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1 Introduction

The AdS/CFT correspondence [1] is one of the most fascinating theoretical breakthroughs

in recent years. In its original form it postulated the duality between two completely

different theories — the supersymmetric gauge theory N = 4 Super-Yang-Mills theory in

4 dimensions and superstring theory on a AdS5 × S5 background. Since then it has been

extended in numerous directions. Apart from very important practical applications as a

tool for learning about the nonperturbative dynamics of gauge theory it is particularly

fascinating theoretically as it proposes the equivalence of a nongravitational theory (the

gauge theory “on the boundary”) and quantum theory incorporating gravity. This is a

very explicit realization of the holographic principle [2, 3]. However the very reason for

which the AdS/CFT correspondence is so useful a tool for studying nonperturbative gauge

theory physics makes it difficult to understand its origin microscopically from the gauge

theory point of view. Indeed both sides of the duality become simple in opposite limits. In

particular we do not know how to deal with string theory in the quantum gravity regime

corresponding to small coupling and finite number of colors on the gauge theory side.

From the point of view of understanding holography the optimal setup would be to have

relatively simple and tractable quantum theories on both sides of the duality.

Some particularly intriguing generalizations of holography involved three dimensional

free O(N) vector model which was proposed to be dual to four dimensional Vasiliev grav-

ity [4, 5]. A lot of progress was made in the understanding of dual dynamics from the

boundary theory point of view (see e.g. [6, 7]), however the gravitational side is basically

understood only at the classical and semi-classical level as Vasiliev gravity [8] has not been

quantized so far.

Reducing the number of dimensions, a class of two dimensional CFT’s was proposed

to be dual to three dimensional Vasiliev gravity coupled to a scalar field [9]. In this case

there is an explicit action for the Vasiliev theory which is a difference of two Chern-Simons

theories, however the total action incorporating interactions with the scalar field is unknown

and it is very difficult to study the duality in the finite k, finite N case.1

1In this case k and N are the parameters of the 2D coset CFT’s.

– 1 –



J
H
E
P
0
9
(
2
0
1
8
)
0
4
5

Most recently the Sachdev-Ye-Kitaev (SYK) model [10–12] (see also [13] and subse-

quent developments) became intensively studied as it is a quantum mechanical system

which exhibits properties characteristic of a dual holographic classical gravity description

in terms of black holes.

In another line of investigation, it was realized that entanglement is crucially con-

nected with holography. Surprising parallels were uncovered between the description of

ground state wave functions using MERA (Multi-scale Entanglement Renormalization

Ansatz) [14, 15] and the Ryu-Takayanagi holographic prescription for computing entan-

glement entropy [16]. More recently various models for holography were proposed incor-

porating various tensor network constructions in particular the HaPPY proposal taking

into account spatial error correcting features of the holographic dictionary [17]. Other re-

cent advances include a path integral optimization framework [18] and the random tensor

networks [19].

One generic feature of the approach to understand holography in terms of tensor

networks is that these constructions are in a sense very kinematical. E.g. the HaPPY

proposal provides a mapping of a boundary Hilbert space to a bulk Hilbert space which

is quite agnostic about the dynamics (Hamiltonian/action etc.) of the boundary theory.

If this intuition is true, it suggests that a holographic description should be in principle

applicable to almost any system.2

In this short note we would like to investigate whether one can formulate a holographic

dual model for the arguably simplest possible quantum system — a free particle in 1

dimension. If successful, this could be a starting point of studying more complicated

setups with more degrees of freedom, interactions etc. in a context which is very much

under control.

The plan of the paper is as follows. First we review some very basic requirements for

a holographic description of a given theory and for identifying a gravitational subsector of

the holographic bulk theory. Then we proceed to implement this program for the quantum

mechanical free particle. We close the paper with a summary and conclusions.

2 The main features of a holographic description

In this section we will summarize what we would expect from a holographic description of

some theory. Suppose that the field theory in question is defined in d spacetime dimensions

on some fixed nondynamical geometry Σ.

I. The dual holographic theory should be defined on a higher dimensional manifold M ,

having Σ as a boundary. At the very least we should be able to match partition

functions for the two theories

Zboundary = Zbulk . (2.1)

2By a holographic description we mean throughout this paper a generic higher dimensional dual descrip-

tion which may be very quantum and far from a description in terms of classical gravity. So we use the

term in a much wider sense than e.g. in [20].
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II. The above requirement is not really enough as we should expect to be able to link

all correlation functions in the boundary theory to the bulk theory through the GKP

formula [21, 22]. Observables/operators in the boundary theory should be associated

to fields in the bulk theory. Moreover the corresponding sources in the generating

function of correlators in the boundary theory should be linked to the boundary

values of the associated bulk fields3 namely
∫

Dφ eiSbndry(φ)+i
∫
Σ
j(xµ)O(xµ)ddx = Zbulk

(

ΦO(z, x
µ) −−−→

z→0
j(xµ)

)

. (2.2)

Ultimately the boundary degrees of freedom would have been integrated out and the

remaining vestiges of the boundary theory would be just the sources i.e. boundary

values of the bulk fields.

III. Finally we would like to interpret a part of the bulk theory as a gravitational theory.

In all holographic constructions so far, the bulk metric is the field associated to

the energy momentum tensor of the boundary theory. In other words its boundary

values should be linked in some way4 to the nondynamical metric of the boundary

theory. Of course, as in the case of higher spin gravity the whole picture may be more

complex with other massless higher spin fields making the geometric interpretation

ambiguous, but still in this way we may identify a natural gravitational subsector of

the bulk theory.

3 A holographic description of a quantum mechanical free particle

The goal of this note is to try to satisfy the above requirements for one of the simplest

systems possible, the quantum mechanical free particle in one dimension. A-priori it is

not at all clear if such a description exists for such a simple system. If it does exist, it may

well be that the outcome is too trivial and restricted, but we hope that even such failure

may be instructive and interesting as it may indicate a sharpening of the requirements

for holography with respect to the ones outlined in the preceding section. From another

perspective it may be a starting point for constructing holography for more nontrivial

quantum mechanical systems.

This system can be understood as a QFT with no spatial dimension with the action

S =

∫

dt
1

2
q̇2 . (3.1)

Since this system as it stands does not have any coupling or large N parameter we expect

the dual bulk theory to be necessarily quantum. This is in fact one of the key motivations

of this study. We will now build up the bulk theory in steps in order to satisfy the three

requirements described in section 2.

3For simplicity we ignore potential z∆ factors and assume that they have been incorporated in a redefi-

nition of the bulk fields.
4We are purposefully quite vague about the details here. In standard AdS/CFT the dictionary is clearest

in the Fefferman-Graham coordinates [23]. We do not want to impose a-priori any specific prescription in

the general case.
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The partition function. Let us consider a two-dimensional abelian BF theory defined

on the half plane

M = {(t, z) : z ≥ 0} . (3.2)

The action is given by

SBF =

∫

M

BdA =

∫

B(∂tAz − ∂zAt)dtdz . (3.3)

We would like to impose the following boundary conditions:

B = −At |z=0 At = 0 |z→∞ . (3.4)

In order for these boundary conditions to be consistent with the variational principle we

have to add to the action a boundary term

SI
bulk = SBF +

1

2

∫

{z=0}
B2dt . (3.5)

The variation of the action is now

δSI
bulk = (EOM’s) +

∫

{z=0}
BδAtdt+

∫

{z=0}
BδBdt (3.6)

which vanishes due to the boundary condition δAt + δB = 0|z=0. The superscript on SI
bulk

indicates that this will not be the full final bulk action but will be still modified in the

following sections.

Let us now evaluate the bulk action SI
bulk. The Lagrange multiplier field B imposes

the constraint that A is a flat connection, hence we may set

Az = −∂zΦ At = −∂tΦ . (3.7)

The bulk part of the action SI
bulk on the constraint surfaces vanishes and we are left with

just the boundary term given through the B field, which in turn due to our boundary

conditions can be expressed in terms of the temporal derivatives of the boundary values of

Φ(t, z) field

q̇(t) = lim
z→0

∂tΦ(t, z) . (3.8)

We thus reproduce the quantum mechanical free particle action.5

∫

dt
1

2
q̇2 . (3.9)

The above simple derivation is a two-dimensional analog of the three-dimensional link of

Chern-Simons and 2d WZW [26, 27], in the variant where the boundary conditions are

A+ = Ā− = 0 (see e.g. [28]).

5Similar computations as in this subsection have been done independently with different motivations

in [24, 25] in the case of nonabelian BF theories.
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Source for q(t). Let us now generalize the construction by adding a generic time depen-

dent source for the particle position q(t). We thus have to reproduce an additional term

in the boundary action
∫

dt
1

2
q̇2 +

∫

dt j(t)q(t) . (3.10)

In terms of the BF theory gauge field, the particle position q(t) can be understood essen-

tially as a Wilson line extending from the boundary to the interior at z = ∞ as we have

∫ ∞

z=0
Az dz = −

∫ ∞

z=0
∂zΦ(t, z) = Φ(t, 0)− Φ(t,∞) . (3.11)

Now due to the boundary condition at infinity At = 0 |z→∞, Φ(t,∞) is a constant and

hence without loss of generality can be set to zero. Therefore we can make an identification

q(t) =

∫

L

A (3.12)

where the line L is attached to the boundary at time t and goes to infinity in the bulk.

Now we would like to rewrite the integral

∫

dt j(t)q(t) (3.13)

as a two dimensional integral in terms of natural bulk quantities. We will also need a bulk

field associated to the boundary source j(t).

To this end, we will introduce another two-dimensional abelian BF theory which we

will denote by
∫

C dα . (3.14)

In order to write the coupling (3.13) we will introduce yet another ingredient: a globally de-

fined 1-form in the bulk which we will denote by dt (for the moment this can be understood

as a gradient of the t coordinate). A-priori the existence of such 1-form in the context of

nonrelativistic quantum mechanics is quite natural in view of Galilean symmetry. We will,

however, return to this point in the following section. For the moment we will treat the

1-form dt as fixed and given externally as a gradient of the global bulk t coordinate.

We will now enlarge the bulk action to

SII

bulk =

∫

M

B dA+ C dα+ α ∧A+Dα ∧ dt+
1

2

∫

∂M

B2dt . (3.15)

Integrating over the Lagrange multiplier D restricts the general form of the α 1-form:

α = j(t, z)dt . (3.16)

Subsequently integrating over C ensures that j(t, z) is only a function of t:

α = j(t)dt . (3.17)

– 5 –



J
H
E
P
0
9
(
2
0
1
8
)
0
4
5

Now we may evaluate the bulk interaction term between the gauge fields of the two BF

theories:
∫

M

α ∧A =

∫

M

j(t)dt ∧ (Atdt+Azdz) =

∫

j(t)

∫ ∞

0
Azdzdt =

∫

j(t)q(t)dt (3.18)

obtaining exactly the boundary source term for q(t).

In principle we should now perform the path integral over A leaving an effective bulk

action depending on the scalar fields B, C, D and gauge field α. We will not attempt to

do this in this work but rather we will return to the 1-form dt.

Covariantizing dt and the “gravity” subsector. Since the quantum mechanical path

integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed

1-dimensional metric gtt(t) and write the action as

1

2

∫ √
g gtt(∂tq)

2 =
1

2

∫

1

e
q̇2 (3.19)

where we introduced the standard einbein notation, and e = e(t) is a fixed given function

of time.

We would now like to complete the program sketched in section 2 and introduce a

bulk field which would go over to the einbein on the boundary. At the same time we will

get rid of the rather artificial looking external 1-form dt which was necessary to write the

boundary source term in terms of bulk fields. Since dt understood as the gradient of the

global bulk time coordinate is necessarily a closed 1-form, it is extremely suggestive to

consider it as a gauge field of a third abelian BF theory which we will denote by
∫

E dη . (3.20)

As the boundary condition at the physical boundary z = 0 we will fix the temporal com-

ponent of η

η = ηtdt+ ηzdz (3.21)

to a fixed value which we will identify shortly with the eibein e(t). More precisely we fix

the pullback of η to the boundary ∂M to be equal to e(t)dt. Thus in the case of (3.20)

(as well as for (3.14)) we do not need to add any boundary terms to the action as was the

case for the original
∫

B dA theory. We will also modify the boundary conditions (3.4) at

z = 0 to

At + ηtB = 0|z=0 . (3.22)

Accordingly we need to modify the additional boundary term

1

2

∫

{z=0}
B2dt −→ 1

2

∫

∂M

B2 η . (3.23)

The cancellation of the boundary terms in the variational principle goes through since due

to our boundary conditions δηt = 0|z=0. The resulting boundary action can be seen to be

1

2

∫

∂M

B2 η =
1

2

∫

1

ηt
A2

tdt =
1

2

∫

1

ηt
q̇2 (3.24)
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where we used (3.22). It is now clear that we have to identify the boundary value of ηt with

the einbein e(t) as announced earlier. From the considerations of section 2 we are led to

identify the E, η subsector as a part of the “gravitational” sector of the bulk theory. Note

that although this is a two dimensional BF theory it is distinct from Jackiw-Teitelboim 2D

gravity which is a nonabelian BF theory [29, 30].

Let us now put together all ingredients introduced so far. Our final bulk action takes

the form

SIII

bulk =

∫

M

B dA+ C dα+ E dη + α ∧A+Dα ∧ η +
1

2

∫

∂M

B2η (3.25)

with the boundary conditions at z = 0

At + ηtB = 0|z=0 αt = j(t)|z=0 ηt = e(t)|z=0 . (3.26)

Let us make some comments on the above expression. Increasing the number of degrees

of freedom will increase the number of components of all fields except η and E. Adding

interactions (on the quantum mechanical side) is rather nontrivial. One can either integrate

over the source or introduce separate sources for the monomials q(t)n. Doing that seems to

require a significant extension to the formalism. Ultimately we would also like to integrate

out A and possibly B. We leave these issues for future investigation.

4 Conclusions

The motivation for the construction presented in this note is the intuition arising from

tensor network interpretations of holography that a holographic description should exist

for almost any system. Hence it should be possible to find a holographic formulation of

the most extreme simple system that one could think of — a one dimensional quantum

mechanical free particle. As we would like to have an explicit dual theory described by some

concrete bulk action, we did not take the approach through tensor network constructions

but rather we worked directly in the continuum with two dimensional topological BF

theories having the Chern-Simons/WZW relation as a guiding principle. The expected

features of a holographic dual imposes, however, further requirements on the bulk theory

going beyond the equality of partition functions. In particular we should have additional

matter fields in the bulk theory which are associated to the operators of the boundary

theory and which reduce to the corresponding sources at the boundary. In this work we

carried out the construction for the source for the particle position q(t). We also identified

a subsector of the bulk theory which reduces to the einbein on the boundary and thus

behaves like a “gravitational” sector of the bulk theory.

A characteristic feature of the simple quantum mechanical model considered here is the

absence of a large N parameter. More precisely, one can consider this model to have N = 1,

with a straightforward generalization to N components. In the conventional examples of

the AdS/CFT correspondence, finite N corresponds to a quantum bulk model (in these

cases quantum gravity+other matter fields), which was also a motivation for the present

construction, where we treat the bulk theory on the quantum level as we use the full

– 7 –
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path integral formalism. Indeed the role of a large N limit in a generalized version of the

model (possibly with a singlet constraint) within a similar construction is a very interesting

problem which we plan to address in the future.

One qualitative feature of holography which is not explicitly captured by the present

construction is the interpretation of the holographic direction as an RG flow. In the

present paper, on the other hand, the starting point of the construction was a minimal

implementation of the bulk formula for the generating function of correlators (2.2), which

does not lead to a direct RG interpretation (which in any case is not evident as the quantum

mechanical system lives on a worldline and thus has no spatial dimension). We suspect that

to address this issue one would have to integrate out the A and B fields and analyze the

resulting theory of just the bulk fields associated with sources of q(t) and the einbein e(t).

Possibly for a local geometric interpretation one would have to combine this procedure

with the large N limit discussed above. This goes beyond the scope of the present paper

but is definitely another important problem for future research.

There are also many other possible directions for further investigation, foremost of

which is going to nontrivial quantum mechanical systems. It is not completely clear whether

to consider in addition sources for monomials of q(t) and to what extent the construction

of the source sector performed here is unique or optimal. On a more mundane level it

would be interesting to analyze the bulk theory in more detail and check to what extent

our experience with holography in higher number of dimensions carries through here. We

hope that the setup presented in this paper would be a good framework to address such

questions.
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