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1 Introduction

AdS/CFT methods have been successfully used in order to calculate transport in condensed

matter models, though the particular functional behaviours usually are either different

than, or more general than ones obtained in real materials, and one must phenomenologi-

cally (ad-hoc) fix parameters and/or functions to obtain a fit. This so-called “AdS/CMT”
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method is therefore viewed best as a phenomenological one, and must therefore be con-

sidered within the most general holographic model available. One is led to consider a

system of gravity plus Abelian vector field, plus a scalar that defines the kinetic functions

appearing in the Lagrangian.

Transport in such systems has been considered in many papers, but here we will be

mostly interested in the methods used in [1–7]. The question we want to ask is, what is

the effect of S-duality on this bulk holographic theory on the transport coefficients for the

holographic dual field theory? The S-duality should correspond to particle-vortex duality

in the boundary [8, 9]. We will not consider the effect of quantum gravitational corrections

to the bulk gravity action (those have been addressed in [9]). Since we are after the

effect of S-duality, we will consider a vector action that involves both Fµν and its dual F̃µν .

Transport will be calculated using three different methods, a standard membrane paradigm

type method at the horizon for nonextremal black holes, the entropy function formalism

for extremal black holes (considered in conjunction with a T → 0 limit of the previous

formalism), and the formalism of (fluid) Stokes equations in the case of one-dimensional

lattices. The last formalism is also considered in the T → 0 limit and then generalized, in

order to take advantage of a supergravity-inspired model for which we can apply the same

entropy function formalism. In all of these 3 formalisms, we consider the effect of S-duality

of the model on the transport coefficients.

The paper is organized as follows. In section 2 we define the model, the behaviour

at the black hole horizon, and we add magnetization currents in the presence of external

magnetic fields, studying the resulting thermodynamics. In section 3 we calculate electric

and thermal transport in this model, calculating the resulting transport coefficients, and

study the effect of S-duality on them. In section 4 we use the entropy function formalism,

for extremal black holes, to calculate the transport coefficients, in the corresponding limit

of the formulas from section 3, as a function of only the charges of the dual black hole. We

also explore a subtlety of S-duality in this limit. In section 5 we consider the formalism

of Stokes equations to calculate the transport coefficients, and apply it to one-dimensional

lattices. S-duality in this case is also explored. In section 6, we apply the results of section 5

to a supergravity-inspired model, by generalizing the formulas for transport coefficients and

using the entropy function formalism. In section 7 we conclude.

2 AdS/CMT model and black hole horizon data

2.1 Model and black hole horizon

Following the logic from [1], we consider 3+1 dimensional gravity coupled to an Abelian

vector field Aµ, with both a Maxwell and a “theta” (topological) term, and kinetic functions

Z(φ),W (φ) defined by a scalar “dilaton” φ, which has some potential V (φ). For more

generality, in order to break translational invariance in one or two spatial directions, we

can consider also two more scalar “axions” χ1, χ2 that have VEV linear in the coordinates
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x, y and kinetic function Φ(φ). The action is therefore

S =

∫

d4x
√−g

[

1

16πGN

(

R− 1

2
[(∂φ)2 +Φ(φ)

(

(∂χ1)
2 + (∂χ2)

2
)

]− V (φ)

)

−Z(φ)

4g24
F 2
µν −W (φ)FµνF̃

µν

]

, (2.1)

where we note the addition of the topological term with coefficient function W (φ) as

compared to [1], in order to be able to study S-duality consistently.

Here the field strength Fµν and the dual field strength F̃µν are defined as

Fµν = ∂µAν − ∂νAµ, F̃µν =
1

2

ǫ̃µνρσ√−g
Fρσ , (2.2)

while the linear axion background solution is

χ1 = k1x, χ2 = k2y. (2.3)

We are interested in models with a holographic dual, so the solutions we want to

use must be asymptotically AdS, meaning that the scalar potential must have an AdS

solution, so

V (0) = − 6

L2
, V ′(0) = 0. (2.4)

The equations of motion for the gravity and the gauge field are

Rµν =
1

2
∂µφ∂νφ+

1

2
gµνV (φ) +

(16πGN )

4g24
Z(φ)

(

2FµλFν
λ − 1

2
gµνFρσF

ρσ

)

, (2.5)

1√−g
∂µ

[√−g

(

Z(φ)

g24
Fµν + 4W (φ)F̃µν

)]

= 0. (2.6)

We have not written the equation of motion for the scalar dilaton φ (not for the

linear dilatons χ1, χ2), but we assume that it has solutions that asymptotically satisfy the

condition (2.4).

For the isotropic case (with χ1 = χ2 = 0), the background metric plus gauge field

solutions we consider are of the type

ds2 = −U dt2 + U−1dr2 + e2V (dx2 + dy2)

A = a(r)dt−Bydx, (2.7)

where U = U(r), V = V (r) (note that V (r) is a factor in the metric and V (φ) is the scalar

potential).

The solutions of interest must have a temperature T , since the dual field theory, whose

transport we want to calculate, must have the same. That means that we are interested

in black hole solutions that asymptote to AdS space, and have event horizons at r = rH .

Near it, the background fields are expanded as

U(r) ≃ U(rH) + (r − rH)U ′(rH) +O((r − rH)2) = 4πT (r − r+) + . . . ,

a(r) ≃ aH(r − rH) + . . . ,

V (r) ≃ V (rH) + . . . ,

φ ≃ φH + . . . , (2.8)
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where we assume U(rH) = 0 for the existence of the event horizon and U ′(rH) 6= 0 for a

non-extremal solution.

The near-horizon metric for the non-extremal black hole then becomes (in the extremal

case U ′(rH) = 0 also, and we need to go to the next order)

ds2 ≃ −(r − rH)U ′(rH)dt2 +
1

(r − rH)U ′(rH)
dr2 + e2V (rH)(dx2 + dy2) , (2.9)

which is of the type of two-dimensional Rindler spacetime times R
2. The surface gravity

is κ = ±U ′(rH)/2, the corresponding temperature (in units where ~ = kB = 1) being

T =
κ

2π
=

U ′(rH)

4π
. (2.10)

With the change of coordinates r − rH = U ′(rH)z2/4, the Rindler space part of the

metric is

ds2 = −(κz)2dt2 + dz2. (2.11)

The near-horizon solution admits 3 scaling symmetries,

t → λt, κ → λ−1κ, (2.12)

t → χ−1t, (r − rH) → χ(r − rH), U ′(rH) → χU ′(rH), (2.13)

eV (rH) → ξe2V (rH), x → ξ−1x, y → ξ−1y. (2.14)

2.2 Magnetizations and thermodynamics

In the next section we will study electric and thermal (heat) transport, but it is interesting

to consider it in the presence of a magnetic field, for generality of the treatment. In this case

however, it is known that there is an extra magnetic contribution to the electric and heat

currents ~J and ~Q, depending on the magnetization density M and energy magnetization

density ME , and being of the Hall (off-diagonal) type,

J
(mag)
i =

M

T
ǫij∇jT

Q
(mag)
i = MǫijEj +

2(ME − µM)

T
ǫij∇jT. (2.15)

Here both M and ME are defined for the boundary 2+1 dimensional field theory as re-

sponses of the theory to a source that changes the fields, and MQ = ME−µM is called heat

magnetization density. For a source A
(0)
x = −By, giving a magnetic field B in 2+1 dimen-

sions, the magnetization density is (minus) the variation of the (density of the) Euclidean

action with respect to B,

M = − 1

V ol

∂SE

∂B
, (2.16)

whereas the energy magnetization density is the same thing if we apply a change in the

(Minkowski) metric of the field theory, with source δg
(0)
tx = −B1y, and differentiate with

respect to B1,

ME = − 1

V ol

∂SE

∂B1

∣

∣

∣

∣

B1=0

. (2.17)
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Here the Euclidean action in the bulk is

SE =

∫

d4x
√
g

[

1

16πGN

(

R+
1

2
(∂φ)2 + V (φ)

)

+
Z(φ)

4g24
F 2 −W (φ)FµνF̃

µν

]

. (2.18)

The effect of this source on the boundary is to introduce a δg
(0)
tx = −U(r)B1y in

the bulk, and by consistency of the equations of motion, we need also to add to A a

term (a(r) − µ)B1ydx, where µ is the boundary chemical potential, obtaining a modified

background solution of (χ1 = k1x, χ2 = k2y, φ = φ(r) and)

At = a(r), Ax = −By + (a(r)− µ)B1y,

ds2 = −U(r)(dt+B1ydx)
2 +

dr2

U(r)
+ e2V (r)(dx2 + dy2). (2.19)

The inverse metric is then (in t, r, x, y space)

gµν =











B2
1e

−2V y2 − 1
U 0 −B1e

−2V y 0

0 U 0 0

−B1e
−2V y 0 e−2V 0

0 0 0 e−2V











(2.20)

After some algebra, we obtain the Maxwell field Euclidean action in the bulk, on this

ansatz, as

SMaxwell
E =

∫

d4x

[

Z(φ)e2V

4g24

(

2(a′)2 − 2e−4V [−B + (a(r)− µ)B1]
2
)

−4W (φ)a′(r)(−B + (a(r)− µ)B1)

]

. (2.21)

We then obtain the magnetization density, energy magnetization density, and heat

magnetization density as

M = − 1

V

∂SE

∂B
=

∫ ∞

rH

dr

(

e−2V Z(φ)B

g24
− 4W (φ)a′(r)

)

(2.22)

ME =

∫ ∞

rH

dr

(

e−2V Z(φ)B

g24
− 4W (φ)a′(r)

)

(µ− a(r)) (2.23)

MQ = ME − µM = −
∫ ∞

rH

dr

(

e−2V Z(φ)B

g24
− 4W (φ)a′(r)

)

a(r). (2.24)

3 Transport and S-duality

In this section we calculate electric and heat transport for the background solutions from

the previous section, in order to study the effect of S-duality on it.

We add perturbations and electrical and thermal gradient sources to the background

solution of the previous section, with the same notation as in [1, 5], in the presence of a
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magnetic field B, but at B1 = 0. The electric field perturbation is sourced by a boundary

electric field E and thermal gradient 1
T ∇iT of

Ei = Eδix ,
1

T
∇iT = ξδix. (3.1)

This results in a extra gauge field term in the bulk of (−E+ ξa(r))tdx and an extra metric

term of δg
(0)
tx = −ξtU , so adding relevant perturbations we obtain the perturbed ansatz

(the diagonal metric and At are unperturbed)

At = a(r)

Ax = −By + (−E + ξa(r))t+ δAx(r)

Ay = δAy(r)

gtx = −ξtU + e2V δhtx(r)

gty = e2V δhty(r)

grx = e2V δhrx(r)

gry = e2V δhry(r)

χ1 = kx+ δχ1(r)

χ2 = ky + δχ2(r). (3.2)

Note that the logic is that the sources E,B, ξ are small, and they in turn generate the

perturbations δhµν , solved to linear order from the Einstein’s equations, as a function of

the sources (linear response theory).

Putting an explicit ǫ in the perturbation matrix (for Mathematica computation rea-

sons), the metric and its inverse to order ǫ, in matrix form (for a space t, r, x, y), and the

field strength components, are

g =











−U 0 e2V δhtxǫ− tUǫξ e2V δhtyǫ

0 1
U e2V δhrxǫ e2V δhryǫ

e2V δhtxǫ− tUǫξ e2V δhrxǫ e2V 0

e2V δhtyǫ e2V δhryǫ 0 e2V











,

g−1 =











− 1
U 0 ǫ

(

δhtx
U − e−2V tξ

) δhtyǫ
U

0 U −Uδhrxǫ −Uδhryǫ

ǫ
(

δhtx
U − e−2V tξ

)

−Uδhrxǫ e−2V 0
δhtyǫ
U −Uδhryǫ 0 e−2V











(3.3)

Frt = a′,

Ftx = ǫ(−E + ξa),

Fxy = B,

Frx = ǫξa′t+ ǫδA′
x,

Fry = ǫδA′
y. (3.4)
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The gauge field equations, x and y components, are

0 = ∂t

(√−gZ(φ)

g24
F tx + 4

√−gW (φ)F̃ tx

)

+ ∂r

(√−gZ(φ)

g24
F rx + 4

√−gW (φ)F̃ rx

)

+∂y

(√−gZ(φ)

g24
F yx + 4

√−gW (φ)F̃ yx

)

(3.5)

0 = ∂t

(√−gZ(φ)

g24
F ty + 4

√−gW (φ)F̃ ty

)

+ ∂r

(√−gZ(φ)

g24
F ry + 4

√−gW (φ)F̃ ry

)

+∂x

(√−gZ(φ)

g24
F xy + 4

√−gW (φ)F̃ xy

)

, (3.6)

and become on the ansatz to leading order

0 = −∂t

[

1

g24

(

a′Ze2V δhrx +
ξaZ

U
+

ZB

U
δhty −

EZ

U

)

+ 4WδA′
y

]

= −∂r

(√−gZ(φ)

g24
F rx + 4

√−gW (φ)F̃ rx

)

, (3.7)

∂t

[

− 1

g24

(

a′e2V Zδhry −
BZ

U
δhtx + ZBe−2V tξ

)

+ 4W (ξa′t+ δA′
x)

]

= − Z

g24
ξe−2V B + 4ξWa′

= ∂r

(

Z

g24

√−gF yr + 4
√−gWF̃ yr

)

. (3.8)

3.1 Electric current, conductivity and thermoelectric coefficients

The calculation of the transport coefficients of the dual field theory at the horizon of the

black hole relies on the membrane paradigm idea, first presented in the calculation of [10],

that the quantities appearing in the currents are independent of the radial position r, so

instead of calculating them at the boundary at r → ∞, like the AdS/CFT prescription

dictates, we can calculate them at the horizon. But if it is the case that the currents do

depend on r, like in [1], we must redefine them, and find quantities that can be calculated

at the horizon, being r independent.

The standard (and total) current, defined according to [10] (see also [11]), would be

ji(tot) =
δS

δ∂rAi
=

Z(φ)

g24

√−gF ir + 4
√−gW (φ)F̃ ir , (3.9)

where S is the full bulk action. But we note that, because of (3.8), the y component of the

gauge field equation is not r-independent, so cannot be calculated at the horizon.

We must calculate instead the modified currents (or fluxes) defined as

J x =
Z(φ)

g24

√−gF xr + 4
√−gW (φ)F̃ xr,

J y =
Z(φ)

g24

√−gF yr + 4
√−gW (φ)F̃ yr − ξM(r) , (3.10)
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which are now independent of r, since M(r) is a position-dependent magnetization density

given by (2.22), only integrated up to r only instead of all the way to ∞, so that ∂r on it

gives the bracket in (2.22) as the extra term in (3.8).

Explicitly, we obtain the fluxes

J x = −ǫ
Z

g24
a′e2V δhtx − ǫ

Z

g24
UδA′

x − ǫ
Z

g24
UBδhry

J y = − Z

g24
UδA′

y −
Z

g24
e2V a′δhty +

Z

g24
BUδhrx + 4W (−E + ξa)− ξM(r) , (3.11)

which can then be evaluated at any r, including rH (the horizon).

The important observation is that, while ∂rJ i = 0, so we can calculate them at the

horizon, at infinity M(r) = M(∞) = M is just the magnetization, so we just subtract

the magnetization currents from the total currents, obtaining the usual transport currents,

from which we can calculate the conductivity and thermoelectric coefficients,

J i(r = rH) = J i(r → ∞) = ji(tot) − ξiM = ji. (3.12)

The advantage of being able to calculate at the horizon is that we can impose the

conditions of regularity at the horizon (remember that Ei = Eδix and ξi = ξδix)

δAi = − Ei

4πT
ln(r − rH) +O(r − rH),

δχi = O((r − rH)0),

δhti = Uδhri −
ξiU

4πe2V T
ln(r − rH) +O(r − rH), (3.13)

and moreover, since M(r) is an integral from rH to r, it vanishes at the horizon, simplifying

the result. Using (3.13), we obtain that the fluxes at the horizon, equaling the transport

currents, are

jx = J x(rH) =
Z

g24
Ex −

Z

g24
e2V a′δhtx −

Z

g24
Bδhty

∣

∣

∣

∣

rH

,

jy = J y(rH) =
Z

g24
Ey − e2V Za′δhty +

Z

g24
Bδhtx − 4W (E + ξa)

∣

∣

∣

∣

rH

. (3.14)

As we see, it remains to solve for δhti using the Einstein’s equations, as a function of

the external sources E,B, ξ (linear response theory). Since the topological term with W (φ)

doesn’t contribute to Einstein’s equations (it is independent of the metric), the linearized

Einstein’s equations are the same as in [1], namely

U(e4V δh′tx)
′ −

(

2κ2

g24
ZB2 + e2V k2Φ

)

δhtx +
2κ2

g24
ZBUe2V a′δhty = −2κ2

g24
Ze2V a′δa′x,

U(e4V δh′ty)
′ −

(

2κ2

g24
ZB2 + e2V k2Φ

)

δhty −
2κ2

g24
ZBUe2V a′δhtx = −2κ2

g24
Ze2V a′δa′y

+
2κ2

g24
ZB(−E + ξa).

(3.15)
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Using the regularity conditions at the horizon (3.13), we obtain

(

2κ2

g24
ZB2 + e2V k2Φ

)

δhtx −
2κ2

g24
ZBe2V a′δhty = −2κ2

g24
Ze2V a′E + e2V U ′ξ,

(

2κ2

g24
ZB2 + e2V k2Φ

)

δhty −
2κ2

g24
ZBe2V a′δhtx =

2κ2

g24
ZBE , (3.16)

and after some algebra we solve the δhti graviton fluctuations in terms of the sources

E,B, ξ as

δhtx =

2κ2

g2
4

Ze4V a′k2Φ
(

2κ2

g2
4

ZB2 + e2V k2Φ
)2

+
(

2κ2

g2
4

Z
)2

B2e4V a′2
E

+

(

2κ2

g2
4

ZB2 + e2V a′k2Φ
)

e2V U ′ξ
(

2κ2

g2
4

ZB2 + e2V k2Φ
)2

+
(

2κ2

g2
4

Z
)2

B2e4V a′2
,

δhty =

2κ2

g2
4

ZB
(

2κ2

g2
4

ZB2 + e2V k2Φ
)E− 2κ2

g24
ZBe2V a′

e2V U ′ξ
[ (

2κ2

g2
4

ZB2+e2V k2Φ
)2

+
(

2κ2

g2
4

Z
)2

B2e4V a′2
]

−
2κ2

g2
4

ZBe2V a′

(

2κ2

g2
4

ZB2 + e2V k2Φ
) [(

2κ2

g2
4

ZB2 + e2V k2Φ
)2

+
(

2κ2

g2
4

Z
)2

B2e4V a′2
]
×

×e4V
2κ2

g24
Za′k2ΦE. (3.17)

We can now replace the fluctuations (3.17) in the currents (3.14), use the fact that U ′(rH) =

4πT (meaning that U ′(rH)ξ = 4πTξ) and separate the terms according to the sources E

and ξ, via

ji = σijE
j − αij(∇T )j = σixE − αixTξ. (3.18)

From this, we can identify directly the conductivities and thermoelectric coefficients as

σxx =
e2V k2Φ(2κ24g

4
4ρ

2 + 2κ24B
2Z2 + g24Ze2V k2Φ)

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2

∣

∣

∣

∣

rH

,

σxy = 4κ24Bρ
κ24g

4
4ρ

2 + κ24B
2Z2 + g24Ze2V k2Φ

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2
− 4W

∣

∣

∣

∣

rH

, (3.19)

αxx =
2κ24g

4
4sρe

2V k2Φ

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2

∣

∣

∣

∣

rH

,

αxy = 2κ24sB
2κ24g

4
4ρ

2 + 2κ24B
2Z2 + g24Ze2V k2Φ

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2

∣

∣

∣

∣

rH

, (3.20)

which have been expressed in terms of the boundary charge density ρ = −Ze2V a′ and the

entropy density (Hawking formula) s = 4πe2V (rH).

We note that the only new contribution is from theW term in the Hall conductivity σxy.
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3.2 Heat current and heat conductivity

We move on to the heat current, considered (also with a topological term) from the point

of view of transport coefficients in the presence of magnetization in [6]. The heat current

itself was defined in [3].

The (total) heat current is obtained from the energy-momentum tensor by subtracting

the electric current,

Q(tot)i = T (tot)i0 − µJ (tot)i. (3.21)

But in [3, 6] it was noticed that the result one obtains from this equals, at r → ∞, the flux

Q(tot)i =
√−gGri , (3.22)

where the bulk 2-form Gµν is defined through

Gµν = −2∇[µkν] − Zk[µF ν]ρAρ −
1

2
(ψ − 2θ)Hµν , (3.23)

where

Hµν ≡ Z(φ)Fµν + 4g24W (φ)F̃µν , (3.24)

and where kµ is the vector ∂t. However, more generally, an arbitrary vector satisfying

∇µk
µ = 0 will also satisfy (as can be easily checked) the general property

∇µ(∇[µkν]) = ∇µ(∇(µkν))−Rν
µk

µ, (3.25)

which is the only one we need. The functions ψ and θ are defined by the relations

∇ρψ = (LkA)ρ = kµ∂µAρ +Aµ∂ρkµ, (3.26)

∇ρθ = kµFµρ −
1

2
ξρk

µAµ. (3.27)

After some involved algebra, we obtain

∇µG
µν = V kν − 2∇µ(∇(µkν)) +

1

2
ZF νµsµ − Z

2
Aρ(LkF )νρ

−2g24(∂µW )F̃µρAρk
ν − 2g24WF̃µν∇µ(ψ − 2θ) , (3.28)

where

(LkF )νρ = kµ∇µF
νρ −∇µk

νFµρ −∇µk
ρF νµ

sµ ≡ kνFνµ −∇µθ , (3.29)

and where we define on-shell V by

2Rµ
νk

ν = V kµ. (3.30)

We also calculate, in the Ar = 0 gauge and in the background (no fluctuations), and using

the fact that kµ = (∂t)
µ,

∫

dxρ∇ρ(ψ − 2θ) =

∫

dxρkµ∂µAρ +

∫

dxρAµ∇ρk
µ − 2

∫

dxρkµFµρ +

∫

dxρξρikA

= Ex+ 2a. (3.31)
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Further,

Gri = −∇rki +∇ikr − Z(Φ)k[rF i]σAσ − 1

2
(2a(r) + Ex)Hri

= −grαΓi
αt + giαΓr

αt −
1

2
(2a(r) + Ex)Hri , (3.32)

so, after some calculations in the presence of fluctuations, we find that at r → ∞, when

a(r) dominates over Ex, we have

−Q(tot)i = −√−gGri = U2

(

e2V δhti
U

)′

+ a(r)
√−g(Z(φ)F ri + 4g24W (φ)F̃ ri). (3.33)

Note that

F rx = ǫ(a′δhtx + Ue−2V δA′
x + Ue−2V Bδhry)

F ry = ǫ(a′δhty + Ue−2V δA′
y − Ue−2V Bδhrx)√−gF̃ rx = 0

√−gF̃ ry = −ǫ(−E + ξa). (3.34)

However, from (3.28), we find that
√−g∇µG

µi = ∂µ(
√−gGµi) 6= 0 , (3.35)

and it equals zero only in the absence of thermal fluctuations (which we are interested in).

If it would be true, we would have that the linearized fluxes
√−gGri would be independent

of r, and could be evaluated at the horizon.

As it is, we obtain from evaluating (3.28) the modified conservation laws,

∂r(
√−gGrx) = −∂t(

√−gGtx)− ∂y(
√−gGyx),

∂r(
√−gGry) = −∂t(

√−gGty)− ∂x(
√−gGxy) +

√−gHxya(r). (3.36)

Moreover, we calculate

Gtx = −gttΓx
tt + gxrΓt

rt −
1

2
ZF xtAt −

1

2
ZF xyAy −

1

2
(2a+ Ex)(ZF tx + 4g24WFyr)

Gxy = −1

2
(2a+ Ex)(Ze−4V B − 4g24e

−2V a′) = −1

2
(2a+ Ex)Hxy

Gty = −U ′

U
δhry −

1

2
Z(e−4V Bξt+ · · ·)a

−1

2
Z

[(

−e−4V B +
δhtye

−2V

U
(−E + ξa)

)

(−E + ξa)t+ . . .

]

−1

2
(2a+ Ex)[Z(e−4V Bξt+ · · ·)− 4g24W (ξa′t+ δA′

x)], (3.37)

where “· · ·” represents terms that do not depend on the t coordinate, resulting in

∂t(
√−gGtx) = 0

∂x(
√−gGxy) =

E

2
(Ze−2V B − 4g24Wa′)

∂t(
√−gGty) = −1

2
Ze−2V Bξa+

1

2
Ze−2V B(−E + ξa)

−1

2
(2a+ Ex)(Ze−2V Bξ − 4g24Wa′ξ). (3.38)

Note that we consider always the case when a(x) dominates over Ex.
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Finally, one obtains

∂r(
√−gGrx) = 0,

∂r(
√−gGry) = e2V Hxy(E − 2ξa(r))

= −(e−2V Zφ)B − 4g24W (φ)a′)(E − 2ξa(r)) , (3.39)

where we have used F xy = Ze−4V B,
√−gF̃ xy = −a′ and

√−g = e2V , which can be easily

calculated. This in turn is consistent with a particular example of the more general formula

presented in [6],

∂r(
√−gGir) = ∂j(

√−gGji) + 2
√−gGijξj +

√−gH ijEj , (3.40)

upon specializing to ξi = ξδix, Ei = Eδix and using Gyx = −aHyx.

Since there is an extra term in the conservation law (3.39), like in the case of the electric

current, we can add an extra term to the heat current, obtaining the fluxes (compare

with (3.33))

Qx = U2

(

e2V δhtx
U

)′

− a(r)
√−gHrx,

Qy = U2

(

e2V δhty
U

)′

− a(r)
√−gHry −M(r)E − 2MQ(r)ξ, (3.41)

where M(r) and MQ(r) are given by (2.24) and (2.22), only integrated until r instead

of infinity. Note that their integrands match the right hand side of the non-conservation

in (3.39), so by derivating with respect to r we obtain the needed extra term to cancel the

non-conservation, so that

∂rQi = 0 , (3.42)

as wanted. But by construction M(r) and MQ(r) (which are integrated from the horizon

to r) vanish at the horizon. Moreover, at the boundary r → ∞, M(r) → M,MQ(r) → MQ,

so the extra term are the magnetization currents, and subtracting them we obtain the pure

transport currents,

Qi = Q(tot)i −ME − 2MQξ = Qi(r → ∞) = Qi(rH) (3.43)

so that at the horizon we calculate the transport currents.

At the horizon, not only M(rH) = MQ(rH) = 0, but also a(rH) = 0 and U(rH) = 0

(but U ′(rH) 6= 0) by the boundary (regularity) condition there, which means that finally

we obtain

Qi = − U ′e2V δHti

∣

∣

r=rH
. (3.44)

This is the same formula as in the case without topological term, in [1]. The graviton

perturbations in the presence of E,B, ξ sources was already calculated in (3.17), so substi-

tuting them in the above, and comparing with the general formula

Qi = TαijEj − κij∇jT , (3.45)
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with ∇iT = ξδixT,Ei = Eδix and U ′(rH) = 4πT , we thus extract the coefficients of TE

and ξT as

αxx =
sρe2V k2Φ

B2ρ2 + (B2Z + e2V k2Φ)2
,

αxy = sB
(B2Z2 + ρe2V k2Φ+ ρ2)

B2ρ2 + (B2Z + e2V k2Φ)2

κxx =
s2T (B2Z + e2V k2Φ)

B2ρ2 + (B2Z + e2V k2Φ)2

κxy =
s2TρB

B2ρ2 + (B2Z + e2V k2Φ)2
. (3.46)

The thermoelectric coefficients agree with the results obtained from the electric current

in (3.20), as they should, by general transport theory. We have no new contributions from

the topological term with W (φ).

3.3 S-duality

The general conductivity formulas (3.19), (3.20), (3.46) contain explicitly a nonzero electric

charge ρ, and magnetic field B, but no nonzero magnetic charge or electric field, so as they

are, they do not exhibit manifest S-duality (Maxwell duality in a more general setting).

However, we can consider ρ = 0, B = 0 in them, and obtain

σxx = Z(rH)

σxy = −4W (rH)

αxx = 0 = αxy =
κxy
T

κxx
T

=
s2

e2V (rH)k2Φ(rH)
. (3.47)

We see that the isotropic thermal conductivity κxx is singular for Φ(rH) → 0, but

we keep it finite. In any case, the αij and κij coefficients are invariant under changes of

the eletric/magnetic variables (S-duality). The other formulas are consistent with previous

results at ρ = B = 0, where we know the effect of S-duality [9].

Indeed, we can explicitly check that our action (2.1) is invariant under the transfor-

mation

Fµν → Z(φ)F̃µν − W̄ (φ)Fµν ≡ Z(φ)
1

2
ǫµνρσF

ρσ − W (φ)

4

Z(φ) → − Z(φ)

Z(φ)2 + W̄ (φ)2

W̄ (φ) → W̄ (φ)

Z(φ)2 + W̄ (φ)2
, (3.48)

where we have defined W̄ (φ) ≡ W (φ)/4.

It was shown in [9] that this transformation comes from a simple duality transformation

on the action (going to a master action and then writing a dual action in terms of a
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previously auxiliary field). Moreover, as we can see, since σxx = Z(rH) and σxy = −W̄ (rH),

this transformation becomes

σ′
xx =

σxx
σ2
xx + σ2

xy

σ′
xy = − σxy

σ2
xx + σ2

xy

, (3.49)

or, by defining the usual complex conductivity σ ≡ σxy + iσxx, simply the usual S-duality

formula acting on complex objects,

σ′ = − 1

σ
. (3.50)

This is indeed the effect of particle-vortex duality (standing in for S-duality in 2+1

dimensions) in the dual field theory, as seen for instance in [8, 12].

4 Transport via entropy function and S-duality

We next consider an alternative treatment of transport, relevant for extremal black holes

(unlike the nonextremal case in the previous section) using the entropy function formalism,

and generalize the work in [7, 13] to the case with a topological term.

The entropy function formalism was developed by Sen [14, 15], having in mind the

application to the attractor mechanism [16, 17]. Within the context of transport, the first

application was in [7], whose logic we will follow here.

4.1 Entropy function formalism

The entropy function formalism calculates the entropy and other quantities at the horizon

of an extremal black hole by the extremization of a function called the entropy function.

Since as we saw in the previous section often transport properties are determined at the

horizon of a black hole in a gravity dual, this formalism will allow us to do the calculations

easily.

The specific case we are interested in is the case of an extremal dyonic black hole in

four dimensions, which is known to have a near-horizon geometry of the type AdS2×S2, or

AdS2 ×R
2, in the case of a planar horizon. The near-horizon metric in this latter (planar)

case is

ds2 = v

(

−r2dt2 +
dr2

r2

)

+ wd~x2, (4.1)

where v is the AdS2 radius, w is the R
2 radius. The Ricci scalar for this metric is

R = −2

v
. (4.2)

The attractor mechanism [16, 17] means that the values for the fields at the horizon

are independent on the values at infinity, depend only on the electric and magnetic charges

of the black hole, and can be found from the extremization of the entropy function. For an
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application in the AdS/CFT correspondence, see [18]. The constant values taken by the

scalar and vector fields at the horizon are denoted by

φs = us, F
(A)
rt = eA, F

(A)
θφ = BA, (4.3)

where eA and BA are related to the electric and magnetic charges respectively.

We define the function f(us, v, w, eA, pA) as the Lagrangian density
√− det gL evalu-

ated for the near-horizon geometry (4.1) and integrated over the coordinates of the planar

horizon [14, 15],

f(us, vi, eA, pA) =

∫

dxdy
√

− det gL. (4.4)

Then the entropy function is

E(~u,~v,~e, ~q, ~p) ≡ 2π[eAQ
A − f(~u,~v,~e, ~p)]. (4.5)

Its equations of motion,

∂E
∂us

= 0,
∂E
∂v

= 0,
∂E
∂w

= 0,
∂E
∂eA

= 0 , (4.6)

are called attractor equations, and fix the horizon data (us, v, w, eA) as a function of the

electric and magnetic charges of the black hole, QA, pA, thus defining the attractor solution.

At the extremum (for the true values of the horizon data at the horizon), the entropy

function equals the entropy of the black hole,

SBH = E(~u,~v,~e, ~q, ~p). (4.7)

Note that in the case of the R
2 horizon black hole, as f is an integral over the horizon

(which has infinite volume, or rather area), we must consider the entropy density instead.

4.2 Electrical and heat conductivities

We want to apply the entropy function formalism, for extremal black holes in an asymp-

totically AdS gravity dual, in order to calculate the transport coefficients, using the for-

mulas (3.20), (3.19), (3.46).

However, as we mentioned, these results from last section were for nonextremal black

holes. But we can consider the particular case of extremal black holes by taking the

temperature to zero, T → 0. Indeed, for an extremal black hole we have

U(r) ≈ U(rH) + (r − rH)U ′(rH) +
(r − rH)2

2
U ′′(rH) +O(r3) , (4.8)

where U ′(rH) = 4πT = 0. Therefore the near-horizon metric is

ds2 = −(r − rH)2

2
U ′′(rH)dt2 +

2

(r − rH)2U ′′(rH)
dr2 + e2V (rH)(dx2 + dy2) , (4.9)

and by the coordinate redefinition

r − rH = ρ̃, t =
2

U ′′(rH)
τ, (4.10)
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we obtain the AdS2 × R
2 metric

ds2 =
2

U ′′(rH)

(

−ρ̃2dτ2 +
dρ̃2

ρ̃2

)

+ e2V (rH)(dx2 + dy2), (4.11)

where therefore

v =
2

U ′′(rH)
, w = e2V (rH). (4.12)

We can then apply the formalism from the previous section with T → 0, and then use

the entropy function formalism from the previous subsection to calculate the horizon data

as a function of the electric and magnetic charges.

Moreover, from the previous section, the ansatz for the field strength to leading order

(in the absence of perturbations) was

F = a′(r)dr ∧ dt+Bdx ∧ dy. (4.13)

Changing to the near-horizon coordinates, we obtain

F =
2a′(rH)

U ′′(rH)
dρ̃ ∧ dτ +Bdx ∧ dy. (4.14)

Comparing with the ansatz for the entropy function formalism at the horizon, (4.3), we

also obtain

e =
2a′(rH)

U ′′(rH)
= va′(rH). (4.15)

In order to use the entropy function formalism, we consider Φ(φ) = 0 in (2.1), so that

we don’t have axions, obtaining

S =

∫

d4x
√−g

[

1

16πGN

(

R− 1

2
∂µφ∂

µφ− V (φ)

)

− Z(φ)

4g24
FµνF

µν −W (φ)FµνF̃
µν

]

.

(4.16)

Using (4.1), (4.2) and (4.3), we compute the Lagrangian in the near-horizon region,

√−gL =
1

16πGN
(−2w − wvV (uD)) +

Z(uD)

2g24

(w

v
e2 − v

w
B2

)

+ 4W (uD)eB , (4.17)

where uD is the value of the dilaton field on the horizon.

The entropy function (4.5) is then

E = 2π[eAQ
A −VolR‘2

√−gL]. (4.18)

The attractor equations (equations of motion of the entropy function) for our system

are then

Q

VolR2
− Z(uD)

g24

w

v
e− 4W (uD)B = 0, (4.19)

Z(uD)

2g24

(

w

v2
e2 +

B2

w

)

+
w

16πGN
V (uD) = 0, (4.20)

2

16πGN
− Z(uD)

2g24

(

1

v
e2 +

v

w2
B2

)

+
v

16πGN
V (uD) = 0, (4.21)

− 1

2g24

∂Z(uD)

∂uD

(w

v
e2 − v

w
B2

)

− 4
∂W (uD)

∂uD
eB +

wv

16πGN

∂V (uD)

∂uD
= 0. (4.22)
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Using (4.19) we eliminate Q from (4.18), and obtain

E = 2πVolR2

[

1

(16πGN )
(2w + wvV (uD)) +

Z(uD)

2g24

(w

v
e2 +

v

w
B2

)

]

. (4.23)

We combine equations (4.20) and (4.21) and obtain

V (uD) = −1

v
, (4.24)

Z(uD)

2g24

(

e2

v2
+

B2

w2

)

=
1

(16πGN )

1

v
, (4.25)

and replacing this in (4.18), we obtain the entropy (value of the entropy function on the

solution of the attractor equations)

E =
4πwVolR2

16πGN
=

wVolR2

4GN
=

A

4GN
. (4.26)

This is the expected Hawking formula for the entropy of the black hole, which shows that

the attractor mechanism for the entropy function does work in this case as well.

Moving on to the transport, the electric current is defined in the gravity dual as

before, as

〈Jµ〉 = δSon-shell

δ∂rAµ

∣

∣

∣

∣

boundary

=
√−g

(

Z(φ)

g24
Fµν + 4W (φ)F̃µν

)

. (4.27)

As we saw in the previous section, by subtracting a magnetization term that vanishes at

the horizon, we obtain the pure transport current (not the total one), and the resulting

flux is r-independent, so can be calculated at the horizon. That means that the charge

density J0 ≡ ρ of the dual field theory can be calculated at the horizon, obtaining1

ρ =
Z(uD)wa

′(rH)

g24
+ 4W (uD)B. (4.28)

Replacing (4.28) in the attractor equation (4.19), with the identification (4.15), we

obtain that the charge density of the dual field theory ρ equals the charge density of the

gravity dual black hole in the entropy function formalism,

ρ = Q̃ ≡ Q

VolR2
. (4.29)

Moreover, the entropy density of the dual field theory equals the entropy density of

the black hole, which because of (4.26) becomes

s =
4πw

16πGN
. (4.30)

1Remember that At = a(r) vanishes at the horizon due to the regularity conditions, but a′(r) does not.
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Replacing these ρ, s, together with T → 0,Φ(φ) = 0 in (3.20), (3.19), (3.46), gives the

finite results

σxx = 0,

σxy =
ρ

B
− 4W,

αxx = 0,

αxy =
s

B
,

κ̄xx
T

=
s2Z

g24

(

ρ2 + B2Z2

g4
4

) ,

κ̄xy
T

=
ρ

B

s2
(

ρ2 + B2Z2

g4
4

) , (4.31)

where we wrote κ̄ij/T , since this is usually the relevant finite quantity.

While in the above analysis we have considered the case of nonzero B, let us comment

on the case of zero magnetic field. In order to obtain regular planar black holes with only

electric charge (and finite chemical potential) for the Einstein-Maxwell-dilaton theory, the

dilaton potential must be non-zero.2 As it was pointed out on page 13 of ref. [7], the

regularity of the solutions in the extremal limit is guaranteed if the attractor equations

admit solutions, since they are also solutions to the equations of motion with AdS2 × R
2

near-horizon geometry. So, Sen’s formalism is applicable for the Einstein-Maxwell-dilaton

theory with only electric charge if there is a non-zero dilaton potential, i.e., zero magnetic

field and finite chemical potential (consider eqs. 3.7 and 3.10 in [7] relating µ 6= 0, B = 0

with ρ = Q̃ 6= 0 and v finite, which by our eq. (4.24) means nonzero potential). Notice

that the coupling γ inside the dilaton potential (for instance γm in (4.47) below) must

be chosen in order to obtain regular solutions, since it might be possible to find limits

when the solutions are non-regular. As it was also pointed out in the same reference, Sen’s

formalism is not applicable for general theories with Lifshitz symmetry since these don’t

have an AdS2 × R
2, although it might also be possible to obtain finite chemical potential

with no magnetic charge in this case.

4.3 Examples

Finally, since we have obtained the formulas for the transport coefficients as a function of

ρ/B, s/B and W (uD), it remains to solve the attractor equations in specific cases, so as to

write explicit formulas for the transport coefficients as a function only of the charges and

the magnetic field B.

4.3.1 Constant potential and power law topological term

We consider first the case that the potential is just a constant negative cosmological con-

stant (giving the AdS vacuum at infinity), while the topological term is a power law of the

2One can write the attractor equations for zero magnetic charge and non-zero electric charge and find

the solutions only in the case when the dilaton potential is nonzero.
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kinetic function Z(φ),

V (φ) =
−6

L2
, W (φ) = βZn(φ). (4.32)

We manipulate the attractor equations so that we can write s, ρ,W (uD) in terms of the

charges.

Equation (4.24) gives v, which now is a constant,

v =
L2

6
. (4.33)

Equation (4.19) gives

Q̃− Z

g24

w

v
e− 4βZnB = 0 , (4.34)

which can be solved for e as

e =
g24
Z

v

w
(Q̃− 4βZnB). (4.35)

Using
∂W

∂uD
=

∂W

∂Z

∂Z

∂uD
= βnZn−1 ∂Z

∂uD
(4.36)

in (4.22) and (4.21), we obtain

Z

g24

(

e2

v2
+

B2

w2

)

− 1

16πGN

2

v
= 0, (4.37)

Z

g24

(

e2

v2
− B2

w2

)

+
8βnZneB

wv
= 0. (4.38)

Substituting e from (4.35) in the above equations, and eliminating w from the two, as

w2 =
v

α

[

Z

g24
B2 − 4βnZnQ̃B

g24
Z

+ (4βZnB)2n
g24
Z

]

, (4.39)

where α ≡ 1
16πGN

, we obtain the polynomial equation for Q̃,

Q̃2 − Z2

g44
B2 − 8βQ̃B(1− n)Zn + (4βB)2(1− 2n)Z2n = 0. (4.40)

• The n = 0 case.

In this case, solving (4.40) gives

Z

g24
= ±

(

Q̃

B
− 4β

)

. (4.41)

Substituting back into (4.39) and (4.35), we obtain

w =

√

±L2(16πGN )B

6
[Q̃− 4βB]

e = ±
√

± L2

6(16πGN )

B

(Q̃− 4βB)
. (4.42)
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Finally now we can put everything back into (4.31) and obtain the nonzero transport

coefficients as a function of the charges as

σxy =
Q̃

B
− 4β,

αxy = 4π

√

√

√

√± L2

6(16πGN )

(

Q̃

B
− 4β

)

,

κ̄xx
T

= (4π)2
L2

6(16πGN )

(Q̃− 4βB)2

Q̃2 + (Q̃− 4βB)2

κ̄xy
T

= ±(4π)2
L2

6(16πGN )

Q̃(Q̃− 4βB)

Q̃2 + (Q̃− 4βB)2
. (4.43)

• The n = 1 case.

In this case, solving (4.40) gives

Z

g24
= ± Q̃

B

1
√

1 + (4βg24)
2
. (4.44)

Substituting back into (4.39) and (4.35), we obtain

w2 =
v

α
Q̃B4βg24

[

±
√

1 +
1

(4βg24)
2
− 1

]

e =

√

vαQ̃B(±
√

1 + (4βg24)
2 − 4βg24). (4.45)

Putting everything back into (4.31), we obtain the nonzero transport coefficients as a

function of the charges as

σxy =
Q̃

B

(

1∓ 4βg24
√

1 + (4βg24)
2

)

,

αxy = 4π

√

L2

6(16πGN )

Q̃

B

(

±
√

(4βg24)
2 + 1− 4βg24

)

κxx
T

= (4π)2
L2

6(16πGN )

(

±
√

1 + (4βg24)
2 − 4βg24

)

√

1 + (4βg24)
2

2 + (4βg24)
2

κxy
T

= (4π)2
L2

6(16πGN )

(

±
√

(4βg2)2 + 1− 4βg24

) 1 + (4βg2)2

2 + (4βg2)2
. (4.46)

4.3.2 Power law potential and power law topological term

Next we want to consider the more general case when the potential is polynomial, specifi-

cally

V (uD) =
∑

m

γmZm. (4.47)

Now we still have

v = − 1

V (uD)
, (4.48)
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because of (4.24), just that the right-hand side is not a constant anymore. Further, (4.19)

is unchanged, so we can still solve for e in the same way, obtaining again (4.35).

However, now from (4.22) and (4.21), we obtain

2α

v
− Z̃

2

(

e2

v2
+

B2

w2

)

+ α
∑

γmZm = 0, (4.49)

− 1

2g24

(

e2

v2
− B2

w2

)

∂Z

∂uD
− 4βnZn−1 eB

wv

∂Z

∂uD
+ α

∑

mγmZm−1 ∂Z

∂uD
= 0. (4.50)

Now, if ∂Z
∂u 6= 0, substituting e from (4.35) in the above equations, and eliminating w

from the two, we obtain a new polynomial equation for Q̃,

(m−2n+1)Z2n−2(m−n+1)

(

Q̃

4βB

)

Zn+(m−1)
Z2

(4βg2)2
+(m+1)

(

Q̃

4βB

)2

= 0. (4.51)

Moreover, (4.49) can be used to solve for w, if we substitute in it e from (4.35) and v

from (4.48).

• The n = 0 case.

In this case, solving (4.51) leads to

Z

g24
= ±

√

−m+ 1

m− 1

(

Q̃

B
− 4β

)

. (4.52)

• The n = 1 case.

In this case, (4.51) becomes

(m− 1)

[

1 +
1

(4βg24)
2

]

Z2 − 2m
Q̃

4βB
Z + (m+ 1)

Q̃2

(4βB)2
= 0. (4.53)

For small perturbations, 4βg24 ≫ 1, its solution behaves like

Z ∼ Q̃

4βB
, (4.54)

but otherwise the full solution is unenlightening.

In principle we could proceed as before, and solve for w and replace everything in the

transport coefficients, but the calculations are difficult (we obtain higher order algebraic

equations) and the solutions unenlightening.

4.4 S-duality

In this case, we have a different limit of the conductivity formulas with respect to the case

at section 3, since now we have first Φ → 0, T → 0, and then nonzero ρ,B, s (the opposite

of section 3). As mentioned there, we cannot check S-duality explicitly on this background,

since we have ρ 6= 0, B 6= 0, but ρm = 0 = E. Moreover (and related) we have black holes

with Q 6= 0, B 6= 0, but P = 0, E = 0. We can however take the limit (notice the order of
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limits though, we first took Φ → 0, and then took ρ → 0, unlike in section 3) ρ → 0, s → 0

and obtain

σxx = 0 , σxy = −4W (rH) = −W̄ (rH) , αxx = 0 = αxy = κxy = κxx. (4.55)

Then we obtain a subset of the S-duality of section 3, namely

W̄ → 1

W̄
⇒ σxy → − 1

σxy
, (4.56)

namely what we obtain by restricting to σxx = 0.

Notice however that we still have Z(rH) 6= 0, and that is due to the order of limits we

took (the limits are non-commutative).

5 Transport from Stokes equations and S-duality

Starting with [4], and developed in [2, 6], the transport coefficients (σ, α, ᾱ, κ)ij for electric

and thermal transport were also obtained from a formalism of perturbations of black hole

solutions that leads to generalized Stokes equations. In the limit when hydrodynamics is

valid, it was shown in [19] that the formalism turns into the fluid/gravity correspondence

formalism [20].

Here we will apply the formulas of [6] to some one-dimensional lattices and take a

relevant T → 0 limit, with the goal of, in the next section, make some generalizations for

that, and use the entropy function formalism for a supergravity-inspired model.

5.1 Stokes equations from black hole horizons

We consider the action (2.1) at Φ(φ) = 0, i.e., the Einstein-Maxwell-dilaton action (4.16),

which has a topological term for the gauge field.

We consider electrically charged black holes solutions in 3+1 dimensions, with a metric

and gauge field

ds2 = gttdt
2 + grrdr

2 + gijdx
idxj + 2gtrdtdr + 2gtidtdx

i + 2gridrdx
i,

A = Atdt+Ardr +Aidx
i. (5.1)

At infinity, the solution should go to AdS4 with sources, so

ds2 → r−2dr2 + r2[g
(∞)
tt dt2 + g

(∞)
ij dxidxj + 2g

(∞)
ti dtdxi],

A → A
(∞)
t dt+A

(∞)
i dxi,

φ → r∆−3φ(∞) , (5.2)

where A
(∞)
t = µ(x) is the spatially-dependent chemical potential (source for particle num-

ber in the dual CFT), g
(∞)
tt = G̃(x) and g

(∞)
ij = g̃ij(x) define the source for the energy-

momentum tensor of the dual CFT, and φ(∞) = φ̃(x) is a source for the dual scalar operator

in the CFT.
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The solution should have a horizon at r = rH , and near it, we expect the expansion

gtt(r, x) = −U(r)(G(0)(x) + . . .)

grr(r, x) = U−1(r)(G(0)(x) + . . .)

gti(r, x) = U(r)(g
(0)
tr (x) + . . .)

gti(r, x) = U(r)(G(0)(x)χ
(0)
i (x) + . . .)

At(r, x) = U(r)

(

G(0)(x)

4πT
A

(0)
t (x) + . . . .

)

gij(r, x) = h
(0)
ij (x) + . . .

gir(r, x) = g
(0)
ir (x) + . . .

Ai(r, x) = A
(0)
i (x) + . . .

Ar(r, x) = A(0)
r (x) + . . .

φ(r, x) = φ(0)(x) + . . . , (5.3)

where the dots refer to higher orders in r − rH and, as before, U(r) = 4πT (r − rH) + . . .,

which means that the fields proportional to U vanish at the horizon. The most relevant

horizon data are then T, h
(0)
ij , A

(0)
t , χ

(0)
i and φ(0).

The metric, gauge field and scalar perturbation that introduces sources for the electric

and heat currents is

δ(ds2) = δgµνdx
µdxν + 2tgttξidtdx

i + t(gtiξj + gtjξi)dx
idxj + 2tgtrξidrdx

i

δA = δaµdx
µ − tEidx

i + tAtξidx
i, δφ , (5.4)

where as before we have Ei(x)dx
i electric source and ξi(x)dx

i thermal gradient, but are

considered periodic, and closed as one-forms, dE = 0 = dξ.

Regularity at the horizon rH gives the conditions

δgtt = U(r)(δg
(0)
tt (x) +O(r − rH)), δgrr =

1

U(r)
(δg(0)rr (x) +O(r−rH)),

δgij = δg
(0)
ij (x) +

2 ln(r − rH)

4πT
gt(iξj) +O(r − rH), δgtr = δg

(0)
tr (x) +O(r−rH),

δgti = δg
(0)
ti (x) + gttξi

ln (r − rH)

4πT
+O(r − rH),

δgri =
1

U
(δg

(0)
ri (x) +

ln(r − rH)

4πT
gtrξi +O(r − rH)),

δat = δa
(0)
t (x) +O(r − rH) , δar = U−1(δa

(0)
t (x) +O(r − rH)

δai =
ln(r − rH)

4πT
(−Ei +Atξi) + δa

(0)
i (x) +O(r − rH) ,

δφ = δφ(0)(x) +O(r − rH). (5.5)

As we already saw, we can define fluxes that are r-independent, by subtracting magne-

tization terms to the total currents, and then at the boundary these are just the transport
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currents, but they can also be calculated at the horizon, where the extra terms vanish:

J i = J (tot)i −M ij
(b)ξj

Qi = Q(tot)i −M ij
(b)Ej − 2M ij

Q(b)ξj , (5.6)

where (b) means for the background (no fluctuations) and

M ij(r) =

∫ r

rH

dr
√−gH ij , M ij

Q =

∫ r

rH

dr
√−gGij . (5.7)

The equality of the transport and horizon currents, via the radially independent fluxes, is

written as

J i = J i = J i
(0) , Qi = Qi = Qi

(0) , (5.8)

where the (0) index signifies horizon value.

Then [6] obtains Stokes equations for a charged “fluid” (is a real fluid only in the

hydrodynamics limit, as we said) for the variables (vi, p, w), standing in for velocity of the

fluid, pressure, and (electric) scalar potential, respectively, defined as

vi ≡ −δg
(0)
ti ,

p ≡ −4πT

G(0)

(

δg
(0)
rt − hij(0)g

(0)
ir δg

(0)
tj

)

− hij(0)
∂iG

(0)

G(0)
δg

(0)
tj ,

w ≡ δa
(0)
t . (5.9)

Here hij(0) is the inverse metric for h
(0)
ij .

The resulting (generalized) Stokes equations are

−2∇j∇(ivj) + vj [∇jφ
(0)∇iφ

(0) − 4πTdχ
(0)
ji ]− F

(0)
ij

J i
(0)√
h(0)

=
ρH√
h(0)

(Ei +∇iw) + 4πTξi −∇ip.

∇iv
i = 0, ∂iJ

i
(0) = 0, (5.10)

where the local charge density at the horizon (the horizon data for the zeroth component

of the electric current) is

ρH ≡ J t
(0) =

√

h(0)
(

Z(0)A
(0)
t − 1

2
W (0)ǫijF

(0)
ij

)

, (5.11)

we can define a magnetic field at the horizon by

BH ≡
√

h(0)
1

2
ǫijF

(0)
ij , (5.12)

W (0) = W (φ(0)) is the horizon data for the coefficient of the topological term, and the

electric and heat currents at the horizon are

J i
(0) = ρHvi +

√

h(0)
(

Z(0)hij(0) −W (0)ǫij
)(

Ej +∇jw + F
(0)
jk vj

)

Qi
(0) = 4πT

√

h(0)vi. (5.13)

For a particular case, one can next calculate these currents, and as before, identify the

coefficients of Tξ and TE as the transport coefficients.

– 24 –



J
H
E
P
0
9
(
2
0
1
9
)
0
0
3

5.2 Results for one-dimensional lattices

Here we mostly follow [6].

The relevant case we are interested in is of one-dimensional lattices, where the only

nontrivial dependence is on a single coordinate x, and the fields are independent of the

others. Then, in particular for the spatial metric in boundary directions at the horizon

(horizon data) we consider

h
(0)
ij dxidxj = g

(0)
ij dxidxj = γ(x)dx2 + λ(x)dy2. (5.14)

Then one of the Stokes equations, the incompressibilty condition ∇iv
i = 0 becomes (for a

single nonvanishing component vx, 0 = ∇xv
x = 1√

−h
∂x(

√
−hvx), and denoting the constant

by v0, we solve it by

vx = (γgd−1)
−1/2v0. (5.15)

Moreover, we consider also

F (0)
xy = BH(x) , 4πTχy(x) = χ(x) , χx = 0 , φ(0) = φ(0)(x) ; A

(0)
t = A

(0)
t (x) , (5.16)

and all the horizon data depending on x are periodic with period L. We can define also

the average over a period,
∫

≡ (1/L)
∫ L
0 dx, and then the zero modes

B =

∫

BH , ρ =

∫

ρH , s =

∫

sH . (5.17)

Note that the entropy density of the horizon is (by the Hawking formula)

sH = 4π
√

γλ. (5.18)

Moreover, separate the zero modes of BH and ρH , and write the remainder as ∂x of some-

thing, defining

BH = B + ∂xÂy , ρH = ρ+ ∂xC. (5.19)

We also define x-dependent averages
∫ x

as the average with L replaced by x in the

upper limit of integration. Then consider

w1(x) = ρ

(

1

B

∫ x

BH − 1

ρ

∫ x

ρH

)

, w2(x) = Ts

(

1

B

∫ x

BH − 1

s

∫ x

sH

)

, (5.20)

and then construct the periodic functions

ui =

∫ x γ1/2Σi

λ3/2
−

∫ γ1/2Σi

λ3/2

∫ γ1/2

λ3/2

∫ x γ1/2

λ3/2
, (5.21)

where Σi stands for the set of periodic functions (Σ1,Σ2,Σ3,Σ4,Σ5) = (χ,w1, w2, Ây, C).

Finally, define the matrix with constant components

Uij =

∫

λ3/2

γ1/2
∂xui∂xuj . (5.22)
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For the transport coefficients, it turns out that one needs to define also the constant

X =

∫

(∂xλ)
s

λ5/2γ1/2
+

∫

(∂xφ
(0))2

(γλ)1/2
+

∫

(ρH +BHW (0))2

λZ(0)(λγ)1/2
+

∫

B2
HZ(0)

λ(λγ)1/2
+ U11. (5.23)

Then one solves the Stokes equations for the velocities vi and currents J i
(0) as a function

of the souces Ei, ξi, and extracts the transport coefficients.

5.2.1 Constant BH , γ(x) = λ(x) and T → 0 limit

The case that we will mostly be interested in is of BH(x) = B =constant and λ(x) = γ(x).

The last condition can be thought of as using residual diffeomorphism invariance to fix

λ = γ.

Then we obtain first

ui =

∫ x Σi

λ
−

∫

Σi
λ

∫

1
λ

∫ x 1

λ
, (5.24)

and then

Uij =

∫

∂xuiΣj =

∫

ΣiΣj

λ
−

∫

Σi
λ

∫ Σj

λ
∫

1
λ

. (5.25)

Next, we have sH = 4πλ, and then

w1(x) = ρx−
∫ x

ρH ,

w2(x) = 4πT

(

x

∫

λ−
∫ x

λ

)

X =

∫

(∂xλ)
2

λ3
+

∫

(∂xφ
(0))2

λ
+

∫

Z(0)A
(0)2
t +

∫

Z(0)B2

λ2
+

∫

χ2

λ
− (

∫ χ
λ )

2

∫

1
λ

. (5.26)

With the above formulas, putting γ = λ and BH(x) = B in the more general formulas

obtained in [6], we find for the electric conductivities

σxx = 0

σyy = U22 +

∫

Z(0) +

∫

( ρ
B +W (0))2

Z(0)

− 1

X

(

U12 −
∫

( ρ

B
+W (0)

)

A
(0)
t −

∫

BZ(0)

λ

)2

.

σxy = −σyx =
ρ

B
, (5.27)
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for the thermoelectric conductivities

αxx = ᾱxx = 0,

αyy = ᾱyy =
U23

T
+

s

B

∫

( ρ
B +W (0))

Z(0)

− 1

X

(

U12 −
∫

( ρ

B
+W (0)

)

A
(0)
t −

∫

BZ(0)

λ

)

(U13

T
− s

B

∫

A
(0)
t

)

,

αxy = ᾱyx =
s

B
,

αyx = ᾱxy =
4π

X

(

U12 −
∫

( ρ

B
+W (0)

)

A
(0)
t −

∫

BZ(0)

λ

)

, (5.28)

and for the thermal conductivities

κxx =
16π2T

X
,

κyy =
U33

T
+

s2T

B2

∫

1

Z(0)
− T

X

(U13

T
− s

B

∫

A
(0)
t

)2

,

κxy = κ̄yx = −4πT

X

(U13

T
− s

B

∫

A
(0)
t

)

. (5.29)

Note that in our case we have

ρ

B
+W (0) =

λZ(0)

B
A

(0)
t . (5.30)

Finally, for application to the extremal case (which will be done in the next section),

we want to take the limit T → 0, and also (see previous sections), we need to consider

χ = 0, which means that U1i = 0. Also note that, because of (5.26), w2/T remains finite

as T → 0, so then so does U23/T and U33/T
2.

We obtain for the nonzero electric conductivities

σyy = U22 +

∫

Z(0) +

∫

λ2Z(0)A
(0)2
t − 1

X

[

∫

λZ(0)

B

(

A
(0)2
t +

B2

λ2

)

]2

σxy =

∫

λZ(0)A
(0)
t −

∫

W (0)BH

B
=

ρ

B
, (5.31)

for the nonzero thermoelectric conductivities

αyx = −4π

X

∫

λZ(0)

B
(A

(0)2
t +

B2

λ2
)

αxy =
s

B

αyy =
U23

T
+

s

B2

(∫

λA
(0)
t − 1

X

∫

A
(0)
t

∫

λZ(0)

(

A
(0)2
t +

B2

λ2

))

, (5.32)
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and for the nonzero and finite thermal conductivities κij

T ,

κyy

T
=

U33

T 2
+

s2

B2

∫

1

Z(0)
− 1

X

s2

B2

(∫

A
(0)
t

)2

κxy

T
=

4π

X

s

B

∫

A
(0)
t

κxx

T
=

16π2

X
. (5.33)

Here X is (for λ = e−w)

X =

∫

[e−w(x)((∂xw)
2 + (∂xφ)

2) + Z(0)(A
(0)2
t + e−2w(x)B2)]. (5.34)

Also, the finite thermal conductivity at zero electric current (obtained by putting

J i = 0, and thus relating the electric field with the thermal gradient, and substituting it

in the heat current) κij
Ji=0

= κij − Tαil(σ−1)lmαmj , is

κxxJ=0

T
=

1

T

(

κxx − Tαxy(σ−1)yxα
xy
)

=
(4π)2

X

[

1−
(∫

λ

)2 X

ρB

]

κxyJ=0

T
=

1

T

(

κxy − Tαxy(σ−1)yxα
xy
)

=
(4π)2

X

[

ρ

∫

A
(0)
t −X

∫

λ

]
∫

λ

Bρ
. (5.35)

5.3 S-duality

The generalized Stokes equations are invariant under an S-duality transformation of the

horizon data [2, 6]. Indeed, consider the transformation

BH → ρH ρH → −BH

Z(0) → Z(0)

Z2
(0) +W 2

(0)

, W (0) → − W (0)

Z2
(0) +W 2

(0)

(Ei +∇iw) → − 1√
h(0)

ǫijJ
j
(0) , J i

(0) → −
√

h(0)ǫij(Ej +∇jw). (5.36)

Then, it is easy to check that the Stokes equations (5.10) are left invariant. The trans-

formation on (Z(0),W (0)) is understood as a transformation that must be performed on

the right-hand side of the definition of J i
(0) in (5.13), together with the transformation of

the other horizon data, namely (BH , ρH , (Ei + ∇iw)), and then by again replacing J i
(0)

from (5.13) in the result, to finally obtain the transformation of J i
(0).

Defining the horizon data and its inverse S-dual,

DH = (ρH , BH , Z(0),W (0)) → D′
H =

(

BH ,−ρH ,
Z(0)

Z2
(0) +W 2

(0)

,− W (0)

Z2
(0) +W 2

(0)

)

, (5.37)
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then the action on the electric and thermal conductivities is (here we define ǫxy = +1)

σij(D′
H) = −ǫikσ−1

kl ǫ
lj

αij(D′
H) = −ǫikσ−1

kl (DH)αlj(DH)

ᾱij(D′
H) = −ᾱik(DH)σ−1

kl (DH)ǫlj

κij(D′
H) = κijJ=0(DH) , (5.38)

where as usual the heat conductivity at zero electrical current is κijJ=0 = κij −T ᾱikσ−1
kl α

lj .

But if DH is a solution for horizon data, D′
H is not necessarily also a solution. Only if

the bulk theory is S-duality invariant, specifically under

φ → −φ

Z(φ) → Z(φ)

Z2(φ) +W 2(φ)

W (φ) → − W (φ)

Z2(φ) +W 2(φ)

Fµν → Z(φ)F̃µν −W (φ)Fµν , (5.39)

which we can check that reduces on the horizon data to (5.36), is D′
H also a solution, and

then the transformation (5.38) of the transport coefficients is indeed a symemtry of the

dual field theory.

Our action (2.1) certainly falls within that category, since as we saw in section 3, the

S-duality (5.39) is an invariance of the action. This matches with the analysis of S-duality

in section 3. We will consider more such bulk theories, inspired from ones arising from

supergravity, in the next section.

6 Supergravity-inspired model and generalizations of transport relations

for entropy function formalism

We now consider, as an example, a supergravity-inspired model that contains several scalar

fields and a potential for them that is polynomial in the field.

Consider the action for U(1)4 gauge fields AI
µ coupled to scalars XI and gravity,

S =

∫

d4x
√−g

[

1

16πGN

(

R− 1

32

(

3
4

∑

I=1

(∂µλI)
2 − 2

∑

I<J

∂µλI∂
µλJ

)

− V (X)

)

− 1

4g24

4
∑

I=1

ZI(X)(F I
µν)

2 −
4

∑

I=1

WI(X)F I
µνF̃

µνI

]

, (6.1)

where I = 1, 2, 3, 4 labels the scalars XI , subject to the constraint

X1X2X3X4 = 1 , (6.2)

the λI are redefinitions of XI via
XI√
8
= e−

λI
2 , (6.3)
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the field strengths of the abelian vectors are as usual F I
µν = ∂µA

I
ν−∂νA

I
µ, and the potential

for the scalar fields is

V (X) = −g24
4

∑

I<J

1

XIXJ
. (6.4)

This is a generalization of the U(1)4 gauged supergravity model, obtained by dimen-

sional reduction of 11 dimensional supergravity on S7 and truncation to the Cartan sector

in [21], and which has been considered in the entropy function formalism in [22]. To restrict

to that model, we put WI = 0 and ZI = X2
I . The generalization considered here is con-

sistent with the rest of the paper, having arbitrary Z(φ),W (φ), only now generalized to a

sum over I = 1, 2, 3, 4. To completely generalize, we would consider an arbitrary potential

V (X), but instead we want to keep the features of the supergravity truncation. For the

same reason, we also keep the constraint X1X2X3X4 = 1. Note that taking g → 0 leads

to the vanishing of the scalar potential, so that is another situation that can be analyzed.

6.1 Entropy function formalism and solution in terms of charges

We follow the same method for the entropy function with the attractor mechanism consid-

ered in section 4. The near-horizon geometry of an extremal planar black hole solution of

this model will again be AdS2×R
2, using the same general ansatz (2.7) for the solution as

in the rest of the paper. Note that because we consider the planar horizon case (with R
2

factor) instead of the spherical horizon case (with S2 factor) as in [22], the entropy function

and attractor equations will differ from that paper, not only by the topological term, but

also by the absence of the 2/v2 term coming from the Ricci scalar of the horizon factor.

In this section we will use the notation of [22] and denote v by v1, and w by v2, also since

we reserve w for use in one-dimensional lattices. The horizon data for the abelian vector

fields and the scalars is written as

XI = uI , F I
rt = eI , F I

xy = pI , (6.5)

and similarly as before, this leads to the entropy function

E = 2π

{

4
∑

I=1

eIq
I−v1v2

[

1

16πGN

(

− 2

v1
−V (X)

)

+
4

∑

I=1

ZI

2g2

(

e2I
v21

− p2I
v22

)

+4
4

∑

I=1

WIeIp
I

v1v2

]}

.

(6.6)

The attractor equations derived from it are

∂EB
∂eI

= 2π

[

qI − v1v2

(

∑

I

ZI

g24

e2I
v21

)

− 4
∑

I

WIp
I

]

= 0 (6.7)

−∂EB
∂v1

= 2π

[(

+
1

2g24

∑

I

ZI

(

−v2
v21

e2I −
p2I
v2

)

− v2V

16πGN

)]

= 0

−∂EB
∂v2

= 2π

[

−2

16πGN
+

1

2g24

∑

I

ZI

(

e2I
v1

+
v1p

2
I

v22

)

− v1V

16πGN

]

= 0

−∂EB
∂uI

= 2π

[

v1v2

(

1

2g24

∑

J

∂ZJ

∂uI

(

e2J
v21

− p2J
v22

)

− 1

16πGN

∂V

∂uI

)

+ 4
∑

J

∂WJ

∂uI
eJp

J

]

= 0.
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The first equation in (6.7) can be solved for eI in terms of the charges and other

parameters, as

eI = g2
v1
v2

1

ZI
(qI − 4WIp

I). (6.8)

Substituting this in the second and third equation in (6.7), and adding and subtracting

the result, we obtain

− 1

16πGN

(

2

v1

)

+
∑

I

ZI

g24

pI2

v22
+ g24

1

v22

∑

I

(qI − 4WIp
I)2

ZI
= 0, (6.9)

(

2V +
2

v1

)

1

16πGN
= 0 ⇒ V (uI) = − 1

v1
. (6.10)

These give the possibility to write 2 of the 3 horizon data, v1, v2, V (uI), as a function of

the third, and the charges (qI , p
I), and WI(u).

Finally, one should be able to solve the last of the equations in (6.7), for polynomial

ZI =
∑

m cmumI and WI =
∑

n dnu
n
I , to obtain uI as a function of the same data, reducing

to dependence on the charges. However, before that, we would have to remember that we

have the constraint X1X2X3X4 = 1, which means that

u1u2u3u4 = 1 , (6.11)

and the potential depends only on 3 of them (the independent ones), while the fourth is

found from the above constraint. For instance, if u4 is taken to be dependent, and solved

for, we have

V (u1, u2, u3) = −g24
4

[

u1u2 + u2u3 + u3u1 +
1

u1u2
+

1

u2u3
+

1

u3u1

]

. (6.12)

Alternatively, we could consider the same theory without the constraint, so

V (u1, u2, u3, u4). In that case, we would have

∑

I

uI
∂V (uD)

∂uI
= −2V (uD) , (6.13)

and, as an example, substituting in (6.7) a pure power law case, ZI = umI ,WI = W0u
n
I ,

after some manipulations we would obtain

(4pI)2(m− 2n− 2)u2nI − 8qIp
I(m− n− 2)unI − (m+ 2)

p2I
g44

u2mI

+(m− 2)q2I = 0. (6.14)

This would allow us to solve for uI , in terms of the charges and either v2, or V (uD)

(obtainable from the previous equations, relating V (uD), v1, v2). For example, for m =

2, n = 2, we would obtain

− u4I

(

1 +
1

(4g24W0)2

)

+
qI

4pIW0
u2I = 0 ⇒ u2I =

qI
pI

4W0g
4
4

1 + (4W0g24)
2
. (6.15)
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This can be then substituted into V (uD), resulting in

V = −g24
4

∑

I<J

1

uIuJ
= −g24

4

1 + (4W0g
2
4)

2

4W0g44

∑

I<J

√

pIpJ
q̃I q̃J

, (6.16)

and then from the attractor equations (6.10), the second fixes v1,

v1 = − 1

V
, (6.17)

and replacing in the first we fix v2,

v22 =
2

αg24

1

1 + (4W0g24)
2

∑4
I q̃IpI

∑

I<J

√

pIpJ
q̃I q̃J

, (6.18)

finally fixing all horizon data in terms of the charges. Then the entropy density at the

horizon (minimum of the entropy function) would be (Hawking fromula)

s =
4πv2

16πGN
≡ 4παv2 =

4π

g4

√

2α

1 + (4W0g24)
2

√

√

√

√

∑4
I q̃IpI

∑

I<J

√

pIpJ
q̃I q̃J

. (6.19)

6.2 Transport formulas for this generalization

To use the transport formulas from the previous section, we need to generalize them to

this case. But since the only such generalization is the fact that we have several scalars XI

and gauge fields AI
µ, the only thing we need to be careful about is where to put the sums

over I.

The horizon data is

ρH,I ≡ J t
(0)I =

√

h(0)
(

Z
(0)
I A

I(0)
t − 1

2
W

(0)
I ǫijF

I(0)
ij

)

BH,I ≡
√

h(0)
1

2
ǫijF

I(0)
ij

J
i(0)
I = ρH,Iv

i +
√

h(0)
(

Z
(0)
I hij(0) −W

(0)
I ǫij

)(

EI
j +∇jw

I + F
I(0)
jk vj

)

, (6.20)

and we can define the sums over I (total value)

ρH =
∑

I

ρH,I , BH =
∑

I

BH,I , J i(0) =
∑

I

J
i(0)
I . (6.21)

and, in the case of one-dimensional lattices that we will be interested in, the averages

BI =

∫

BH,I , B =

∫

BH , ρI =

∫

ρH,I , ρ =

∫

ρH . (6.22)

Then we have a multiply-charged (pseudo-)fluid with variables (vi, p, wI), standing in

for velocity and pressure of the fluid and electric scalar potentials defined by

vi ≡ −δg
(0)
ti ,

p ≡ −4πT

G(0)

(

δg
(0)
rt − hij(0)g

(0)
ir δg

(0)
tj

)

− hij(0)
∂iG

(0)

G(0)
δg

(0)
tj ,

wI ≡ δa
I(0)
t . (6.23)
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The resulting Stokes equations are

−2∇j∇(ivj) + vj [∇jφ
(0)∇iφ

(0) − 4πTdχ
(0)
ji ]−

∑

I

F
I(0)
ij

J iI
(0)√
h(0)

=
∑

I

ρH,I√
h(0)

(EI
i +∇iwI) + 4πTξi −∇ip.

∇iv
i = 0, ∂iJ

iI
(0) = 0, (6.24)

Next, we consider one-dimensional lattices. As we described, the case we are most

interested in is of χ = 0 and Ây = C = 0, and moreover, since we want to apply to

extremal black holes, of T → 0. That means that among the Σi we consider nonzero only

Σ2 = w1 and Σ3 = w2, which have now to be generalized to Σ2I = wI
1 and Σ3 = w2,

defined as

wI
1(x) = ρ

(

1

BI

∫ x

BH,I −
1

ρ, I

∫ x

ρH,I

)

, w2(x) = Ts

(

1

B

∫ x

BH − 1

s

∫ x

sH

)

. (6.25)

That means that the nonzero components of the Uij matrix are U2I2I ,U2I3,U33. More-

over, as before, the finite values as T → 0 are U2I2I ,U2I3/T,U33/T
2.

We can next follow the steps outlined in appendix D of [2] in order to solve the Stokes

equations for J i
(0), v

i as a function of the sources Ei, ξi, and find first vx = v0/
√
−h as

before, then vy as a linear function of v0 (involving a sum over I), then J
(0)x
I , J

y(0)
I as a

linear function of v0; and finally v0 is obtained as a sum over I.

We can consider Ei
I = Ei (equal electric fields for the all the four gauge fields), and

define conductivities by J i
I = σij

I Ej + Tαij
I ξ, in which case we obtain the the electric

conductivities

σxx
I = 0

σyy
I = U2I2I +

∫

Z
(0)
I +

∫

( ρI
BI

+W
(0)
I

)2

Z
(0)
I

− 1

X

(∫ (

ρI
BI

+W
(0)
I

)2 BI

λZ
(0)
I

+

∫

BIZ
(0)
I

λ

)

×

×
∑

J

(∫ (

ρJ
BJ

+W
(0)
J

)2 BJ

λZ
(0)
J

+

∫

BJZ
(0)
J

λ

)

σxy
I = −σyx

I =
ρI
BI

, (6.26)

for the thermoelectric conductivities

αxx
I = ᾱxx

I = 0,

αyy
I = ᾱyy

I =
U2I3

T
+

s

BI

∫

( ρI
BI

+W
(0)
I

)

Z(0)

− 1

X

(∫ (

ρI
BI

+W
(0)
I

)2 BI

λZ
(0)
I

+

∫

BIZ
(0)
I

λ

)

∑

J

(

s

BJ

∫

BJ

λZ
(0)
J

(

ρJ
BJ

+W
(0)
J

))

,
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αxy
I = ᾱyx

I =
s

BI
,

αyx
I = ᾱxy

I = −4π

X

(∫ (

ρI
BI

+W
(0)
I

)2 BI

λZ
(0)
I

+

∫

BIZ
(0)
I

λ

)

, (6.27)

and for the thermal conductivities

κxx

T
=

16π2

X
,

κyy

T
=

U33

T 2
+

∑

I

s2

B2
I

∫

1

Z
(0)
I

+
1

X

(

∑

I

s

BI

∫ (

ρI
BI

+W
(0)
I

)

BI

λZ
(0)
I

)2

,

κxy

T
=

κ̄yx

T
=

4π

X

∑

I

s

BI

∫ (

ρI
BI

+W
(0)
I

)

BI

λZ
(0)
I

. (6.28)

If we consider the total conductivities σij and αij , we have an additional sum over I

in the respective formulas. On the other hand, if we consider only a single nonzero EI (the

previous case), all the formulas have no sums at all, and only I indices.

We should note that we have the choice of whether one of the currents JI , or their

sum, refers to the electric charge current, since in AdS/CMT one takes a phenomenological

approach, so any gauge current in the bulk could a priori stand for it, either one of the

U(1)4 ones, or the diagonal one (the sum of the currents).

Finally, in order to be able to use the results from the previous subsection, we compare

the one-dimensional lattice case with the set-up for the extremal black hole with AdS2×R
2

horizon. First, since the (x, y) space corresponds to R
2, we have that

λ = v2. (6.29)

That also implies that
√
h(0) = λ = v2. Second, we have the constant magnetic field at the

horizon

BI = BH,I =
1

2

√

h(0)ǫijF
I
ij = v2pI . (6.30)

Finally, the electric field is (in the gauge Ar = 0)

GI
rt = ∂rA

I
t = eI ⇒ AI

t = eI(r − rH) , (6.31)

to be compared with the general formula (for G(0) = 1) near the horizon,

AI
t = (r − rH)(A

(0)
t + . . .) ⇒ A

(0)
t = eI , (6.32)

which finally gives

ρI = ρH,I =
√

h(0)Z
(0)
I A

I(0)
t −W

(0)
I BH,I = v2

(

Z
(0)
I eI −W

(0)
I pI

)

. (6.33)

With v2, e
I written in the previous subsection in terms of the charges qI , p

I , this completes

calculating the transport coefficients in terms of the charges of the dual black holes.
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7 Conclusions

In this paper we have considered electric and thermal transport, in the presence of magnetic

fields and electric charges and a topological term with coefficient W , and the effect of S-

duality in such theories. We have also found that we can use the entropy function formalism

and the attractor mechanism to give results for the transport coefficients as a function of

the charges of the black hole in the gravity dual.

We have found that the only modification of the transport coefficients from previously

found formulas is an extra term −4W (rH) in σxy, which however means that S-duality

acts on the transport coefficients consistenly with results at ρ = B = 0. The entropy

function formalism was extended to this case, obtaining, in conjunction with the general

formulas, explicit formulas depending on the charges of the dual black hole. S-duality still

acts naturally on the transport coefficients, but an order of limits is important now.

The formalism of Stokes equations for determination of the transport coefficients, espe-

cially as it applies to one-dimensional lattices, was also considered, and was applied for the

case of extremal black holes relevant for the entropy function formalism. S-duality is de-

fined now more generally. A supergravity-inspired model, obtained by extending the U(1)4

Cartan subgroup of N = 8, d = 4 gauged supergravity in order to make it consistent with

the rest of the paper, was also considered. The attractor mechanism, used in conjunction

with generalized formulas for transport from Stokes equations, which we obtained, allowed

us to write the transport coefficients of this generalized model in terms of the charges of

the dual black hole.
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