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1 Introduction

AdS/CFT methods have been successfully used in order to calculate transport in condensed
matter models, though the particular functional behaviours usually are either different
than, or more general than ones obtained in real materials, and one must phenomenologi-
cally (ad-hoc) fix parameters and/or functions to obtain a fit. This so-called “AdS/CMT”



method is therefore viewed best as a phenomenological one, and must therefore be con-
sidered within the most general holographic model available. One is led to consider a
system of gravity plus Abelian vector field, plus a scalar that defines the kinetic functions
appearing in the Lagrangian.

Transport in such systems has been considered in many papers, but here we will be
mostly interested in the methods used in [1-7]. The question we want to ask is, what is
the effect of S-duality on this bulk holographic theory on the transport coefficients for the
holographic dual field theory? The S-duality should correspond to particle-vortex duality
in the boundary [8, 9]. We will not consider the effect of quantum gravitational corrections
to the bulk gravity action (those have been addressed in [9]). Since we are after the
effect of S-duality, we will consider a vector action that involves both F},, and its dual F/w-
Transport will be calculated using three different methods, a standard membrane paradigm
type method at the horizon for nonextremal black holes, the entropy function formalism
for extremal black holes (considered in conjunction with a 7' — 0 limit of the previous
formalism), and the formalism of (fluid) Stokes equations in the case of one-dimensional
lattices. The last formalism is also considered in the 7' — 0 limit and then generalized, in
order to take advantage of a supergravity-inspired model for which we can apply the same
entropy function formalism. In all of these 3 formalisms, we consider the effect of S-duality
of the model on the transport coefficients.

The paper is organized as follows. In section 2 we define the model, the behaviour
at the black hole horizon, and we add magnetization currents in the presence of external
magnetic fields, studying the resulting thermodynamics. In section 3 we calculate electric
and thermal transport in this model, calculating the resulting transport coefficients, and
study the effect of S-duality on them. In section 4 we use the entropy function formalism,
for extremal black holes, to calculate the transport coefficients, in the corresponding limit
of the formulas from section 3, as a function of only the charges of the dual black hole. We
also explore a subtlety of S-duality in this limit. In section 5 we consider the formalism
of Stokes equations to calculate the transport coefficients, and apply it to one-dimensional
lattices. S-duality in this case is also explored. In section 6, we apply the results of section 5
to a supergravity-inspired model, by generalizing the formulas for transport coefficients and
using the entropy function formalism. In section 7 we conclude.

2 AdS/CMT model and black hole horizon data

2.1 Model and black hole horizon

Following the logic from [1], we consider 3+1 dimensional gravity coupled to an Abelian
vector field A,,, with both a Maxwell and a “theta” (topological) term, and kinetic functions
Z(¢p),W(¢) defined by a scalar “dilaton” ¢, which has some potential V(¢). For more
generality, in order to break translational invariance in one or two spatial directions, we
can consider also two more scalar “axions” xi, y2 that have VEV linear in the coordinates



x,y and kinetic function ®(¢). The action is therefore

5= [dov=a | 1o (7= 51007 +20) (00)* + @) - V(9))

_Z(9)
493

Fil/ - W(¢)FMUFHV:| ) (21)

where we note the addition of the topological term with coefficient function W(¢) as
compared to [1], in order to be able to study S-duality consistently.
Here the field strength F),, and the dual field strength F, v are defined as

~ 1 e‘“’p"
F/w = ayAy - aVA;u P \/7 pO’ ) (2'2)
while the linear axion background solution is
x1=kiz, x2 = kay. (2.3)

We are interested in models with a holographic dual, so the solutions we want to
use must be asymptotically AdS, meaning that the scalar potential must have an AdS
solution, so

6
V(0) = ~ 77 V'(0) = 0. (2.4)
The equations of motion for the gravity and the gauge field are
1 1 167G 1
RNV - §8ﬂ¢3y¢ + 59;“/‘/(@%)) + (ZgQJV)Z(QZ)) <2FM>\FV)\ - 29;},pran0) 5 (25)
1

\/1_798,1 [\/?g (Zg ) FH 4 4W(¢)F“”>] =0. (2.6)

We have not written the equation of motion for the scalar dilaton ¢ (not for the
linear dilatons x1, x2), but we assume that it has solutions that asymptotically satisfy the
condition (2.4).

For the isotropic case (with x1 = x2 = 0), the background metric plus gauge field
solutions we consider are of the type

ds® = —Udt? + U dr? + €2V (dz? + dy?)

A = a(r)dt — Bydz, (2.7)
where U = U(r),V = V(r) (note that V(r) is a factor in the metric and V' (¢) is the scalar
potential).

The solutions of interest must have a temperature 7', since the dual field theory, whose
transport we want to calculate, must have the same. That means that we are interested

in black hole solutions that asymptote to AdS space, and have event horizons at r = ry.
Near it, the background fields are expanded as

u(r)
a(r)
V(r)

¢

Ulrg)+ (r —rg)U' (rg) + O((r —rg)?) = 4xT(r —ry) + ...,
ag(r—rg)+...,
V(rg)+...,

H+ .. (2.8)
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where we assume U(ry) = 0 for the existence of the event horizon and U'(rg) # 0 for a
non-extremal solution.

The near-horizon metric for the non-extremal black hole then becomes (in the extremal
case U'(ry) = 0 also, and we need to go to the next order)

ds® ~ —(r —rg)U' (ry)dt* + dr? + e® ) (da? + dy?) | (2.9)

(r—rg)U'(rg)
which is of the type of two-dimensional Rindler spacetime times R?. The surface gravity
is k = +U'(ry)/2, the corresponding temperature (in units where h = kg = 1) being

k  U'(rn)

T=_—" = . 2.1
2 47 ( O)

With the change of coordinates r — r = U’(r)z?/4, the Rindler space part of the
metric is
ds? = —(kz)2dt* + d2*. (2.11)

The near-horizon solution admits 3 scaling symmetries,

t— M, k— X\ g, (2.12)
t—=x"'t, (r—rg) = x(r—rg), Ulrg) = xU'(rn), (2.13)
ev(rH) - é’eQV(TH)’ T — 6_1$7 Y — 5_13/‘ (214)

2.2 Magnetizations and thermodynamics

In the next section we will study electric and thermal (heat) transport, but it is interesting
to consider it in the presence of a magnetic field, for generality of the treatment. In this case
however, it is known that there is an extra magnetic contribution to the electric and heat
currents J and Cj, depending on the magnetization density M and energy magnetization
density Mg, and being of the Hall (off-diagonal) type,
g — %%‘VJT
2(Mp — pM)
T

Here both M and Mg are defined for the boundary 241 dimensional field theory as re-
sponses of the theory to a source that changes the fields, and Mg = Mg —uM is called heat

magnetization density. For a source A;O) = — By, giving a magnetic field B in 241 dimen-

Q™) = Me;,E; +

7

€ijV,T. (2.15)

sions, the magnetization density is (minus) the variation of the (density of the) Euclidean

action with respect to B,
1 0Sg
M=-vaam (2.16)

whereas the energy magnetization density is the same thing if we apply a change in the

©0) _

(Minkowski) metric of the field theory, with source dg;,’ = —Byy, and differentiate with

respect to By,
1 0Sg

- a5 : 2.1
Vol 8B1 B1=0 ( 7)
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Here the Euclidean action in the bulk is

L T P TR

The effect of this source on the boundary is to introduce a 5gt(2) = —U(r)Byy in
the bulk, and by consistency of the equations of motion, we need also to add to A a
term (a(r) — p)Biydx, where p is the boundary chemical potential, obtaining a modified

background solution of (x1 = kyz, x2 = kay, » = ¢(r) and)

Ay = a(r), Ay = —By+ (a(r) — p)B1y,
dr

2
ds* = —U(r)(dt + Byydz)?* + 0] + 2V (dx? + dy?). (2.19)

The inverse metric is then (in ¢, r, z,y space)

Bie ?Vy? — % 0 —Bie ®Vy 0
0 U 0 0
mo— 2.20
g By 0 e (2.20)
0 0 0 e 2V

After some algebra, we obtain the Maxwell field Euclidean action in the bulk, on this
ansatz, as

e2V
el _ / . {% (2(a)2 — 2¢~V [~ B + (a(r) — 1) By]?)

AW () (r) (B + (a(r) — mBn]. (2.21)

We then obtain the magnetization density, energy magnetization density, and heat
magnetization density as

_ 10Sp _ (%, (PVZOB
M=-5o _/TH d ( 2 AW () ()> (2.22)
00 672‘/
M= [ ar (gZ(‘b)B ~AW) ) (s alr) (2.23)
[eS) 6_2VZ B ,
Mg = Mg — pM = — /TH dr <5ﬁ(¢) — AW (¢)a (r)> a(r). (2.24)

3 Transport and S-duality

In this section we calculate electric and heat transport for the background solutions from
the previous section, in order to study the effect of S-duality on it.

We add perturbations and electrical and thermal gradient sources to the background
solution of the previous section, with the same notation as in [1, 5], in the presence of a



magnetic field B, but at By = 0. The electric field perturbation is sourced by a boundary
electric field £ and thermal gradient %ViT of

E; = Eb;y %VZ-T = E5i. (3.1)

This results in a extra gauge field term in the bulk of (—F 4+ £a(r))tdx and an extra metric
(0)

tx
(the diagonal metric and A; are unperturbed)

term of dg,,” = —&tU, so adding relevant perturbations we obtain the perturbed ansatz

A = a(r)
Ay = =By + (—E + &a(r))t + 0 Ax(r)
Ay = 04,(r)

Gz = —EtU + €2V 6hyy(r)

x1 = kx+dx1

—~

X2 = ky + dxa(r). (3:2)
Note that the logic is that the sources F, B, ¢ are small, and they in turn generate the
perturbations dh,,, solved to linear order from the Einstein’s equations, as a function of
the sources (linear response theory).

Putting an explicit € in the perturbation matrix (for Mathematica computation rea-
sons), the metric and its inverse to order ¢, in matrix form (for a space ¢,r,z,y), and the
field strength components, are

U 0 e?V 6hyge — tUe€ 62V5htye
B 0 % 2V 5hyp€ e2v6hrye
9= e?V 6hyge — tUe€ €V Sh, € e2V 0 ’
62V5htye 62V5hry6 0 eV
4 0 (% -eVig) e
0 U —Ubhyg€ —Ubdhyy€
—1 rT Yy
_ 3.3
g € (‘Shﬁ - e_Qth) —Ubhyg€ e 2V 0 (3.3)
Shaye ~Ubhyye 0 e 2V
Frt = CLI,
Fy; = e(—E +&a),
F,y = B,
Fp = eta't + €5 A,
Fry = 0 Al (3.4)



The gauge field equations, x and y components, are

0 =0 (‘/T’;EZWFW + 4\/TgW(¢)FW> + 0, (\/T’;EZ@)F” + 4\/ng(¢)15”)
+0, (YLD ey 4= (35

9y

0=d (Wﬁy ; 4¢—71W(¢)Fty> ‘o (“j’;f“’”w + 4¢?gW(¢)FT’y)

i 4

+0y <@ny + 4\/fgW(¢)FW) , (3.6)

91

and become on the ansatz to leading order

1 - ¢aZ ZB EZ

— _9, (WF”C + 4\/?gW(¢)F”) : (3.7)
9y

1 BZ
o [—2 <a'62VZc5hry - 75hm + ZBe_WtE) +4W (§a't + 514;)]

91

Z
= —Ste B+ 4Wd
9y
VA -
= 0, (gg,ﬁ—ngr + 4,ﬁ—gWFW> : (3.8)
4

3.1 Electric current, conductivity and thermoelectric coefficients

The calculation of the transport coefficients of the dual field theory at the horizon of the
black hole relies on the membrane paradigm idea, first presented in the calculation of [10],
that the quantities appearing in the currents are independent of the radial position r, so
instead of calculating them at the boundary at r — oo, like the AdS/CFT prescription
dictates, we can calculate them at the horizon. But if it is the case that the currents do
depend on r, like in [1], we must redefine them, and find quantities that can be calculated
at the horizon, being r independent.
The standard (and total) current, defined according to [10] (see also [11]), would be

jiltot) _ 65 _ Z(9)

V=gF" +4\/=gW (¢)F'" (3.9)

where S is the full bulk action. But we note that, because of (3.8), the y component of the
gauge field equation is not r-independent, so cannot be calculated at the horizon.

We must calculate instead the modified currents (or fluxes) defined as

g% = LG A=W ()P
Jh = Z;f LG 4 A=W () P — M (1) (3.10)
4



which are now independent of r, since M(r) is a position-dependent magnetization density
given by (2.22), only integrated up to r only instead of all the way to oo, so that 9, on it
gives the bracket in (2.22) as the extra term in (3.8).

Explicitly, we obtain the fluxes

Z Z 2
TV = —ea'e? 5hyy, — e USAL — e UBGShy,
94 9 91
z Z
JY = U5A’ eV ' 5hyy + BU&hm +4W (—E + &a) — EM(r),  (3.11)
94 94

which can then be evaluated at any 7, including r (the horizon).

The important observation is that, while 9,.7* = 0, so we can calculate them at the
horizon, at infinity M(r) = M(co) = M is just the magnetization, so we just subtract
the magnetization currents from the total currents, obtaining the usual transport currents,
from which we can calculate the conductivity and thermoelectric coefficients,

Tr = TH) = j’(r — 00) —j i(tot) — &M =4t (3.12)

The advantage of being able to calculate at the horizon is that we can impose the
conditions of regularity at the horizon (remember that E; = Ed;, and & = £0;,)

dA; = —j—T In(r —rg) +O(r —rg),

oxi = O((r —rn)°),

Shus = Uhus — —0 _In(r — rgg) + O(r — r21) (3.13)
! " 4me2VT ’

and moreover, since M (r) is an integral from 7y to r, it vanishes at the horizon, simplifying
the result. Using (3.13), we obtain that the fluxes at the horizon, equaling the transport
currents, are

. A A 7
§° =T (ru) = 5By, — —e*V a/0hy, — =5 Béhy,|
9i 94 9i rH

Z Z
7 =TYrn) = SE, — eV Za'Shyy + =5 Bohy, — AW (E + £a) (3.14)
91

9y

TH

As we see, it remains to solve for dh using the Einstein’s equations, as a function of
the external sources E, B, ¢ (linear response theory). Since the topological term with W (¢)
doesn’t contribute to Einstein’s equations (it is independent of the metric), the linearized
Einstein’s equations are the same as in [1], namely

252 2k2 2
U shy,) — ( ZB2 + 2 |2 > Shiw + —-ZBUY d/5hyy, = izewa’aa;,
94 94 94
2K2 212
U(eVsh,) — (2232 + 62vk2<1>> Shiy — — ZBUE d/6hyy = ——oZe*V d/bd,
94 94 94

2 2
+ ZB(-E + ¢a).
91

(3.15)



Using the regularity conditions at the horizon (3.13), we obtain

2 2
<2“ ZB? + 2V 120 ) Shie — 2 2BV dlShyy = — 2% 2AVdE + VU,
93 94 94
2
<232 + eka(I)) Shy — 72362%’5% = iZBE (3.16)
94 94 94

and after some algebra we solve the dhs; graviton fluctuations in terms of the sources
E, B¢ as

2
25 ZeWV d' k2P
9y

Ohiy = B 2 2 N2
(%232 4 62Vk2q)) 4 (Qg%Z> B2e4V o2
1 1

(29%22324-62‘/ /k2 )€2VU,§
4

S 2 > N2 v
(2%2324_62\/]{;2@) 4 (252 Z) B2eAV o2
94 94
2k2

ZB 2 2V

_ 93 2k 2V 1 U'¢
i = 22 7 B2 4 o2V 2D o g1 A 262 7 B2 | o2V )2 262 7\ p2oav g2
2B + e i (B 2B+ k:fI)) +(%2) B2eVa?|

4

2
2LZBeQVa’
— X

2 2 2 2
(3782 + e2vi2e) [ (25287 +e2Vk2cI>) +(22) Beivaz)
g 91

2
eV 2 gien. (3.17)
93
We can now replace the fluctuations (3.17) in the currents (3.14), use the fact that U'(rg) =
47T (meaning that U'(rg)¢ = 47T¢) and separate the terms according to the sources E
and &, via

ji = O'Z'jEj — Oéij(VT)j = Jig;E - Oéi;ng- (3'18)

From this, we can identify directly the conductivities and thermoelectric coefficients as

e2VE D (2391 0% + 23B2 2% + g2 22V k2 D)
g =
o AkjgiB2p? + (265 B2Z + g3e?Vk2®)2 |
kigip® + KIB2Z? + g3 Ze2V K20
= 4K3Bp—7p> —4w| 3.19
Toy = SRACP 30 B22 (22 B2Z + g2V k2T)?2 . (3.19)
2K32g4 tspe?V 2P
Qez = 777 T3 2 2 2V 1.2 ’
4K1g1B2p% + (262B27Z + g2e2V k29)? i
o~ 942sB 262g3p% + 2k3B%2 7% + g2 72V K2 O (3.20)
W T 4108 B202 1+ (2k2B2Z + 3¢V K20)2 | ‘
which have been expressed in terms of the boundary charge density p = —Ze?V'a’ and the

entropy density (Hawking formula) s = 4mwe?V ("m0,
We note that the only new contribution is from the W term in the Hall conductivity o,,.



3.2 Heat current and heat conductivity

We move on to the heat current, considered (also with a topological term) from the point
of view of transport coefficients in the presence of magnetization in [6]. The heat current
itself was defined in [3].

The (total) heat current is obtained from the energy-momentum tensor by subtracting

the electric current,
Q(tot)i — T(tot)io o [,LJ(tOt)i. (321)

But in [3, 6] it was noticed that the result one obtains from this equals, at 7 — oo, the flux
QUi — =g (3.22)

where the bulk 2-form G*" is defined through
Grv = —ovirprl — zglkprle g, — %(w — 20)HM, (3.23)

where
H" = Z(¢)F" + 4giW (¢) F* (3.24)

and where k* is the vector 0;. However, more generally, an arbitrary vector satisfying
V. k* = 0 will also satisfy (as can be easily checked) the general property

Vu(VEE) = v (VD) — RV kH, (3.25)
which is the only one we need. The functions v and 6 are defined by the relations

Vo = (LrA), = k'0,A, + Au0pk,, (3.26)

V0 =k'EF,, - %fpk“Au. (3.27)

After some involved algebra, we obtain

1 Z
V.G = Vi — 2V, (V) + S ZF sy — S ALk F)”

2020, W) FFP A kY — 262 W FH N7, (1) — 26) (3.28)
where

(LpF)'P = KMV, FP — N k' F'P — N kP F
sy =k'Fy,, — V0, (3.29)

and where we define on-shell V' by
2RM KV = VER. (3.30)

We also calculate, in the A, = 0 gauge and in the background (no fluctuations), and using
the fact that k* = (0",

/ dzPV (1) — 20) = / dzP kPO, A, + / daP A, K — 2 / dzPkPE,, + / da€ iy, A
= Fx + 2a. (3.31)

,10,



Further,
. . ) : 1 i
G = -V + VK — Z(®kIFloA, — 5(2a(r) + Bx)H"
. ) 1 ;
= -9 To+9"Tq — 5(2@(7") + Ex)H™ (3.32)

so, after some calculations in the presence of fluctuations, we find that at r — oo, when
a(r) dominates over Ex, we have

— QU = —y/=gGri = U <2VU‘5’”) +a(nWVG(Z(G)F +AGW (@) FT).  (3.33)
Note that
F™ = ¢(a'Shyy +Ue 2V §A, + Ue 2V Boh,.,)
F'Y = e(a/0hy + Ue V6 A, — Ue " Bbhy,)
V=gF"" =0
V—gF™ = —e(—E + €a). (3.34)
However, from (3.28), we find that
VIV = 0, GCH) 0. (335)

and it equals zero only in the absence of thermal fluctuations (which we are interested in).
If it would be true, we would have that the linearized fluxes \/—¢G"* would be independent
of r, and could be evaluated at the horizon.

As it is, we obtain from evaluating (3.28) the modified conservation laws,

Or(V=9G"") = =0(V=9gG"") — 9,(v/=9G*"),

0r(v/—gG™) = =0y (v/—gG"Y) — 0,(V/—gG™) + /—gH"™a(r). (3.36)
Moreover, we calculate
Gl = —g'"T% + ¢*' T, — %ZF“At - %ZFzyAy — %(Qa + Ex)(ZF" + 4giWF,,)

1 1
G™ = —5(2(1 + Ex)(Ze ™V B —4g3e Vd) = —5(2a + Ex)H™

U’ 1

G = — 75 Oy — 52(6—"”13& + - )a
-2V
—%Z K—e—‘“’B + M%(—E + £a)) (—E+¢&a)t+...
1 —4V 2 / /
—5(2a+ Ex)[Z(e” "V Bét + ) — dgiW (€a't + 54,)], (3.37)

“,om

where represents terms that do not depend on the t coordinate, resulting in

0(V=5G") = 0
02 (v —9G™) = g(Ze‘WB — 4giWa)

1 1
Ot (v/—gGW) = —§Ze_2VB§a + §Ze_2VB(—E +&a)

—%(m + Ex)(Ze 2V BE — 4g2Wd'€). (3.38)

Note that we consider always the case when a(x) dominates over Ex.

— 11 —



Finally, one obtains

Or(v/=9G"™) =0,
0;(V=9G™) = eV H™(E — 2¢a(r))
= —(e7*Z¢)B — 4giW (¢)d')(E — 2£al(r)) , (3.39)

where we have used F* = Ze 4V B, \/—=¢gF" = —a’ and \/—¢ = €2V, which can be easily
calculated. This in turn is consistent with a particular example of the more general formula
presented in [6],

0,(V=gG") = B(V=gG™) + 2/ =gGIE; + V=g H E; (3.40)

upon specializing to & = £0;,, E; = Ed;, and using GY* = —aHY*.

Since there is an extra term in the conservation law (3.39), like in the case of the electric
current, we can add an extra term to the heat current, obtaining the fluxes (compare
with (3.33))

2V /
or = U? (6 3%) —a(r)y/—gH"™,
v o (€0 y
QU = U* (=) —a(r)y=gH" — M(r)E — 2Mg(r)t, (3.41)

where M (r) and Mg(r) are given by (2.24) and (2.22), only integrated until r instead
of infinity. Note that their integrands match the right hand side of the non-conservation
in (3.39), so by derivating with respect to r we obtain the needed extra term to cancel the
non-conservation, so that

2,9"=0, (3.42)

as wanted. But by construction M (r) and Mg(r) (which are integrated from the horizon
to r) vanish at the horizon. Moreover, at the boundary r — oo, M (r) — M, Mg(r) — Mg,
so the extra term are the magnetization currents, and subtracting them we obtain the pure
transport currents,

Q' = QN — ME — 2Mpé = Q'(r — 00) = Q'(ry) (3.43)

so that at the horizon we calculate the transport currents.

At the horizon, not only M(rg) = Mg(rg) = 0, but also a(rg) = 0 and U(rg) = 0
(but U'(rg) # 0) by the boundary (regularity) condition there, which means that finally
we obtain

Q' =-U'e¢®sHy| _, . (3.44)

This is the same formula as in the case without topological term, in [1]. The graviton
perturbations in the presence of F, B, { sources was already calculated in (3.17), so substi-
tuting them in the above, and comparing with the general formula

Q' =Ty Ej — rijV,T , (3.45)
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with V,;T = £6;,T, E; = Ed;, and U'(ry) = 47T, we thus extract the coefficients of TE
and £7 as

spe?V k2D
Yo = B2 (B2Z + 2V k202
(B2Z2 +p€2vk2¢’+p2)
Yoy = ST B2 (B2Z 1 2V R2D)2
_ ST(B?Z 4 e2VE2D)
fer = g (B2Z + 2V k25)2
Kay = > TpB (3.46)

B2p? + (B2Z + 2V I20)?

The thermoelectric coefficients agree with the results obtained from the electric current
in (3.20), as they should, by general transport theory. We have no new contributions from
the topological term with W (¢).

3.3 S-duality

The general conductivity formulas (3.19), (3.20), (3.46) contain explicitly a nonzero electric
charge p, and magnetic field B, but no nonzero magnetic charge or electric field, so as they
are, they do not exhibit manifest S-duality (Maxwell duality in a more general setting).
However, we can consider p = 0, B = 0 in them, and obtain

Opy = Z(TH)

Oy = —4W (rH)

— 0=, = Fay
Oz = 0= gy = T
2
Kax s
M . 4
T e2Vrm) k20 (ry) (347)

We see that the isotropic thermal conductivity ., is singular for ®(rg) — 0, but
we keep it finite. In any case, the o/ and k% coefficients are invariant under changes of
the eletric/magnetic variables (S-duality). The other formulas are consistent with previous
results at p = B = 0, where we know the effect of S-duality [9].

Indeed, we can explicitly check that our action (2.1) is invariant under the transfor-

mation
Fu — Z(qb)FW — W(d))FW = Z(gf))%gwpappo _ VVYS)
Z(9)
W) = S (3.48)

Z(¢)* +W(¢)* "

where we have defined W (¢) = W () /4.
It was shown in [9] that this transformation comes from a simple duality transformation
on the action (going to a master action and then writing a dual action in terms of a
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previously auxiliary field). Moreover, as we can see, since 0, = Z(rg) and o,y = —W (1),
this transformation becomes

/ Oxx
Ozz — 5 T+ o2
Ozz T Oy
Ox
ol =_-—"2Y (349)
Ty 0—2 + 0—2 )
Tx Ty

or, by defining the usual complex conductivity o = 04y + 104, simply the usual S-duality
formula acting on complex objects,

1
==, 3.50
o' = (3.50)

This is indeed the effect of particle-vortex duality (standing in for S-duality in 2+1
dimensions) in the dual field theory, as seen for instance in [8, 12].

4 Transport via entropy function and S-duality

We next consider an alternative treatment of transport, relevant for eztremal black holes
(unlike the nonextremal case in the previous section) using the entropy function formalism,
and generalize the work in [7, 13] to the case with a topological term.

The entropy function formalism was developed by Sen [14, 15], having in mind the
application to the attractor mechanism [16, 17]. Within the context of transport, the first
application was in [7], whose logic we will follow here.

4.1 Entropy function formalism

The entropy function formalism calculates the entropy and other quantities at the horizon
of an extremal black hole by the extremization of a function called the entropy function.
Since as we saw in the previous section often transport properties are determined at the
horizon of a black hole in a gravity dual, this formalism will allow us to do the calculations
easily.

The specific case we are interested in is the case of an extremal dyonic black hole in
four dimensions, which is known to have a near-horizon geometry of the type AdSs x S2, or
AdSs x R?, in the case of a planar horizon. The near-horizon metric in this latter (planar)
case is

d2
dﬁzu<—ﬂﬁ?+;;>+w@% (4.1)

where v is the AdSs radius, w is the R? radius. The Ricci scalar for this metric is

2
R=-=.
v

(4.2)

The attractor mechanism [16, 17] means that the values for the fields at the horizon
are independent on the values at infinity, depend only on the electric and magnetic charges
of the black hole, and can be found from the extremization of the entropy function. For an
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application in the AdS/CFT correspondence, see [18]. The constant values taken by the
scalar and vector fields at the horizon are denoted by

bs =us, F) =ey, FY

0y = B, (4.3)

where e4 and Ba are related to the electric and magnetic charges respectively.

We define the function f(us,v,w,es,pa) as the Lagrangian density /— det gL evalu-
ated for the near-horizon geometry (4.1) and integrated over the coordinates of the planar
horizon [14, 15],

[us,vi,ea,pa) = /d:vdy\/Tetgﬁ. (4.4)

Then the entropy function is

5(67 Ua 57 _:]5‘) = QW[GAQA - f(ﬁ7 177 é)aﬁ')] (45)
Its equations of motion,
o€ o€ o€ o€
_ e _ - - — 4.
Oug 0, ov 0, ow 0, Oea 0, (4.6)

are called attractor equations, and fix the horizon data (us,v,w,e4) as a function of the
electric and magnetic charges of the black hole, Q 4, pa, thus defining the attractor solution.

At the extremum (for the true values of the horizon data at the horizon), the entropy
function equals the entropy of the black hole,

Spr = E(uU,V,€,q,p). (4.7)

Note that in the case of the R? horizon black hole, as f is an integral over the horizon
(which has infinite volume, or rather area), we must consider the entropy density instead.

4.2 Electrical and heat conductivities

We want to apply the entropy function formalism, for extremal black holes in an asymp-
totically AdS gravity dual, in order to calculate the transport coefficients, using the for-
mulas (3.20), (3.19), (3.46).

However, as we mentioned, these results from last section were for nonextremal black
holes. But we can consider the particular case of extremal black holes by taking the
temperature to zero, T" — 0. Indeed, for an extremal black hole we have

(r—rm)

Ulr)y=U(rg)+ (r—rg)U (rg) + 5 2U”(7"H) +0(r?), (4.8)

where U'(ry) = 47T = 0. Therefore the near-horizon metric is

2
(r—rg)?U"(ry)

B 2
(r=rn)” ;H) U (rpr)dt? +

ds® = — dr? + Vi) (da? + dy?) | (4.9)

and by the coordinate redefinition

B 2
~ U(rn)

r—rg=p,t T, (4.10)
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we obtain the AdS, x R? metric

2 ~ dp?
2 2 2 2V (r 2 2
ds® = 07 (rm) (—p dr* + > > + 2V ) (dx? 4 dy?), (4.11)
where therefore 5
2V (r
’U:W, w = e (H) (412)

We can then apply the formalism from the previous section with 17" — 0, and then use
the entropy function formalism from the previous subsection to calculate the horizon data
as a function of the electric and magnetic charges.

Moreover, from the previous section, the ansatz for the field strength to leading order
(in the absence of perturbations) was

F =d/(r)dr Adt + Bdz A dy. (4.13)
Changing to the near-horizon coordinates, we obtain
2a’ (rg)
F= dp N dr + Bdx N\ dy. 4.14
07 (rgy) @ 7+ B A dy (4.14)

Comparing with the ansatz for the entropy function formalism at the horizon, (4.3), we

also obtain
2a’ (rpy)
e = ——
U"(rg)

In order to use the entropy function formalism, we consider ®(¢) = 0 in (2.1), so that

=vd (rg). (4.15)

we don’t have axions, obtaining

1
_ 4 —
S‘/d“ g[lGWGN

Z(9)

493

Fu F'" —W(¢)F ™ | .
(4.16)
Using (4.1), (4.2) and (4.3), we compute the Lagrangian in the near-horizon region,

Vit

(R- J0u00% - Vi) -

(—2w —woV(up)) +

292 v

where up is the value of the dilaton field on the horizon.

_ ey
= ores B ) + AW (up)eB,  (4.17)

The entropy function (4.5) is then

£ = 27m[eaQ? — VoIR?\/—¢L]. (4.18)
The attractor equations (equations of motion of the entropy function) for our system
are then
Q@  Z(up)w
— —e —4W B=0 4.19
VolR2 gF v ¢ (up) ’ (4.19)
Z(up) (w o B2 w

el = = 4.2
293 (vze * w 167rGNV(uD) 0, (4.20)
— — —B \%4 =0 4.21
167Gy 292 (ve Tl ) P gy V) =00 (42D

1 0Z(up) fw 4 v _, OW (up) wv OV (up)

—— —e*— —B°) —4——¢eB =0. 4.22
292 oup (v © w ) dup eb 167Gy Oup ( )
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Using (4.19) we eliminate @ from (4.18), and obtain

1 Z
4

We combine equations (4.20) and (4.21) and obtain

1

V(up) = e (4.24)
Z(up) (€*  B*\ 1 1
27 (2 w2 ) T orGn) v (425)

and replacing this in (4.18), we obtain the entropy (value of the entropy function on the
solution of the attractor equations)

B 4w VolR?2

c_ B wVolR? _ A

167Gy 4Gn 4GN’

(4.26)

This is the expected Hawking formula for the entropy of the black hole, which shows that
the attractor mechanism for the entropy function does work in this case as well.

Moving on to the transport, the electric current is defined in the gravity dual as
before, as

550n—shell
py — ZPon-shell
N = oA,

7 ~
=g (@FW + 4W(¢>)FW> . (4.27)
boundary 91
As we saw in the previous section, by subtracting a magnetization term that vanishes at
the horizon, we obtain the pure transport current (not the total one), and the resulting
flux is r-independent, so can be calculated at the horizon. That means that the charge
density J% = p of the dual field theory can be calculated at the horizon, obtaining!
Z(up)wa (r
p= (D)g2(H) + AW (up)B. (4.28)
4

Replacing (4.28) in the attractor equation (4.19), with the identification (4.15), we

obtain that the charge density of the dual field theory p equals the charge density of the
gravity dual black hole in the entropy function formalism,

Q

P=0Q=oRe

(4.29)

Moreover, the entropy density of the dual field theory equals the entropy density of
the black hole, which because of (4.26) becomes

4w
s = .
167G N

(4.30)

'Remember that A; = a(r) vanishes at the horizon due to the regularity conditions, but a’(r) does not.

,17,



Replacing these p, s, together with 7' — 0, ®(¢) = 0 in (3.20), (3.19), (3.46), gives the
finite results

gz = 0,
p
O—:Ey E —4VV,
Qg 0,
S
Apy = Ea
Koz _ s*2
T 2.2 B2z2)’
9y (p + A
= 2
Pay _ P 5 (4.31)
ey

where we wrote &;; /T, since this is usually the relevant finite quantity.

While in the above analysis we have considered the case of nonzero B, let us comment
on the case of zero magnetic field. In order to obtain regular planar black holes with only
electric charge (and finite chemical potential) for the Einstein-Maxwell-dilaton theory, the
dilaton potential must be non-zero.? As it was pointed out on page 13 of ref. [7], the
regularity of the solutions in the extremal limit is guaranteed if the attractor equations
admit solutions, since they are also solutions to the equations of motion with AdSy x R?
near-horizon geometry. So, Sen’s formalism is applicable for the Einstein-Maxwell-dilaton
theory with only electric charge if there is a non-zero dilaton potential, i.e., zero magnetic
field and finite chemical potential (consider eqs. 3.7 and 3.10 in [7] relating u # 0, B = 0
with p = Q # 0 and v finite, which by our eq. (4.24) means nonzero potential). Notice
that the coupling v inside the dilaton potential (for instance 7, in (4.47) below) must
be chosen in order to obtain regular solutions, since it might be possible to find limits
when the solutions are non-regular. As it was also pointed out in the same reference, Sen’s
formalism is not applicable for general theories with Lifshitz symmetry since these don’t
have an AdS, x R?, although it might also be possible to obtain finite chemical potential
with no magnetic charge in this case.

4.3 Examples

Finally, since we have obtained the formulas for the transport coefficients as a function of
p/B,s/B and W(up), it remains to solve the attractor equations in specific cases, so as to
write explicit formulas for the transport coefficients as a function only of the charges and
the magnetic field B.

4.3.1 Constant potential and power law topological term

We consider first the case that the potential is just a constant negative cosmological con-
stant (giving the AdS vacuum at infinity), while the topological term is a power law of the

2One can write the attractor equations for zero magnetic charge and non-zero electric charge and find
the solutions only in the case when the dilaton potential is nonzero.
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kinetic function Z(¢),
—6
V(é) =7z, W(9)=BZ"(¢). (4.32)
We manipulate the attractor equations so that we can write s, p, W(up) in terms of the
charges.
Equation (4.24) gives v, which now is a constant,

L2
= —. 4.33
b= (133)
Equation (4.19) gives
~ Zw n
Q- S5—e—4BZ"B =0, (4.34)
94
which can be solved for e as )
91V A n
=2 (Q —4BZ"B). 4.35
e=BY(G - 157"B) (135)
Using
ow oW 9z 0z
_ — Bnzn— 122 4.36
dup ~ 97 oup "7 Bup (4.36)
in (4.22) and (4.21), we obtain

Z (e* B? 1 2
L2 ) Z =0 4.37
g2 (02 + w2> 167Gy v ’ (4:37)

Z (e B? Z"eB
. <62 2) | BonZeB (4.38)

g3 \v w wo

Substituting e from (4.35) in the above equations, and eliminating w from the two, as

w2=2|Zp2_ zwnZ”QBﬁ + (4&2"3)%97‘% (4.39)
a | g Z Z|’ ’
where o = m, we obtain the polynomial equation for Q,
- 72 -
Q* — =1 B* —88QB(1 —n)Z" + (48B)*(1 — 2n)Z*" = 0. (4.40)
94
e The n =0 case.
In this case, solving (4.40) gives
4 Q
T AR (4.41)
91 (B )
Substituting back into (4.39) and (4.35), we obtain
L2(1 B -
w= [+ G s
Y B (4.42)
e = - . .
6(167GN) (Q — 48B)
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Finally now we can put everything back into (4.31) and obtain the nonzero transport
coefficients as a function of the charges as

oo , L2 (Q — 46B)?

_— = (47T) 6(167TGN) QQ + (Q _45B>2

Ray _ s L7 Q(Q — 4BB)

7 = ) 6(167G'N) Q2 + (Q — 48B)% (4.43)

e The n =1 case.
In this case, solving (4.40) gives
Z ) 1
2 ig—m'
94 B \/1+ (48g3)
Substituting back into (4.39) and (4.35), we obtain

1
S\ e 1]

e = \/m@Bm/l + (4862)? — 48g3). (4.45)

Putting everything back into (4.31), we obtain the nonzero transport coefficients as a

function of the charges as

_ Q. 4Bgt
O’xy—B<1:F 1_’_(4692)2)7

5 -
gy = 4#\/([1)2 (:I: (48g3)2 4+ 1 — 4592)

(4.44)

1V ~
w? = ~QB4fg}

6(167G
Keo L2 1+(4/892)2
= = (477)2m (i\/m— 4592) W
oy 1+ (489%)°
" = ) gy (FVARRY 1 - 48) 3 (4.46)

4.3.2 Power law potential and power law topological term

Next we want to consider the more general case when the potential is polynomial, specifi-

cally
D)= mZ™ (4.47)
Now we still have 1
’U = — 5 4.48
Vun) (4.48)



because of (4.24), just that the right-hand side is not a constant anymore. Further, (4.19)
is unchanged, so we can still solve for e in the same way, obtaining again (4.35).
However, now from (4.22) and (4.21), we obtain

20 Z [e?
v 2

32
ﬁ+ 2 ) +avaZm =0, (4.49)

1 eZ2  B2?\ 07 eB 07 YA
_ i e | n—1-2 m—1 =0. (4.
2924< 2) Bup D ey A2 M T g = 0. (4:50)

fBZ

Now, i # 0, substituting e from (4.35) in the above equations, and eliminating w

from the two, we obtain a new polynomial equation for Q,

~ 9 ~ 2
(m—2n+1)2*"—2(m—n+1) (4?3) Z"+(m 1)(4592)24-(7%4—1) (4?3) =0. (4.51)

Moreover, (4.49) can be used to solve for w, if we substitute in it e from (4.35) and v
from (4.48).

e The n = 0 case.

In this case, solving (4.51) leads to

A ~m+1 Q
— == — | = —45]. 4.52
2L [F(2 ) -
e The n =1 case.
In this case, (4.51) becomes
1 Q Q’
m—1) |1+ }Z—QmZ%— +1 =0. 4.53
( ) [ (4893)* 4B (m )(453)2 (4.53)
For small perturbations, 43g2 > 1, its solution behaves like
Q
Z o~ —— 4.54
5 (454)

but otherwise the full solution is unenlightening.

In principle we could proceed as before, and solve for w and replace everything in the
transport coefficients, but the calculations are difficult (we obtain higher order algebraic
equations) and the solutions unenlightening.

4.4 S-duality

In this case, we have a different limit of the conductivity formulas with respect to the case
at section 3, since now we have first ® — 0,7 — 0, and then nonzero p, B, s (the opposite
of section 3). As mentioned there, we cannot check S-duality explicitly on this background,
since we have p # 0, B # 0, but p,, = 0 = E. Moreover (and related) we have black holes
with @ # 0, B # 0, but P =0, F = 0. We can however take the limit (notice the order of
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limits though, we first took ® — 0, and then took p — 0, unlike in section 3) p — 0,5 — 0
and obtain

Opz =0, 0py=—4W(rg)=-W(rn), ous=0= 0y = Ky = Kga- (4.55)

Then we obtain a subset of the S-duality of section 3, namely

- 1 1
W— = =04 ———, 4.56
W Ty Oy ( )
namely what we obtain by restricting to o,, = 0.
Notice however that we still have Z(rp) # 0, and that is due to the order of limits we
took (the limits are non-commutative).

5 Transport from Stokes equations and S-duality

Starting with [4], and developed in [2, 6], the transport coefficients (o, o, &, ), for electric
and thermal transport were also obtained from a formalism of perturbations of black hole
solutions that leads to generalized Stokes equations. In the limit when hydrodynamics is
valid, it was shown in [19] that the formalism turns into the fluid/gravity correspondence
formalism [20].

Here we will apply the formulas of [6] to some one-dimensional lattices and take a
relevant T — 0 limit, with the goal of, in the next section, make some generalizations for
that, and use the entropy function formalism for a supergravity-inspired model.

5.1 Stokes equations from black hole horizons

We consider the action (2.1) at ®(¢) = 0, i.e., the Einstein-Maxwell-dilaton action (4.16),
which has a topological term for the gauge field.

We consider electrically charged black holes solutions in 341 dimensions, with a metric
and gauge field

ds® = gttdt2 + g,,rdr2 + gijdmidxj + 2gy-dtdr + 2gtidtd:ci + ng-drda:i,
A = Aydt + A,dr + Agdz’. (5.1)

At infinity, the solution should go to AdSy with sources, so

ds® — r—2dr® + rz[ggfo)dtQ + gl(;o)dwid:vj + Zg,gfo)dtd:):i],
A = A dt + A da,

¢ — r2736() (5.2)

where Agoo) = p(x) is the spatially-dependent chemical potential (source for particle num-
ber in the dual CFT), ggfo) = G(x) and gg.’o) = g;j(x) define the source for the energy-
momentum tensor of the dual CFT, and ¢(>) = QNS(:U) is a source for the dual scalar operator
in the CFT.
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The solution should have a horizon at r = rg, and near it, we expect the expansion

gu(r,x) = —U(r)(G(O)(x) +..0)
Gre(ry ) = U™(r) G(O)(x) +...)
gir,x) = U(r)(ghy (z) +..)
gii(r,z) = U (GO @)X (@) +..)
GO (z

A(r,z) = Ulr) ( 47T(T)A§°)(x)+... >
gij(r,x) = hz(-?) (x) + ..
gin(r,z) = g0 (x) + ..
Ai(r,x) = AZ(O) () +..
Ap(rz) = AD(z) + ..

o(r,z) = ¢O(x) + ..., (5.3)

where the dots refer to higher orders in r — rp and, as before, U(r) = 4aT(r —rg) + .. .,
which means that the fields proportional to U vanish at the horizon. The most relevant
horizon data are then T, hg?), AEO), XEO) and ¢(©).

The metric, gauge field and scalar perturbation that introduces sources for the electric
and heat currents is

§(ds?) = Sgudatda” + 2tgué;dtds’ + t(gi&j + g1;&i)dx'da? + 2tgy,&idrda’

§A = daydr’ — tEida’ + tAda', 8¢, (5.4)

where as before we have E;(x)dx® electric source and &;(x)dx! thermal gradient, but are
considered periodic, and closed as one-forms, dE = 0 = d€.
Regularity at the horizon rp gives the conditions

Sgu = U(r)(0gi" (2) + O — 1)), Sgrr = 57y B9l @) + O =rm),
2In(r —r
b = 000 (@) + 20T g e O ). g = 800 (@) + Olr—r).
1 _
Sgui = g3y (x) + gttfiw +O(r —rm),
T

o l (0) ln(r — T‘H) 4 B
dgri = U((ng‘ (z) + AT gir&i + O(r — 7)),
da; = 5@5/0) (x)+O(r—rg), da, = U*1(5a§0) (x)+O(r —rg)

~_ In(r—rpy) ' ' (0)
da; = T(_E’L + Ai&i) + da; ' (x) + O(r —rm) ,

S = (5¢(0)(x) +O(r —rpy).

(5.5)

As we already saw, we can define fluxes that are r-independent, by subtracting magne-

tization terms to the total currents, and then at the boundary these are just the transport
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currents, but they can also be calculated at the horizon, where the extra terms vanish:
j — J(tot MZ])§]

Q' = QN — My Bj — 2Mj & (5.6)

where (b) means for the background (no fluctuations) and
T T
v = [ arymg g = [ a0, (57)
TH TH
The equality of the transport and horizon currents, via the radially independent fluxes, is
written as
=T =Ty, @ =9 =Q, (5.8)
where the (0) index signifies horizon value.
Then [6] obtains Stokes equations for a charged “fluid” (is a real fluid only in the
hydrodynamics limit, as we said) for the variables (v;, p, w), standing in for velocity of the
fluid, pressure, and (electric) scalar potential, respectively, defined as

(0)

v = —0g,;
_ AT 500 i 05O i GO ()
P =00 <59m hioy9ir 09 ) "oy =Gy 09 -
w = 5a(0). 5.9
t

0)

Here hz(%) is the inverse metric for hgj .
The resulting (generalized) Stokes equations are

Ji
: it 4(0) . (0 (0) 0) “(0)
—2VIV 5 + 07 [V OV — 4xTdy;)] - Fy; NG

= P (B, 4+ Viw) + 47T€ — Vip.

vV 1(0)
V' =0, i J (g, = 0, (5.10)

where the local charge density at the horizon (the horizon data for the zeroth component
of the electric current) is

1 i
pH = ‘](to) — /(0 <Z(O)A§O) _ 2w(0)€szi(]Q)) ’ (5.11)
we can define a magnetic field at the horizon by
1 ..
By = \/h<o>§€w ﬁ}(f’ : (5.12)

WO = W(¢©) is the horizon data for the coefficient of the topological term, and the
electric and heat currents at the horizon are

J( = puv' + Vh ( h” W(O)eij) (Ej + Vw + F].(,S)vj>
Q! 0) = 4nTV hOy, (5.13)

For a particular case, one can next calculate these currents, and as before, identify the
coefficients of T'¢ and T'E as the transport coefficients.
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5.2 Results for one-dimensional lattices

Here we mostly follow [6].

The relevant case we are interested in is of one-dimensional lattices, where the only
nontrivial dependence is on a single coordinate x, and the fields are independent of the
others. Then, in particular for the spatial metric in boundary directions at the horizon
(horizon data) we consider

hz(?)dxida:j = gg-))d:ridxj = vy(x)dz* + \(z)dy>. (5.14)

Then one of the Stokes equations, the incompressibilty condition V;v* = 0 becomes (for a
single nonvanishing component v*, 0 = V0% = ﬁ@m(JThvx), and denoting the constant
by vg, we solve it by

0" = (vga—1)"?vo. (5.15)

Moreover, we consider also
Fég) =Bp(z), 4Tx,(z)=x(), xa=0, ¢ =0¢O(); A§’0) _ A§0)($) . (5.16)

and all the horizon data depending on x are periodic with period L. We can define also
the average over a period, [ = (1/L) fOL dz, and then the zero modes

B:/BH, p:/pH, sz/sH. (5.17)

Note that the entropy density of the horizon is (by the Hawking formula)

sg = 4m\/YA. (5.18)

Moreover, separate the zero modes of By and py, and write the remainder as 0, of some-
thing, defining

We also define z-dependent averages [ “ as the average with L replaced by z in the
upper limit of integration. Then consider

w1($)zp(;/$BH—;/pr>, w2($):T5(;/$BH—i/$5H>a (5.20)

and then construct the periodic functions
1/221_
o x 71/222, B 7)\37/2 x ,}/1/2 (5 21)
Ui = \3/2 172 \3/2 :

f 2\3/2

where ¥; stands for the set of periodic functions (31, X9, 33, X4, 35) = (X, w1, wo, /ly, ).
Finally, define the matrix with constant components

)\3/2

U, — / it (5.22)
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For the transport coefficients, it turns out that one needs to define also the constant

o [ @ (ax¢<0))2+ (pr + BuW)? M+u (5.23)
— ) Ny (yA)1/2 AZO (M)H? D)2 T |

Then one solves the Stokes equations for the velocities v* and currents J(io) as a function
of the souces F;, &, and extracts the transport coefficients.

5.2.1 Constant By, v(z) = A(z) and T — 0 limit

The case that we will mostly be interested in is of By (z) = B =constant and A\(z) = v(x).
The last condition can be thought of as using residual diffeomorphism invariance to fix
A=1.

Then we obtain first

w= | Z- - (5.24)
/3 A

and then
PP DY)
Z/{ij = /axulilj = )\ J f A 1 A . (525)
A

Next, we have sy = 4w\, and then

xT
wi(x) = px—/ PH,

wa () :47TT<x/)\—/x)\

_ [ (82N (0:0©)? (0) 2(0)2 7z B? X (37
X_/ 3 +//\+/Z A, +/ 2 +//\— i (5.26)

With the above formulas, putting v = A and By (z) = B in the more general formulas
obtained in [6], we find for the electric conductivities

o™ =0
L (0))2
_ 0 (g + W)
a¥¥ U22+/Z( )—i-/ FAG)
2
1y —/(p+W(°)) A© _/Bz(O)
x \7"? B t )
oY — _guT — % ’ (5.27)
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for the thermoelectric conductivities

a{L’iE — d$$ — O7

AV — q¥v — @4_3 (%+W(O))
T B 7(0)

N R <o>_/BZ(°’ “13_3/ 0
X<u12 /<B+W )At A T B )

4 BZ©
V%% = a"l = % (Z/ﬁz — / <% + W(O)> Ago) —/ \ > , (5.28)

and for the thermal conductivities

er _ 167%T
X )
Uss  $*T 1 T (Us s (0)
I T A B e s R
" T+B2/z(0) x\T B/At ’

T _ 4T Z/{13 S 0
== (g A7), 2

22 AW, (5.30)

Finally, for application to the extremal case (which will be done in the next section),
we want to take the limit 77 — 0, and also (see previous sections), we need to consider
X = 0, which means that U;; = 0. Also note that, because of (5.26), ws/T remains finite
as T — 0, so then so does Uss /T and Usz/T?.

We obtain for the nonzero electric conductivities

2

0¥ = Uy +/Z(0> + /)\QZ(O)Ago)Q - %

AZ0) (0)2 B2
/5 (At +A2>

_ [Az20A" - [wOBy

p
xy o~
7 B B’

(5.31)

for the nonzero thermoelectric conductivities

dm 220 o0 B
X B t A2
S

B

2
oV — % n % (/ AA© _;/Ago) /)\Z(O) <A§o>2 i i)) : (5.32)

a¥*

ot =
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K

T7
Lyy:@+i Lilﬁ A(0)2
T 72 B2 ) 70) X B2 t

K*Y 47r s
LA A
T /
1672

and for the nonzero and finite thermal conductivities

KR
= (5.33)
Here X is (for A =e™")
X= / e @ (0xw)? + (0,0)%) + ZO(A? + e B2)]. (5.34)

Also, the finite thermal conductivity at zero electric current (obtained by putting
J® = 0, and thus relating the electric field with the thermal gradient, and substituting it

in the heat current) /@ZJ]Z-:O =K — T (o™ ma™, is
T
1
T
ERCUER / RER
X pB
kY 1
S Lo 1o )

bR e

The generalized Stokes equations are invariant under an S-duality transformation of the

5.3 S-duality

horizon data [2, 6]. Indeed, consider the transformation

By — pu pa — —Bp
0 0
Z0) _, 7(0) _ . W (0) :
Zo) + Wip) Z) + W( 0)
1 j i ./ ij

Then, it is easy to check that the Stokes equations (5.10) are left invariant. The trans-
formation on (Z(), W) is understood as a transformation that must be performed on
the right-hand side of the definition of J(i()) in (5.13), together with the transformation of
the other horizon data, namely (Bg, pm, (E; + V,w)), and then by again replacing J(lo)
from (5.13) in the result, to finally obtain the transformation of J(0)-

Defining the horizon data and its inverse S-dual,

7(0) W)
Dy = (pH»BHaz(O)yw(o)) —>D}[ = (BH7—pH, 2 v 59 2 ) (537)
Ziy+ Wiy Zy + Wi
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then the action on the electric and thermal conductivities is (here we define €*¥ = +1)

U”(D/H) = —eikak_llelj

a’(Dy) = —e* o (D) (D)

ai (D) = —o/k(DH)akl (D)€l

K9 (Dy) = &9_o(Du) (5.38)

where as usual the heat conductivity at zero electrical current is mf]jzo = kY — To?ikak_llalj .
But if Dy is a solution for horizon data, D’; is not necessarily also a solution. Only if

the bulk theory is S-duality invariant, specifically under

b - —¢
2(6)
200 = g weg)

W(6)
W)= ~zGy T we)
Fuy = Z($)Fuy — W () Fuw (5.39)

which we can check that reduces on the horizon data to (5.36), is D’; also a solution, and
then the transformation (5.38) of the transport coefficients is indeed a symemtry of the
dual field theory.

Our action (2.1) certainly falls within that category, since as we saw in section 3, the
S-duality (5.39) is an invariance of the action. This matches with the analysis of S-duality
in section 3. We will consider more such bulk theories, inspired from ones arising from
supergravity, in the next section.

6 Supergravity-inspired model and generalizations of transport relations
for entropy function formalism

We now consider, as an example, a supergravity-inspired model that contains several scalar
fields and a potential for them that is polynomial in the field.
Consider the action for U(1)* gauge fields Al{ coupled to scalars X; and gravity,

S = /d%:r o GN <R 312 (32 OuA1)® =2 0, A[au,> — V(X))

I<J
4
1 -
—TQQZZI(X)(FJV)Q —ZWI(X)FLF“”I : (6.1)
4 1=1 I=1
where I = 1,2, 3,4 labels the scalars X;, subject to the constraint
X1 XoX3 Xy =1, (6.2)
the A; are redefinitions of X via
X7 A
— =e 2 s 63
7 (6.3)
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the field strengths of the abelian vectors are as usual F; l{l, = 0, Al — 8,,A£, and the potential

for the scalar fields is
2 1
91

4 XX

V(X) = —

(6.4)

This is a generalization of the U(1)* gauged supergravity model, obtained by dimen-
sional reduction of 11 dimensional supergravity on S” and truncation to the Cartan sector
in [21], and which has been considered in the entropy function formalism in [22]. To restrict
to that model, we put Wy = 0 and Z; = XI2. The generalization considered here is con-
sistent with the rest of the paper, having arbitrary Z(¢), W(¢), only now generalized to a
sum over [ = 1,2,3,4. To completely generalize, we would consider an arbitrary potential
V(X), but instead we want to keep the features of the supergravity truncation. For the
same reason, we also keep the constraint X;XoX3X, = 1. Note that taking g — 0 leads
to the vanishing of the scalar potential, so that is another situation that can be analyzed.

6.1 Entropy function formalism and solution in terms of charges

We follow the same method for the entropy function with the attractor mechanism consid-
ered in section 4. The near-horizon geometry of an extremal planar black hole solution of
this model will again be AdSy x R?, using the same general ansatz (2.7) for the solution as
in the rest of the paper. Note that because we consider the planar horizon case (with R?
factor) instead of the spherical horizon case (with S? factor) as in [22], the entropy function
and attractor equations will differ from that paper, not only by the topological term, but
also by the absence of the 2/vs term coming from the Ricci scalar of the horizon factor.
In this section we will use the notation of [22] and denote v by vy, and w by vg, also since
we reserve w for use in one-dimensional lattices. The horizon data for the abelian vector
fields and the scalars is written as

Xi=u;, Fl=¢, F=0p, (6.5)

and similarly as before, this leads to the entropy function

[ 1 2 [ ”Ielp
(Ul erq V102 167TGN( ) < U > V1V

I=1
(6.6)
The attractor equations derived from it are
O [ Z eI
— =2 — -4 W 6.7
ot ar oo (T 4] 67
(%'B [ 1 V2 o p% 'UQV
_ -9 — Nz (22 ) =0
vy i <+ 2gi EI: ! < v% °I ) 167Gy
0B [ 2 1 e?  vp? vV
- =27 |— Zr | — — =0
8’[)2 T 167TGN + g2 ZI: ! ( 1 + ’U% 1671’GN

OExp | 1 02y (e p> 1 oV oWy,
- =2 — — | 5——3)- — 4 =0.
8u1 T -’U1U2 (292 ; 8’11,[ <U% U% 167TGN 8u1 + Z]: 8u1 cp
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The first equation in (6.7) can be solved for e; in terms of the charges and other

parameters, as

o1 1 T
=qg°——(q; — 4W, . 6.8
€er=4g vy Z; (QI iy ) ( )

Substituting this in the second and third equation in (6.7), and adding and subtracting

the result, we obtain

1 2 Zrp"? | 51 (g —4wpp')?
o 4 § Z1 il LA v a— 6.9
].67TGN <U1> + 7 gz ’U% +g4’l}§ - ZI ) ( )
2 1 1
2V 4+ — =0=V = ——. 6.10
< * ’U1> 167TGN (UI) U1 ( )

These give the possibility to write 2 of the 3 horizon data, v1,vs, V(ur), as a function of
the third, and the charges (qr, p’), and Wr(u).

Finally, one should be able to solve the last of the equations in (6.7), for polynomial
Zr =Y, cmul and Wy =) dyuf, to obtain us as a function of the same data, reducing
to dependence on the charges. However, before that, we would have to remember that we
have the constraint X7 XoX3X4 = 1, which means that

uusUzUy = 1, (6.11)

and the potential depends only on 3 of them (the independent ones), while the fourth is
found from the above constraint. For instance, if u4 is taken to be dependent, and solved
for, we have

g3 1 1 1
V(ul, U9, U3) = —— |ui1u2 + uguz + usuy + + + . (6.12)

4 UlU2  UU3Z  UU]

Alternatively, we could consider the same theory without the constraint, so
V(u1,ug,us, uq). In that case, we would have

Zufwa(f) = —2V(up), (6.13)
I

and, as an example, substituting in (6.7) a pure power law case, Z; = u*, W = Wou7,
after some manipulations we would obtain

2
(4p1)2(m —2n — 2)u%" — 8q1p1(m —n—=2)uf — (m+ 2)%1@’”
4
+(m —2)¢? = 0. (6.14)

This would allow us to solve for uy, in terms of the charges and either va, or V(up)
(obtainable from the previous equations, relating V(up),v1,v2). For example, for m =
2,n = 2, we would obtain

4 qa o 5 qr  4Wogi
—ur 1+ + up=0=>uj=———""5-=.
! < (492W0)2> ApyWo ! L pr 1+ (4Wpg2)?

(6.15)
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This can be then substituted into V(up), resulting in

2
1 1+ (4W, /
V= _%4 Z . gf +4W 093)* PIPJ (6.16)
=7 urug 094 1<J qrqs
and then from the attractor equations (6.10), the second fixes v1,
1
V1 = —V s (617)
and replacing in the first we fix vs,
2 1 7q
=L AT (4Wog2)? ZIQI];IP ’ (6.18)
« I1PJ
91 091)" Y 1o e

finally fixing all horizon data in terms of the charges. Then the entropy density at the
horizon (minimum of the entropy function) would be (Hawking fromula)

47y _4 47T
s = =4mav
167Gy ° 4W094

6.2 Transport formulas for this generalization

ZA; qrp1

5 pIps
I<J N/ ards

To use the transport formulas from the previous section, we need to generalize them to

(6.19)

this case. But since the only such generalization is the fact that we have several scalars Xy
and gauge fields AL, the only thing we need to be careful about is where to put the sums
over I.

The horizon data is

1 y
pi = Jigyr = VhO (Zgo)Af O QW;O)EUEE(O)>
1.
BH,I = h(O)iEZJFin(O)
O = pp ot + VRO (Z}‘”hg) — w0 ) (EI + Vw! + FO )v]) . (6.20)
and we can define the sums over I (total value)

pH = ZPH,I , By = ZBH,I , JO = ZJ;(O)- (6.21)
T 1 1

and, in the case of one-dimensional lattices that we will be interested in, the averages

BI:/BH,Ia BZ/BH, P]:/PH,Ia pZ/pH- (6.22)

Then we have a multiply-charged (pseudo-)fluid with variables (v;, p, wr), standing in
for velocity and pressure of the fluid and electric scalar potentials defined by

(0)

v, = —5th ,
AT o0 i 0 @) i 0GY o)
p:_G()(égrt h()gzrég)_h()G() gtja
wy = 5%[(0)' (6.23)
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The resulting Stokes equations are

B . . . L (0)e . 4 (0) (0) - 1(0)
QV]V(Z'U]) + v’ [Vﬂb( )V2¢ ) 47TTdei ] ;Fij \/m

) +4nTE — Vip.

V' =0, 6Z»J(ié) =0, (6.24)

Next, we consider one-dimensional lattices. As we described, the case we are most
interested in is of x = 0 and Ay = (C = 0, and moreover, since we want to apply to
extremal black holes, of " — 0. That means that among the ¥; we consider nonzero only
Y9 = wy and X3 = wey, which have now to be generalized to o5 = w{ and Y3 = wo,
defined as

w{(x)—p<3}1/xBH7]—p’1] /po,I), wy(z) = T's <;/IBH—2/ISH>. (6.25)

That means that the nonzero components of the U/;; matrix are Uarar,Uaz3,Uzz. More-

over, as before, the finite values as T — 0 are Uajar,Usysz/T,Usz/T?.
We can next follow the steps outlined in appendix D of [2] in order to solve the Stokes
equations for J(io),vi as a function of the sources Fj;,&;, and find first v* = vy/v/—h as

before, then v¥ as a linear function of vy (involving a sum over I), then J I(O)x, J}J(O) as a
linear function of vy; and finally vy is obtained as a sum over 1.

We can consider E? = E' (equal electric fields for the all the four gauge fields), and
define conductivities by J& 1= oy JE; + Ta f, in which case we obtain the the electric
conductivities

oi* =0

yy—u2121+/ / ACTEIRGS S
(0)
([ (o o) B /BIZI
x([ (5w ) Az;oﬁ )
2 (0)
123 (0) By B;Z;
XZ</<BJ+WJ> AZ§0)+/ A

o = —oft = 2L (6.26)

xxr
arp = oy = U,

(0)
yy_—yy_u213 S (%+W1)
r=er =T Y )T oz

(0)
1 pr > Br /B 1Z; / BJ pJ (0)
X</<BI+WI > AZ}“ Z,: By i\e, "))
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aafcy = @§x = E?
(0)
¢ -z 4 pI 0\ Br B1Z
yr _ —my _ AT Pr 1
TTTX </ <Bz B VAR TN ) (6.27)

and for the thermal conductivities

K" 167
T X'’

2
kY Usz 82/ 1 1 s /<p1 (0)> Bj
— ==4+)) = | —=+= — —+W :
T T2 ZI:B§ z0 X ZI:BI By ! Az
K% RYT Arw s /(p[ (0)> By

T X4 B By AZ})

If we consider the total conductivities o/ and o, we have an additional sum over I
in the respective formulas. On the other hand, if we consider only a single nonzero E; (the
previous case), all the formulas have no sums at all, and only I indices.

We should note that we have the choice of whether one of the currents J, or their
sum, refers to the electric charge current, since in AdS/CMT one takes a phenomenological
approach, so any gauge current in the bulk could a priori stand for it, either one of the
U(1)* ones, or the diagonal one (the sum of the currents).

Finally, in order to be able to use the results from the previous subsection, we compare
the one-dimensional lattice case with the set-up for the extremal black hole with AdSs x R?
horizon. First, since the (z,y) space corresponds to R?, we have that

A=y (6.29)

That also implies that VRO =\ = vs. Second, we have the constant magnetic field at the

horizon

By = By = %\/ijﬂg = 2l (6.30)
Finally, the electric field is (in the gauge A, = 0)
Gl =0,Al =l = Al =el(r —ry), (6.31)
to be compared with the general formula (for G = 1) near the horizon,
Al = (r - rH)(Ago) +...)=> A§0) =el, (6.32)
which finally gives

pr =g = VO ZO 4O W By = vy (200 —wPp') . (633)

With vg, ! written in the previous subsection in terms of the charges ¢y, p’, this completes
calculating the transport coefficients in terms of the charges of the dual black holes.
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7 Conclusions

In this paper we have considered electric and thermal transport, in the presence of magnetic
fields and electric charges and a topological term with coefficient W, and the effect of S-
duality in such theories. We have also found that we can use the entropy function formalism
and the attractor mechanism to give results for the transport coefficients as a function of
the charges of the black hole in the gravity dual.

We have found that the only modification of the transport coefficients from previously
found formulas is an extra term —4W (rg) in oy, which however means that S-duality
acts on the transport coefficients consistenly with results at p = B = 0. The entropy
function formalism was extended to this case, obtaining, in conjunction with the general
formulas, explicit formulas depending on the charges of the dual black hole. S-duality still
acts naturally on the transport coefficients, but an order of limits is important now.

The formalism of Stokes equations for determination of the transport coefficients, espe-
cially as it applies to one-dimensional lattices, was also considered, and was applied for the
case of extremal black holes relevant for the entropy function formalism. S-duality is de-
fined now more generally. A supergravity-inspired model, obtained by extending the U(1)*
Cartan subgroup of N = 8,d = 4 gauged supergravity in order to make it consistent with
the rest of the paper, was also considered. The attractor mechanism, used in conjunction
with generalized formulas for transport from Stokes equations, which we obtained, allowed
us to write the transport coefficients of this generalized model in terms of the charges of

the dual black hole.

Acknowledgments

We thank Aristomenis Donos for useful discussions. The work of HN is supported in part
by CNPq grant 304006/2016-5 and FAPESP grant 2014/18634-9. HN would also like to
thank the ICTP-SAIFR for their support through FAPESP grant 2016/01343-7. The work
of LA is supported by Capes grant 2017/19046-1. The work of PG is supported by FAPESP
grant 2017/19046-1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References
[1] M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography,
JHEP 08 (2015) 124 [arXiv:1502.03789] [iNSPIRE].

[2] A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC' Conductivity of Magnetised
Holographic Matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].

[3] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons,
JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

— 35 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP08(2015)124
https://arxiv.org/abs/1502.03789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03789
https://doi.org/10.1007/JHEP01(2016)113
https://arxiv.org/abs/1511.00713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00713
https://doi.org/10.1007/JHEP11(2014)081
https://arxiv.org/abs/1406.4742
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4742

[4]

[20]

[21]

[22]

E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows
on black hole horizons, JHEP 10 (2015) 103 [arXiv:1507.00234| InSPIRE].

A. Donos and J.P. Gauntlett, Novel metals and insulators from holography,
JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].

A. Donos, J.P. Gauntlett, T. Griffin, N. Lohitsiri and L. Melgar, Holographic DC
conductivity and Onsager relations, JHEP 07 (2017) 006 [arXiv:1704.05141] [INSPIRE].

J. Erdmenger, D. Fernandez, P. Goulart and P. Witkowski, Conductivities from attractors,
JHEP 03 (2017) 147 [arXiv:1611.09381] [INSPIRE].

J. Murugan, H. Nastase, N. Rughoonauth and J.P. Shock, Particle-vortexr and Mazwell
duality in the AdSy x CP* JABJM correspondence, JHEP 10 (2014) 51 [arXiv: 1404 .5926]
[INSPIRE].

L. Alejo and H. Nastase, Particle-vortex duality and theta terms in AdS/CMT applications,
JHEP 08 (2019) 095 [arXiv:1905.03549] [INSPIRE].

N. Igbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane
paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

C. Lopez-Arcos, H. Nastase, F. Rojas and J. Murugan, Conductivity in the gravity dual to
massive ABJM and the membrane paradigm, JHEP 01 (2014) 036 [arXiv:1306.1263]
[INSPIRE].

C.P. Burgess and B.P. Dolan, Particle vortex duality and the modular group: Applications to
the quantum Hall effect and other 2 — D systems, Phys. Rev. B 63 (2001) 155309
[hep-th/0010246] [INSPIRE].

J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S- Wave Superconductivity in
Anisotropic Holographic Insulators, JHEP 05 (2015) 094 [arXiv:1501.07615] [InSPIRE].

A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,
JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates,
Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] INSPIRE].

S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes,
Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].

S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514
[hep-th/9602136] [INSPIRE].

D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric
AdS attractors, JHEP 04 (2008) 074 [arXiv:0711.0036] [INSPIRE].

E. Banks, A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, Holographic thermal DC
response in the hydrodynamic limit, Class. Quant. Grav. 34 (2017) 045001
[arXiv:1609.08912] [INSPIRE].

S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics
from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity,
Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].

P. Goulart, Dyonic black holes and dilaton charge in string theory, arXiv:1611.03093
[INSPIRE].

— 36 —


https://doi.org/10.1007/JHEP10(2015)103
https://arxiv.org/abs/1507.00234
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00234
https://doi.org/10.1007/JHEP06(2014)007
https://arxiv.org/abs/1401.5077
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5077
https://doi.org/10.1007/JHEP07(2017)006
https://arxiv.org/abs/1704.05141
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05141
https://doi.org/10.1007/JHEP03(2017)147
https://arxiv.org/abs/1611.09381
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.09381
https://doi.org/10.1007/JHEP10(2014)051
https://arxiv.org/abs/1404.5926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5926
https://doi.org/10.1007/JHEP08(2019)095
https://arxiv.org/abs/1905.03549
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.03549
https://doi.org/10.1103/PhysRevD.79.025023
https://arxiv.org/abs/0809.3808
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3808
https://doi.org/10.1007/JHEP01(2014)036
https://arxiv.org/abs/1306.1263
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1263
https://doi.org/10.1103/PhysRevB.63.155309
https://arxiv.org/abs/hep-th/0010246
https://inspirehep.net/search?p=find+EPRINT+hep-th/0010246
https://doi.org/10.1007/JHEP05(2015)094
https://arxiv.org/abs/1501.07615
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07615
https://doi.org/10.1088/1126-6708/2005/09/038
https://arxiv.org/abs/hep-th/0506177
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506177
https://doi.org/10.1007/s10714-008-0626-4
https://arxiv.org/abs/0708.1270
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1270
https://doi.org/10.1103/PhysRevD.52.R5412
https://arxiv.org/abs/hep-th/9508072
https://inspirehep.net/search?p=find+EPRINT+hep-th/9508072
https://doi.org/10.1103/PhysRevD.54.1514
https://arxiv.org/abs/hep-th/9602136
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602136
https://doi.org/10.1088/1126-6708/2008/04/074
https://arxiv.org/abs/0711.0036
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0036
https://doi.org/10.1088/1361-6382/aa51df
https://arxiv.org/abs/1609.08912
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.08912
https://doi.org/10.1088/1126-6708/2008/02/045
https://arxiv.org/abs/0712.2456
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2456
https://doi.org/10.1016/S0550-3213(99)00299-0
https://arxiv.org/abs/hep-th/9901149
https://inspirehep.net/search?p=find+EPRINT+hep-th/9901149
https://arxiv.org/abs/1611.03093
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03093

	Introduction
	AdS/CMT model and black hole horizon data
	Model and black hole horizon
	Magnetizations and thermodynamics

	Transport and S-duality
	Electric current, conductivity and thermoelectric coefficients
	Heat current and heat conductivity
	S-duality

	Transport via entropy function and S-duality
	Entropy function formalism
	Electrical and heat conductivities
	Examples
	Constant potential and power law topological term
	Power law potential and power law topological term

	S-duality

	Transport from Stokes equations and S-duality
	Stokes equations from black hole horizons
	Results for one-dimensional lattices
	Constant Bh, gamma(x)=lambda(x) and T-0 limit

	S-duality

	Supergravity-inspired model and generalizations of transport relations for entropy function formalism
	Entropy function formalism and solution in terms of charges
	Transport formulas for this generalization

	Conclusions

