∼ 105. We will focus on the case where ∆Pζ < Pζ , for which the leading

effect of the coupling to our strongly coupled sector is in the non-Gaussianity.

As already mentioned, we will take the
∫
µη3 term as the leading source of the non-

Gaussianity. This leads to a calculation very similar to that arising in the case of additional

weakly coupled fields [9–12], and we will compare the two as we go. Schematically the

leading contribution to the bispectrum is

B(k1, k2, k3) ∼
∫

dτ

H4τ4
µ

3∏
j=1

{∫
dτj
H3τ3

j

ρGη(kj ; τj , τ)∂τjGπcζ(kj ; τj , 0)

}
. (3.12)

Here Gπcζ = GζMP

√
2|Ḣ|/H = GζH/∆ζ is proportional to the two-point Green’s function

of the scalar perturbation ζ, and

∂τjGζ(kj ; τj , 0) = ∂τj

{
∆2
ζ

k3
j

(1 + kj |τj |)e−kj |τj |
}

= −∆2
ζ

τj
kj
e−kj |τj | (3.13)
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(working in Euclidean signature). In (3.12), Gη is the two-point Green’s function of η,

given by Fourier transforming (3.6):

Gη(kj ; τ, τj) =
25/2π3/2

cνc−ν

H2∆−+2κ

Γ(∆−)g2
0

k
2∆−−3
j (ττj)

∆−K3/2−∆−(kj |τ − τj |)
|kj(τ − τj)|∆−−3/2 logκ(Hτ) logκ(Hτj)

. (3.14)

Before continuing, let us remark on the combination

ĝ0 ≡
√

Γ(∆−)g0 (3.15)

which appears here since we will be particularly interested in the regime ∆− → 0, and the

Γ function has a pole there. This effect is also evident in the position-space propagator,

where 1/|x − x′|2∆− = 1 − 2∆− log |x − x′| + . . . as ∆− → 0; the two point function of η

only depends on x− x′ through the log piece proportional to ∆−. The term independent

of x− x′ will not contribute to our three point function at finite spatial momentum k, so

the leading term we need in the two point function of η is the log term proportional to ∆−.

If we take ĝ0 to be finite as ∆− → 0, then the two-point function of η, including the effects

of its mixing with O, stays finite. It is this degree of freedom which couples linearly to

the inflationary perturbation, and it seems natural to keep its propagator of order 1. This

regime is consistent with the flow we are working with [13] occurring within the horizon.

To see this, one can consult equations C.1-C.3 of [13], whose leading x−x′ dependent term

depends on g0 and ∆− through the combination ĝ0.

From these expressions (3.13) and (3.14), we can now determine the leading contri-

bution to the integrals in (3.12) in the squeezed limit k2 ∼ k3 � k1. For the short

modes (3.13) exponentially suppresses the integral for τ2,3 > 1/k2. As a result, the Bessel

function K∆−−3/2(k|τ − τj |) suppresses the integral for τ > 1/k2.

Next, consider the opposite limit of small kτ in our integral. The two-point func-

tion (3.14) is different from the two-point function of massive fields, as is easy to see in po-

sition space where the latter is a hypergeometric function whereas ours is the simpler func-

tion (3.6). However, they behave similarly at small kτ and kτ ′, where for ∆− < 3/2 (3.14)

becomes

∼ H2∆−+2κΓ(3/2−∆−)

k3
j cνc−ν

(kjτ)∆−(kjτj)
∆−

ĝ2
0 logκ(Hτ) logκ(Hτj)

. (3.16)

Up to the logs, this is just like the corresponding expression for weakly coupled fields of

mass m̃ (quasi-single-field inflation), with the identification

∆− ↔ 3/2−
√

9/4− m̃2/H2 . (3.17)

The τj integrals in (3.12) are manifestly dominated by the largest value τj ∼ 1/kj allowed by

the exponentials. As in [9–11] and the example of the previous section, the small τ behavior

does not lead to large effects; again, this can be seen from the contour prescription [36].

Given that, the integral is well approximated by a saddle point with τ ∼ τ2,3 ∼ k−1
S

and τ1 ∼ k−1
L . Plugging this into (3.12) it is easy to read off the scaling and amplitude in

the squeezed limit

B(k1, k2, k3) ∼
fNL ∆4

ζ

k3
Lk

3
S

(
kL
kS

)∆−

(3.18)
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Figure 10. Numerically computed shape function, S(x1, x2) evaluated for ∆− = 1
10 and κ = 1.

with

fNL ∼
( ρ
H

)3 ( µ
H

)
∆−1
ζ

(
H∆−+κ−1

ĝ0

)6

(3.19)

up to logarithmic factors. Here we have dropped factors that are order 1 in the regime

∆− � 1 which approaches the local shape.

The shape can be computed numerically starting from (3.12). The case of ∆− = 1
10

and κ = 1 is shown in figure 10. The bispectrum is not scale invariant with an effective

fNL that grows logarithmically at larger scales (smaller k). As a result, shape function

is enhanced in the squeezed limit by additional factors of 1/ log x2, which represent the

stronger interaction at large scales. Numerically, we find significant overlap with the local

shape for all ∆− ≤ 1 (cos(S∆− , Slocal) & 0.8). As discussed around figure 6, the numerical

error appears to grow as we approach the squeezed limit, which is also where the signal-to-

noise is dominated. For this reason, the specific values of the cosine with the local shape

are likely not meaningful.

Let us compare our amplitude to the case of an interaction
∫
π̇cσ between the inflaton

perturbation and a weakly interacting field σ of mass m̃. In the weakly coupled case, the

local shape arises for massless scalars, m̃ → 0. But the cubic interaction — which here

produces the non-Gaussianity — would generate a mass m̃ ∼ µ, unless it is tuned away.

Without such tuning, the amplitude is proportional to the mass through its dependence on

µ. In our case, although we have the µη3 coupling, we do not need to take the mass m of η

to zero; instead we get the local shape from ∆− � 1 rather than m� H. Our amplitude

fNL can easily be large for small ∆−, with the flow we have used fitting well inside the

Hubble horizon. Finally, we also note that the calculation of the two point function in this

example requires a large-N limit to control as in [13], which may be regarded as a small

(perhaps ten percent) tune we have introduced for calculational convenience.

As a final comment on the amplitude of the non-Gaussianity, let us comment briefly on

the sensitivity this gives to higher dimension operators in the theory (3.1). This example

is more natural than the simple case (1.5) discussed in the introduction in that the latter

involved a relevant operator, whereas here we may consider a nearly marginal operator
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O∆+≈4 in the UV, with a relevant flow induced by the time dependent background. Let

us make a quick estimate of the precision measurements available via fNL in this example.

Focusing on the case ∆+ ≈ 4,∆− ≈ 0, κ ≈ 2 and assuming a common scale M̃∗ suppressing

the higher dimension operators in the UV theory, we have couplings of the form∫ {
(φ− φ0)2ηO

M̃3
∗

+
(∂φ)2η

M̃∗
+ . . .

}
. (3.20)

In terms of the parameters used above, we have

ĝ0 ∼
φ̇2

M̃3
∗
∼
H4∆−2

ζ

M̃3
∗

and ρ ∼ φ̇

M̃∗
∼
H2∆−1

ζ

M̃∗
(3.21)

where we used the slow-roll relation ∆ζ ∼ H2/φ̇. In order for the double-trace flow to fit

within our Hubble patch, we need ĝ0 = H/ε0 with ε0 < 1. This implies

H3

M̃3
∗
∼

∆2
ζ

ε0
(3.22)

with

fNL ∼ ∆−4
ζ

H3

M̃3
∗

( µ
H

)
ε60 ∼ ∆−2

ζ

( µ
H

)
ε50 . (3.23)

To get a rough estimate of the sensitivity here, a null result fNL . 1 would probe the

regime µ ∼ H and ε0 ∼ 10−2 with M̃ ∼ 108/3H.

4 Discussion and future directions

In this work we have analyzed the non-Gaussian corrections to the inflationary pertur-

bations arising from a linear coupling to a scalar operator O in an interacting theory.

Specifically, we analyzed two simple, calculable cases: a conformally coupled CFT (at least

near the Hubble scale), and a particular type of time-dependent deformation thereof. We

found characteristic scaling behavior of the bispectrum near the squeezed limit, going like

∼ (kL/kS)γ times the local shape. This behavior is similar to that generated by weakly

coupled massive fields [9–12], but with the exponent γ in our case depending on the dimen-

sion of O. Our two examples together exhibit a large range of exponents γ, and a range

of shapes, including equilateral and orthogonal for large γ and the local shape for γ → 0.

In the nearly-equilateral case, it is at least partially degenerate observationally with single

field inflation (e.g. [26–30]). As in that case, the amplitude can naturally be large and

gives us an observational probe of higher dimension operators. In particular, we have seen

here that non-Gaussianity provides a precision test for additional sectors of fields coupled

through higher-dimension operators suppressed by a scale M∗ � H, and either a detection

or a null result would be very informative.

There are many interesting generalizations. Here we considered perturbative cou-

plings between the inflationary and strongy coupled field theory sectors, leading to small

corrections to the power spectrum along with relatively substantial contributions to the
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non-Gaussianity. It would be interesting to consider stronger mixing interactions, requir-

ing resummation to determine the power spectrum (something which simplifies somewhat

if one considers a large N limit). Here also we focused on scalar operators, but higher

spin operators could lead to their own distinctive effects, generalizing [60] to the case of

strongly coupled fields. Another interesting direction is to understand more systemati-

cally how non-conformal couplings affect the bispectrum in interacting theories, a question

amenable to perturbative quantum field theory calculations of anomalous dimensions in

some interesting limits.

In another direction, UV complete mechanisms for inflation studied thus far often

involve strongly coupled sectors which play a key role in producing dynamically the small

scales required in the inflaton effective action. It will be interesting to determine the implied

couplings between their operators O and the inflaton perturbations in such examples, a

potential source of new signatures or constraints. Related to this, it would be worthwhile to

assess more systematically the level of Wilsonian naturalness in various models of multifield

perturbations, in preparation for the observational results which will determine its actual

natural-ness.
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A Radiative corrections

In this appendix we discuss radiative corrections to the effective action of the models con-

sidered in section 2. As discussed in the main text, the relative sizes of the couplings

in (A.1) determine which correlation functions of our operators O generate the dominant

contribution to the bispectrum. Because the size of the couplings is also important for

radiative corrections, we must evaluate the radiative stability for the different cases sepa-

rately, and our analysis in this appendix will follow the order we take in the main text. In

all cases, we will ask what is the natural value of fNL from the tree level Hamiltonian and

compare to those generated by loops.

A.1 Case 1: bispectrum determined by 〈OO〉

As in section 2.4, we will consider the interaction Hamiltonian

Hint =
1

2
µ2−∆Mpl|Ḣ|1/2(2π̇ − ∂µπ∂µπ)O +

1

4
M2

pl|Ḣ|µ̃−∆(−2π̇ + ∂µπ∂
µπ)2O . (A.1)
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Contribution of the second operator gives the dominant contribution to the bispectrum

when µ̃∆ . µ2−∆(MplḢ)1/2, which is the regime of interest in this subsection. Because

the second operator is always irrelevant, the interaction becomes strongly coupled (i.e.

perturbative unitarity breaks down) at the scale

ΛU ∼ µ̃ . (A.2)

Another scale in the problem is f2
π ∼ MP |Ḣ|1/2, the time translation symmetry breaking

scale.

Let us further assume 〈O3〉 is negligible, so that the dominant contribution to fNL is

from

〈ζ3〉 ∼ 〈ζπ̇c〉3 µ2−∆µ̃−∆〈O2〉 (A.3)

which gives

f
(1)
NL ∼

( µ
H

)2−∆(H
µ̃

)∆
∆−1
ζ . (A.4)

Clearly this can be large. Let us first consider the renormalization of the term in the

Lagrangian proportional to O. This is generated by a loop of π’s to give

Hrad.
int ⊃

Λ4

µ̃∆
O . (A.5)

This is a relevant operator only for ∆ < 4. In this case, we have to impose that

Λ4

µ̃∆
. H4−∆ ⇒ Λ . H

(
µ̃

H

)∆/4

. (A.6)

This can be clearly satisfied for µ̃� H while at the same time having Λ� H. However, if

we push Λ to be as high as the ΛU , we find that the condition becomes µ̃ < H, which cannot

be accepted. This means that in order for having large effects from this second operator,

we must have Λ � ΛU . This requires an additional scale beyond ΛU to arise in the UV

completion of our model. One possibility is that that role is played by f2
π ∼ Mpl|Ḣ|1/2,

which is also a physical scale in the system.

Another term which is generated by renormalization is

Hrad.
int ⊃

(µ
Λ

)2−∆ (M2
pl|Ḣ|)3/2

Λ2−∆µ̃∆
(−2π̇ + ∂µπ∂

µπ)3 , (A.7)

which generates a contribution to fNL of order

f
(2)
NL ∼

(µ
Λ

)2−∆(Λ

µ̃

)∆Mpl|Ḣ|1/2

Λ2
∼ f (1)

NL

(H
Λ

)4−2∆
. (A.8)

For ∆ > 2 we have f
(2)
NL � f

(1)
NL, which tells us that in the case ∆ > 2 non-gaussianities from

the second operator in (A.1) are subdominant to those induced by radiative corrections,

so they do not dominate in technically natural theories.

This situation will not extend to the case in the next subsection. There we find

theories with ∆ < 8/3 for which the theory is technically natural and the leading signal is
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from the three-point function of the conformal sector, provided the latter has sufficiently

large amplitude C. For C ' 0, we will find technically natural theories with large non-

Gaussianities only for ∆ < 2, and these will require a crossover to a UV completion at a

scale below ΛU .

A.2 Case 2: bispectrum determined by 〈OOO〉

As in section 2.5, when 〈OOO〉 gives the dominant contribution to the bispectrum, we only

require the interaction

Hint = µ2−∆Mpl|Ḣ|1/2(−2π̇ + ∂µπ∂
µπ)O . (A.9)

For ∆ ≤ 2, the leading operator is relevant, and therefore, for control we require µ < H.

On the other hand, when ∆ > 2, the leading term is irrelevant and therefore µ > H is

required for control.

A.2.1 Relevant deformation: ∆ ≤ 2

When ∆ ≤ 2 only the second operator in (A.9) is irrelevant. The strong coupling scale

associated to this interaction is therefore set by

ΛU ∼
(M2

pl|Ḣ|)
1

2∆

µ
2−∆

∆

. (A.10)

Because µ < H, we see that Λ2
U ≥ f2

π ∼Mpl|Ḣ|1/2.

Schematically, the three-point function receives two tree level contributions:

〈ζ3〉 ∼ 〈ζπ̇c〉3
[µ6−3∆

H3
〈O3〉+

µ4−2∆

Mpl|Ḣ|1/2 H2
〈O2〉

]
. (A.11)

Assuming the absence of UV divergences when we take these expectation values for ∆ < 2

(a fact we will recover shortly) the the natural values of fNL are given by

f
(1)
NL ∼ C

( µ
H

)6−3∆
∆−1
ζ , (A.12)

f
(2)
NL ∼

( µ
H

)4−2∆ H2

Mpl|Ḣ|1/2
∆−1
ζ ∼

( µ
H

)4−2∆
. 1 , (A.13)

where C is the coefficient of 〈O3〉. Here we see that only f
(1)
NL has the possibility of

being large.

Now let us look at which operators are generated by loops or by CFT dynamics, given

a hard cutoff at the scale Λ. We must have H � Λ ≤ ΛU . Schematically, we expect to

generate the following operators

Hrad.
int = µ2−∆ Λ4

Mpl|Ḣ|1/2
O + C

µ4−2∆M2
pl|Ḣ|

Λ4−∆
(−2π̇ + ∂µπ∂

µπ)2O (A.14)

+M2
pl|Ḣ|

µ4−2∆

Λ4−2∆
(−2π̇ + ∂µπ∂

µπ)2 + C
(M2

pl|Ḣ|)3/2µ6−3∆

Λ8−3∆
(−2π̇ + ∂µπ∂

µπ)3 .
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The most relevant term is the first one and is dangerous because it can break the conformal

symmetry. In order for this term to be negligible, the effective scale of the breaking must

be lower than Hubble. This can be achieved, provided that

Λ4

Λ∆
U

� H4−∆ ⇒ Λ� H

(
ΛU
H

)∆/4

. (A.15)

This can be satisfied for H � Λ� ΛU . However, we cannot push Λ all the way up to ΛU
because in this case the constraint would become ΛU � H, which is not acceptable. We

have not explicitly UV completed our theory; it may happen in such a completion that

additional operators appear suppressed by the lower scale fπ ∼Mpl|Ḣ|1/2, or at some other

scale Λ that depends on the dynamics of additional sectors. We will not engage in serious

model building here,14 but note that our low energy model as written only pertains below

the scale Λ� ΛU .

By looking at the quadratic term π̇2, we see that a speed of sound slightly different

from one is generated

∆
1/4
ζ

( µ
H

)(6−∆)/4
.
δc2
s

c2
s

∼ µ4−2∆

Λ4−2∆
� 1 . (A.16)

Now let us look at the contributions to fNL from the second through fourth terms in (A.14):

f
(3)
NL ∼ C

( µ
H

)6−3∆(H
Λ

)4−∆
∆−1
ζ � f

(1)
NL , (A.17)

f
(4)
NL ∼

1

c2
s

(1− c2
s) ∼

µ4−2∆

Λ4−2∆
� 1 , (A.18)

f
(5)
NL ∼

Mpl|Ḣ|1/2

Λ2

µ6−3∆

Λ6−3∆
�

Mpl|Ḣ|1/2

H2

µ6−3∆

H6−3∆
∼ f (1)

NL . (A.19)

We see that f
(1)
NL gives the dominant contribution to the bispectrum. This means that for

∆ < 2 the theory is technically natural.

A.2.2 Irrelevant deformation: ∆ > 2

To distinguish the two cases, we will redefine µ → f . Let us identify the strong coupling

scale. Since there are two irrelevant operators, the unitary bound is given by the smallest

scale suppressing these two operators. We have

ΛU = Min[f, f1−2/∆(M2
plḢ)1/(2∆)] ≡ Min[ΛU,1,ΛU,2] . (A.20)

Notice that since we must have ΛU � H, this implies f � H. Assuming no UV divergences,

there are again two contributions to the bispectrum with

f
(1)
NL ∼ C

(H
f

)3∆−6
∆−1
ζ , (A.21)

f
(2)
NL ∼

(H
f

)2∆−4 H2

Mpl|Ḣ|1/2
∆−1
ζ ∼

(H
f

)2∆−4
. 1 . (A.22)

14Something to potentially return to depending on the outcome of measurements of fNL.
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The similarity to the first case is expected here because nothing has changed, at this level.

The differences will be more apparent when we discuss radiative corrections.

We will again look at renormalization of various operators assuming a hard cutoff

Λ, with H � Λ ≤ ΛU . As expected, we will renormalize the same operators as the

previous section:

Hrad.
int =

1

f∆−2

Λ4

Mpl|Ḣ|1/2
O + C

M2
pl|Ḣ|

f2∆−4Λ4−∆
(−2π̇ + ∂µπ∂

µπ)2O (A.23)

+M2
pl|Ḣ|

Λ2∆−4

f2∆−4
(−2π̇ + ∂µπ∂

µπ)2 + C
(M2

pl|Ḣ|)3/2

f3∆−6Λ8−3∆
(−2π̇ + ∂µπ∂

µπ)3 (A.24)

For ∆ > 4, the first term is irrelevant to does not introduce a constraint. However, for

∆ < 4, we require

Λ4

Λ∆
U,2

� H4−∆ ⇒ Λ < H

(
ΛU,2
H

)∆/4

. (A.25)

In the case in which the unitarity bound is given by ΛU,2 (that is for f & (ḢM2
pl)

1/4 ∼
H∆

−1/2
ζ ), Λ cannot be pushed all the way to ΛU,2, as this constraint would require ΛU,2 �

H. However, when the unitarity bound is ΛU,1 (that is when f . H∆
−1/2
ζ ), it is possible to

push Λ to ΛU,1 by imposing the stronger constraint H � f � H∆
−1/(6−∆)
ζ . This feature

of the model, that is the fact that we do not induce the most relevant operator even in the

case where the cutoff is as high as the unitarity bound, can be understood in terms of an

approximate π → −π, O → −O Z2 symmetry that is softly broken by the operator (∂π)2O.

A very similar Z2 approximate symmetry is what allows to have a leading trispectrum in

single field inflation [61].

The correction to the power spectrum scales as (Λ/f)2∆−4, which is small if Λ . f ,

which is always the case if f . (ḢM2
pl)

1/4. A speed of sound different from one is generated.

We also require Λ > H, which is always consistent with this constraint. Again, let us look

at the contributions to fNL from the second to fourth term in (A.23):

f
(3)
NL ∼

(H
f

)3∆−6(H
Λ

)4−∆
∆−1
ζ , (A.26)

f
(4)
NL ∼

1

c2
s

(1− c2
s) ∼

Λ2∆−4

f2∆−4
. 1 , (A.27)

f
(5)
NL ∼

Mpl|Ḣ|1/2

Λ2

Λ3∆−6

f3∆−6
∼
Mpl|Ḣ|1/2

H2

H3∆−6

f6∆−6

( Λ

H

)3∆−8
. (A.28)

For ∆ > 8
3 we have f

(5)
NL � f

(1)
NL. For ∆ > 4, f

(3)
NL � f

(1)
NL. This means that in the case

∆ > 8/3 the signature from the three-point function of conformal operators is not the

leading one for technically natural theories.

A.3 Case 3: trispectrum determined by 〈OO〉

If we start with the Lagrangian (A.1) with µ = 0, we have that the leading signal in

the trispectrum induced by 〈OO〉 with a size τNL∆2
ζ ∼ (µ̃/H)−2∆. Naively, the operator
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has a Z2 symmetry under which π → −π that forbids the appearance of any odd power

of π. This naively forbids the presence of operators that would induce a non-vanishing

bisectrum. However, the non-linear realization of time-diffs. imposes that the operator

(δg00)2O ⊃ π̇2O also contains cubic terms in π. Under a loop, these terms will generate

terms of the form π̇O. If Λ ≤ ΛU ∼ µ̃ is the cutoff of the loops, we have

Hrad.
int ⊃ µ2−∆

rad. (ḢM2
pl)

1/2π̇O , µ2−∆
rad. ∼

Λ4∆ζ

H2µ̃∆
. (A.29)

Let us see under which conditions on the cutoff the induced bispectrum is smaller than the

trispectrum. We have

f
〈OO〉
NL ∼ 1

∆ζ

(
µ̃

H

)∆ (µrad.

H

)2−∆
∼ Λ4

H4

(
H

µ̃

)2∆

, (A.30)

f
〈OOO〉
NL ∼ C

∆ζ

(µrad.

H

)3(2−∆)
∼ C

∆2
ζ

Λ12

H12

(
H

µ̃

)3∆

.

Imposing the signal from both to be smaller than the one on the trispectrum implies

respectively:

Λ2 .
H2

∆
1/2
ζ

, Λ2 .
1

C1/6

H2

∆
2/3
ζ

(
µ̃

H

)∆/6

. (A.31)

We see that this leaves large room for Λ � H with the trispectrum being naturally the

leading signal. Notice that already imposing the signal from the trispectrum to be de-

tectable, τNL∆ζ & 1, implies µ̃2 ∼ Λ2
U . H2/∆

1/∆
ζ . So the limits above represent a mildly

stronger constraint.

B Details of the shape calculation

In section 2.5.2 we discussed the shape of the bispectrum computed numerically from (2.28).

To simplify the numerical calculation, one can perform several integrals analytically before

performing the numerical integration. This is important because naive numerical integra-

tion leads to a 6-dimensional integral that is hard to evaluate. In this appendix we will

explain which integrations were performed analytically.

First we need to compute the Fourier transform of the three point function at different

times and different k’s. Let us work in Minkowski space first. We know that to write it in

de Sitter space we simply need to multiply by the relevant conformal factors at the end.

Let us start by going to 4d Fourier space:

〈Ok1(τ1)Ok2(τ2)Ok3(τ3)〉 =

∫
dω1

2π

dω2

2π

dω3

2π
e−i

∑
i ωiτi 〈Okµ1Okµ2Okµ3 〉 , (B.1)

where all correlation functions are meant to be anti-time-ordered.
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We know how to write the 3-point function in real space. So, let us do a 4d Fourier

transform:

=

∫
dω1

2π

dω2

2π

dω3

2π
e−i

∑
i ωiτi

∫
d4x1d

4x2d
4x3 e

−i
∑
kµi xi,µC

1(
x2

12

)∆/2 1(
x2

23

)∆/2 1(
x2

31

)∆/2 .
(B.2)

We know how to do the Fourier transform of the 2-point function 1/(x2)∆/2, see eq. (2.15),

so let us write it in this way. It looks like we are adding a lot of integrals, but, as we will

see, many of them can be done analytically. We obtain

= C

∫
dω1

2π

dω2

2π

dω3

2π
e−i

∑
i ωiτi

∫
d4x1d

4x2d
4x3 e

−i
∑
kµi xi,µ

(
(2π)2

4
∆
2
−1

Γ(2− ∆
2 )

Γ(∆
2 )

)3

(B.3)

×
∫

d4p1

(2π)4

d4p2

(2π)4

d4p3

(2π)4
e−i[p

µ
1x12,µ+pµ2x23,µ+pµ3x31,µ] (p2

1

)∆/2−2 (
p2

2

)∆/2−2 (
p2

3

)∆/2−2
.

The xi-integrals lead to three δ-four functions of the form

(2π)4δ(4)(
∑

kµi ) (2π)4δ(4)(pµ1 − (pµ3 + kµ1 )) (2π)4δ(4)(pµ2 − (pµ3 − k
µ
3 )) . (B.4)

Notice that

(2π)4δ(4)(
∑

kµi ) = (2π)3δ(3)(
∑
i

ki) (2π)δ(
∑
i

ωi) . (B.5)

The first term is the usual 3-delta function of spatial-momentum conservation. We can

drop it by adding a ′ to our correlation function. Now the integral in p1 and p2 can be

done saturating the δ-function, and we are left with

= C

∫
dω1

2π

dω2

2π

dω3

2π
(2π)δ

(∑
i

ωi

)
e−i

∑
i ωiτi

(
(2π)2

4
∆
2
−1

Γ(2− ∆
2 )

Γ(∆
2 )

)3

(B.6)

×
∫

d4p3

(2π)4

(
(p3 + k1)2

)∆/2−2 (
(p3 − k3)2

)∆/2−2 (
p2

3

)∆/2−2
.

The integral in d4p3 can be done after inserting two Feynman parameters. Let us use that

(see for example appendix F of [62]):

A−αB−βC−γ =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)

∫ 1

0
du

∫ 1

0
dv (B.7)

×uα−1(1− u)β−1vα+β−1(1− v)γ−1 [uvA+ (1− u)vB + (1− v)C]−α−β−γ .

We then get:

= C

∫
dω1

2π

dω2

2π

dω3

2π
(2π)δ(

∑
ωi)e

−
∑
i ωiτi

(
(2π)2

4
∆
2
−1

Γ(2−∆/2)

Γ(∆/2)

)3 Γ(6− 3∆
2 )

Γ(2− ∆
2 )3

(B.8)

×
∫ 1

0
du

∫ 1

0
dv (u(1− v)(1− u))1−∆/2 v3−∆

∫
d4p3

(2π)4

(
p̃2

3 +M2
) 3∆

2
−6

,
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where

M2(u, v, {ki})=
(
uv(1− v)k2

1 +uv2(1− u)k2
2 +v(1− u)(1− v)k2

3

)
, k2

i =kµi ki,µ=ω2
i +~k2

i ,

(B.9)

and where we have shifted the variable of integration p3 to complete the square and

used that ∑
kµi = 0 ⇒ k1 · k2 =

k2
3 − k2

1 − k2
2

2
. (B.10)

The p̃3 integrals is equal to∫
d4p̃3

(2π)4

(
p̃2

3 +M2
) 3∆

2
−6

=
Γ(4− 3∆

2 )

(4π)2Γ(6− 3∆
2 )

(
M2
) 3∆

2
−4 . (B.11)

We obtain:

〈Ok1(τ1)Ok2(τ2)Ok3(τ3)〉′ (B.12)

= C

∫
dω1

2π

dω2

2π

dω3

2π
(2π)δ

(∑
ωi

)
e−i

∑
i ωiτi

(
(2π)2

4∆/2−1

Γ(2−∆/2)

Γ(∆/2)

)3

∫ 1

0
du

∫ 1

0
dv

Γ(4− 3∆
2 )

(4π)2Γ(2−∆/2)3
(u(1− v)(1− u))1−∆/2 v3−∆

(
M2(u, v, {ki})

) 3∆
2
−4 .

The v integral can be done analytically (by Mathematica, not by us!), finally obtaining:

〈Ok1(τ1)Ok2(τ2)Ok3(τ3)〉′ (B.13)

= −C 2(2−∆)(2π)6(∆− 2)

Γ (2−∆/2)3 Γ
(

∆
2

)3 csc (π∆/2) Γ (4− 3∆/2) Γ (2−∆/2)3

×
∫ 1

0
du

∫
dω1

2π

dω2

2π

dω3

2π
(2π)δ

(∑
ωi

)
e−i

∑
i ωiτi

× ((1− u)u)1−∆
2
(
u
(
k2

1 + ω2
1 − ω2

3

)
+ k2

3(−(u− 1)) + ω2
3

) 3∆
2
−4

×2 F1

(
4− 3∆

2
,
∆

2
; 2; 1−

(u− 1)u
(
k2

2 + ω2
2

)
(u− 1)k2

3 + (u− 1)ω2
3 − u

(
k2

1 + ω2
1

)) .

Now we are ready to deal with our expression for the bispectrum (2.27). We notice that

the τ1,2,3 integrals can be done analytically. Then we can do analytically also the integral

over one of the ω’s, as it is just given by the saturation of the delta function. We do not

give the result here directly, as it is not illuminating. It is just better to ask Mathematica

to do it. At this point we are left with three integrals to do: one over u, and two over the

remaining two ω’s. By rescaling the variables, it is easy to see that the bispectrum scales

as k−6, signalling its scale invariance. We can do the resulting integrals only numerically,

and Mathematica does them in a few seconds.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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