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1 Introduction and summary

The main goal of this paper is to explore the behaviour of Ẑ invariants of 3-manifolds

at rational τ (in general τ ∈ H — the upper half-plane). Ẑ invariants were introduced

in [1–4] as series in q = e2πiτ with integer coefficients in order to enable the categorification

of Witten-Reshetikhin-Turaev (WRT) invariants of 3-manifolds. It turns out that, apart

from the topological applications, Ẑ invariants are very interesting from the point of view

of physics and number theory.

Physically Ẑ invariant is a 3d analogue of the elliptic genus introduced in [5]. More

precisely it is a supersymmetrix index of 3d N = 2 theory with 2d N = (0, 2) boundary

condition studied first in [6]. Detailed analysis of this interpretation can be found in [1, 3],

whereas [7] provides a lot of explicit results for various examples. Ẑ invariants are also

related to 2d logarithmic conformal field theories [4] and newly proposed two-variable series

for knot complements [8].

Due to their modular properties, Ẑ invariants are interesting from the point of view

of number theory. A broad discussion of this subject can be found in [4]. For us the most
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important are two aspects. Firstly, for many 3-manifolds Ẑ invariants can be expressed as

a linear combination of false theta functions [2, 4, 9]. This fact plays an important role in

explicit calculations in sections 4.2 and 4.3. An analogous property for WRT invariants

was studied earlier in [10–16].

In order to understand the second aspect, let us make a step back to the relation

between WRT invariants and Ẑ invariants for plumbed 3-manifolds [1–4]

WRT[M3(Γ); 1/k] = lim
q→e

2πi
k

∑
a∈CokerM e−2πik(a,M−1a)

∑
b∈2CokerM+δ SabẐb

2
(
q1/2 − q−1/2

) ,

Sab =
e−2πi(a,M−1b)

| detM |1/2
, (1.1)

where M is the linking matrix of the plumbing graph Γ (for details see section 2.1).

Equation (1.1) corresponds to τ = 1/k. In this case there exists a well-known physical

interpretation in the language of Chern-Simons theory, where k ∈ N is the quantum-

corrected Chern-Simons level [17] (in the whole paper we restrict to the SU(2) gauge

group). However from the point of view of number theory τ = 1/k is conceptually on the

same footing as all other rational numbers [10]. Therefore there arises a natural question

(which is the main motivation of this work):

What happens with (1.1) for τ = r/s?

Since for τ = r/s (r, s ∈ Z) there is no Chern-Simons theory interpretation, we will

refer to the left hand side as the Reshetikhin-Turaev (RT) invariant — their combinato-

rial definition using quantum group representation theory [18] works for all τ ∈ Q. The

main result of this paper is the following expression connecting the RT invariant with the

Ẑ invariant

RT[M3(Γ); r/s] = lim
q→e2πi

r
s

∑
a∈Coker(rM) e

−2πi s
r

(a,M−1a)∑
b∈2CokerM+δ SabẐb

2
(
q1/2 − q−1/2

)
G(s, r)L

,

Sab =
e−2πi(a,M−1b)

| detM |1/2
, (1.2)

G(s, r) =
∑
c∈Zr

e2πi s
r
c2 ,

where values of the quadratic Gauss sum are discussed in section 3. We checked this formula

in many examples and conjecture that it is true for all plumbed 3-manifolds. We expect

that similar formula holds for all 3-manifolds, but in that situation obtaining τ → r/s limit

of Ẑ and testing is problematic.

The form of (1.2), especially the summation over a ∈ Coker(rM), is quite surprising. Is

M 7→ rM a purely computational phenomenon or does it have a topological interpretation?

If the latter is true, should we view rM as the matrix defining a 3-manifold? What would

be the relation to the initial one? We will come back to these questions in sections 3 and 5.

The plan of this paper is as follows. Section 2 contains the necessary preparations,

focusing on plumbed 3-manifolds and an expression for RT invariant independent of (1.2).
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Figure 1. An example of a plumbing graph Γ (left) and the associated link of unknots (right)

denoted as L(Γ). Each vertex label corresponds to the framing of the respective link. The manifold

M3(Γ) can be constructed by performing a Dehn surgery on L(Γ).

In section 3 we derive and discuss our main result — the formula (1.2). Tests on various

examples are presented in section 4. Finally, section 5 is devoted to the future directions.

Remark: soon after this paper appeared on arXiv, an independent approach to Ẑ in-

variants at rational τ was presented in [19].

2 Prerequisites

2.1 Plumbed 3-manifolds

In this paper we focus on a very large class of 3-manifolds corresponding to decorated graphs

which, for simplicity, are assumed to be connected. For a given graph Γ we can obtain the

associated plumbed 3-manifold M3(Γ) by performing a Dehn surgery on L(Γ) — the cor-

responding link of framed unknots (see figure 1). We are mainly interested in Seifert fibra-

tions over S2 which correspond to star-shaped graphs and are denoted by M (b; {bi/ai}i),
where b, bi, ai ∈ Z. Among them there is a special class of Brieskorn homology spheres.

They are defined as the inetrsection of the complex unit sphere with the hypersurface

zp11 + zp22 + zp33 = 0 (p1, p2, p3 are coprime integers) and denoted by Σ(p1, p2, p3).

Let us denote the set of vertices of Γ by V and the set of edges by E. L = |V | is

equal to the number of components of L(Γ). We can encode the information given by the

plumbing graph in a convenient way by the following L× L matrix

Mv1,v2 =


1 v1 and v2 connected by the edge,

av v1 = v2 = v (framing of the link v),

0 else.

vi ∈ V ∼= {1, . . . , L} (2.1)

From the link perspective M is the linking matrix of L(Γ). The cokernel of M is equal

(setwise) to the first homology group of M3(Γ)

H1 (M3(Γ),Z) ∼= CokerM = ZL/MZL. (2.2)

The number of elements in each set is given by detM .

– 3 –



J
H
E
P
0
9
(
2
0
1
9
)
0
9
2

2.2 Formula for RT invariants

In appendix A of [3] the reasoning leading to equation (1.1) starts from the following

formula for the WRT invariant of a plumbed 3-manifold M3(Γ)

WRT[M3(Γ); 1/k] =
F [Γ; 1/k]

F [+1•; 1/k]b+F [−1•; 1/k]b−
,

F [Γ; 1/k] =
∑

n∈{1,...,k−1}L

∏
v∈V

q
av(n

2
v−1)

4

(
q
nv
2 − q−

nv
2

)2−deg(v)
(2.3)

×

∏
(v1,v2)∈E

(
q
nv1nv2

2 − q−
nv1nv2

2

)
(
q1/2 − q−1/2

)L+1

∣∣∣∣∣∣
q=e

2πi
k

,

where b+ and b− are the number of positive and negative eigenvalues of the matrix M .

The symbol ±1• denotes the plumbing graph with one vertex corresponding to the unknot

with ±1 framing. In this paper we always assume

q = e2πiτ (2.4)

and the WRT invariant corresponds to τ = 1/k.

Equation (2.3) comes from the quantum group construnction [18] where all roots of

unity are on the same footing. More formally, formula (2.3) transforms equivariantly under

the Galois group Gal
(
Q(e2πi r

s )/Q
)

[10, 20] and in consequence its generalisation to τ = r/s

is given by substitution q = e2πi r
s

RT[M3(Γ); r/s] =
F [Γ; r/s]

F [+1•; r/s]b+F [−1•; r/s]b−
,

F [Γ; r/s] =
∑

n∈{1,...,s−1}L

∏
v∈V

q
av(n

2
v−1)

4

(
q
nv
2 − q−

nv
2

)2−deg(v)
(2.5)

×

∏
(v1,v2)∈E

(
q
nv1nv2

2 − q−
nv1nv2

2

)
(
q1/2 − q−1/2

)L+1

∣∣∣∣∣∣
q=e2πi

r
s

.

We will use this formula in many examples in section 4, but it is interesting on its own.

According to Turaev construction [21] we can associate a modular tensor category

(MTC) to the 3d topological quantum field theory. The MTC comes equipped with modular

S and T matrices which capture the structure of the topological partition function. For

the plumbed 3-manifold this relation reads (see [22, 23] for more details)

Ztop[M3(Γ)] =
∑
n

∏
v∈V

(Tnvnv)
av (S0nv)

2−deg(v)
∏

(v1,v2)∈E

Snv1nv2 . (2.6)

Comparing (2.5) with (2.6) we can see that the expression for F matches the structure of
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Ztop for

Tmn = δm,nq
n2−1

4 ,

S0n =
1

i
√

2s

(
q
n
2 − q−

n
2

)
,

Smn =
1

i
√

2s

(
q
nm
2 − q−

nm
2

)
,

q = e2πi r
s .

(2.7)

This is a projective representation of SL(2,Z), where the phase factor is an integer multiple

of 1/8. In order to restore (ST )3 = ±1 we have to rescale T

Tmn 7→ δm,nq
2n2−s

8 . (2.8)

The condition S2 = ±1 is ensured by the normalisation factor 1
i
√

2s
which cancels out

in (2.5).

Another important observation is the invariance of formula (2.5) under r 7→ r + ns

symmetry (n ∈ Z). It is equivalent to the multiplication of every q by e2πin = 1. The

r 7→ r + ns symmetry helps to solve the problem of choosing the branch of the complex

root which arises in the context of RT invariants (see section 3.1).

3 Main conjecture

3.1 RT invariants from Ẑ invariants

The reasoning leading to our main conjecture follows the appendix A of [3], which starts

from expression (2.3) and, in the crucial step, uses the Gauss sum reciprocity formula∑
n∈ZL/2kZL

exp

[
πi

2k
(n,Mn) +

πi

k
(l, n)

]
(3.1)

=
eπiσ(2k)L/2

| detM |1/2
∑

a∈ZL/MZL
exp

[
−2πik

(
a+

l

2k
,M−1

[
a+

l

2k

])]
,

where l ∈ ZL, (·, ·) is the standard pairing on ZL and σ = b+ − b− is the signature of the

linking matrix M . The final result is the relation between the WRT invariant and the Ẑ

invariant for τ = 1/k

WRT[M3(Γ); 1/k] = lim
q→e

2πi
k

∑
a∈CokerM e−2πik(a,M−1a)

∑
b∈2CokerM+δ SabẐb

2
(
q1/2 − q−1/2

) ,

Sab =
e−2πi(a,M−1b)

| detM |1/2
, (3.2)

where δ ∈ ZL/2ZL and δv ≡ deg v mod 2.

We would like to have an analogous derivation for τ = r/s, so we start from equa-

tion (2.5) and follow all the steps of the appendix A. The crucial one is again the Gauss

sum reciprocity formula. In order to deal with τ = r/s we have to rescale the formula,
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which is equivalent to considering (3.1) for M̃ = rM and l̃ = rl (we also write s instead

of k). We obtain∑
n∈ZL/2sZL

exp

[
πi

2s
(n, rMn) +

πi

s
(rl, n)

]
(3.3)

=
eπiσ(2s/r)L/2

| detM |1/2
∑

a∈ZL/rMZL
exp

[
−2πis

(
a+

rl

2s
, (rM)−1

[
a+

rl

2s

])]
,

which leads to our main conjecture

RT[M3(Γ); r/s] = lim
q→e2πi

r
s

∑
a∈Coker(rM) e

−2πi s
r

(a,M−1a)∑
b∈2CokerM+δ SabẐb

2
(
q1/2 − q−1/2

)
G(s, r)L

,

Sab =
e−2πi(a,M−1b)

| detM |1/2
, (3.4)

G(s, r) =
∑
c∈Zr

e2πi s
r
c2 =


√
r
(
s
r

)
r ≡ 1 mod 4

i
√
r
(
s
r

)
r ≡ 3 mod 4

where
(
s
r

)
is the Jacobi symbol. If we want to use above formula for even r, we have

to choose another representant of the r ∼ r + ns equivalence class to avoid dividing by

G(s, r) = 0 (in fact this happens only for r ≡ 2 mod 4 but it is more convenient to treat

all even r the same). This problem is a reflection of the fact that for some choices of roots

of q = e2πi r
s (for SU(2) we deal with 4 values of q1/4) we have F [±1•; r/s] = 0. A detailed

discussion of the vanishing denominator in the RT invariants can be found in [24, 25].

There are two important differences between (3.4) and (3.2). The first one is in the

summation range — Coker(rM) has rL more elements than CokerM . On the other hand

we have G(s, r)L in denominator which scales as rL/2 and “compensates” this growth. For

r = 1 equation (3.4) reduces to (3.2) which provides the first consistency check.

3.2 Rational τ limit of Ẑ invariants

For some simple 3-manifolds such as lens spaces L(p, 1) the τ → r/s limit of the Ẑ invariant

is very easy to obtain (see section 4.1), however these are exceptions rather than the rule.

Fortunately for many 3-manifolds (e.g. Seifert manifolds with 3 singular fibers) the Ẑ

invariant can be expressed as a linear combination of false theta functions defined as

Ψm,α =

∞∑
n=0

ψ2m,α(n)q
n2

4m =

∞∑
n=0

ψ2m,α(n)e
πiτn2

2m ,

ψ2m,α(n) =

{
±1 n ≡ ±α mod 2m,

0 otherwise.

(3.5)

In this case the calculation of lim
τ→r/s

Ẑ is more difficult, but still possible. In [10, 26] we

find that

lim
τ→r/s

Ψm,α =
ms∑
n=0

ψ2m,α(n)

(
1− 1

ms

)
e
πirn2

2ms . (3.6)

Since this result is an essential tool in section 4, it serves also as the guiding rule in choosing

examples for testing our main conjecture.
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3.3 Conventions

Before moving to examples let us discuss some conventional issues.

In many papers, e.g. [1, 2, 4], the normalisation of the RT invariant (or the WRT

invariant for τ = 1/k) is different. In our notation

RT[S3; r/s] = 1, (3.7)

whereas there

RTCS[S2 × S1; r/s] = 1. (3.8)

We write RTCS because this notation is based on the value of the Chern-Simons partition

function for r/s = 1/k (many authors write ZCS instead of RTCS but we want to avoid the

confusion with Ẑ). The relation between these two conventions is given by

RT[M3(Γ); r/s] =
i
√

2s

q1/2 − q−1/2
RTCS[M3(Γ); r/s]. (3.9)

The second issue is related to the Z2 symmetry group acting on CokerM ∼=
H1 (M3(Γ),Z) by a 7→ −a. Since (3.4) is invariant under this transformation and Ẑa = Ẑ−a
we could write

RT[M3(Γ); r/s] = lim
q→e2πi

r
s

∑
a∈Coker(rM)/Z2

e−2πi s
r

(a,M−1a)∑
b∈(2CokerM+δ)/Z2

S′abẐ
′
b

2
(
q1/2 − q−1/2

)
G(s, r)L

,

S′ab =

∑
a′∈{Z2-orbit of a} e

−2πi(a′,M−1b)

| detM |1/2
, (3.10)

Ẑ ′b = |Z2-orbit of b| Ẑb.

This convention is often called folded whereas ours — unfolded. The former is present

in [1–4], we use the latter because it is inconvenient to divide Coker(rM) by Z2 for every

considered r. We would like to stress that because of that our Ẑb differs from the folded

one (denoted by Ẑ ′b) by the factor of 2 if b is not a fixed point of Z2 symmetry. Moreover,

some papers use different numeration of Ẑb. Detailed discussion of this issue can be found

in [3].

4 Examples

In this section we test our main conjecture (3.4) by comparing it to (2.5) on various

examples. All computations are done numerically using Mathematica.

4.1 Lens spaces L(p, 1)

For the lens space L(p, 1) the plumbing graph Γ is given by

-p
.

– 7 –
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In consequence L = 1, M = [−p], Coker(rM) = Zrp, and 2CokerM + δ = 2Zp. However,

only for three b ∈ 2Zp the invariant Ẑb is non-zero [1]

Ẑ0 = −2q
p−3
4 , Ẑ−2 = Ẑ2 = q

p−3
4 q

1
p . (4.1)

Therefore the formula (3.4) reduces to

RT[L(p, 1); r/s] = lim
q→e2πi

r
s

∑
a∈Zrp e

2πi s
r
a2

p
∑

b∈{−2,0,2} e
2πiab

p Ẑb

2
√
p
(
q1/2 − q−1/2

)
G(s, r)

. (4.2)

On the other hand we can use (2.5) to write

RT[L(p, 1); r/s] =

∑
n∈{1,...,s−1} q

(−p)n
2−1
4

(
q
n
2 − q−

n
2

)2

∑
n∈{1,...,s−1} q

(−1)n
2−1
4

(
q
n
2 − q−

n
2

)2

∣∣∣∣∣∣∣
q=e2πi

r
s

. (4.3)

Using Mathematica we checked that (4.2) and (4.3) give the same result. We compared

both formulas for p = 3, 5, 7, 9, 11 and r/s up to 16/17.

4.2 Brieskorn spheres

Brieskorn homology spheres Σ(p1, p2, p3) are interesting examples, because in their case

CokerM = {0} so we have only one invariant Ẑb = Ẑδ and the RT invariant is equal (up

to normalisation) to Ẑδ [4]

RT[Σ(p1, p2, p3); r/s] = lim
q→e2πi

r
s

Ẑδ

2
(
q1/2 − q−1/2

) . (4.4)

For r = 1 this statement immediately follows from (3.2). However Ẑδ/2
(
q1/2 − q−1/2

)
is

defined for all τ ∈ H (q inside unit disk) with well-defined limits at all rational τ , so in this

case there is no difference between r = 1 and other integers. Comparing (4.4) with (3.4)

we can see that ∑
a∈Coker(rM) e

−2πi s
r

(a,M−1a)Saδ

G(s, r)L
= 1, (4.5)

which we numerically checked using Mathematica.

4.2.1 Σ(2, 3, 7)

The graph ΓΣ(2,3,7) of the Σ(2, 3, 7) Brieskorn sphere is given by

-2 -7-1

-3

.

– 8 –
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We number vertices in the following way (we do it for all 4-vertex graphs in this paper)

(2) (4)(1)

(3)

.

In consequence the linking matrix reads

M =


−1 1 1 1

1 −2 0 0

1 0 −3 0

1 0 0 −7

 , (4.6)

so detM = 1 and CokerM = {0}. Ẑδ is given by [2]

Ẑδ = q
83
168 (Ψ42,1 −Ψ42,13 −Ψ42,29 + Ψ42,41) (4.7)

(There is a typo in [2], q
83
168 should be in numerator as in (4.7)). Therefore

RT[Σ(2, 3, 7); r/s] =
Ẑδ
∣∣
τ=r/s

4i sin
(
π rs
) , (4.8)

where

Ẑδ

∣∣∣
τ=r/s

= e
83
84
πi r
s

42s∑
n=0

(ψ84,1(n)− ψ84,13(n)− ψ84,29(n) + ψ84,41(n))

(
1− 1

42s

)
e
πir
84s

n2

(4.9)

was calculated by applying (3.6) to (4.7).

The formula (2.5) gives

RT[Σ(2, 3, 7); r/s] =
F [ΓΣ(2,3,7); r/s]

F [−1•; r/s]4
,

F [−1•; r/s] =

∑
n∈{1,...,s−1} q

(−1)n
2−1
4

(
q
n
2 − q−

n
2

)2

(
q1/2 − q−1/2

)2
∣∣∣∣∣∣∣
q=e2πi

r
s

, (4.10)

F [ΓΣ(2,3,7); r/s] =

∑
n∈{1,...,s−1}4

∏
v∈V T

av
nvnvS

2−deg(v)
0nv

∏
(v1,v2)∈E Snv1nv2(

q1/2 − q−1/2
)5

∣∣∣∣∣∣
q=e2πi

r
s

,

– 9 –
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where1

T avnvnv = q
av(n

2
v−1)

4 , av =


−1 v = 1

−2 v = 2

−3 v = 3

−7 v = 4

Snv1nv2 = q
nv1nv2

2 − q−
nv1nv2

2 , (v1, v2) = (1, 2), (1, 3), (1, 4) (4.11)

S
2−deg(v)
0nv

=


[
q
nv
2 − q−

nv
2

]−1
v = 1

1 v = 2, 3, 4

Using Mathematica we checked — for all r/s up to 12/13 — that (4.8) and (4.10) give the

same result.

4.2.2 Poncaré sphere

For the Poincaré sphere Σ(2, 3, 5) we have the following plumbing graph ΓΣ(2,3,5)

-2 -2-2

-2

-2-2-2 -2

.

The numbering

(2) (5)(1)

(4)

(7)(6)(3) (8)

leads to

M =



−2 1 0 1 1 0 0 0

1 −2 1 0 0 0 0 0

0 1 −2 0 0 0 0 0

1 0 0 −2 0 0 0 0

1 0 0 0 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2


. (4.12)

We have detM = 1, CokerM = {0} again and Ẑδ is given by [2]

Ẑδ = q−
181
120

[
2q

1
120 − (Ψ30,1 + Ψ30,11 + Ψ30,19 + Ψ30,29)

]
. (4.13)

1For simplicity we do not include the 1

i
√
2s

prefactor in formulas for S matrices in the whole section 4.
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Therefore

RT[Σ(2, 3, 5); r/s] =
Ẑδ
∣∣
τ=r/s

4i sin
(
π rs
) , (4.14)

where

Ẑδ

∣∣∣
τ=r/s

= e−
181
60
πi r
s

[
2e

πir
60s (4.15)

−
30s∑
n=0

(ψ60,1(n)+ψ60,11(n)+ψ60,19(n)+ψ60,29(n))

(
1− 1

30s

)
e
πir
60s

n2

]
.

On the other hand equation (2.5) leads to

RT[Σ(2, 3, 5); r/s] =
F [ΓΣ(2,3,5); r/s]

F [−1•; r/s]8
, (4.16)

F [ΓΣ(2,3,5); r/s] =

∑
n∈{1,...,s−1}8

∏
v∈V T

−2
nvnvS

2−deg(v)
0nv

∏
(v1,v2)∈E Snv1nv2(

q1/2 − q−1/2
)9

∣∣∣∣∣∣
q=e2πi

r
s

,

where

T−2
nvnv = q

1−n2v
2 , v = 1, 2, . . . , 8

Snv1nv2 = q
nv1nv2

2 − q−
nv1nv2

2 , (v1, v2) = (1, 2), (2, 3), (1, 4), (1, 5), (5, 6), (6, 7), (7, 8)

S
2−deg(v)
0nv

=


[
q
nv
2 − q−

nv
2

]−1
v = 1

1 v = 2, 5, 6, 7

q
nv
2 − q−

nv
2 v = 3, 4, 8.

(4.17)

We have used Mathematica to check that (4.14) and (4.16) give the same result. Having 8

vertices was much more involved for the computer so we stopped at r/s = 8/9.

4.3 Other Seifert manifolds

4.3.1 M
(
−1; 1

2
, 1
3
, 1
9

)
The Seifert manifold M

(
−1; 1

2 ,
1
3 ,

1
9

)
can be described by the plumbing graph ΓM(−1; 1

2
, 1
3
, 1
9)

-2 -9-1

-3

and the linking matrix

M =


−1 1 1 1

1 −2 0 0

1 0 −3 0

1 0 0 −9

 . (4.18)
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Therefore detM = 3 and

CokerM =




0

0

0

0

 ,


1

0

−1

−6

 ,

−1

0

1

6


 . (4.19)

We have

δ =


1

−1

−1

−1

⇒ b ∈ 2CokerM + δ =




1

−1

−1

−1

 ,


3

−1

−3

−13

 ,

−3

1

3

13


 (4.20)

and Ẑ invariants are given by [4]

Ẑ[1,−1,−1,−1] = q71/72 (Ψ18,1 + Ψ18,17) ,

Ẑ[−3,1,3,13] = Ẑ[3,−1,−3,−13] = − 1

2
q71/72 (Ψ18,5 + Ψ18,13) .

(4.21)

We can use (3.6) to compute Ẑb

∣∣∣
τ=r/s

and then (3.4) leads to

RT

[
M

(
−1;

1

2
,

1

3
,

1

9

)
;
r

s

]
=

∑
a∈Coker(rM) e

−2πi s
r

(a,M−1a)∑
b∈2CokerM+δ Sab Ẑb

∣∣∣
τ=r/s

4i sin
(
π rs
)
G(s, r)4

,

Sab =
e−2πi(a,M−1b)

√
3

. (4.22)

In contrary to the Brieskorn spheres all terms are nontrivial.

On the other hand (2.5) gives

RT

[
M

(
−1;

1

2
,

1

3
,

1

9

)
;
r

s

]
=
F
[
ΓM(−1; 1

2
, 1
3
, 1
9); rs

]
F [−1•; rs ]4

, (4.23)

F

[
ΓM(−1; 1

2
, 1
3
, 1
9);

r

s

]
=

∑
n∈{1,...,s−1}4

∏
v∈V T

av
nvnvS

2−deg(v)
0nv

∏
(v1,v2)∈E Snv1nv2(

q1/2 − q−1/2
)5

∣∣∣∣∣∣
q=e2πi

r
s

,

where S and T matrices are the same as in (4.11) except av = −9 for v = 4.

We used Mathematica to check that (4.22) and (4.23) give the same result. Because of

the necessity of calculating Coker(rM) for each r it was easier to increase the parameter s

and we stopped at r/s = 7/30.

4.3.2 M
(
−2; 1

2
, 1
3
, 1
2

)
The Seifert manifold M

(
−2; 1

2 ,
1
3 ,

1
2

)
has the following plumbing graph ΓM(−2; 1

2
, 1
3
, 1
2)

-2 -2-2

-3

– 12 –



J
H
E
P
0
9
(
2
0
1
9
)
0
9
2

and linking matrix

M =


−2 1 1 1

1 −2 0 0

1 0 −3 0

1 0 0 −2

 . (4.24)

Therefore detM = 8, δ = [1,−1,−1,−1] and

b ∈ 2CokerM + δ =




1

−1

−1

−1

 ,±


3

−1

−5

−3

 ,±


3

−3

−5

−1

 ,


3

−3

−1

−3

 ,±


1

−3

−1

−1


 . (4.25)

Ẑ invariants are given by [4]

Ẑ[1,−1,−1,−1] = q−
5
12

[
2q

1
24 − (Ψ6,1 + Ψ6,7)

]
Ẑ±[3,−1,−5,−3] = Ẑ±[3,−3,−5,−1] = − 1

2
q−

5
12 Ψ6,2

Ẑ[3,−3,−1,−3] = − q−
5
12 (Ψ6,1 + Ψ6,7)

Ẑ±[1,−3,−1,−1] = q−
5
12 Ψ6,4

(4.26)

Following the previous examples we use (3.6) to compute Ẑb

∣∣∣
τ=r/s

and then (3.4) to obtain

RT

[
M

(
−2;

1

2
,

1

3
,

1

2

)
;
r

s

]
=

∑
a∈Coker(rM) e

−2πi s
r

(a,M−1a)∑
b∈2CokerM+δ Sab Ẑb

∣∣∣
τ=r/s

4i sin
(
π rs
)
G(s, r)4

,

Sab =
e−2πi(a,M−1b)

√
8

. (4.27)

Similarly to M
(
−1; 1

2 ,
1
3 ,

1
9

)
all terms in (4.27) are nontrivial.

Equation (2.5) leads to

RT

[
M

(
−2;

1

2
,

1

3
,

1

2

)
;
r

s

]
=
F
[
ΓM(−2; 1

2
, 1
3
, 1
2); rs

]
F [−1•; rs ]4

, (4.28)

F
[
ΓM(−2; 1

2
, 1
3
, 1
2);

r

s

]
=

∑
n∈{1,...,s−1}4

∏
v∈V T

av
nvnvS

2−deg(v)
0nv

∏
(v1,v2)∈E Snv1nv2(

q1/2 − q−1/2
)5

∣∣∣∣∣∣
q=e2πi

r
s

,

where S and T matrices are the same as in (4.11) except

av =

{
−2 v = 1, 2, 4

−3 v = 3
(4.29)

Using Mathematica we checked that (4.27) and (4.28) give the same result. Similarly to

M
(
−1; 1

2 ,
1
3 ,

1
9

)
the necessity of calculating Coker(rM) for each r made it easier to increase

the parameter s (however in this case the cokernel is bigger) and we stopped at r/s = 5/21.
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5 Open questions

The most interesting future direction seems to be the one towards the interpretation of our

main conjecture. Do we really have another manifold associated to each r? The manifold

corresponding to the matrix rM is not an r-fold cover of the one corresponding to M and it

is difficult to find another topologically reasonable candidate. Or maybe the interpretation

should not involve another manifold? But what would the summation over Coker(rM)

mean in this case?

Another goals for future research are the proof of our main conjecture and an investi-

gation of 3-manifolds that are not Seifert and — more generally — not plumbed.
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