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1 Introduction

Fluid dynamics is an effective low energy description of most interacting systems at fi-

nite temperature. Within such a hydrodynamic approximation, the entire dynamics of a

microscopic theory is reduced to that of macroscopically conserved currents, such as the

stress-energy tensor and charge current operators computed in a locally near equilibrium

thermal state. An essential ingredient of any fluid dynamics is the constitutive relations

which relate the macroscopically conserved currents to the hydrodynamic variables, such

as fluid velocity and charge densities, and to external forces like external electromagnetic

fields. Derivative expansion in the hydrodynamic variables and external forces accounts

for deviations from thermal equilibrium. At each order, the derivative expansion is fixed

by thermodynamics and symmetries, up to a finite number of transport coefficients such as

viscosity and diffusion coefficients. These transport coefficients are not calculable from hy-

drodynamics itself but have to be deduced experimentally or computed from the underlying

microscopic theory.

For relativistic fluid dynamics, the stress-energy tensor is conveniently parameterized as

Tµν = Euµuν + PPµν + πµν , (1.1)
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where uµ, E ,P are the velocity, energy density and pressure of the fluid, and Pµν =uµuν+ηµν
is the projection tensor. Up to the first order in the derivative expansion, the viscous

component πµν takes the form,

πµν = −ηPαµ P βν
(
∂αuβ + ∂βuα −

2

3
Pαβ∂σu

σ

)
− ζPµν∂αuα +O(∂2), (1.2)

where η, ζ are the shear viscosity and bulk viscosity, respectively. Throughout this work

we will take the Landau-Lifshitz frame so that uµπµν = 0.

For the fluid with conserved charges, one also needs to specify constitutive relations

for the associated currents. Indeed, the charge transport properties are found to be useful

in probing the structure and dynamics of matter. A well-known example is the Ohm’s

law J i ≡ 〈ψ̄γiψ〉 = σEi, which states the generation of an electric current in response

to an external electric field for a normal conducting media. In recent years, exploration

of other possible electric current generation, particularly for a system with charged chiral

fermions, has attracted much interest. It turns out that the celebrated microscopic chiral

anomaly induces fascinating anomalous transport phenomena that break the space parity

symmetry. One such example is the chiral magnetic effect (CME) [1–4]: generation of an

electric current directed along an externally applied magnetic field, ~J = ξB ~B. The existence

of CME relies on chirality imbalance between left- and right-handed chiral fermions, usually

parameterized by an axial chemical potential µ5. For a rotating hydrodynamic flow, chiral

anomaly induces a vector current along the fluid vorticity, ~J = 1
2ξ
~∇ × ~u, which is called

the chiral vortical effect (CVE) [5–7].

On the other hand, an axial current J i5 ≡ 〈ψ̄γiγ5ψ〉 also exists for a system with

charged chiral fermions. In fact, via the chiral anomaly effect, an axial current is gener-

ated along an external magnetic field, ~J5 = ξ5B
~B, which is referred to as chiral separation

effect (CSE) [8, 9]. Interestingly, the interplay of CME and CSE predicts a gapless wave

mode propagating along the magnetic field, called chiral magnetic wave (CMW) [10]. In

heavy-ion collisions, the CMW induces an electric quadrupole moment of the quark-gluon

plasma [11], leaving experimentally observable effects [11–14]. It is important to stress that

chiral anomaly-induced transport phenomena summarized above are non-dissipative [7],

that is they do not contribute to entropy production. While observable signatures pre-

dicted by the CME have not been conclusively detected in heavy-ion collisions [15–18],

the CME may explain a large negative magneto-resistance observed in Dirac and Weyl

semi-metals [19–21]. We recommend recent reviews [22–27] and references therein on the

subject of anomalous transport phenomena.

The separation of chiral charge could also be induced by an external electric field,
~J5 = σ5e

~E, which is called chiral electric separation effect (CESE) [28, 29]. However, it

is important to emphasize that the CESE does not originate from chiral anomaly but is

simply the result of conduction of a chiral many-body environment [28]. On very general

grounds, the CESE exists only when both vector and axial chemical potentials are nonzero.

Based on Kubo formula, the CESE conductivity has been computed for thermal quantum

electrodynamics (QED) [28] and quantum chromodynamics (QCD) plasmas [29] at high-

temperature regime up to leading-log order in gauge couplings. In the strongly-coupled
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regime, the CESE was studied in [30, 31] by using the holographic QCD model of [32, 33].

Recently, the CESE conductivity is also computed within the framework of kinetic the-

ory [34–37] under the relaxation time approximation (RTA). If the CESE conductivity is

parameterized as σ5e = µµ5χ̃A, then all these studies indicate that χ̃A depends on µ, µ5

weakly. In analogy with CMW, the CESE, combined with the Ohm’s law, results in a new

gapless wave mode propagating along the electric field, which is called density wave [28] or

chiral electric wave (CEW) [31].

The transport phenomena reviewed above could be summarized into hydrodynamic

constitutive relations for vector and axial currents. In the Landau-Lifshitz frame where

uµJ
µ = −ρ and uµJ

µ
5 = −ρ5, we are ended up with [38–40],

Jµ = ρuµ+σe

[
Eµ−TPµν∂ν

(µ
T

)]
−σ̃5eTP

µν∂ν

(µ5

T

)
+(ξωµ+ξBB

µ)+O(∂2), (1.3)

Jµ5 = ρ5u
µ+σ5e

[
Eµ−TPµν∂ν

(µ
T

)]
−σ̃eTPµν∂ν

(µ5

T

)
+(ξ5ω

µ+ξ5BB
µ)+O(∂2), (1.4)

where ρ, ρ5 are vector and axial charge densities. The external electromagnetic fields Eµ, Bµ

and the fluid’s vorticity ωµ are

Eµ ≡ Fµν(ε)uν , Bµ ≡ 1

2
εµναβuνF

(ε)
αβ , ωµ ≡ 1

2
εµναβuν∂αuβ . (1.5)

In (1.3)(1.4), the Wiedemann-Franz law has been used to relate thermal conductivity to

electrical conductivity. The σ̃5e- and σ̃e-terms are relevant to chiral charge diffusions, while

ξ5-term is an axial analogue of CVE. Time/space evolution of the system is determined by

solving the hydrodynamic equations

∂µTµν = JαF (ε)
να , ∂µJ

µ = 0, ∂µJ
µ
5 = CEµBµ, (1.6)

where the axial current is not conserved due to chiral anomaly effect and C denotes the

anomaly coefficient. ξ, ξ5, ξB, ξ5B-terms are chiral anomaly-induced and correspond to non-

dissipative transport phenomena, particularly making zero entropy production. In contrast,

σe, σ5e, σ̃e, σ̃5e are dissipative transport coefficients and have to be determined by the

underlying microscopic theory and will be the focus of present work.

We would like to point out that studies in references [28–31] were carried out under

the decoupling limit (or probe limit), where the vector and axial currents were taken as

decoupled from the stress-energy tensor of the fluid. While the decoupling limit allows

deriving a simple Kubo formula for CESE conductivity, it does result in loss of some

important physical contents, such as a pole in DC electrical conductivity due to spatial

translation invariance [41–43]. In the probe limit, the authors of [30, 31] found a nonzero

CESE conductivity for the holographic QCD model, which consists of probe D8/D8-branes

in the background geometry of Nc stacks of D4-brane. A crucial point of [30, 31] in realizing

CESE is about the explicit interaction between the vector and axial gauge fields in the

bulk, which originates from the nonlinear Dirac-Born-Infeld (DBI) action on the world-

volumes of D8/D8. Indeed, it was found that the CESE conductivity does vanish in a

simple holographic setup with canonical U(1)V × U(1)A Maxwell fields probing the fixed

Schwarzschild-AdS5 background [44–46].

– 3 –



J
H
E
P
0
9
(
2
0
1
8
)
0
8
3

In this work, we reconsider the holographic U(1)V ×U(1)A model and take into account

the gravitational back-reaction effect on the gauge sectors of the bulk theory. While the

anomaly coefficient C is fixed by the microscopic theory, we will take it as a free parameter

and turn it off for the present study. Equivalently, the bulk Chern-Simons actions will be

neglected in the holographic setup of [44–46]. Note that there is no explicit interaction

between U(1)V and U(1)A gauge fields in the bulk action. However, as will be clear later,

the gravitational back-reaction will result in a coupling between perturbations of U(1)V and

U(1)A bulk fields. This is the mechanism of generating CESE in such a simple holographic

model. In the next subsection, we will summarize the results and make the comparison

with previous works. The remaining sections supplement all calculational details.

1.1 Summary of the results

Except for those chiral anomaly-induced terms, we will re-derive the first order constitutive

relations (1.1), (1.3), (1.4) via fluid/gravity correspondence [47]. For a specific holographic

model to be introduced in section 2, we analytically compute all dissipative transport

coefficients. The calculational details will be presented in section 3. The shear and bulk

viscosities in (1.2) take universal values of holographic conformal fluids (holographically

described by two-derivative Einstein gravity),

η =
1

4π
s, ζ = 0, (1.7)

where s is the entropy density of the dual fluid.

The dissipative transport coefficients in (1.3) and (1.4) could be presented in several

different forms. In the first form, they are

σe =
σQµ

2 + σ0µ
2
5

µ2 + µ2
5

, σ5e = σ̃5e = µµ5
σQ − σ0

µ2 + µ2
5

, σ̃e =
σQµ

2
5 + σ0µ

2

µ2 + µ2
5

, (1.8)

where σQ and σ0 are given by

σQ ≡
σ0 (Ts)2

(Ts+ µρ+ µ5ρ5)2 =
σ0 (Ts)2

(E + P)2 , σ0 ≡
πT

2

(
1 +

√
1 +

2

3

µ2 + µ2
5

π2T 2

)
. (1.9)

It is important to stress that σe, σ5e and σ̃e, σ̃5e are intrinsic conductivities, which are

usually referred to as “quantum critical” [48] or “incoherent” [49, 50] conductivities in

holographic framework. We have reserved the notation σQ to the intrinsic electrical con-

ductivity for the single charge case, since σe = σQ once ρ5 = 0 or µ5 = 0. In the probe

limit where µ = µ5 = 0, we have σe = σ̃e = σ0 = πT , but σ5e, σ̃5e vanish.

In (1.8), the relation σ5e = σ̃5e originates from Onsager reciprocal relation for a time-

reversal symmetric system. Additionally, there are mirror symmetric relations σe ↔ σ̃e
and σ5e ↔ σ̃5e under the exchange µ ↔ µ5, which are specific to our holographic model.1

Thanks to these symmetric relations, in the discussions below we will focus on σe, σ5e. As

will be clear in section 4, these symmetric relations for DC transport coefficients are extend-

able to associated alternating current (AC) conductivities in (4.13). While the second law

1We thank Yan Liu for stimulating discussions on this issue.
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of thermodynamics, i.e., non-negativeness of divergence for the entropy current, could not

fix the values of dissipative transport coefficients, it does set constraints for them [29, 30],

σe ≥ 0, σ̃e ≥ 0, σeσ̃e ≥ σ5eσ̃5e, (1.10)

which are obviously satisfied by our results (1.8)(1.9).

From the dual fluid’s point of view, it is more natural to re-express σe, σ̃e, σ5e, σ̃5e in

terms of chemical potentials and temperature. As a result, (1.8) are turned into

σe = πT
2γ + (3γ − 1)µ̄2

5

2(3γ − 2)2
≡ TχV , σ5e = −πT µ̄µ̄5

3γ − 1

2(3γ − 2)2
≡ T µ̄µ̄5χA , (1.11)

where

γ(µ̄, µ̄5) =
1

2

(
1 +

√
1 +

2

3
(µ̄2 + µ̄2

5)

)
, µ̄ =

µ

πT
, µ̄5 =

µ5

πT
. (1.12)

In (1.11) we defined χA to measure deviation of the CESE conductivity σ5e from the con-

jectured universal factor T µ̄µ̄5 [28, 29]. We also defined χV to measure deviation of the

Ohmic conductivity σe from its probe limit. In the high temperature (small chemical po-

tential) limit or low temperature (large chemical potential) limit, the conductivities (1.11)

behave as,

σe ' πT, σ5e ' −πT µ̄µ̄5, µ̄, µ̄5 � 1,

σe '
πT µ̄2

5√
6(µ̄2 + µ̄2

5)
, σ5e ' −

πT µ̄µ̄5√
6(µ̄2 + µ̄2

5)
, µ̄, µ̄5 � 1.

(1.13)

Obviously, only in the high temperature regime where µ̄, µ̄5 � 1 the CESE conductivity

σ5e shows universal behavior as conjectured in [28, 29].

For illustration, in figure 1 we plot σe/(πT ) and −σ5e/(πT ) as functions of dimension-

less chemical potentials µ̄ and µ̄5. As seen from figure 1, the axial chemical potential µ̄5 has

the effect of enhancing σe while the vector chemical potential µ̄ diminishes it. On the other

hand, the CESE conductivity σ5e depends on both µ̄ and µ̄5 non-trivially. Particularly, the

deviation factor χA is a monotonic decaying function of µ̄ and µ̄5. In the high-temperature

regime where µ̄, µ̄5 � 1, the factor χA could be thought of as unity, which is obviously

violated in the lower temperature limit. In figure 2 we show density plots for the deviation

factors χV and χA .

Below we compare our results with those obtained within various other models [28–31],

see table 1. The first two calculations in table 1 were based on perturbative thermal QED

and QCD, respectively. To leading-log order in gauge couplings, the conductivities were

computed using the Kubo formula in [28, 29]. The rest calculations in table 1 are based

on specific holographic models: Sakai-Sugimoto (S-S) model in [30] versus holographic

U(1)V ×U(1)A model of present work. As shown in table 1, the results obtained from S-S

model show the behavior of the pre-factors in σe, σ5e ∝ N2
c g

2
YM [30], which is quite different

from those in weakly coupled regime [28, 29]. While in our case, the conductivities depend

on the bulk gauge couplings qV , qA . If we employ the top-down setups in [52, 53], they

– 5 –
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Figure 1. The conductivities σe/(πT ) and −σ5e/(πT ) as functions of µ̄ and µ̄5.

χV

1

2

3

4

5

-χA

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. Density plots for χ
V

and χ
A

in (1.11) as functions of µ̄ and µ̄5.

could be related to the parameters of boundary theory by 1/q2
V
∼ 1/q2

A
∝ NcNf/(4π

2),

where Nc and Nf are the numbers of the colors and flavors of the dual theory.

Although these dissipative transport coefficients are model dependent, in the high

temperature regime, they do share some universal features, such as the linear dependence

in T (for σe) and T µ̄µ̄5 (for σ5e). In addition, the Ohmic conductivity σe has to be

positive [28], but the sign of CESE conductivity σ5e could not be fixed by the second law of

thermodynamics [28]. Particularly, σ5e was found to be positive for the models in [28–30],

but it is shown to be negative from present study (1.11). As shown in table 1, from weak to

strong coupling, the conductivities σe, σ5e show different dependence on the gauge coupling

of boundary gauge theory in various models.

From table 1, in the high temperature regime that T � µ, µ5, the conductivities in

holographic U(1)A×U(1)V model share the same temperature scalings as those in the QED

plasma or QGP. The Ohmic conductivity depends linearly on the temperature, σe ∝ T ,

while the CESE conductivity depends inversely on the temperature, σ5e ∝ µµ5
T . It will

become more evident from dimensional analysis as implemented in [29] within relativistic

kinetic theory. In the high temperature regime, the conductivities can be expanded in

terms of the ratios
( µ
T

)
and

(µ5
T

)
. To quadratic order in the ratios, the conductivities

are constrained to be σe ' f(T )
[
1 + d20

( µ
T

)2
+ d02

(µ5
T

)2]
and σ5e ' f(T )d11

( µ
T

) (µ5
T

)
,

– 6 –
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Pre-factors QED Plasma [28] QGP (u, d) [29] S-S Model [30] U(1)V ×U(1)A

χV ≡ σe/T 15.7
e3 ln(1/e)

13.0
TrfQeQV

g4c ln(1/gc)
0.025

8N2
c g

2
YM

81 π/q2
V

[(1.13)]

χA ≡ σ5e/(T µ̄µ̄5) 20.5
e3 ln(1/e)

14.5
TrfQeQA

g4c ln(1/gc)
0.002

8N2
c g

2
YM

81 −π/q2
A

[(1.13)]

Table 1. Ohmic and CESE Conductivities in the high temperature regime in various models.

Note. In this table, e, gc, gYM are the gauge couplings of QED, QCD, the dual SU(Nc) gauge theory,

respectively. For the calculations in QGP with two light quarks (u, d), Qe = Diag(2/3,−1/3),

QV and QA are the vector and axial charge matrices in flavor space. For the S-S model, the

results above are read off from relevant numerical plots around T ' 0.2GeV [30]. Indeed, in the

high-temperature regime where the chemical potentials are suppressed, σe ∝ T 2/mKK [31, 51],

where mKK is the Kaluza-Klein mass in the S-S model. For the results of present study, we have

restored the bulk gauge couplings q
V
, q

A
, which are related to parameters of boundary theory by

1/q2
V
∼ 1/q2

A
∝ NcNf/(4π

2) [52, 53].

where f(T ) is a function of the temperature and d02, d20, d11 are constants [29]. We know

that the conductivities have the same dimension as the temperature or chemical potentials,

[σ5] = [σ5e] = [T ] = [µ] = [µ5]. So, if there are no extra dimensionful quantities in the

model, it is valid to conclude that f(T ) ' T , which also supports the general scaling

behaviors as summarized in table 1.

On the universal scaling behaviors in the high temperature regime, for a physical

explanation, it is nature to assume that the interaction between the charges in the fluid

will become weaker in the higher temperature. The Ohmic conductivity σe describes the

response of the charged vector current to the external electrical field, σe ' ~J/ ~E. When

the temperature is increased, σe will be enhanced because the moving of the charges in the

fluid will become easier. However, the CESE conductivity σ5e measures the response of the

axial current to the external electrical field, σ5e ' ~J5/ ~E. When temperature is increased,

the interaction between the axial current and electrical field will become weaker and σ5e

will decrease due to the additional interaction factor
( µ̄
T

) ( µ̄5
T

)
.

While the CESE is a non-anomalous transport phenomenon, it may induce phenomeno-

logical consequences in heavy-ion collisions, namely the net charge distribution and cor-

relation patterns in Cu+Au collisions as discussed in [28]. Admittedly, this should be a

mixture due to CESE, CME, and CSE. However, CESE, along with other robust anomalous

transport phenomena, is masked by various backgrounds in heavy-ion collisions, making it

very difficult to pin down, not even to explore its properties. On the other hand, the exotic

topological states of metal, such as Dirac and Weyl semi-metals, provide an experimental

playground to study potential observable effects of CESE and other anomalous transports

in a controllable way. See [27, 35–37] for recent progress on this topic, as well as the

relevant investigations from holographic models [54–62].

Below we would like to rewrite the currents (1.3) and (1.4) in a linear response form,

in which the electric field Ei and thermal gradient ∇iT are taken as external sources. In

other words, the fluid velocity ui will be eliminated using the current conservation law

– 7 –
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in (1.6). Here, the chemical potentials µ, µ5 will be taken as constant. Consequently,

ui = ui =
1

iω

(
s∇iT −

ρ

E + P
Ei

)
, (1.14)

where ∂t → −iω is used. Then, the currents (1.3) and (1.4) turn into

J t = ρ, Ji = σ(ω)Ei − α(ω)∇iT , (1.15)

J t5 = ρ5, J5i = σ5(ω)Ei − α5(ω)∇iT , (1.16)

where

σ(ω) =
i

ω

ρ2

E + P
+ σe, σ5(ω) =

i

ω

ρρ5

E + P
+ σ5e, (1.17)

α(ω)T =
i

ω
ρ−

(
µσ(ω) + µ5 σ5(ω)

)
, α5(ω)T =

i

ω
ρ5 −

(
µ5 σ̃(ω) + µσ5(ω)

)
. (1.18)

In (1.18), σ̃(ω) is related to σ̃e by

σ̃(ω) ≡ σ(ω)

∣∣
ρ↔ρ5 =

i

ω

ρ2
5

E + P
+ σ̃e, (1.19)

where σ̃e is presented in (1.8). Physically, σ(ω) is the low-frequency limit of the Ohmic

electrical conductivity, and σ5(ω) measures the chiral electrical separation effect. Obviously,

in the probe limit, σ(ω) and σ5(ω) are dominated by their intrinsic parts σe and σ5e. α(ω)

and α5(ω) are the thermoelectric conductivities for vector and axial currents. The heat

current is

Qi ≡ T ti − µJ i − µ5J
i
5 = ᾱ(ω)TEi − κ̄(ω)∇iT, (1.20)

where the transport coefficients are

ᾱ(ω) =α(ω), κ̄(ω)T =
i

ω
(E+P−2ρµ−2ρ5µ5)+

(
µ2σ(ω)+µ2

5 σ̃(ω)+2µµ5σ5(ω)

)
. (1.21)

κ̄(ω) is the low-frequency limit of thermal conductivity, and it is fully determined by the

intrinsic conductivities σe, σ5e in (1.8). Here we would like to emphasize that σ(ω), σ5(ω),

σ̃(ω), α(ω), α5(ω), ᾱ(ω), κ̄(ω) are different from the intrinsic conductivities σe, σ5e, σ̃e, σ̃5e:

while the former could be directly read off from associated Kubo formulas, the latter are

useful in parameterizing the hydrodynamic constitutive relations (1.3)(1.4). In the probe

limit, the differences between them are absent.

As the second study of the present work, we compute frequency-dependent conductiv-

ities. The external sources are vector and axial external fields Ei, E
5
i and temperature gra-

dient ∇iT , which depend on time via a plane waveform. As a result, the low-frequency con-

ductivities σ(ω), σ5(ω), σ̃(ω), α(ω), α5(ω), ᾱ(ω), κ̄(ω) are generalized to frequency-dependent

AC conductivities, see (4.13). First, we analytically evaluate the low-frequency limits of

all the AC conductivities, demonstrating agreement with (1.17), (1.18), (1.19), (1.21). For

the general value of frequency, we numerically compute all AC conductivities, see plots in

section 4.
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Note the appearance of i/ω pieces in the physical conductivities σ(ω) and σ5(ω). Via

Kramers-Kronig relations [63, 64], this i/ω immediately implies the existence of a δ(ω) in

real parts of σ(ω) and σ5(ω), as is required by translation invariance. However, in holographic

models with spatial translational symmetry, it is hard to reveal the delta peak in DC

conductivity analytically. Once translational symmetry is broken, the DC conductivities

become finite with the delta peak removed. Within the relaxation time approximation, the

momentum dissipation effect would result in the replacement

i

ω
=

1

−iω
→ 1

1/τ − iω
, (1.22)

where τ corresponds to momentum relaxation time. Now all physical conductivities become

finite and, in particular, they are split into two parts: the “coherent” pieces (related to

the momentum dissipation) and the “inherent” ones (the universal pieces). Admittedly, a

more rigorous treatment of momentum dissipation along the line [41–43, 65, 66] would be

useful in clarifying physical meanings of these transport coefficients, and we will address

this elsewhere.

The remaining sections are structured as follows. In section 2, we present the holo-

graphic model. In section 3, with anomalous terms neglected, we re-derive the first-order

constitutive relations (1.1) (1.3) (1.4) using the fluid/gravity correspondence, and analyti-

cally compute all dissipative transport coefficients. In section 4, we obtain AC conductiv-

ities through linear response analysis. Section 5 contains the conclusion and discussions.

Two appendices A and B provide further calculational details.

Notation conventions. We use the upper-case Latin letters M,N, · · · to denote the

(4 + 1)-dimensional bulk coordinates, the lower-case Greek letters µ, ν, · · · to denote the

(3 + 1)-dimensional boundary directions, while i, j, · · · will be used for spatial directions

on the boundary.

2 Holographic model for fluid with U(1)V × U(1)A currents

We consider (4 + 1)-dimensional Einstein gravity with a negative cosmological constant

Λ = −6/L2 in the bulk, which is coupled to U(1)V ×U(1)A gauge fields (see, e.g., [44, 45]).

The total bulk action is

SM =
1

16πG5

∫
M

d5x
√
−g (R− 2Λ) + SF + Sct + SK, (2.1)

where

SF = −
∫
M

d5x
√
−g

(
1

4q2
V

FMNF
MN +

1

4q2
A

F̃MN F̃
MN

)
. (2.2)

The field strengths of the bulk U(1) gauge fields are defined as FMN ≡ ∂MAN−∂NAM and

F̃MN ≡ ∂M ÃN − ∂N ÃM . In our notations, AM and ÃM denote the vector and axial bulk

gauge fields, which are dual to vector and axial currents Jµ, Jµ5 of the boundary conformal

field theory (CFT), respectively. The Gibbons-Hawking-York term SK is

SK =
1

8πG5

∫
∂M

d4x
√
−γK, (2.3)
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where K = γµνKµν . γµν is the induced metric on the boundary hypersurface Σ defined by

the equation r = rc, and Kµν is the extrinsic curvature tensor on Σ,

Kµν =
1

2
Lnγµν ≡

1

2

(
nM∂Mγµν + γµN∂νn

N + γνN∂µn
N
)
, (2.4)

where Ln is the Lie derivative along the unit normal vector nM of the hypersurface Σ:

nM =
∂Mr√

gAB∂Ar∂Br
. (2.5)

The counter-term action Sct is [53, 67–71]

Sct =− 1

16πG5

∫
∂M

d4x
√
−γ
(

1

2
R+6

)
+

logrc
4

∫
∂M

d4x
√
−γ
(

1

q2
V

FµνF
µν+

1

q2
A

F̃µνF̃
µν

)
,

(2.6)

where R is the Ricci scalar of the induced metric γµν . Note minimal subtraction scheme

has been utilized in writing down the counter-terms for bulk Maxwell fields. Fµν and F̃µν
in (2.6) are the projections of bulk field strengths FMN and F̃MN onto the hypersurface Σ.

We would like to stress once again that the possible Chern-Simons terms Ã∧F ∧F and

Ã ∧ F̃ ∧ F̃ have been ignored in (2.1), which amounts to switching off the chiral anomaly

effect in the dual boundary theory [44, 45]. Indeed, in order for the chiral anomaly to take

effect, the dual plasma should either be exposed to a magnetic environment or rotate. Thus,

with an electric field as the only external source, all the anomalous transports in (1.3)(1.4)

vanish accidentally.

Variation of total bulk action SM in (2.1) with respect to bulk metric gMN gives rise

to the Einstein equation,

WMN ≡ RMN −
1

2
RgMN − 6gMN −

(
T bulk
MN + T̃ bulk

MN

)
= 0, (2.7)

where

T bulk
MN =

q

2

(
FAMF

A
N −

1

4
gMNF

2

)
, q ≡ 16πG5

q2
V

,

T̃ bulk
MN =

q̃

2

(
F̃AM F̃

A
N −

1

4
gMN F̃

2

)
, q̃ ≡ 16πG5

q2
A

.

The bulk stress-energy tensor has been denoted as T bulk
MN and T̃ bulk

MN , which should not be

confused with that of the dual boundary theory. q and q̃ measure the strength of back-

reaction of bulk gauge fields on the bulk geometry. The Maxwell equations for AM and

ÃM are,

WN ≡ ∇MFMN =
1√
−g

∂M
(√
−gFMN

)
= 0, (2.8)

W̃N ≡ ∇M F̃MN =
1√
−g

∂M
(√
−gF̃MN

)
= 0. (2.9)
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According to Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [72–

74], the expectation values of stress-energy tensor and currents on the boundary theory are

defined as

Tµν ≡ lim
r→∞

−2r2

√
−γ

δSM
δγµν

, Jµ ≡ lim
r→∞

δSM
δAµ

, Jµ5 ≡ lim
r→∞

δSM
δÃµ

. (2.10)

In terms of bulk fields, (2.10) turns into

Tµν = − 1

8πG5
lim
r→∞

r2

[(
Kµν −Kγµν + 3γµν −

1

2
Gµν
)

+ T Fµν
]
, (2.11)

Jµ = − 1

q2
V

lim
r→∞

r2
(
nMF

Mµ +DνF
νµ log r

)
, (2.12)

Jµ5 = − 1

q2
A

lim
r→∞

r2
(
nM F̃

Mµ +DνF̃
νµ log r

)
, (2.13)

where the counter-term

T Fµν ≡
log r

4q2
V

(
FαµF

α
ν −

1

4
γµνF

2

)
+

log r

4q2
A

(
F̃αµF̃

α
ν −

1

4
γµνF̃

2

)
, (2.14)

which will affect the study of section 4 beyond first-order transport coefficients. In (2.11)–

(2.13), Gµν is the Einstein tensor associated with the induced metric γµν , and D is the

covariant derivative operator compatible with γµν .

The bulk equations (2.7)–(2.9) can be classified into dynamical components and con-

straint ones. Moreover, the constraint components correspond to conservation laws for

boundary stress-energy tensor and currents:

W r
ν = 0 ⇒ ∂µTµν = JαF (ε)

να + Jα5 F̃
(ε)
να ,

W r = 0 ⇒ ∂µJ
µ = 0,

W̃ r = 0 ⇒ ∂µJ
µ
5 = 0,

(2.15)

where F
(ε)
να and F̃

(ε)
να are external vector and axial electromagnetic field strengths,

respectively.

In what follows, we will work under the convention 16πG5 = 1 and L = 1. The bulk

gauge couplings qV , qA will be absorbed into redefinitions of bulk gauge fields AM → qV AM
and ÃM → qAÃM . The boundary CFT in thermal equilibrium corresponds to a homoge-

neous solution of the bulk theory (2.1). We assume the presence of finite vector and axial

charge densities. Consequently, the homogeneous solution of the bulk theory is the AdS5

black brane with two charges,

ds2
(0) = g

(0)
MNdxMdxN = 2dtdr − r2f(r)dt2 + r2δijdx

idxj ,

f(r) ≡ 1− M

r4
+
Q2 + Q̃2

r6
=

(
r2 − r2

h

) (
r2 − r2

−
) (
r2 + r2

h + r2
−
)

r6
,

A(0) = −
√

3Q

r2
dt, Ã(0) = −

√
3Q̃

r2
dt,

(2.16)

where M,Q, Q̃ are constant parameters of the bulk theory.
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In (2.16), rh is the largest root for f(r) = 0, defining the location of event horizon of the

two-charges AdS5 black brane. The Hawking temperature, identified as the temperature

of dual boundary field theory, is

T0 =
∂r
(
r2f(r)

)
4π

∣∣∣
r=rh

=
rh
π

(
1− Q2 + Q̃2

2r6
h

)
, (2.17)

which should be non-negative, setting constraints on the combination (Q2 + Q̃2). At

the horizon with a constant time section, the line element degenerates into ds2|Horizon =

r2
hδijdx

idxj , with i, j = 1, 2, 3. Thus, the entropy density of the black brane (2.16), which

will be identified as that of the dual CFT, turns out to be

s0 =
Area(rh)

4G5
=

r3
h

4G5
= 4πr3

h, (2.18)

where in the second equality we made use of the normalization convention 16πG5 = 1.

The subscript “0” in (2.17) (2.18) is to emphasize that they are constant, as compared to

temperature field T (xα) in section 3.

Finally, via (2.11)–(2.13), the dual stress-energy tensor and currents of the boundary

theory are

Tµν(0) = 3M δµt δ
ν
t +M δµi δ

ν
j , Jµ(0) = 2

√
3Qδµt , Jµ5(0) = 2

√
3Q̃ δµt , (2.19)

where the subscript “(0)” is to mark that these quantities are associated to a state in

thermal equilibrium. If we make the following identifications,

E = 3M, P = M, ρ = 2
√

3Q, ρ5 = 2
√

3Q̃, (2.20)

then (2.19) are nothing but the non-derivative parts of the stress-energy tensor and cur-

rents (1.1) (1.3) (1.4) in local rest frame where uµ = (−1, 0, 0, 0). In the next two sections 3

and 4 we will solve the bulk dynamics with equations of motion (2.7) (2.8) (2.9) under two

complementary limits, hydrodynamic limit versus linear approximation, generating viscous

corrections to ideal fluid (2.19).

3 First order hydrodynamics from fluid/gravity correspondence

In this section, we construct the first-order hydrodynamics dual to the bulk theory (2.1)

via the fluid/gravity correspondence [47, 75].

3.1 Set up the fluid/gravity calculations

In this subsection, we set up the stage for performing fluid/gravity calculations for the bulk

theory of (2.1). Following the standard procedure of fluid/gravity correspondence [47, 75],

we make a Lorenz boost transformation for the static solution (2.16) along the boundary

coordinates

xµ → Lµνx
ν , Ltν = −uν , Liν =

(
−ui, δij +

uiuj
1− u0

)
. (3.1)

– 12 –



J
H
E
P
0
9
(
2
0
1
8
)
0
8
3

Lµν is the Lorentz boost matrix, which has been parameterized via a four-velocity uµ.

Note the four-velocity uµ is a time-like unit vector obeying ηµνuµuν = −1, which leads to

u0 = −
√

1 + ~u2. After the transformation (3.1), the homogenous solution (2.16) turns into

ds2
(u) = −r2f(r)(uµdxµ)2 − 2uµdxµdr + r2(ηµν + uµuν)dxµdxν ,

A(u) =

√
3Q

r2
uµdxµ +A(ε)

µ dxµ, Ã(u) =

√
3Q̃

r2
uµdxµ,

f(r) = 1− M

r4
+
Q2 + Q̃2

r6
,

(3.2)

where a constant vector field A
(ε)
µ is introduced for the later purpose of exposing the

boundary theory to an external electric field environment. So long as the parameters

M,Q, Q̃, A
(ε)
µ are constants, the boosted solution (3.2) does solve the bulk equations of

motion (2.7)–(2.9).

One key procedure of fluid/gravity correspondence is to promote the constant param-

eters in (3.2) to arbitrary functions of boundary coordinates [7, 47, 75, 76],

M →M(xα), Q→ Q(xα), Q̃→ Q̃(xα), uµ → uµ(xα), A(ε)
µ → A(ε)

µ (xα). (3.3)

Then, these nontrivial functions M(x), Q(x), Q̃(x), uµ(x) and A
(ε)
µ (x) are identified as the

fluid-dynamical variables and external source of the dual field theory. However, after the

promotion (3.3) the boosted solution (3.2) will not satisfy the bulk equations (2.7)–(2.9) any

more. That is, the price of the promotion (3.3) is that one has to add suitable corrections

to the metric and gauge fields in the bulk theory so that the bulk equations (2.7)–(2.9) can

be obeyed. For general functions M(x), Q(x), Q̃(x), uµ(x) and A
(ε)
µ (x), it is very difficult

to work out these suitable corrections. The fluid/gravity correspondence shows that in the

hydrodynamic limit, where the functions M(x), Q(x), Q̃(x), uµ(x) and A
(ε)
µ (x) vary rather

slowly from point to point, the corrections can be systematically collected order-by-order

within a boundary derivative expansion.

In the practical calculation, we do Taylor expansion for M(x), Q(x), Q̃(x), uµ(x) and

A
(ε)
µ (x) around the point of origin xµ = 0,

M(x) = M0 + εxα∂αM +O(∂2), uµ(x) = (−1, ε(xα∂αui)) +O(∂2),

Q(x) = Q0 + εxα∂αQ+O(∂2), Q̃(x) = Q̃0 + εxα∂αQ̃+O(∂2),

A(ε)
µ (x) = 0 + εxα∂αA

(ε)
µ +O(∂2),

(3.4)

where we have chosen the frame that ui = 0 and A
(ε)
µ = 0 at the origin. Moreover, a

formal parameter ε is introduced to count the number of derivatives in the expansion,

and eventually will be set to unity. All calculations in this section will be accurate up to

the first-order in the derivative expansion. Consequently, up to order O(ε1) the promoted
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metric and gauge fields become

ds2
(u) = g

(u)
MNdxMdxN = 2dtdr−r2f0(r)dt2+r2δijdx

idxj

−ε
{
r2f1(r,x)dt2−2r2[f0(r)−1](xα∂αui)dtdx

i+2(xα∂αui)dx
idr
}
,

A(u) =A
(u)
M dxM =−

√
3(Q0+xα∂αQ)

r2
dt+ε

√
3Q0

r2
(xα∂αui)dx

i+xα∂αA
(ε)
µ dxµ,

Ã(u) = Ã
(u)
M dxM =−

√
3(Q̃0+xα∂αQ̃)

r2
dt+ε

√
3Q̃0

r2
(xα∂αui)dx

i, (3.5)

where

f0(r) = 1− M0

r4
+
Q2

0 + Q̃2
0

r6
, f1(r, x) = −x

α∂αM

r4
+

2Q0x
α∂αQ+ 2Q̃0x

α∂αQ̃

r6
. (3.6)

As explained below (3.3), in order to satisfy the equations of motion (2.7)–(2.9), suitable

corrections must be added on top of (3.5). Up to the first-order in the derivative expansion,

ds2
(1)≡ g

(1)
MNdxMdxN =

k(r)

r2
dt2+2h(r)dtdr+

2ji(r)

r2
dtdxi+r2

[
αij(r)−

2

3
δijh(r)

]
dxidxj ,

A(1) =A
(1)
M dxM = at(r)dt+ai(r)dx

i, Ã(1) = Ã
(1)
M dxM = ãt(r)dt+ãi(r)dx

i, (3.7)

where αij(r) is a traceless symmetric tensor of rank two under SO(3) rotational symmetry

between the spatial directions xi. In the parameterizing of the corrections (3.7), we choose

the following gauge convention

g(1)
rr = 0, g(1)

rµ ∝ uµ, Tr
[
(geq)−1g(1)

]
= 0, A(1)

r = Ã(1)
r = 0. (3.8)

Plugging the total bulk metric and gauge fields

gMN = g
(u)
MN + g

(1)
MN , AM = A

(u)
M +A

(1)
M , ÃM = Ã

(u)
M + Ã

(1)
M , (3.9)

into (2.7)–(2.9) results in a system of ordinary differential equations for those corrections

in (3.7). We need to specify suitable boundary conditions in order to fully determine the

corrections. The first type of boundary condition is the requirement of asymptotic AdS,

which fixes the large r behavior for the corrections,

k(r) < O(r4), h(r) < O(r0), ji(r) < O(r4), αij(r) < O(r0),

at(r) < O(r0), ãt(r) < O(r0), ai(r) < O(r0), ãi(r) < O(r0).
(3.10)

The second type of boundary condition is the regularity requirement for all the corrections

in (3.7),

h(r), k(r), ji(r), αij(r), at(r), ai(r), ãt(r), ãi(r) are regular over r ∈ [rh,+∞), (3.11)

which turns out to be effective at the event horizon r = rh. The remaining ambiguity of

determining the corrections of (3.7) will be fixed by the frame convention. We will work in

Landau-Lifshitz frame so that

uµT
µν = −Euν , uµJ

µ = −ρ, uµJ
µ
5 = −ρ5, (3.12)

– 14 –



J
H
E
P
0
9
(
2
0
1
8
)
0
8
3

where E , ρ, ρ5 are the energy density, vector and axial charge densities of the fluid,

respectively,

E = 3M(x), ρ = 2
√

3Q(x), ρ5 = 2
√

3Q̃(x). (3.13)

Note the identification made in (3.13) is the promotion from their in-equilibrium coun-

terparts (2.20). Up to the first-order in the derivative expansion, the Landau-Lifshitz

frame conditions (3.12) turn into constraints on the form of boundary stress-energy tensor

and currents,

Ttt = 3M0 + 3xα∂αM, Tti = Tit = −4M0(xα∂αui), (3.14)

J t = 2
√

3 [Q0 + xα∂αQ] , J t5 = 2
√

3
[
Q̃0 + xα∂αQ̃

]
. (3.15)

For the sake of later presentation, we rewrite the expressions (2.11)–(2.13) in terms of

those corrections in (3.7),

Ttt = 3M0 + 3xµ∂µM − 2r3(∂kuk) + 6r4h(r) + 2r5∂rh(r) + 3k(r), (3.16)

Tti = Tit = −r3∂tui + 4ji(r)− r∂rji(r)− 4M0(xα∂αui), (3.17)

Tij =

[
M0 + xα∂αM + k(r)− r∂rk(r)− 6r4h(r) +

4

3
r3(∂kuk)

]
δij

− r3

[
∂iuj + ∂jui −

2

3
δij(∂kuk)

]
− r5∂rαij(r), (3.18)

as well as

J t = 2
√

3(Q0 + xα∂αQ) + r3∂rat, J i = 2
√

3Q0(xα∂αui)− r3∂rai(r)− rF (ε)
ti , (3.19)

J t5 = 2
√

3(Q̃0 + xα∂αQ̃) + r3∂rãt, J i5 = 2
√

3Q̃0(xα∂αui)− r3∂rãi(r). (3.20)

The limit of r →∞ is assumed implicitly in expressions above (3.16)–(3.20), and we have

also ignored the terms that will be explicitly vanishing as r →∞.

While the bulk corrections will be constructed around xµ = 0, they do contain enough

information to write down the total bulk metric and gauge fields about any point, valid up

to the first-order in the derivative expansion. Instead of following this approach of [47], we

will compute the boundary stress-energy tensor and currents using thus-constructed solu-

tions, via the formulas (3.16)–(3.20). Eventually, we will lift up thus-obtained constitutive

relations into a covariant form.

3.2 First-order charged fluid: CESE and other conductivities

Following section 3.1, it is straightforward to solve the bulk equations (2.7)–(2.9) and obtain

the corrections in (3.7). In what follows, we summarize the final results and leave all the

calculation details in appendix A.1. We present by grouping them into different sectors

under SO(3) symmetry of the boundary spatial directions.

In the scalar sector,

k(r) =
2

3
r3(∂kuk), h(r) = 0, at(r) = 0, ãt(r) = 0. (3.21)
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In the vector sector, thanks to going beyond the probe limit, dynamical equations

for ji, ai, ãi are coupled, see (A.13)–(A.15). It is exactly this coupling that makes CESE

non-vanish, as opposed to the probe limit [45, 46]. Since the final solutions in the vector

sector are very lengthy, we record their near boundary expansions only,

ai(r)
r→∞−−−→ − 3

√
3Q0

r2

(
r3
h

4M0
+

1

4rh

)
∂tui −

√
3

r2

(2r6
h +Q2

0 + 2Q̃2
0)

4M0r3
h

∂iQ+

√
3

r2

Q0Q̃0

4M0r3
h

∂iQ̃

+
1

r
F

(ε)
ti −

1

r2

(
3Q2

0

4M0rh
+

1

2
rh

)
F

(ε)
ti +O

(
r−3
)
, (3.22)

ãi(r)
r→∞−−−→ − 3

√
3Q̃0

r2

(
r3
h

4M0
+

1

4rh

)
∂tui −

√
3

r2

(2r6
h + 2Q2

0 + Q̃2
0)

4M0r3
h

∂iQ̃+

√
3

r2

Q0Q̃0

4M0r3
h

∂iQ

− 1

r2

3Q0Q̃0

4M0rh
F

(ε)
ti +O

(
r−3
)
, (3.23)

ji(r)
r→∞−−−→ r3∂tui +O(r−1). (3.24)

The tensor sector is the most simple one

αij(r) = 3

[
∂iuj + ∂jui −

2

3
δij(∂kuk)

] ∫ r

∞

dx̂

x̂5f0(x̂)

∫ x̂

rh

y2dy,

r→∞−−−→
(

1

r
−

r3
h

4r4

)[
∂iuj + ∂jui −

2

3
δij(∂kuk)

]
+O(r−5). (3.25)

Now it is direct to compute the boundary stress-energy tensor and currents by substi-

tuting (3.21)–(3.25) into (3.16)–(3.20). Once lifted up into covariant form, the boundary

stress-energy tensor Tµν is given by (1.1)(1.2)

Tµν = Euµuν + PPµν − 2ησµν − ζ(∂αu
α)Pµν + · · · , (3.26)

where the projection tensor Pµν and shear tensor σµν are defined as

Pµν = ηµν + uµuν , σµν ≡
1

2
Pαµ P

β
ν (∂αuβ + ∂βuα)− 1

3
Pµν(∂αu

α). (3.27)

E is the energy density and P is the pressure of the fluid, which satisfy E = 3P and

E = 3M(x), P = M(x). (3.28)

The shear viscosity η and bulk viscosity ζ are,

η = rh(x)3, ζ = 0. (3.29)

From (2.18), entropy density of the dual fluid is s = 4πrh(x)3. So, as expected, our result

for shear viscosity η saturates the Kovtun-Son-Starinets (KSS) bound [77–79].

Plugging (3.21)–(3.23) into (3.19)–(3.20) generates boundary currents (A.27)–(A.29),

which are, however, parameterized in terms of bulk quantities Q(x), Q̃(x), rh(x),M(x).

Physically, we have to re-parameterize (A.27)–(A.29) via boundary fluid-dynamical vari-

ables. Moreover, the chemical potentials will be preferred in expressing the diffusive terms
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of Jµ, Jµ5 . In what follows we outline the strategy of implementing this transformation but

defer technical details to appendix A.2.

The vector and axial charge densities are promoted versions of (2.20):

ρ(x) = 2
√

3Q(x), ρ5(x) = 2
√

3Q̃(x). (3.30)

In the fluid/gravity correspondence, chemical potentials are defined as

µ(x) ≡ At|r=∞ −At|r=rh(x) =

√
3Q(x)

rh(x)2
,

µ5(x) ≡ Ãt|r=∞ − Ãt|r=rh(x) =

√
3Q̃(x)

rh(x)2
.

(3.31)

From (2.17), the temperature field of the dual fluid is

T =
rh(x)

π

(
1− Q(x)2 + Q̃(x)2

2rh(x)6

)
. (3.32)

Using (3.28), (3.30)–(3.32), one can check that the following relation still holds

E + P = Ts+ µρ+ µ5ρ5. (3.33)

The relations (3.31)–(3.32) are useful in expressing ∂iQ, ∂iQ̃ and ∂irh in terms of

∂iT/T , ∂iµ and ∂iµ5, see (A.33)–(A.35) in appendix A.2. Eventually, (A.27)–(A.29) could

be recast into covariant forms, which cover non-anomalous part of (1.3)(1.4) with all trans-

port coefficients expressed in terms of bulk parameters

σe = rh +
3Q2

2Mrh
− 9Q2

2M

(
r3
h

2M
+

1

2rh

)
, σ̃e = σe

∣∣
Q↔Q̃, (3.34)

σ5e =
3QQ̃

2Mrh
− 9QQ̃

2M

(
r3
h

2M
+

1

2rh

)
, σ̃5e = σ5e. (3.35)

Note independent transport coefficients are σe and σ5e, which are “quantum critical” or

“incoherent” conductivities of hydrodynamics as in [48–50]. This is partly due to the

time-reversal symmetry of our holographic model.

Physically, bulk quantities in (3.34)(3.35) should be eliminated in favor of thermo-

dynamic variables of the boundary fluid. There are several ways of presenting the re-

sults. When discussing single charge limit or probe limit, we find it more transparent to

split the conductivities (3.34)(3.35) into two parts, represented by σQ and σ0, as flashed

in (1.8)(1.9). On the other hand, in comparison with relevant works [28–31], we express σe
and σ5e as functions of chemical potentials µ, µ5 and fluid temperature T , as summarized

in (1.11). We also recast the hydrodynamic constitutive relations (1.3)(1.4) into linear

response form, see (1.15)(1.16). Then, we give a clarification for the differences between

physical conductivities directly read off from Kubo formulas and intrinsic ones parameter-

izing hydrodynamic constitutive relations.
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4 Holographic AC conductivities from linear response analysis

As a complementary study of section 3, in this section, we reveal some transport phenomena

of the holographic model (2.1) through linear response analysis. We focus on the vector and

axial currents generated by the external vector and axial electric fields and thermal gradient.

We assume these external sources are weak in amplitudes and oscillate in time only.

4.1 Black brane fluctuations and conductivity matrix

To study linear response transports within the holographic framework, we follow standard

procedure and perturb the homogeneous black brane (2.16)

gMN = g
(0)
MN + δgMN , AM = A

(0)
M + δAM , ÃM = Ã

(0)
M + δÃM . (4.1)

Diffeomorphism and U(1) gauge invariance in the bulk theory allow choosing a particular

gauge. Different from (3.8), throughout this section, we will work under radial gauge

convention,

δgrA = 0, δAr = 0, δÃr = 0. (4.2)

Black brane fluctuations (4.1) could be classified into decoupled sectors [80] according

to their transformation properties under the remaining symmetry group SO(3). For the

purpose of computing electrical and thermal conductivities, we consider the helicity one

sector only

δ(ds2) = ε 2δgti(r, t)dtdx
i, δA = ε δAi(r, t)dx

i, δÃ = ε δÃi(r, t)dx
i, (4.3)

where ε is a formal parameter marking the linearization. The calculations below will be

accurate up to O(ε1), as required for linear response study.

Fluctuations (4.3) satisfy a system of partial differential equations, whose derivation

is presented in appendix B, see (B.8)–(B.12). While there is no explicit interaction term

between A and Ã in the bulk action (2.1), fluctuations δAi and δÃi do interact via δgti.

As in section 3, this is exactly our point that the CESE can be realized by going beyond

probe limit in a simple holographic model.

We proceed by deriving the compact forms of stress-energy tensor and currents of the

boundary theory. To this end, we solve (B.8)–(B.11) near conformal boundary r =∞,

δgti(r, t)
r→∞−−−→ r2δh

(0)
ti (t) +

δh
(4)
ti (t)

r2
+O

(
r−3
)
, (4.4)

δAi(r, t)
r→∞−−−→ δa

(0)
i (t) +

∂tδa
(0)
i (t)

r
+
δa

(2)
i (t)

r2
− log r

2r2
∂2
t δa

(0)
i (t) +O

(
log r

r3

)
, (4.5)

δÃi(r, t)
r→∞−−−→ δã

(0)
i (t) +

∂tδã
(0)
i (t)

r
+
δã

(2)
i (t)

r2
− log r

2r2
∂2
t δã

(0)
i (t) +O

(
log r

r3

)
, (4.6)

where the non-normalizable modes δh
(0)
ti (t), δa

(0)
i (t), δã

(0)
i (t) correspond to external sources,

see (B.4)–(B.6) for the precise identification. The constraint equation (B.12) yields

4δh
(4)
ti = 2

√
3
(
Q̃δã

(0)
i +Qδa

(0)
i

)
. (4.7)
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The rest normalizable modes δa
(2)
i , δã

(2)
i have to be determined via fully solving the bulk

equations (B.8)–(B.11). Our strategy of solving them goes in two steps: (1) factorize out the

time-dependence by basis decomposition (B.18); (2) solve ordinary differential equations

satisfied by decomposition coefficients, see (B.19)(B.20). As a result,

δa
(2)
i =

µs1 + µ5s2

µ2 + µ2
5

(
µδa

(0)
i + µ5δã

(0)
i

)
, δã

(2)
i =

µ5s1 − µs2

µ2 + µ2
5

(
µδa

(0)
i + µ5δã

(0)
i

)
, (4.8)

where s1, s2 encode pre-asymptotic behaviors of the decomposition coefficients, see (B.21).

With the near boundary expansions (4.4)–(4.6), the dual stress-energy tensor and

currents (2.11)–(2.13) become,

Ttt = 3M, Tij = Mδij , Tti = Mδh
(0)
ti + 2

√
3(Q̃δã

(0)
i +Qδa

(0)
i ), (4.9)

J t = 2
√

3Q, J i = 2δa
(2)
i −

1

2
∂2
t δa

(0)
i − 2

√
3Qδh

(0)
ti , (4.10)

J t5 = 2
√

3Q̃, J i5 = 2δã
(2)
i −

1

2
∂2
t δã

(0)
i − 2

√
3Q̃δh

(0)
ti , (4.11)

where the constraint relation (4.7) has been used to simplify Tti. The heat current Qi is

defined as

Qi = T ti − µJ i − µ5J
i
5, (4.12)

where T ti could be computed from Tti by a weakly curved boundary metric ηµν + δh
(0)
ti .

Thus, the currents (4.10)–(4.12), as the linear response to external sources Ei, E
5
i ,∇iT ,

can be summarized in a compact matrix formJ iJ i5
Qi

 =

 σ σ̃5 αT

σ5 σ̃ α5T

ᾱT ᾱ5T κ̄T


 Ei

E5
i

−∇iT
T

 , (4.13)

where (B.4)–(B.6) have been used.

The electrical conductivities are

σ = −
[
πδ(ω) +

i

ω

]
2(µ2s1 + µ2

5s2)

(µ2 + µ2
5)

− 1

2
iω, σ̃ = σ

∣∣
µ↔µ5 ,

σ5 = σ̃5 = −
[
πδ(ω) +

i

ω

]
2µµ5(s1 − s2)

(µ2 + µ2
5)

.

(4.14)

The thermoelectric conductivities are

αT = ᾱT =

[
πδ(ω) +

i

ω

]
ρ− (µσ + µ5σ̃5),

α5T = ᾱ5T =

[
πδ(ω) +

i

ω

]
ρ5 − (µσ5 + µ5σ̃).

(4.15)

Finally, the thermal conductivity is

κ̄T =

[
πδ(ω) +

i

ω

]
(E + P − 2ρµ− 2ρ5µ5) +

(
µ2σ + µ2

5σ̃ + 2µµ5σ5

)
. (4.16)
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As seen from (4.14)(4.15)(4.16), only σ and σ5 are independent: σ̃ could be extracted

from σ via the exchange µ ↔ µ5; all remaining conductivities are determined by their

combinations. σ and σ̃ are the Ohmic electrical conductivities for vector current and axial

current, and σ5 corresponds to the chiral electric separation effect while σ̃5 is its vector

analogue. The CESE conductivity σ5 is invariant under the exchange of µ and µ5.

In (4.15), α and α5 are the thermoelectric conductivities of generating vector and

axial currents, respectively. Thanks to time reversal symmetry, Onsager reciprocal rela-

tions ᾱ = α and ᾱ5 = α5 do hold, and the conductivity matrix in (4.13) is symmetric.

In (4.16), κ̄ is the heat conductivity. In the numerator of κ̄, we have made the replace-

ment E → E + P = 4M as done in [81–83]. This added P is actually a “contact term” [84]

due to translation invariance. Then, it is consistent with (1.21) obtained by fluid/gravity

calculations.

Note the appearance of i/ω in the conductivities (4.14)(4.15)(4.16). From the Kramers-

Kronig relation [63, 64], this means there must be a delta function δ(ω) in real parts of all

the conductivities. However, in holographic models with spatial translational invariance,

it is not easy to track the delta-peak directly. For consistency, we just added this δ(ω) as

underlined terms above [63, 64].

In the low-frequency limit where ω/T � 1, we obtained analytical expressions for

σ, σ5, see (B.29)(B.30). For the purpose of comparing with (1.17)(1.18), we eliminate bulk

parameters in (B.29)(B.30) in favor of thermodynamic quantities of the boundary theory.

Eventually, (B.29)(B.30) turn into

σ =

[
πδ(ω) +

i

ω

]
ρ2

E + P
+ σe + · · · , σ5 =

[
πδ(ω) +

i

ω

]
ρ2

5

E + P
+ σ5e + · · · , (4.17)

where · · · denote higher powers in ω corrections, σe and σ5e are given in (1.8). Obviously,

aside from the subtle piece δ(ω), the AC conductivities (4.17) are in perfect agreement with

the result from linear response (1.17)(1.18). In the single charge limit, (4.17) also stands

in line with the two-point correlators of [85]. And in the low-frequency limit, the real part

of them give the intrinsic conductivities limω→0 Re[σ] = σe and limω→0 Re[σ5] = σ5e. The

ω-dependence of σ and σ5 will be the focus of the next subsection.

4.2 AC conductivities: numerical plots

In this subsection, we present numerical results for the AC conductivities σ and σ5 while

depositing more technical details in appendix B. Our results for frequency dependence of

Ohmic conductivity σ are plotted in figures 3, 4, 5.

Figure 3 is about the plot of σ/(πT ) as a function of dimensionless frequency ω̄ when

either µ̄ = 0 or µ̄5 = 0. As seen from left panels of figure 3, when µ̄ = 0, i.e., neglecting

the back-reaction effect from the vector field in the bulk, the low-frequency limit of σ is

always finite, which is in consistent with the analytical result (4.17). For representative

values of µ̄5 chosen by us, increasing the axial chemical potential µ̄5 results in reasonably

profound modification for the infrared behaviors of σ. From the right-bottom panel of

figure 3, it is clear that, once µ̄ 6= 0 (i.e. beyond probe limit), there appears divergent

behavior for imaginary part of σ: Im[σ] ∼ ω̄−1, which is also in agreement with analytical
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Figure 3. Ohmic conductivity σ/(πT ) (Real and Imaginary parts) as a function of dimensionless

frequency ω̄ = ω/(πT ) when either µ̄ = 0 (left) or µ̄5 = 0 (right). Different curves correspond to

different values of µ̄5 = 0.5, 1, 2 (left) or µ̄ = 0, 1, 2 (right). From the right-bottom panel, there

appears divergent behavior for imaginary part of σ: Im[σ] ∼ 1/ω̄. Via Kramers-Kronig relation,

this implies there should be a delta peak in Re[σ] at ω̄ = 0, which we, however, could not track in

numerical calculations.
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Figure 4. Ohmic conductivity σ/(πT ) (Real and Imaginary parts) as a function of dimensionless

frequency ω̄ = ω/(πT ) with fixed µ̄5 = 0.5 (left) or µ̄ = 0.5 (right). Different curves correspond to

different choices of µ̄ = 0.5, 1, 2 (left) or µ̄5 = 0.5, 1, 2 (right). As in figure 3, the divergent behavior

(∼ 1/ω̄) in Im[σ] implies the presence of a delta-peak at ω̄ = 0 in Re[σ], which we could not display

numerically.

result in (4.17). Via Kramers-Kronig relation, this 1/ω̄-behavior in Im[σ] means that

Re[σ] ∼ δ(ω̄). Moreover, the strength of back-reaction due to vector field in the bulk is

also reflected by different curves in the right-bottom panel in figure 3.
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Figure 5. Ohmic conductivity σ/(πT ) (Real and Imaginary parts) as a function of dimensionless

frequency ω̄ = ω/(πT ) for larger values of µ̄ = 1, 2 and µ̄5 = 1, 2. As in figure 3, the divergent

behavior (∼ 1/ω̄) in Im[σ] implies the presence of a delta-peak at ω̄ = 0 in Re[σ], which we could

not display numerically.

Figure 4 is to further explore the effects of chemical potentials on σ. In the infrared

regime of ω, Im[σ] is dominated by the divergent behavior ∼ 1/ω̄, which implies a delta-

peak δ(ω) for Re[σ]. While we could not display this δ(ω) in numerical plots, we find the

finite piece in Re[σ] and particularly that limω→0 Re[σ] = σe. Let us focus on the infrared

regime (roughly with 0 < ω̄ . 2) of Re[σ]. Our observation is that increasing µ̄ will diminish

Re[σ] while increasing µ̄5 will result in enhancement of Re[σ]. This is exactly consistent

with the DC limit σe in (1.11), which has been plotted in the left panel of figure 1. The

behavior for larger ω̄ is supposed to be controlled by UV conformal symmetry. To confirm

this observation, in figure 5 we plot Ohmic conductivity σ, as a function of ω̄, for larger

chemical potentials µ̄ and µ̄5. Roughly, when ω̄ & 6, Re[σ] becomes insensitive to change

of chemical potentials.

Figure 6 is to show the frequency-dependence of the CESE conductivity σ5 and the

generalized deviation factor χA ≡ σ5/(µ̄µ̄5πT ) extending (1.11) to AC case. Given that σ5

is symmetric under the exchange of µ and µ5, it is legitimate to constrain to either µ ≥ µ5

or µ ≤ µ5 without loss of generality. Just like σ displayed in figures 3, 4, 5, Im[σ5] shows

diverging behavior (i.e.∼ 1/ω) near ω = 0, which, via Kramers-Kronig relation, indicates

Re[σ] ∼ δ(ω). Once away from ω = 0, the imaginary parts approach zero soon, while the

real parts evolve in a more profound fashion as ω is increased. Particularly, we observe a

damped oscillating behavior for Re[σ5], where the asymptotic regime is achieved around

ω̄ = 5.5 for µ = 0. This is roughly in agreement with the numerical results of [31], although

we have the different mechanism of generating CESE. Moreover, from figure 6 we observe

that increasing µ or µ̄5 would delay the achievement of the asymptotic regime.

5 Conclusion and discussions

In this work, we explored transport properties of strongly coupled matter, which is holo-

graphically described by (4 + 1)-dimensional Einstein gravity, coupled to U(1)V × U(1)A
gauge fields, in the asymptotic AdS5 black brane. Our main finding is the nonzero CESE

conductivity when the gravitational back-reaction effect is taken into account, see (1.11) for
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Figure 6. Left: CESE conductivity σ5/(πT ) (Real and Imaginary parts) as a function of dimen-

sionless frequency ω̄ = ω/(πT ). Right: the deviation factor σ5/(µ̄µ̄5πT ) (Real and Imaginary parts)

as a function of ω̄. As in figure 3, the divergent behavior (∼ 1/ω̄) in Im[σ5] implies the presence of

a delta-peak at ω̄ = 0 in Re[σ5], which we could not display numerically.

the hydrodynamic limit and (4.14) for its extension to an AC conductivity. We confirmed

our results with two complementary studies — fluid/gravity calculations versus linear re-

sponse analysis. Within the former framework, we constructed the first-order constitutive

relations for stress-energy tensor, vector and axial currents for the holographic matter in

the long wavelength and low frequency limit. Following the linear response approach, we

revealed the frequency-dependence of Ohmic, CESE and thermoelectric conductivities.

As the second task, we clarified the relations between the dissipative transport coef-

ficients in the hydrodynamic constitutive relations (1.3)(1.4) and those appearing in the

conductivity matrix (4.13). While the “intrinsic” conductivities σe, σ5e etc. are widely used

in the framework of fluid dynamics, the physical observable are indeed those appearing in

the conductivity matrix (4.13). Indeed, when the hydrodynamic description is reformu-

lated into the linear response form, we find perfect agreement between these two different

approaches, see (1.17)(1.18)(1.20) and (4.17).

Since we have turned off the possible Chern-Simons terms in our holographic

model (2.1), it would be interesting to check if the CESE conductivity will be corrected by

the chiral anomaly. From recent works [45, 46, 86], the anomalous corrections to normal

transport coefficients start from the second order in the derivative expansion. A study

along the line of [45, 46, 86] will be helpful in clarifying this issue.

A Technical details in the fluid/gravity calculations

In this appendix, we collect some computational details and useful relations in the

fluid/gravity calculations of section 3.
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A.1 Solving the bulk equations

Following the standard procedure of fluid/gravity correspondence, we first solve constraint

equations to derive relations among fluid-dynamical variables. Practically, we find it more

convenient to consider certain combinations of constraint and dynamical equations. Below

is the listing of solutions to constraint equations,

W r = 0 ⇒ ∂tQ+Q0(∂kuk) = 0, (A.1)

W̃ r = 0 ⇒ ∂tQ̃+ Q̃0(∂kuk) = 0, (A.2)

grrWrt + grtWtt = 0 ⇒ 3∂tM + 4M0(∂kuk) = 0, (A.3)

grrWri + grtWti = 0 ⇒ ∂iM + 4M0∂tui = 2
√

3Q0F
(ε)
it , (A.4)

which are, indeed, the hydrodynamic equations (2.15), expanded to the first-order in the

derivative expansion. In obtaining (A.4), the first two equations (A.1)(A.2) have been

utilized. To proceed, we turn to dynamical equations and find the corrections in (3.7).

Dynamical equations will be grouped into the scalar, vector and tensor sectors according

to SO(3) symmetry of the boundary spatial directions.

I. Scalar sector. In the scalar sector, we begin with the dynamical equation Err = 0:

0 = r∂2
rh(r) + 5∂rh(r), (A.5)

which is solved by

h(r) = Ch1 +
Ch2
r4
. (A.6)

The asymptotic condition (3.10) requires Ch1 = 0. By Landau-Lifshitz frame condi-

tion (3.14), the integration constant Ch2 will also be fixed to zero. Therefore, h(r) = 0.

From the time components of Maxwell equations W t = 0 and W̃ t = 0,

r3∂2
rat(r) + 3r2∂rat(r)− 4

√
3Q0∂rh(r) = 0, (A.7)

r3∂2
r ãt(r) + 3r2∂rãt(r)− 4

√
3Q̃0∂rh(r) = 0, (A.8)

which are solved by

at(r) = Ca1 +
Ca2
r2
− 2
√

3Q0C
h
2

3r6
, ãt(r) = C ã1 +

C ã2
r2
− 2
√

3Q̃0C
h
2

3r6
. (A.9)

where Ca1 , C
a
2 , C

ã
1 , C

ã
2 are integration constants to be determined by boundary condi-

tions (3.10)–(3.12). First, nonzero Ca1 , C
ã
1 correspond to non-normalizable modes and would

violate the asymptotic requirement (3.10). So, Ca1 = C ã1 = 0. The Landau-Lifshitz frame

conditions (3.15) require Ca2 , C
ã
2 to vanish, i.e. Ca2 = C ã2 = 0. The remaining equation of

the scalar sector is grrErr + grtEtr = 0,

3∂rk(r) = (2M0−6r4)∂rh(r)−24r3h(r)+2
√

3
[
Q0∂rat(r)+Q̃0∂rãt(r)

]
+6r2(∂kuk), (A.10)

which is solved by

k(r) =
2

3
r3(∂kuk) + Ck1 +

2
√

3(Q0C
a
2 + Q̃0C

ã
2 )

3r2
+

[
2M0

3r4
− 4(Q2

0 + Q̃2
0)

3r6

]
Ch2 . (A.11)
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A nonzero Ck1 would cause the Ttt computed from (3.16) to be in contradiction with the

Landau-Lifshitz frame convention (3.14). So, Ck1 = 0. Therefore, all the integration con-

stants in the scalar sector have to be set to zero. The solutions in the scalar sector are

summarized as below

k(r) =
2

3
r3(∂kuk), h(r) = 0, at(r) = 0, ãt(r) = 0. (A.12)

II. Vector sector. Now we consider the helicity one sector, which consists of ai(r), ãi(r),

ji(r) and turns out to be more involved. First consider the Maxwell equations W i = 0

and W̃ i = 0

0 = ∂r
[
r3f0(r)∂rai(r)

]
+ 2
√

3Q0∂r

(ji(r)
r4

)
−
√

3

r2

(
∂iQ+Q0∂tui

)
+ F

(ε)
ti , (A.13)

0 = ∂r
[
r3f0(r)∂rãi(r)

]
+ 2
√

3Q̃0∂r

(
ji(r)

r4

)
−
√

3

r2

(
∂iQ̃+ Q̃0∂tui

)
, (A.14)

which are dynamical equations for ai(r) and ãi(r), but coupled to ji(r). The Einstein

equation Wri = 0 corresponds to dynamical equation for ji(r),

0 = r∂2
r ji(r)− 3∂rji(r) + 2

√
3
[
Q0∂rai(r) + Q̃0∂rãi(r)

]
+ 3r2∂tui, (A.15)

which couples to ai(r) and ãi(r).

Our strategy of solving the coupled differential equations (A.13)–(A.15) is to get rid

of ji(r) and derive decoupled differential equations for suitably combined variables from

ai(r), ãi(r). To this end, we first integrate over r once in the equation (A.15). As a result,

0 = r∂rji(r)− 4ji(r) + 2
√

3
[
Q0ai(r) + Q̃0ãi(r)

]
+ r3∂tui, (A.16)

where the integration constant is fixed by the Landau-Lifshitz frame convention, i.e., in

the near boundary expansion for ji(r) the constant should be zero in order to be consistent

with (3.14).

The combinations Q0×(A.13)+Q̃0×(A.14), and Q̃0×(A.13)−Q0×(A.14) give rise to

0 = ∂r

[
r3f0(r)∂r

(
Q0ai(r) + Q̃0ãi(r)

)]
+ 2
√

3
(
Q2

0 + Q̃2
0

)
∂r

(
ji(r)

r4

)
−
√

3

r2

[
Q0∂iQ+ Q̃0∂iQ̃+

(
Q2

0 + Q̃2
0

)
∂tui

]
+Q0F

(ε)
ti , (A.17)

and

0 = ∂r

[
r3f0(r)∂r

(
Q̃0ai(r)−Q0ãi(r)

)]
−
√

3

r2

(
Q̃0∂iQ−Q0∂iQ̃

)
+ Q̃0F

(ε)
ti . (A.18)

Then, substituting (A.16) into (A.17) yields

0 = ∂r

[
r3f0(r)∂r

(
Q0ai(r) + Q̃0ãi(r)

)]
− 12

r5

(
Q2

0 + Q̃2
0

)(
Q0ai(r) + Q̃0ãi(r)

)
−
√

3

r2

[
3
(
Q2

0 + Q̃2
0

)
∂tui +Q0∂iQ+ Q̃0∂iQ̃

]
+Q0F

(ε)
ti . (A.19)
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The equation (A.18) can be solved via direct integration over r,

Q̃0ai(r)−Q0ãi(r) =−
∫ ∞
r

dx̂

x̂3f0(x̂)

∫ x̂

rh

dy

[√
3

y2

(
Q̃0∂iQ−Q0∂iQ̃0

)
−Q̃0F

(ε)
ti

]
r→∞−−−→ 1

r
Q̃0F

(ε)
ti −

1

r2

√
3

2rh

(
Q̃0∂iQ−Q0∂iQ̃

)
− 1

r2

1

2
rhQ̃0F

(ε)
ti +O

(
r−3
)
, (A.20)

where the lower limit of the inner integral is fixed by regularity (3.11) at the unperturbed

horizon r = rh and the upper limit of the outer integral is fixed by asymptotic require-

ment (3.10).

However, the equation (A.19) is more complicated and cannot be solved by directly

integrating over r. Indeed, the homogeneous version of (A.19) has two linearly indepen-

dent solutions given by H1(r)=r5f ′0(r) and H2(r)=H1(r)
∫∞
r dr̂

[
r̂3f0(r̂)H1(r̂)

2
]−1

, where

the second one H2(r) is obtained by the Liouville formula. Then, one could proceed to

solve (A.19) by using the method of variation of parameters. In practical calculations, we

make a coordinate transformation by u = rh/r and perform the solving of (A.19) in Mathe-

matica. The regularity at the unperturbed horizon and asymptotic requirement completely

fix both integration constants. Since the final solution looks quite complicated, we only

record the large r behavior for Q0ai(r) + Q̃0ãi(r),

Q0ai(r)+Q̃0ãi(r)
r→∞−−−→− 1

r2

√
3(2r6

h+Q2
0+Q̃2

0)

4M0r3
h

[
3(Q2

0+Q̃2
0)∂tui+Q0∂iQ+Q̃0∂iQ̃

]
+

1

r
Q0F

(ε)
ti −

1

r2

[
3(Q2

0+Q̃2
0)

4M0rh
+

1

2
rh

]
Q0F

(ε)
ti +O

(
r−3
)
. (A.21)

Therefore, the near boundary behaviors for ai(r) and ãi(r) are

ai(r)
r→∞−−−→ − 3

√
3Q0

r2

(
r3
h

4M0
+

1

4rh

)
∂tui −

√
3

r2

(2r6
h +Q2

0 + 2Q̃2
0)

4M0r3
h

∂iQ+

√
3

r2

Q0Q̃0

4M0r3
h

∂iQ̃

+
1

r
F

(ε)
ti −

1

r2

(
3Q2

0

4M0rh
+

1

2
rh

)
F

(ε)
ti +O

(
r−3
)
, (A.22)

ãi(r)
r→∞−−−→− 3

√
3Q̃0

r2

(
r3
h

4M0
+

1

4rh

)
∂tui −

√
3

r2

(2r6
h + 2Q2

0 + Q̃2
0)

4M0r3
h

∂iQ̃+

√
3

r2

Q0Q̃0

4M0r3
h

∂iQ

− 1

r2

3Q0Q̃0

4M0rh
F

(ε)
ti +O

(
r−3
)
. (A.23)

With large r behaviors of ai(r), ãi(r) at hand, the equation (A.16) could be solved near

the boundary r =∞, yielding

ji(r)
r→∞−−−→ r3∂tui +O(r−1). (A.24)

III. Tensor sector. Finally, the tensor equation Wij − 1
3δijWkk = 0 gives the dynamical

equation for αij(r):

∂r
[
r5f0(r)∂rαij(r)

]
+ 3r2

[
∂iuj + ∂jui −

2

3
δij(∂kuk)

]
= 0, (A.25)
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which can be solved by direct integration over r. The final solution for αij(r) is

αij(r) = 3

[
∂iuj + ∂jui −

2

3
δij(∂kuk)

] ∫ r

∞

dx̂

x̂5f0(x̂)

∫ x̂

rh

y2dy,

r→∞−−−→
(

1

r
−

r3
h

4r4

)[
∂iuj + ∂jui −

2

3
δij(∂kuk)

]
+O(r−5). (A.26)

A.2 Useful relations in deriving dual currents

In this appendix, we summarize some formulas that are quite lengthy but useful towards

deriving non-anomalous parts of the currents in (1.3)(1.4). From (3.19)(3.20), armed with

the near-boundary behaviors derived in appendix A.1, the vector and axial currents of the

boundary theory are

J t = 2
√

3Q, J t5 = 2
√

3Q̃, (A.27)

J i =
√

3Q0ui − 3
√

3Q0

(
r3
h

2M0
+

1

2rh

)
∂tui −

√
3(2r6

h +Q2
0 + 2Q̃2

0)

2M0r3
h

∂iQ

+

√
3Q0Q̃0

2M0r3
h

∂iQ̃−
(

3Q2
0

2M0rh
+ rh

)
F

(ε)
ti , (A.28)

J i5 =
√

3Q̃0ui − 3
√

3Q̃0

(
r3
h

2M0
+

1

2rh

)
∂tui −

√
3(2r6

h + 2Q2
0 + Q̃2

0)

2M0r3
h

∂iQ̃

+

√
3Q0Q̃0

2M0r3
h

∂iQ−
3Q0Q̃0

2M0rh
F

(ε)
ti , (A.29)

where ∂tui will be replaced via the constraint relation (A.4)

∂tui = −∂iM
4M0

−
√

3Q0

2M0
F

(ε)
ti . (A.30)

Meanwhile, the derivative ∂iM would be replaced by

∂iM =
1

r3
h

(
Q0∂iQ+ Q̃0∂iQ̃

)
+ 2r3

h

(
1− Q2

0 + Q̃2
0

2r6
h

)
∂irh, (A.31)

which is obtained by expanding

1− M

r4
h

+
Q2 + Q̃2

r6
h

= 0, (A.32)

around xµ = 0 up to first-order in derivative expansion.

Then, the derivative terms in (A.28)(A.29) are linear combinations of ∂irh, ∂iQ and

∂iQ̃, which have to be re-parameterized in terms of derivatives of fluid-dynamical variables.

Via the relations (3.31)(3.32), it is straightforward although tedious to derive the following

expressions

∂iT

T
=−2

(
Q0∂iQ+Q̃0∂iQ̃

)
2r6h−Q2

0−Q̃2
0

+
2r6h+5

(
Q2

0+Q̃
2
0

)(
2r6h−Q2

0−Q̃2
0

) ∂irh
rh

, (A.33)

∂i

(
µ

T

)
=

2
√
3πr2h

(
rh∂iQ−3Q0∂irh

)
2r6h−Q2

0−Q̃2
0

+
4
√
3πQ0r

2
h

(
rhQ0∂iQ+rhQ̃0∂iQ̃−3Q2

0∂irh−3Q̃2
0∂irh

)(
2r6h−Q2

0−Q̃2
0

)2 , (A.34)

∂i

(
µ5

T

)
=

2
√
3πr2h

(
rh∂iQ̃−3Q̃0∂irh

)
2r6h−Q2

0−Q̃2
0

+
4
√
3πQ̃0r

2
h

(
rhQ0∂iQ+rhQ̃0∂iQ̃−3Q2

0∂irh−3Q̃2
0∂irh

)(
2r6h−Q2

0−Q̃2
0

)2 , (A.35)

which could be inverted to express ∂irh, ∂iQ and ∂iQ̃ in terms of ∂iT , ∂i(µ/T ) and ∂i(µ5/T ).
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B Technical details in linear response analysis

In this appendix, we collect calculation details in the linear response analysis presented in

section 4.

I. Identify external sources. According to the holographic dictionary, non-normalizable

modes of bulk fields act as external sources. Thus, near the conformal boundary r → ∞,

we require

δgti(r, t) = r2
[
δh

(0)
ti (t) +O(r−1)

]
, (B.1)

δAi(r, t) = δa
(0)
i (t) +O(r−1), (B.2)

δÃi(r, t) = δã
(0)
i (t) +O(r−1). (B.3)

As a result, the boundary metric is perturbed to be ηµν + δh
(0)
ti (t). The purpose of in-

troducing a boundary metric perturbation δh
(0)
ti (t) is to turn on a thermal gradient ∇iT .

Indeed, via the diffeomorphism invariance, one could show that a thermal gradient ∇iT
leads to a boundary metric perturbation δh

(0)
ti (t) [81, 82],

iωδh
(0)
tj = −∇jT

T
. (B.4)

On the other hand, a thermal gradient ∇iT also induces perturbations to boundary vector

and axial gauge potentials,

iωδa
(T)
j = µ

∇jT
T

, iωδã
(T)
j = µ5

∇jT
T

, (B.5)

where the superscript (T) is to emphasize that the potential perturbations in (B.5) are

generated by a thermal gradient and will be vanishing once the thermal gradient is turned

off. The chemical potentials µ, µ5 are defined as in (3.31). Consequently, we identify

external vector and axial electric fields as

Ei = −∂t
(
δa

(0)
i − δa

(T)
i

)
= iω

(
δa

(0)
i + µδh

(0)
ti

)
,

E5
i = −∂t

(
δã

(0)
i − δã

(T)
i

)
= iω

(
δã

(0)
i + µ5δh

(0)
ti

)
.

(B.6)

In (B.4)–(B.6) we have assumed plane wave ansatz for external perturbations

δh
(0)
ti (t) ∼ e−iωtδh(0)

ti (ω), δa
(0)
i (t) ∼ e−iωtδa(0)

i (ω), δã
(0)
i (t) ∼ e−iωtδã(0)

i (ω). (B.7)

II. Bulk equations linearized. To linear order in perturbations, the bulk equations of

motion (2.7)–(2.9) become

Wri = 0 ⇒ 0 = r3∂2
r δgti + r2∂rδgti − 4rδgti + 2

√
3∂r
(
QδAi + Q̃δÃi

)
, (B.8)

Wti = 0 ⇒ 0 = r5f(r)∂2
r δgti + r4f(r)∂rδgti + r3∂r∂tδgti − 2r2∂tδgti

− 4r3f(r)δgti + 2
√

3
[
r2f(r)∂r + ∂t

] (
QδAi + Q̃δÃi

)
, (B.9)
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as well as

W i = 0 ⇒ 0 = r3f(r)∂2
r δAi + ∂r

[
r3f(r)

]
∂rδAi + 2r∂r∂tδAi + ∂tδAi

+ 2
√

3Qr−3 (r∂rδgti − 2δgti) , (B.10)

W̃ i = 0 ⇒ 0 = r3f(r)∂2
r δÃi + ∂r

[
r3f(r)

]
∂rδÃi + 2r∂r∂tδÃi + ∂tδÃi

+ 2
√

3Q̃r−3 (r∂rδgti − 2δgti) . (B.11)

The combination r2f(r)Wri −Wti = 0 results in a simpler equation

0 = r3∂rδgti − 2r2δgti + 2
√

3(Q̃δÃi +QδAi), (B.12)

which helps to decouple δAi, δÃi from δgti. As a result,

0 = ∂r
[
r3f(r)∂rδAi

]
+ 2r∂r∂tδAi + ∂tδAi − 12Qr−5(QδAi + Q̃δÃi), (B.13)

0 = ∂r

[
r3f(r)∂rδÃi

]
+ 2r∂r∂tδÃi + ∂tδÃi − 12Q̃r−5(QδAi + Q̃δÃi). (B.14)

To proceed, we define the variables

Xi ≡ QδAi + Q̃δÃi − (Qδa
(0)
i + Q̃δã

(0)
i ),

Yi ≡ Q̃δAi −QδÃi − (Q̃δa
(0)
i −Qδã

(0)
i ),

(B.15)

so that limr→∞Xi → 0, and limr→∞ Yi → 0. Then, the equations (B.13)(B.14) turn into

decoupled equations for Xi and Yi,

0 = ∂r
[
r3f(r)∂rXi

]
+ 2r∂r∂tXi + ∂tXi − 12

(
Q2 + Q̃2

)
r−5Xi

+
[
∂t − 12(Q2 + Q̃2)r−5

](
Qδa

(0)
i + Q̃δã

(0)
i

)
, (B.16)

0 = ∂r
[
r3f(r)∂rYi

]
+ 2r∂r∂tYi + ∂tYi + ∂t

(
Q̃δa

(0)
i −Qδã

(0)
i

)
. (B.17)

Inspired by the structure of source terms in (B.16)(B.17), we could factorize Xi and Yi as

Xi(r, t) = S1(r, ∂t)
[
Qδa

(0)
i (t) + Q̃δã

(0)
i (t)

]
,

Yi(r, t) = S2(r, ∂t)
[
Qδa

(0)
i (t) + Q̃δã

(0)
i (t)

]
.

(B.18)

In Fourier space by ∂t → −iω, we have S1(r, ∂t)→ S1(r, ω), S2(r, ∂t)→ S2(r, ω). Even-

tually, dynamical equations for δAi, δÃi turn into decoupled ordinary differential equations

for scalar functions S1, S2:

0 = ∂r
[
r3f(r)∂rS1

]
−2iωr∂rS1−iωS1−12(Q2+Q̃2)r−5S1−iω−12(Q2+Q̃2)r−5, (B.19)

0 = ∂r
[
r3f(r)∂rS2

]
−2iωr∂rS2−iωS2−iω. (B.20)

The asymptotic expansions of δAi and δÃi in (4.5)(4.6) get translated into near boundary

behavior for S1, S2, which we sketchily summarise as

Si
r→∞−−−→

s
(1)
i

r
+
si
r2

+
log r

r2
sL
i , i = 1, 2 , (B.21)
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where s
(1)
i , sL

i are easily read off from (4.5)(4.6) and si will be solved in the following.

Afterwards, we determine the frequency-dependence of conductivities σ and σ5e.

We turn to a bounded radial coordinate by the transformation,

u ≡ rh
r
⇒ u ∈ [0, 1], (B.22)

so that the conformal boundary is located at u = 0 and the event horizon is at u = 1. In

the u-coordinate, equations (B.19)(B.20) are turned into

0 = u2∂u
[
u−1f(u)∂uS1

]
+ 2iω̂u∂uS1 − iω̂(S1 + 1)− 4

(
µ̂2 + µ̂2

5

)
u5 (S1 + 1) ,

0 = u2∂u
[
u−1f(u)∂uS2

]
+ 2iω̂u∂uS2 − iω̂ (S2 + 1) ,

(B.23)

where

ω̂ =
ω

rh
, µ̂ =

µ

rh
, µ̂5 =

µ5

rh
, f(u) = 1− u4 +

1

3

(
µ̂2 + µ̂2

5

)
u4(u2 − 1). (B.24)

The equations (B.23) will be first solved analytically in the hydrodynamic limit to com-

pare with the results of section 3 and then numerically in order to reveal the frequency

dependence of conductivities.

III. Hydrodynamic limit. First, we consider the hydrodynamic limit where ω̂ � 1

so that we could compute σ and σ5e analytically. Introduce a formal parameter by the

rescaling ω̂ → λω̂. Then, S1, S2 are expanded as S1 =
∑∞

n=0 λ
nS

[n]
1 , S2 =

∑∞
n=0 λ

nS
[n]
2 . To

the zeroth order O(λ0),

S
[0]
1 = −

3
(
µ̂2 + µ̂2

5

)
2
(
3 + µ̂2 + µ̂2

5

)u2, S
[0]
2 = 0. (B.25)

To the first-order O(λ1), S
[1]
2 can be solved by direct integration over r and the result is

S
[1]
2 = iω̂

∫ u

0

x̂dx̂

f(x̂)

∫ x̂

1

dy

y2

u→0−−−→ 1

2
iω̂
(
−2u+ u2

)
+O(u3). (B.26)

The equation for S
[1]
1 is

0 = u2∂u

[
u−1f(u)∂uS

[1]
1

]
− 4

(
µ̂2 + µ̂2

5

)
u5S

[1]
1 + 2iω̂u∂uS

[0]
1 − iω̂S

[0]
1 − iω̂, (B.27)

which we solved by using Mathematica’s DSolve command. The integration constants are

fixed by regularity at u = 1 and asymptotic requirement at the boundary u = 0. Given

that the final solution for S
[1]
1 is quite lengthy, we record its near boundary expansion only,

S
[1]
1

u→0−−−→ −iω̂u+ iω̂u2

(
−6 + µ̂2 + µ̂2

5

)(
3 + µ̂2 + µ̂2

5

) +O(u3), (B.28)

which is enough for calculating the conductivities.
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Recall the AC Conductivities (4.14) and the near boundary behaviors in (B.21), the

small ω limits of conductivities σ,σ5 are

σ =
i

ω

3Q2r2
h

r6
h +Q2 + Q̃2

+
Q4 +Q2(5Q̃2 − 4r6

h) + 4(Q̃2 + r6
h)2

4(r6
h +Q2 + Q̃2)2

rh + · · · , (B.29)

σ5 =
i

ω

3QQ̃r2
h

r6
h +Q2 + Q̃2

−
3QQ̃(4r6

h +Q2 + Q̃2)

4(r6
h +Q2 + Q̃2)

rh + · · · , (B.30)

where · · · denote higher powers in ω corrections. Results above are in perfect agreement

with the linear response limit of fluid/gravity calculations (1.17)(1.18) by utilizing the

following relation M = r4
h + (Q2 + Q̃2)/r2

h, as well as taking into account (1.8).

IV. Numerical technique. For generic frequency ω, we were able to solve ODEs

in (B.23) numerically only. Inspired by the expressions (4.14) we turn to variables

S+ =
µ̂2S1 + µ̂2

5S2

µ̂2 + µ̂2
5

, S− =
µ̂µ̂5(S1 − S2)

µ̂2 + µ̂2
5

, (B.31)

which obey coupled ODEs,

0 = u2∂u
[
u−1f(u)∂uS+

]
+ 2iω̂u∂uS+ − iω̂(S+ + 1)− 4u5µ̂ (µ̂S+ + µ̂5S− + µ̂) ,

0 = u2∂u
[
u−1f(u)∂uS−

]
+ 2iω̂u∂uS− − iω̂S− − 4u5µ̂5 (µ̂S+ + µ̂5S− + µ̂) .

(B.32)

We numerically solve (B.32) within the pseudospectral collocation method. The bound-

ary conditions for S+, S− could be straightforwardly obtained from those for S1, S2. For

the sake of performing numerical calculations within the spectral collocation method, we

summarize the boundary conditions as equalities

S+ = S− = 0, at u = 0, (B.33)

{[
−4+

2

3
(µ̂2+µ̂2

5)+2iω̂

]
∂uS+−iω̂(S++1)−4µ̂(µ̂S++µ̂5S−+µ̂)

}∣∣∣∣
u=1

= 0, (B.34){[
−4+

2

3
(µ̂2+µ̂2

5)+2iω̂

]
∂uS−−iω̂S−−4µ̂5 (µ̂S++µ̂5S−+µ̂)

}∣∣∣∣
u=1

= 0. (B.35)

With equations (B.32) solved, AC conductivities σ, σ5 are extracted from the near boundary

behavior of S+ and S−:

σ =
r2
h

iω
∂2
u

(
S+ +

1

2
ω2u2 log u

) ∣∣∣
u=0
− 1

2
iω, σ5 =

r2
h

iω
∂2
uS−

∣∣∣
u=0

. (B.36)
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