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1 Introduction

Recent attemps in understanding the full scope of the AdS/CFT correspondence have

put forward a relation between string theories and Vasiliev higher spin theories. The

holographic duality establishes a correspondence between the free (or almost free) point of

the conformal field theory and the high energy (tensionless) regime of string theory in AdS

space. This regime is only partially understood [1, 2], so further studies along these lines

are expected to provide insights into the structure of string theory itself, see [3–5].

In the high energy regime, the massive states of arbitrarily high spin which are present

in string theory become massless, and it is believed that this signals the emergence of

an unbroken phase of the theory, with enhanced symmetries generated by the massless

higher spin states. Interacting theories of massless fields of arbitrarily high spin in AdS

were constructed by Vasiliev, see e.g. [6, 7] and references therein, and it is therefore

believed that string theory in AdS can be consistently restricted to a higher spin subsector

described by the Vasiliev system of equations, in the tensionless regime. The precise way

in which such a description arises in the context of string theory has not been completely

elucidated yet. Nevertheless, holography gives important results, starting with a series of

higher spin/CFT dualities [8] relating Vasiliev higher spin theories on AdS4 to O(N) vector

models in three dimensions. Further work on such dualities include [9–13], generalised to

any number of dimensions in [14, 15], as well as the subsequent cases of [16, 17], the 3d/2d

cases of [18–24], and the interesting dS6/CFT5 case of [25].

Furthermore, an embedding of a higher spin theory into string theory was proposed

in [26], in which the N = 6 U(N)×U(M) ABJ theory is related to a higher spin theory with

U(M) Chan-Paton indices. Since the ABJ theory is believed to be dual to a string theory

in AdS4, this proposal establishes a triality between a higher spin theory, a string theory,

and the dual CFT. The higher spin/CFT dualities appear when M is finite and N is large,

at a point where the bulk coupling λbulk ∼ M/N is small, whereas the strings/CFT duality

arises in the regimeM ∼ N large. The intuitive picture elaborated in [26] is that strings cor-

respond to the flux tubes of the U(M) higher spin theory, which appear at strong coupling.

The 3d/2d case is considerably different and has been proposed in [27–30], building on

the 3d higher spin/CFT2 duality of [23]. In this case, the ’t Hooft limit of a 1-parameter

family of N = 4 coset models [31–34] is related to a 1-parameter family of higher spin

theories in AdS3 with 2 × 2 Chan-Paton factors, with parameter λ. At λ = 0, the coset

becomes a free-field vector model, which can be embedded in the symmetric product theory

(

T
4
)N+1

/SN+1 , (1.1)

believed to be dual to string theory on AdS3 × S3 × T
4 at the tensionless point [27, 35].

This embedding is a concrete manifestation of the idea that string theory in the tensionless

regime has a higher spin subsector. Indeed, the untwisted sector of the symmetric product

orbifold can be completely decomposed in terms of a single representation, and all its tensor

powers, of an emergent symmetry algebra, the so-called higher spin square [28], which is

generated by two independent higher spin symmetries.
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In addition to the N = 4 cosets studied in [23], there are other coset models with

the same supersymmetry rank, as listed in [36]. These could then be used to perform a

construction similar to the one of [27–30], and in this way find new relations between string

theory and higher spin theories. Only two of the cosets in [36] are promptly susceptible to

be dual to a standard Vasiliev higher spin theory: the SU-type coset of [23], and a Sp-type

coset, expressed below in equation (1.2). There are a few arguments sustaining this view.

First, as usual in holographic dualities, the CFT2 is expected to admit a large N expansion.

All N = 4 cosets which do not have such a parameter are therefore discarded in a first

analysis. We are left with the SU-type and Sp-type cosets mentioned above, as well as an

SO-type coset. Nevertheless, this SO-type coset has an unwanted property: due to an su(2)

factor in the denominator, its chiral algebra is not freely generated even in the ’t Hooft

limit. This makes this coset unsuited to a comparison with the classical standard Vasiliev

higher spin theories, which are described by a freely generated algebra. It is possible that

this SO-type coset is dual to a minimal Vasiliev theory with modified boundary conditions,

in the spirit of [37]. This issue will be studied elsewhere.

With these considerations, it is natural to study the N = 4 coset described by

sp(2N + 2)
(1)
k+N+2

sp(2N)
(1)
k+N+2

⊕ u(1)(1) . (1.2)

In this paper we establish and study the holographic duality between a minimal Vasiliev

higher spin theory in AdS3 with 2× 2 Chan-Paton factors and the coset model (1.2) in the

’t Hooft limit. The chiral algebra of the coset in the ’t Hooft limit, and correspondingly the

gauge sector of the dual higher spin theory, is spanned by one superprimary field per even

conformal weight, thus extending the previous bosonic even spin construction [19, 20, 38],

the N = 2 case [39], and a recent N = 1 proposal [21].

In the k → ∞ limit, the coset (1.2) is described by an Sp(2N) vector model. The

results of [27] can then be used to obtain the relation between the Sp(2N) vector model

and the symmetric product theory (1.1), thus providing another possible description of

the embedding of higher spins in string theory. In particular, the higher spin symmetry

we find in this case can be embedded into that of [27], and this allows us to construct

the stringy symmetry algebra using similar arguments. In this way, the untwisted sector

of the symmetric product orbifold can be decomposed further into representations of the

untwisted sector of the Sp(2N) vector model.

It is interesting to notice that, in contrast with previous even spin constructions [8,

19, 20, 38, 39], the N = 4 version is obtained using a Sp(2N) rather than a O(N) model.

In the 2d bosonic case [19, 20], the bosonic even spin W-algebra was related to different

orthogonal and symplectic models [38], which are described at finite coupling by various

cosets whose chiral algebra is freely generated. Even though an analoguous analysis of the

quantum N = 4 even spin W-algebra is beyond the scope of this paper, we will briefly

comment on this issue.

This paper is organised as follows. In section 2 we construct a family of two-dimensional

theories with N = 4 superconformal symmetry. We start with an Sp(2N) vector model

– 2 –
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and proceed to find its chiral algebra. Then we turn on a coupling λ which introduces

interactions between the fields. For general λ, the theory is described by the ’t Hooft limit

of the coset model (1.2). In section 3 we construct the gauge algebra of the higher spin

Vasiliev theory on AdS3, proposed as holographic dual to the coset CFT. This is achieved

via a truncation of an extended higher spin algebra, whose spectrum is found and seen to

match with the chiral spectrum of the CFT. The massive spectrum is also computed, and

used to match one-loop partition functions in appendix E. In section 4 we elaborate on the

relation between the Sp(2N) vector model and string theory, building on the results of [27]

on the symmetric product orbifold. Finally, various conventions and technical details are

collected in the appendices.

2 Even spin N = 4 W-algebra

In this section we present a two-dimensional CFT whose chiral algebra realises a W∞

algebra with generators of even conformal weight, and with the N = 4 superconformal

algebra as a subalgebra (cf. [23] for a revision of the N = 4 superconformal algebra). We

start with a simple setting consisting of a symplectic vector model of free bosons and free

fermions at large N , with so-called small N = 4 symmetry, and organise the spectrum of

generators according to representations of the superconformal algebra. At finite coupling,

the vector model is described by a coset CFT which has the so-called largeN = 4 symmetry,

and possesses the same set of chiral generators.

2.1 The Sp(2N) vector model

The Sp(2N) vector model with small N = 4 consists of 4N fermionic and bosonic fields

transforming as

bosons: 2N(1,2)

fermions: 2N(2,1) ,
(2.1)

where 2N denotes the vector representation of Sp(2N), and the subscripts label the quan-

tum numbers with respect to two global symmetry algebras (su(2)+, su(2)−). These global

algebras constitute the R-symmetry of large N = 4.1 We denote the NS fermions as ψi,α,

and the bosons as J i,β . Here i = ±1, . . . ,±N is a vector index (cf. appendix B for con-

ventions), α = ± labels the 2 of su(2)+, and β = ± the 2 of su(2)−. The conserved

currents of the vector model are given by the Sp(2N) invariant combinations of these fields

(see appendix A for a more detailed derivation of the spectrum). Using just the bosons,

conserved currents of conformal weight s are constructed as

Ωij ∂
rJ i,β1 ∂s−2−rJ j,β2 , (2.2)

where Ω is the 2N × 2N symplectic matrix, and r = 0, . . . , s−2. Due to the anti-symmetry

of Ω, for odd s ≥ 3 primary fields of this kind transform in the symmetric tensor product

1To make contact with the coset model, which has large N = 4, we will keep track of the quantum

numbers of both su(2)±. In reality, the R-symmetry of the small N = 4 superconformal algebra is given by

su(2)+ alone.
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of (1,2) with itself. The anti-symmetric part is a descendant, as can be seen for example

for s = 3, since

Ωij

[

J i,+ ∂J j,− − J i,− ∂J j,+
]

= Ωij

[

J i,+ ∂J j,− −
(

∂J j,−
)

J i,+ + ∂
(

J j,−J i,+
)]

(2.3)

= Ωij∂
(

J j,−J i,+
)

.

Therefore for each odd s ≥ 3 the primary fields transform as (1,3). On the other hand, for

even s ≥ 2 we pick the anti-symmetric self-product, which gives one primary field (1,1).

Using now the fermions consider, for r = 0, . . . , s− 1,

Ωij ∂
rψi,α1 ∂s−1−rψj,α2 . (2.4)

In the same way as before, the resulting primary currents transform as (3,1) for each odd

s ≥ 1, and as (1,1) for even s ≥ 2. Finally, the currents

Ωij ∂
rJ i,β ∂s−3/2−rψj,α , (2.5)

contribute with four primaries for each half-integer s ≥ 3/2, transforming as (2,2). In

total the chiral spectrum is then generated by

s = 1 : (3,1)

s odd : (3,1) ⊕ (1,3)

s even : (1,1) ⊕ (1,1)

s half-integer : (2,2) ,

(2.6)

which can be organised in N = 4 multiplets as

(N = 4)⊕
∞
⊕

n=1

R(2n) , (2.7)

where (N = 4) stands for the small N = 4 superconformal algebra, generated by three

s = 1 currents, four supercharges at s = 3/2, and the energy momentum tensor. The zero

modes of the s = 1 currents generate su(2)+. Also, R
(s) is the chiral N = 4 multiplet with

lowest spin s, and with R-symmetry quantum numbers

s : (1,1)

s+ 1/2 : (2,2)

R(s) : s+ 1 : (3,1) ⊕ (1,3) (2.8)

s+ 3/2 : (2,2)

s+ 2 : (1,1) .

This vector model then realises a W-algebra with small N = 4 symmetry and c = 6N ,

whose chiral spectrum contains only even spin superprimaries.

– 4 –
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In order to make contact with the large N = 4 coset model of the next section, and the

subsequent results, we add to this chiral algebra four free bosonic and four free fermionic

fields transforming as

bosons: 1(1,3) ⊕ 1(1,1)

fermions: 1(2,2) ,
(2.9)

under Sp(2N) and (su(2)+, su(2)−). Upon turning on a level, the global su(2)− is generated

by the zero modes of the bosonic currents. These additional fields correspond to the free

currents obtained when contracting the large N = 4 to the small N = 4 algebra, cf. [23].

We will call this algebra We, N=4
∞ [0]. It corresponds to an even-spin version of the

1-parameter family of large N = 4 W-algebras denoted WN=4
∞ [λ], constructed in [40], at

λ = 0. For generic λ the structure constants of this algebra were shown in [40] to be

completely fixed by two parameters k±, corresponding to the levels of the affine su(2)±
subalgebras of the large N = 4 superconformal algebra. These can be exchanged by the

central charge c and the parameter λ as

c =
6k+k−

k+ + k−
, λ =

k+

k+ + k−
. (2.10)

Note that k− → ∞ corresponds to λ = 0, and c = 6k+ = 6(N + 1), corresponding to

the vector model. In the same way, we expect We, N=4
∞ [0] to be the λ = 0 point of a

1-parameter family of algebras We, N=4
∞ [λ], which are also completely determined by two

levels k± for any value of λ. We do not construct this algebra explicitly here, but believe

that there are good indications that this expectation is coherent. The foremost indication

of this is the explicit coset realisation ofWe, N=4
∞ [λ] for positive integer values of k±, namely

k+ = N + 1, k− = k + 1, constructed in the next section.

2.2 Coset generalisation

The Sp(2N) vector model arises as the k → ∞ limit of the coset theory given by

sp(2N + 2)k
sp(2N)k+1

⊕ so(4N + 4)1 ⊕ u(1) , (2.11)

which was shown to have N = 4 superconformal symmetry in [36]. The so(4N + 4)1
factor encodes 4N + 4 fermions, which are free for any value of k. All the details of the

construction of this coset can be found in appendix B.

The representation theory of the coset is completely determined by the representation

theory of each of its Kač-Moody components. We will disregard the u(1) factor by putting

its momentum to zero. Furthermore, by construction, the NS free fermions are either in the

vector or in the vacuum representation of so(4N+4)1. Therefore, coset representations are

labelled by a pair of representations (Λ+; Λ−), where Λ+ is a representation of sp(2N+2)k,

and Λ− is a representation of sp(2N)k+1.

The central charge of the CFT defined by the coset is

c =
6k+k−

k+ + k−
, (2.12)

– 5 –
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where k+ = N + 1 and k− = k + 1. A precise correspondence between the k → ∞ limit

of the coset and the vector model is found in appendix C, which builds on similar results

in [23, 24, 39, 41]. In particular, the untwisted sector of the vector model is captured by

the k → ∞ limit of the (Λ+; Λ−) = (0; Λ) subsector of the coset representations, where

0 denotes the trivial representation, and Λ denotes a general representation of sp(2N).

Combining left- and right-movers, the Hilbert space of the untwisted sector is then

HU =
⊕

Λ

(0; Λ)⊗ (0; Λ∗) , (2.13)

where Λ∗ denotes the conjugate of Λ, and since representations of sp(2N) are self-conjugate

we have Λ∗ = Λ. The sum runs over all representations Λ which are obtained by taking

successive tensor products of the vector representation, thus covering all representations of

sp(2N), see [42]. Denoting the vector representation as v ≡ 2N, the minimal non-trivial

representation of the untwisted sector is (0; v), and its conformal dimension is

h(0; v) =
k + 3/2

2(k +N + 2)

k→∞
−−−→

1

2
. (2.14)

It therefore corresponds to the state

ψi,α
−1/2|0〉 , (2.15)

of the vector model. The bosons of the vector model correspond to the superconformal

descendants of (0; v), see section 3.3, and other similar cases in [23, 27].

The ’t Hooft limit of the coset theory is defined as N, k → ∞ with

λ =
k+

k+ + k−
=

N + 1

k +N + 2
≃

N

k +N
(2.16)

kept fixed. Note that the central charge can be expressed as

c = 6λk− , (2.17)

which diverges in this limit, unless λ = 0, in which case we recover the vector model with

c = 6(N + 1). In the ’t Hooft limit the chiral algebra of the coset CFT is freely generated,

see appendix E, and [37] for a similar discussion. The chiral fields of the coset theory are

given by the chiral fields of the Sp(2N) vector model corrected with terms proportional to

λ. These terms ensure that their OPE’s with the denominator currents are non-singular,

cf. [37] for a more detailed discussion about this point. These corrections do not change the

counting of the fields, and therefore the chiral spectrum of the coset in the ’t Hooft limit is

also given by (2.7), with (N = 4) now denoting the large N = 4 superconformal algebra.

3 Higher spin dual

The AdS3 gravitational theory dual to the coset model in the ’t Hooft limit, and in particu-

lar to the Sp(2N) vector model, is constructed from the extended supersymmetric Vasiliev

– 6 –
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higher spin theory based on the gauge algebra shs2[µ] by a consistent even-spin truncation.

This truncation is performed using an involutive graded automorphism of shs2[µ] (see [43]

for a revision of these concepts, and appendix D for a brief introduction to the necessary

machinery). The dual to the vector model is obtained at µ = 0. The construction of this

truncated higher spin theory and the necessary checks for its consistency as a dynamical

system were obtained in [7, 44, 45], where its gauge algebra is denoted husp(2, 2|4).

3.1 Truncation of shs2[µ]

We are interested in automorphisms of the super Lie algebra shs2 [µ] which can be obtained

by negating an anti-automorphism of the associative algebra sB2[µ] = sB[µ]⊗Mat(2,C),

see appendix D. An anti-automorphism of sB2[µ] is obtained by composing an anti-

automorphism of sB[µ], denoted η, with an anti-automorphism of Mat(2,C), denoted ρ.

The map ρ defined as

ρ(M) = Ω−1M tΩ , (3.1)

for M ∈ Mat(2,C), where Ω is the 2× 2 symplectic matrix obeying Ω−1 = Ωt = −Ω, is an

involutive anti-automorphism of Mat(2,C), since

ρ2(M) = M , ρ([M1,M2]) = − [ρ(M1), ρ(M2)] . (3.2)

On the other hand, the action of η on sB[µ] is defined via its action on the oscillators

which realise the algebra, see appendix D, which will be taken as

η(ŷα) = −ŷα, η(k) = k, η(1) = 1 , (3.3)

and which is involutive, and compatible with the defining relations (D.2). Combining η with

ρ produces an involutive anti-automorphism of sB2[µ], which preserves the Z2-grading, and

an automorphism of shs2[µ] can be constructed by negating it. We absorb the negation

into τ ≡ −η, so that the final automorphism τ2 of shs2[µ] is

τ2 (a⊗M) = τ(a)⊗ Ω−1M tΩ , (3.4)

for a ∈ shs[µ], M ∈ Mat(2,C), where τ is the negation of η,

τ(ŷα) = ŷα, τ(k) = −k, τ(1) = −1 . (3.5)

We can now construct the subalgebra shs
sp
2 [µ] ⊂ shs2[µ], defined as the truncation

which only keeps the elements A ∈ shs2[µ] such that

τ2(A) = A . (3.6)

This truncation preserves the D(2, 1;α) subalgebra of shs2[µ], given in (D.9), with

α=µ/(1−µ). To see this, notice that the action of τ on sB[µ] satisfies, for any a1, a2∈sB[µ],

τ(a1a2) = −η(a1a2) = −(−1)|a1||a2|η(a2)η(a1)

= −(−1)|a1||a2|τ(a2)τ(a1) ,
(3.7)

– 7 –
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where we used that η is an anti-automorphism of sB[µ]. From this we can deduce

τ(ŷαŷβ) = ŷαŷβ , so that the sl(2) generators L0, L±1 are automatically preserved by τ2.

Concerning A±,i
0 , we have

τ2(A
±,i
0 ) = −

1

2
(1± k)⊗ Ω−1(σi)tΩ , (3.8)

and since sp(2) preserves Ω, i.e. σiΩ+ Ω(σi)t = 0, we deduce

Ω−1(σi)tΩ = −σi , (3.9)

and finally τ2(A
±,i
0 ) = A±,i

0 . Lastly, concerning the fermionic generators of D(2, 1;α), we

first find

τ (ŷαk) = −τ(k)τ(ŷα) = kŷα

= −ŷαk ,
(3.10)

where we have used that ŷαk = −kŷα. Together with the fact that E12, E21, and (E11−E22)

preserve sp(2), this leads to τ2(G
ab
r ) = Gab

r . Therefore, D(2, 1;α) ⊂ shs
sp
2 [µ].

3.2 Massless spectrum

The gauge sector of shs2[µ] can be organised in representations of the subalgebra

D(2, 1;α) [23, 37, 46]. The states of highest spin in a D(2, 1;α) multiplet are propor-

tional to

ŷ2r+2
1 ⊗ 12 , (3.11)

for r ∈ N
0, with r = 0 giving L1 itself. Note that r is related to the sl(2) spin s as s = r+1,

since ŷ1 carries helicity 1/2. The highest weights surviving the truncation will be those for

which τ(ŷ2r+2
1 ) = ŷ2r+2

1 . For general r, using (3.7),

τ(ŷ2r+2
1 ) = τ(ŷ2r1 ŷ21)

= −τ(ŷ21)τ(ŷ
2r
1 ) (3.12)

= −ŷ21τ(ŷ
2r
1 ) .

We can now take one more step to find τ(ŷ2r1 ) in the same way:

τ(ŷ2r1 ) = τ(ŷ2r−2
1 ŷ21) = −ŷ21τ(ŷ

2r−2
1 ) , (3.13)

so that

τ(ŷ2r+2
1 ) = ŷ41τ(ŷ

2r−2
1 ) , (3.14)

and so on until we reach τ(1), and recall that τ(1) = −1. From this we deduce

τ(ŷ2r+2
1 ) = (−1)rŷ2r+2

1 . (3.15)

Therefore the only highest weight states of D(2, 1;α) that generate shs2[µ] and survive

the truncation by τ2 are

ŷ2r+2
1 ⊗ 12 , r ∈ 2N0 . (3.16)

– 8 –
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This corresponds to odd sl(2) spin s.2 Since we have explicitly shown that D(2, 1;α)

survives the truncation, then the whole multiplet generated from one surviving highest

weight state also survives the truncation. In the same way, the whole multiplet generated

by a highest weight of D(2, 1;α) which does not survive the truncation has the same fate.

This conclusion can be explicitly confirmed by a direct computation of the action of τ2 on

the higher spin fields.

Recalling that R(n) denotes the D(2, 1;α) multiplet with lowest helicity n = s − 1

(from a CFT2 perspective), then

shs
sp
2 [µ] = D(2, 1;α)⊕

∞
⊕

n=1

R(2n) . (3.17)

This precisely matches the spectrum of superprimaries (2.7) we found in the chiral algebra

of the Sp(2N) vector model at large N , and more generally in the chiral algebra of the

’t Hooft limit of the coset model. Note that, up to a central element, D(2, 1;α) is isomorphic

to the wedge algebra of the large N = 4 superconformal algebra, cf. [23]. By matching the

spectrum of massless gauge fields in the bulk AdS3 theory with the chiral spectrum of a

CFT2, we have in this way performed the first check that the Vasiliev higher spin theory

with gauge algebra shs
sp
2 [µ] is dual to the Sp(2N) coset model in the ’t Hooft limit, whose

chiral algebra realises We, N=4
∞ [λ]. As in previous similar results, in the next section we will

see that the different parameters are related as λ = µ. For µ = 0 this relates the Vasiliev

theory with the Sp(2N) vector model.

3.3 Massive spectrum

Having matched the CFT chiral spectum with the spectrum of massless fields in AdS, to

achieve full correspondence we also have to match representations of the CFT with (gener-

ically massive) matter degrees of freedom in the bulk. The fundamental representations of

the shs
sp
2 [µ] algebra are the same as those of shs2[µ], up to a reality condition. These can

be obtained from the two fundamental representations of shs[µ], as seen in [23], which are

constructed from two short representations of D(2, 1;α), denoted φ±, with L0-eigenvalues

h+ =
µ

2
, h− =

1

2
(1− µ) . (3.18)

The fundamental representations of shssp2 [µ] can be constructed from these by taking the

tensor product

φ± ⊗ 2 , (3.19)

where 2 is the fundamental representation of the matrix algebra. In this way, there is a

doublet of states with L0 eigenvalues h±, forming short supermultiplets. Their quantum

numbers with respect to su(2)± are

φ+ : (2,1)⊕ (1,2) φ− : (1,2)⊕ (2,1) , (3.20)

2By the usual AdS3/CFT2 relations, in the dual CFT this corresponds to even conformal weight.
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where we have used that the supercharges transform as (2,2), and picked the anti-

symmetric part of the tensor product.

As argued in [23], these correspond to two massive scalars and two Dirac fermions

propagating in AdS. Given these properties, we can identify the corresponding degrees of

freedom in the coset CFT side as

φ+ ↔ (v; 0) , φ− ↔ (0; v) . (3.21)

Indeed, these are BPS states whose conformal dimensions are precisely h±, if we take the

’t Hooft limit and identify µ with the ’t Hooft parameter λ, see B.4. Furthermore, φ± must

be real scalars, since the fundamental representation v on the coset side is self-conjugate.

With all this in mind, the one-loop partition function of the bulk theory, consisting

of shssp2 [µ] and the real scalars above, can be matched with the ’t Hooft limit partition

function of the coset, with the identification λ = µ, see appendix E.

3.4 Comments on finite N effects

It is not clear whereas We,N=4
∞ [λ] is a subalgebra of WN=4

∞ [λ]. This is the case if the

quantum DS reduction of the higher spin algebra is shown to commute with the truncation

automorphism. This issue will not be analysed here. In the quantum case, i.e. for finite

N and k (and therefore finite central charge c), the model is not expected to be a mere

truncation of the original WN=4
N,k [λ] construction [40].

In [38] it was found that there are two natural ways in which the free parameter γ of

the quantum bosonic even spin W∞-algebra can be identified with λ at finite c. These two

ways agree in the classical limit c → ∞, and they correspond to two different quantisations

of the classical DS reduction of the even spin bosonic algebra hse[λ]. This was seen as a

reflection of the fact that hse[µ] truncates for µ = N to either sp(N) if N is even, or so(N)

if N is odd. Note that these algebras are Langlands dual. Just as in [47], we expect that

such ambiguities are also present for We,N=4
∞ [λ].

It is known that shs[µ = N ] has an ideal χN , such that shs[µ = N ]/χN = sl(N |N −1),

see e.g. [47] and references therein. For the extended higher spin algebras shs2[µ], this ideal

has an extended version. Since sl(2) is simple, its ideals are the null element 02, and sl(2)

itself. Therefore χN ⊗ 02 is a non-trivial ideal of shs2[N ], and its truncation under this

ideal is

shs2 [µ = N ] /χN ⊗ 02 = 1⊗ psl(2)⊕ sl(N |N − 1)⊗ 12 ⊕ sl(N |N − 1)⊗ psl(2) , (3.22)

where psl(2) = sl(2)/02. We would like to know what is the effect of truncations by

automorphisms on these algebras. In [47] it was found that for odd N the algebra truncates

to osp(N |N − 1), whereas for even N it reduces to osp(N − 1|N). Writting N = 2n+ 1 or

N = 2n+ 2 for the two distinct cases, we get B(n, n) and B(n, n+ 1), respectively. Note

that B(n, n) is Langlands self-dual, whereas B(n, n + 1) gets mapped to B(n + 1, n). It

seems therefore natural to conjecture that the chiral algebra of the coset (2.11) at finite N ,

k, is the DS reduction of B(n, n)⊗ psl(2) or B(n+ 1, n)⊗ psl(2) (plus the terms with the

identity elements), depending on the parity of N , as in [47]. It is an open question whereas
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it is possible to find cosets whose chiral algebra at finite N match the DS reduction of

several other extended Lie superalgebras. These DS reductions cannot have N = 4 rank,

since the cosets with this amount of supersymmetry were listed in [36]. Such analysis is

beyond the scope of this paper, and will be studied elsewhere.

4 Relation with the symmetric product

The proposed CFT2 dual to string theory in AdS3 × S3 × T
4 at the tensionless point

(see [27, 35] and references therein) is given by the symmetric product of 4(N + 1) free

bosons and fermions
(

T
4
)N+1

/SN+1 , (4.1)

composed of N+1 copies of four free bosons and fermions, with the symmetric group acting

on the copies. In the same way as in [27, 28] for the U(N) vector model, the untwisted

sector of the Sp(2N) vector model can be identified with a subsector of the untwisted

sector of the symmetric product, since SN+1 ⊂ Sp(2N). This task is greatly simplified by

the observation that the symmetric group SN+1 is a subgroup of Sp(2N) via the group

embeddings

SN+1 ⊂ U(N) ⊂ Sp(2N) , (4.2)

where SN+1 ⊂ U(N) was constructed in [27], and U(N) ⊂ Sp(2N) can be found in ap-

pendix B. By decomposing the untwisted sector of the U(N) vector model into represen-

tations of the untwisted sector of the Sp(2N) vector model, we can then use the results

of [27] to decompose the untwisted sector of the symmetric product into representations of

the untwisted sector of the Sp(2N) vector model.

As a first check, note that the vector model contains 4(N + 1) bosons and fermions

transforming as

2× (2N)⊕ 4× (1) , (4.3)

and under the embedding above the vector representation of Sp(2N) splits as

(2N) → N⊕ N̄ → 2× (N) , (4.4)

whereN, N̄ denote the fundamental and anti-fundamental representations of U(N), respec-

tively, and (N) is the irreducible standard representation of SN+1,. Under SN+1 ⊂ Sp(2N),

the transformation rules of the free bosons and fermions under SN+1 are then

4× (N)⊕ 4× (1) = 4× (N + 1) , (4.5)

where (N+1) is the reducible representation of SN+1 given by permutation matrices. This

matches the transformation rules of the basic fermionic and bosonic constituents of the

symmetric orbifold theory (4.1).

Note that since we will sit at µ = 0 throughout this section, we will only keep track of

the quantum numbers with respect to su(2)+.
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4.1 Decomposing the U(N) untwisted sector

Throughout the following sections we will extensively use the coset notation for the vector

models. To settle notation, recall that the representations in the untwisted sector of the

vector model are described by the k → ∞ limit of the coset representation (0; Ξ), where

Ξ is a representation of Sp(2N), obtained from the vector representation 2N ≡ v by

taking successive tensor products. The same holds for the U(N) orbifold of [27, 28], whose

representations in the untwisted sector were given by the k → ∞ limit of U(N)-coset

representations (0; Λ), where Λ is a representation of U(N), obtained from the fundamental

f ≡ N and anti-fundamental f̄ ≡ N̄ representations by taking successive tensor products.

The characters of the coset representations (0; Ξ) are denoted as χsp
(0;Ξ)(q, y), where

Ξ is a representation of Sp(2N), whereas q and y keep track of the conformal dimension

and su(2)+ chemical potential, respectively. The representation Ξ is labelled by N Dynkin

labels Ξi, and we will use the notation

Ξ ≡ 〈Ξ1,Ξ2, . . . ,ΞN 〉 , (4.6)

for Sp(2N) representations. The characters of the (0; Λ) representations of the U(N)-coset

are denoted χ(0;Λ)(q, y), where Λ is a U(N) representation. Under U(N) ⊂ Sp(2N) they

decompose as

χ(0;Λ)(q; y) =
∑

Ξ

n(Λ; Ξ)χsp
(0;Ξ)(q; y) , (4.7)

where n(Λ; Ξ) is the multiplicity of Λ in Ξ. For Λ = 0 the decomposition can be found to be

χ(0;0)(q, y) =
∑

r,s

χsp
(0;Ξr,s)

, (4.8)

where Ξr,s are the Sp(2N) representations

Ξr,s ≡ 〈0, . . . 0, r, 0, . . . , 0, s, 0, . . . , 0〉 , r, s ∈ 2N0 , (4.9)

with r, s sitting at any two positions.

We would like to check (4.8) by explicitly constructing the corresponding states in the

vector models. For k → ∞ and sufficiently large N [27], the characters can be written as

χ(0;Λ)(q, y) = χ
(wedge)
(0;Λ) (q, y) · χ0(q, y)

χsp
(0;Ξ)(q, y) = χ

(wedge)
(0;Ξ) (q, y) · χsp

0 (q, y) ,
(4.10)

where χ
(wedge)
(0;Λ) is the character with respect to the corresponding wedge algebra, and

χ0(q, y), χsp
0 (q, y) are the characters of the chiral algebra of the U(N) (given in [23]),

and Sp(2N) (given in (A.11)) vector models, respectively. Equations (4.10) enable us to

rewrite (4.8) as
χ0(q; y)

χsp
0 (q; y)

=
∑

r,s

χ
(wedge)
(0;Ξr,s)

, (4.11)

where we used χ
(wedge)
(0;0) (q, y) = 1.
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In order to check (4.11), we need the wedge characters. As suggested by the notation,

we claim that the wedge characters of the Sp(2N) vector model are the same as those for

the U(N) vector model, with the Ξi interpreted as U(N) Dynkin labels. We give a brief

argument in favour of this claim in appendix B.5.

Substituting for the expressions of the vacuum characters, equation (4.11) becomes

∑

r,s

χ
sp,(wedge)
(0;Ξr,s)

=
∞
∏

s=1

∞
∏

n=s

(1 + y1/2qn+1/2)2(1 + y−1/2qn+1/2)2

×
∏

s even

∞
∏

n=s

1

(1− qn)4(1− yqn)(1− y−1qn)

×
∏

s≥3
s odd

∞
∏

n=s

1

(1− qn)2

×
∞
∏

n=1

1

1− qn
.

(4.12)

Expanding the right-hand side to O(q3),

1 + q + 2q3/2(y1/2 + y−1/2)

+ q2(y−1 + y + 6) + 6q5/2(y1/2 + y−1/2) +O(q3) ,
(4.13)

we can check explicitly that it equals

1 + χ
(wedge)
(0;〈2,0,...,0〉) + χ

(wedge)
(0;〈0,2,0,...,0〉) + χ

(wedge)
(0;〈0,0,2,0...,0〉) + χ

(wedge)
(0;〈4,0,...,0〉) , (4.14)

up to order q5/2, using the ancillary file of [27] for the explicit form of the wedge characters.

Microscopically, the expression (4.13) counts the bilinears which are U(N) singlets but

not Sp(2N) singlets. At h = 1 this is given by (see appendix B for the conventions and

notations)
N
∑

i=1

(

ψi,α
−1/2ψ

−i,β
−1/2 + ψ−i,α

−1/2ψ
i,β
−1/2

)

|0〉 , (4.15)

which is a singlet under the R-symmetry since we pick the antisymmetric product of 2⊗2.

Note that the relative sign between the two terms in (4.15) ensures that this is not an

Sp(2N) singlet, whereas taking different signs for the Sp(2N) labels makes each term a

U(N) singlet. At h = 3/2 we have

N
∑

i=1

(

ψi,α
−1/2J

−i,β
−1 + ψ−i,α

−1/2J
i,β
−1

)

|0〉 , (4.16)

for β = ±, which transforms in the 2 of su(2)+. At h = 2 there are four singlets coming from

N
∑

i=1

(

J i,α
−1 J

−i,β
−1 + J −i,α

−1 J i,β
−1

)

|0〉 , (4.17)
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together with a triplet and a singlet from

N
∑

i=1

(

ψi,α
−3/2ψ

−i,β
−1/2 + ψ−i,α

−3/2ψ
i,β
−1/2

)

|0〉 . (4.18)

These are easily seen to agree with the first few terms of (4.13).

4.2 Decomposing the SN+1 untwisted sector

The decomposition of the single particle symmetry generators of the untwisted sector of the

symmetric orbifold into representations of the untwisted sector of the U(N) vector model

was given in [28] as

∑

r,l

N(r, l)qryl =
(

y1/2 + y−1/2
)

[

2q1/2 +
4q3/2

1− q

]

+
∞
∑

n=1

(

y + 6 + y−1
)

qn

+ (1− q)
∑

m,n≥0

′

χ
(wedge)N=4[0]
(0;[m,0,...,0,n]) (q, y) ,

(4.19)

where
∑′

denotes the fact that the terms (m,n) = (1, 0), (0, 1), (1, 1) are excluded from the

sum. These terms appear isolated in the first line of (4.19), and they correspond to the gen-

erators of WN=4
∞ [0]. The single particle generators correspond then to the representations

of the U(N) vector model given by

(0; [m, 0, . . . , 0, n]) , (4.20)

that is, the m-th tensor power of the N bosons and N fermions, and the n-th tensor power

of the N̄ bosons and N̄ fermions. In order to obtain a similar decomposition in terms of

Sp(2N) representations, we note that

χ
(wedge)
(0;[m,0,...,0,n]) = χ

(wedge)
(0;[m,0,...,0,0]) · χ

(wedge)
(0;[0,0,...,0,n])

= χ
(wedge)
(0;[m,0,...,0,0]) · χ

(wedge)
(0;[n,0,...,0,0]) (4.21)

=
∑

r,s
r+2s=m+n

χ
(wedge)
(0;[r,s,0,...,0]) ,

where we have used the decomposition

[m, 0, . . . , 0]⊗ [n, 0, . . . , 0] =
∑

r,s
r+2s=m+n

[r, s, 0, . . . , 0] , (4.22)

also valid as a fusion rule for wedge representations of the U(N) vector model.

The case (m,n) = (1, 1) is of particular importance since it corresponds to some of the

generators of WN=4
∞ [0]:

χ
(wedge)
(0;[1,0,...,0,1]) = χ

(wedge)
(0;[2,0,...,0,0]) + χ

(wedge)
(0;[0,1,0,...,0,0]) . (4.23)
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Observe now that

(1− q)
[

2χ
(wedge)
(0;[1,0,...,0]) + χ

(wedge)
(0;[0,1,0,...,0])

]

=
(

y1/2 + y−1/2
) 2q1/2

1− q
+
(

y + y−1 + 5
)

q1

+
∑

n odd

(

y + y−1 + 4
)

qn + 2
∑

n even

qn ,
(4.24)

accounts precisely for the generators ofWe, N=4
∞ [0], which is the chiral algebra of the Sp(2N)

vector model. The fact that the representation (0; [2, 0, . . . , 0]) corresponds to generators

of WN=4
∞ [0] but not of We, N=4

∞ [0] is simply a consequence of (4.11) and (4.9).

We are now able to decompose the character of the untwisted sector of the symmetric

orbifold in terms of Sp(2N) characters:

∑

r,l

N(r, l)qryl = 2
(

y1/2 + y−1/2
) q1/2

1− q
+

∞
∑

n odd

(

y + 4 + y−1
)

qn + 2
∑

n even

qn

+
(

y + y−1 + 5
)

q + (1− q)
∑

n,m≥0

′

(n+ 1) · χ
(wedge)
(0;〈n,m,0,...,0〉)(q, y) ,

(4.25)

where the prime in the sum indicates that the cases (n,m) = (1, 0), (0, 1) are excluded

(these are precisely the terms written explicitly). The single particle generators of the

untwisted sector of the symmetric orbifold correspond then to the representations of the

Sp(2N) vector model given by

(n+ 1) · (0; 〈n,m, 0, . . . , 0〉) , (4.26)

with the cases (n,m) = (1, 0), (n,m) = (0, 1) corresponding to the generators of

We, N=4
∞ [0] itself.

The higher spin square is now constructed from 4N real free fermions and bosons,

instead of 2N complex fields, as in the original formulation [27–30]. The degeneracies

in (4.26) account for the multiplicity of the corresponding U(N) representation in a Sp(2N)

representation — this was denoted n(Λ; Ξ) in (4.6). Then, contrary to the original higher

spin square construction, we will have more than one field per site in the square: columns

are labelled by the number of boxes of the corresponding diagram n+2m, and each column

comes with the multiplicity n+ 1.

For simplicity we restrict our attention to 2N free fields φαi, where α = ± is an

(auxiliary) SU(2) fundamental label, and i = 1, . . . , N is a label of the irreducible standard

representation of SN+1. The single particle generators (4.26) can then be constructed from

these fundamental free fields by using the following rule: the only allowed fields are the

ones which are totally symmetric under SN+1⊗ SU(2). Explicitly, we find the correct

multiplicities by starting with a fundamental field 2 and symmetrising its self-products

on both labels. We denote this fusion rule by the symbol ⊗s.

It is instructive to check this for the first few Young diagrams, labelled by the number

of boxes n + 2m. For n + 2m = 1 we have (n,m) = (1, 0), which corresponds to the sum

over the SN+1 label of the fundamental fields

n+ 2m = 1 : 2 . (4.27)
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For two boxes n+ 2m = 2, we have (n,m) = (2, 0) or (n,m) = (0, 1), which arise with the

multiplicities:

n+ 2m = 2 : 2⊗s 2 = 3 ⊕ 1 . (4.28)

Here we have either anti-symmetrised or symmetrised on both indices simultaneously, in

order to keep the total product symmetric. For three boxes, we get

n+ 2m = 3 : 3⊗s 2 = 4 ⊕ 2

1⊗s 2 = 2 .

(4.29)

Note that the last diagram of the first line is the same as the diagram in the second line.

For four boxes, we get

n+ 2m = 4 : 4⊗s 2 = 5 ⊕ 3

2⊗s 2 = 3 ⊕ 1 .

(4.30)

Again, note that the last diagram of the first line and the first diagram of the second line

denote the same physical field. These multiplicities match those of (4.26) up to this order.

4.3 The symmetric product of K3

Note that the results of [48], regarding the symmetric product of K3 at the point K3 ∼=

T
4/Z2, can also be expressed in terms of the representations of the untwisted sector of

the Sp(2N) vector model. It is argued in [48] that instead of WN=4
∞ [0] one must consider

the subalgebra obtained by removing the four singlet bosons and fermions. This is due to

the fact that Z2 acts by exchanging the sign of the fundamental fields, so that all states

of the vector model built using an odd number of fields are projected out. The bilinear

basic invariants remain, but the singlet fields are left out. Using the notation of [48], the

decomposition of the single particle generators of the untwisted sector of the symmetric

product of K3 in terms of Sp(2N) representations can be found to be

JK3(q, y) =
2q3/2

1− q

(

y1/2 + y−1/2
)

+
(

y + y−1 + 1
)

q +
∞
∑

n odd

(

y + 4 + y−1
)

qn + 2
∑

n even

qn

+ (1− q)
∑

n,m≥0
n even

′

(n+ 1) · χ
(wedge)
(0;〈n,m,0,...,0〉)(q, y) , (4.31)

where again the prime in the sum indicates that the cases (n,m) = (1, 0), (0, 1) are excluded.
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5 Conclusion

In this paper we proposed a new higher spin/CFT duality, between N = 4 theories with

a spectrum of superprimary fields with even spin. The full correspondence was obtained

by adding to the bulk theory generally massive real scalar fields and their fermionic super-

partners, corresponding to representations of the chiral algebra of the dual CFT. Several

checks of this duality were performed, including the matching of the symmetry generating

spectrum, and the one-loop partition functions. Both sides of the duality are deformable,

while preserving their symmetries, and give rise to a 1-parameter family of theories which

are dual to each other.

When this parameter is tuned to vanish, the dual CFT becomes a symplectic vector

model of free bosons and fermions, which can be studied in great detail. Furthermore, at

this point it is possible to embed the untwisted sector of the vector model in the untwisted

sector of the symmetric product theory, believed to be dual to string theory in AdS3×S3×T
4

at the tensionless point. The details of this embedding for the symplectic model were

worked out in detail, and give rise to an alternative description of the stringy symmetries.

Further work is required in order to establish the existence and uniqueness of the even

spin N = 4 W∞-algebra realised by the coset. As in [49], the study of the asymptotic

symmetry algebra of shssp2 [µ] and its matching with the ’t Hooft limit of the coset algebra

would constitute a strong check of the proposed holographic duality. In the same way,

the study of the different algebras and their matching at finite N , k would constitute a

strong argument in favour of the proposed duality. It would also be interesting to study

other extended truncated Vasiliev theories withN = 4. In particular, the shs4[µ] theory has

N = 6 rank, which consistently reduces toN = 4 after an SO-like truncation. Nevertheless,

this theory is not dual to the SO-type coset of [36]: due to the problematic issues of this

coset presented in the introduction, their spectrum does not agree. In other words, using

the standard boundary conditions, the asymptotic symmetry algebra does not preserve the

N = 4 symmetry of the bulk theory. The precise mechanism responsible for this, as well

as its relation to string theory, is going to be analysed elsewhere.
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A Chiral algebra of the vector model

In this section we present a detailed derivation of the vacuum character of the N = 4

Sp(2N) vector model. We mainly follow the methods of [46, 50].
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The chiral algebra of the vector model at large N is given by all the Sp(2N)-invariant

combinations of the bosonic and fermionic fields in (2.1) and (2.9). In order to find its

character, we denote the two copies of the free vector bosonic currents transforming in

the 2N of Sp(2N) as J i,α, with i = ±1, . . . ,±N (see appendix B for conventions), and

α = ± labels the states in a doublet of su(2)−. The four bosonic currents in the singlet

of Sp(2N) are denoted as X l, l = 1, 2, 3 an adjoint label of su(2)−, together with X4,

which in uncharged under the R-symmetry. With the same conventions for the indices, the

free fermionic vector NS currents are denoted as ψi,α, together with λαβ , with α, β = ±,

labelling doublets of su(2)+ and su(2)−, respectively.

A straightforward set of Sp(2N)-invariant states is given by all the combinations of

the four singlet bosons and fermions:

(

Xp
−n−1

)A
(

λαβ
−r−1/2

)B
, (A.1)

with n, r ∈ N
0, for p = 1, 2, 3, 4, A ∈ N

0, B = 0, 1, and α, β = ±. The counting of all such

states goes as usual for free fields. Defining the chemical potentials y± = e2πiJ
3,±
0 , where

J3,±
0 are the Cartan generators of su(2)±, their contribution to the character is

∞
∏

n=1

(1 + y
1/2
+ qn−1/2)(1 + y

−1/2
+ qn−1/2)(1 + y

1/2
− qn−1/2)(1 + y

−1/2
− qn−1/2)

(1− y−qn)(1− y−1
− qn)(1− qn)2

. (A.2)

A more interesting contribution is obtained from the 2×(2N) free bosons and fermions.

It is given by linear combinations of the basic invariants

(

Ωijψ
i,α1

−r1−
1
2

ψj,β2

−s1−
1
2

)K(r1,s1)(

Ωijψ
i,α2

−r2−
1
2

J j,β2
−n2−1

)L(r2,n2) (

ΩijJ
i,α3
−n3−1J

j,β3
−m3−1

)M(n3,m3)
,

(A.3)

where Ω is the symplectic matrix in 2N dimensions

Ω =

(

0N 1N

−1N 0N

)

, (A.4)

with 0N , 1N denoting the zero and identity matrices in N dimensions, respec-

tively. Note also that K(r1, s1),M(n3,m3) ∈ N
0, whereas L(r2, n2) = 0, 1, for fixed

r1, r2, s1, n2, n3,m3 ∈ N
0. Due to the symplectic nature of Ω, some care is needed when

counting the number of independent primaries. We start with the case αi 6= βi, which

amounts to two possibilities for the middle term in (A.3), since we are contracting two

different fields, and a single possibility for each of the other two, since for those we con-

tract fields which transform in the same representation.3 For fixed r1, r2, s1, n2, n3,m3 the

contribution of (A.3) is

(

qr1+s1+1
)K(r1,s1)

(

qr2+n2+3/2
)L(r2,n2) (

qn3+m3+2
)K(n3,m3) , (A.5)

3Note that this way of proceeding splits the fields artificially from the point of view of the representations

of su(2)±, but we can easily recover them when combining the different contributions.
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which summing over all possible K(r1, s1), L(r2, n2),M(n3,m3) in this case leads to

∞
∏

r1,s1=0

1

1− qr1+s1+1

∞
∏

r2,n2=0

(

1 + qr2+n2+3/2
)2

∞
∏

n3,m3=0

1

1− qn3+m3+2
, (A.6)

where the exponent in the middle term corresponds to the two different possibilities of

taking α2, β2. Defining different indices n and s for each one of the terms as r1+s1+1 = n,

s = s1 + 1 for the first, r2 + n2 + 2 = n, s = n2 + 2 for the second, and n3 +m3 + 2 = n,

s = m3+2 for the third, the conditions r1, r2, n3 ≥ 0 become n ≥ s, whereas s1, n2,m3 ≥ 0

correspond to s ≥ 1 in the first term, and s ≥ 2 in the last two. Then (A.6) becomes

∞
∏

n=1

1

1− qn

∞
∏

s=2

∞
∏

n=s

(1 + qn−1/2)2

(1− qn)2
. (A.7)

For the case αi = βi = ±, the basic invariant is still given by (A.3), but after summing

over K,L,M we now get

∞
∏

r1,s1=0
r1≤s1

1

1− qr1+s1+1

∞
∏

r2,n2=0

(

1 + qr2+n2+3/2
)2

∞
∏

n3,m3=0
n3<m3

1

1− qn3+m3+2
, (A.8)

where the conditions on r1, s1, and n3,m3 were introduced to avoid double counting, as

well as counting of the combinations which are identically null, e.g. Ωijj
i
−n−1j

j
−n−1 ≡ 0 due

to the antisymmetry of Ωij . Proceeding as before, but with the different bounds for the

indices, we obtain

∞
∏

n=1

1

(1− qn)2

∏

s≥3
s odd

∞
∏

n=s

1

(1− qn)4

∞
∏

s=2

∞
∏

n=s

(1 + qn−1/2)2 , (A.9)

where the squares come from the liberty of taking αi = βi = ±. Altogether, including also

the states constructed from the X l and λαβ , the total number of states of the untwisted

chiral sector of the vector model is

∞
∏

n=1

(1 + qn−1/2)4

(1− qn)7

∏

s≥2
s even

∞
∏

n=s

1

(1− qn)2

∏

s≥3
s odd

∞
∏

n=s

1

(1− qn)6

∞
∏

s=2

∞
∏

n=s

(1 + qn−1/2)4. (A.10)

Tracing back the R-symmetry quantum numbers of (2.1), (2.9) in (A.3), we

rewrite (A.10) as

∞
∏

n=1

(1 + y
1/2
+ qn−1/2)(1 + y

−1/2
+ qn−1/2)(1 + y

1/2
− qn−1/2)(1 + y

−1/2
− qn−1/2)

(1− qn)3(1− y−qn)(1− y−1
− qn)(1− y+qn)(1− y−1

+ qn)

×
∏

s≥2
s even

∞
∏

n=s

1

(1− qn)2

∏

s≥3
s odd

∞
∏

n=s

1

(1− y+qn)(1− y−1
+ qn)(1− y−qn)(1− y−1

− qn)(1− qn)2

×
∞
∏

s=2

∞
∏

n=s

(1 + y
1/2
+ qn−1/2)(1 + y

−1/2
+ qn−1/2)(1 + y

1/2
− qn−1/2)(1 + y

−1/2
− qn−1/2) . (A.11)
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The first line accounts for the su(2)± adjoint R-currents and u(1) current of N = 4

at spin 1, and the (2,2) spin-1/2 fermions λαβ , which are primaries, as well as their

descendants. The subsequent lines correspond to four (2,2) fields of half-integer spin for

s ≥ 3/2, six fields (3,1)⊕(1,3) of odd spin for s > 1, and two (1,1) fields of every even spin.

B Coset model

In this section we gather various useful conventions and technicalities concerning the rele-

vant coset theory.

The coset theory

sp(2N + 2)
(1)
k+N+2

sp(2N)
(1)
k+N+2

⊕ u(1)(1) , (B.1)

was shown to have N = 4 in [36]. Here, g
(1)
k denotes the supersymmetric Kač-Moody

algebra at level k, generated by the adjoint currents Ja, and their conformal weight 1/2

superpartners ψa, with a = 1, . . . , dim g, whose modes satisfy
[

Ja
m, Jb

n

]

= ifab
cJ

c
m+n + kmδm,−nη

ab (B.2)
[

Ja
m, ψb

r

]

= ifab
cψ

c
m+r (B.3)

{

ψa
r , ψ

b
s

}

= kηabδr,−s , (B.4)

where fab
c are the structure constants of g, and ηab its Killing metric. The bosonic and

fermionic currents can be decoupled by defining the currents

J a = Ja +
i

2k
fa

bc(ψ
bψc) , (B.5)

which satisfy a Kač-Moody algebra at level k − ȟ, where ȟ is the dual Coxeter number of

g, as well as
[

J a
m, ψb

r

]

= 0 , (B.6)

and the fermions become manifestly free. In this way, the coset theory (1.2) is equivalent to

sp(2N + 2)k ⊕ so(4N + 4)1
sp(2N)k+1

⊕ u(1) , (B.7)

where so(4N + 4)1 encodes the 4N + 4 free fermions.

The generators of the sp(2N) algebra are described using a double negative index

notation, see [51], J (a,b) for a, b = ±1, . . . ,±N , and such that

J (a,b) = −sgn(ab)J (−b,−a) . (B.8)

Indeed, a general sp(2N) matrix A is of the form

A =

(

B C

D −Bt

)

, (B.9)
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where B, C, D are N × N matrices such that Ct = C and Dt = D. This matches the

notation above if we identify J (a,b) for a, b > 0 as the generators of B, J (a,b) for a > 0,

b < 0 as the generators of C, and J (a,b) for a < 0, b > 0 as the generators of D.

Note that M ∈ gl(N) can be embedded into sp(2N) by M ⊕ (−M t). In particular

u(N) ⊂ sp(2N) by U ⊕ U∗ for U ∈ u(n). The N2 generators of u(N) correspond then to

J (a,b) for a, b > 0, and the vector representation 2N of sp(2N) splits into N ⊕ N̄, where

N, N̄ are the fundamental and anti-fundamental representations of u(N), respectively. In

terms of the adjoint generators, they correspond to J (a,b) for a, b > 0 and a, b < 0. Since

this embedding is diagonal, it can be trivially extended to the group level.

The structure constants are given in [51] as

f (ab)(cd)(ef) = sgn(bc)
(

δbcδ
e
aδ

f
d + δdaδ

e
−bδ

f
−c + δd−bδ

e
aδ

f
−c + δc−aδ

e
−bδ

f
d

)

, (B.10)

and the Cartan generators are Ha = J (a,a) for a > 0. The adjoint representation of

sp(2N + 2) branches as

sp(2N + 2) = sp(2N)⊕ sp(2)⊕ (2N,2) , (B.11)

with sp(2) ∼= sl(2). The regular embedding sp(2N) −֒→ sp(2N + 2) is defined such that

the generators J (a,b) split as

sp(2N) : J (i,j) for i, j = ±2, . . . ,±(N + 1)

sp(2) : J (1,1), J (1,−1), J (−1,1)

(2N,2) : J (i,α) for i = ±2, . . . ,±(N + 1), α = ±.

(B.12)

Furthermore, by embedding sp(2N) in so(4N + 4), the free fermions transform as

2× (2N)⊕ 4× (1) , (B.13)

with respect to sp(2N).

B.1 The su(2)± subalgebras

There are 4N + 4 free fermions in the set of generators of the coset, transforming as

in (B.13). These divide into three fermions ψ(1,1), ψ(−1,1), and ψ(1,−1), from sp(2)(1), one

fermion from the u(1)(1), and 4N fermions in the (2N,2) of sp(2N) ⊕ sp(2) denoted ψi,α

for i = ±2, . . . ,±(N + 1) and α = ±. The 4N fermions ψi,α satisfy the OPE

ψi,α(z)ψj,β(w) ∼
δijδαβ
z − w

, (B.14)

and an su(2)N affine algebra can be constructed from these by defining the generators

K̃αβ =
∑

i,j

Ωij(ψ
i,αψj,β) . (B.15)

In the double negative index notation, this current has the form

K̃αβ =
∑

i

sgn(i)(ψi,αψ−i,β) =
N
∑

i=1

(

(ψi,αψ−i,β)− (ψ−i,αψi,β)
)

, (B.16)
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with respect to which the 4N fermions transform in 2N × 2. From this, the two su(2)k±

forming the R-symmetry of the N = 4 superconformal algebra can be constructed just as

in [23]. Decoupling the fermions ψ1,1, ψ−1,1, and ψ1,−1 from sp(2)k+N+2 we get a bosonic

sp(2)k+N , since ȟsu(2) = 2, whose generators we denote J . Then construct J̃ = J − K̃,

which generate su(2)k, and with respect to which the 4N fermions transform trivially. We

have therefore constructed the subalgebra

su(2)k ⊕ su(2)N generated by J̃ ⊕ K̃ . (B.17)

Gathering the three free fermions from the decoupling above, together with the fermion

from u(1)(1), we form so(4)1 ∼= su(2)1 ⊕ su(2)1, with respect to which the free fermions by

construction transform in the (2,2). Add each one of the su(2) factors to J̃ and K̃, to

obtain

su(2)N+1 ⊕ su(2)k+1 . (B.18)

B.2 Selection rules

For highest weights Λ+, Λ− of sp(2N + 2) and sp(2N) respectivelly, decomposing as

(Λ+
1 , . . . ,Λ

+
N+1) and (Λ−

1 , . . . ,Λ
−
N ) in a basis of fundamental weights ωi = ǫ1 + . . . + ǫi,

where {ǫi}
N+1
i=1 is an orthonormal basis of the weight space, the selection rules state that

PΛ+ − Λ− ∈ PQN+1, where PQN+1 is the projection of the root lattice of sp(2N + 2).

Given the embedding above, the highest root θ projects to zero, the first root α1 is the

sp(2) root, while the other simple roots αi for i = 2, . . . , N + 1 span the denominator

sp(2N) root system. The projection of θ to zero then allows to express α1 in terms of the

other simple roots, since

θ = 2
N
∑

i=1

αi + αN+1
P
−→ 0 , (B.19)

that is, α1 = −
∑N

i=2 αi −
1
2αN+1 upon projection. In the simple root basis Λ+ takes the

expression

Λ+ =
(

Λ+
1 + . . .Λ+

N+1

)

α1 +
(

Λ+
1 + 2Λ+

2 + . . . 2Λ+
N+1

)

α2+

+ . . .+
(

Λ+
1 + 2Λ+

2 + 3Λ+
3 + . . .+ (N + 1)Λ+

N+1

) 1

2
αN+1 , (B.20)

which upon projection yields

PΛ+ =
(

Λ+
2 + . . .+ Λ+

N+1

)

α2 +
(

Λ+
2 + 2Λ+

3 + . . .+ 3Λ+
N+1

)

α3

+ . . .+
(

Λ+
2 + 2Λ+

3 . . .+NΛ+
N+1

) 1

2
αN+1 . (B.21)

It is clear that α1 disappeared from the expression and this may now be compared with

Λ−. The root lattice Q projects as follows: a general element in QN+1 decomposing as
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α =
∑N+1

i=1 niαi, with ni ∈ Z, is mapped by the projection above into

Pα = n1

(

−
N
∑

i=2

αi −
1

2
αN+1

)

+
N+1
∑

i=2

niαi

=
N
∑

i=2

(ni − n1)αi + (2nN+1 − n1)
1

2
αN+1 . (B.22)

A general element of PQN+1 is then of the form

α =
N
∑

i=2

niαi + nN+1
1

2
αN+1 =

N+1
∑

i=2

niα̌i , (B.23)

for ni ∈ Z. We made use of the fact that the co-roots have the form α̌i = αi for i = 1, . . . , N ,

and α̌N+1 =
1
2αN+1. We have therefore established that

PQN+1 ∼= Q̌N , (B.24)

where Q̌N is the co-root lattice of sp(2N). It is now clear that the selection rules are always

trivially satisfied: the weight PΛ+ is easily seen from (B.20) to be an element of Q̌N , and

the same happens with Λ−. This ultimately stems from the fact that the weight lattice

and the co-root lattice of sp(2N +2) are isomorphic. Then PΛ+−Λ− also lies in Q̌N , and

therefore in PQN+1. The selection rules are therefore trivial.

B.3 Field identifications

The group of outer automorphisms of sp(2N) is O = Z2 = {1, J}, where J may be defined

by its action on an affine weight:

J · [Λ0; Λ1, . . . ,ΛN ] = [ΛN ; ΛN−1, . . . ,Λ1,Λ0] . (B.25)

Following the usual rules to determine the branching of the outer automorphisms, and the

inner product (ωi, ωj) =
1
2min(i, j), we compute

(J · ω0,Λ) =
1

2
|Λ| (B.26)

(1 · ω0,Λ) = 0 , (B.27)

as well as
(

J̃ · ω̂0,PΛ
)

=
1

2
|Λ| −

1

2
Λ1 (B.28)

(

1̃ · ω̂0,PΛ
)

= 0 , (B.29)

where J , J̃ are the non-trivial outer automorphisms of sp(2N+2) and sp(2N), respectively,

and |Λ| =
∑N+1

i=1 iΛi. Given the branching condition

(A · ω0,Λ)−
(

Ã · ω0,PΛ
)

= 0 mod 1, (B.30)

for A = 1, J and Ã = 1̃, J̃ , it is easy to see that the condition is only satisfied for 1 7→ 1̃.

Therefore there are no non-trivial branchings, and the field identifications are trivial.
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B.4 BPS states

In terms of partition coefficients l1 ≥ l2 ≥ . . . ≥ lN ≥ 0, or Dynkin labels Λi ∈ N
0, which

are related by

li =
N
∑

j=i

Λj , (B.31)

or equivalently

Λi = li − li+1 , (B.32)

the quadratic Casimir of sp(2N) is given by

C(N)(Λ) =
1

4

N
∑

i=1

Λi





N
∑

j=i+1

iΛj +
i

∑

j=1

jΛj + i(2N + 1− i)





=
1

4

(

N
∑

i=1

l2i + 2
N
∑

i=1

(N − 1 + i)li

)

.

(B.33)

For integrable highest weights Λ+ and Λ− of sp(2N +2) and sp(2N), respectivelly, the

conformal dimension of the coset representation (Λ+; Λ−) is given by

h(Λ+; Λ−) =
C(N+1)(Λ+)− C(N)(Λ−)

k +N + 2
+ n , (B.34)

where n is an integer specifying at which level Λ+ appears in the decomposition of Λ−.

The BPS bound for representations of the N = 4 superconformal algebra is [23]

h(l±, u) ≥
1

k+ + k−
[

k+l− + k−l+ + u2 + (l+ − l−)2
]

, (B.35)

for two representations l± of the R-symmetry algebras su(2)±, and the u(1) representation

u (which we will take as u = 0, as implicitly assumed already in (B.34)). The coset

representations (〈i, 0, . . . , 0〉; 0) have conformal dimension

h(〈i, 0, . . . , 0〉; 0) =
i

2(k +N + 2)

(

i

2
+N + 1

)

, (B.36)

and therefore saturate the BPS bound for l+ = i/2 and l− = 0. On the other hand, the

representations (0; vj) ≡ (0; 〈0, . . . , 1, . . . , 0〉), for which the only non-zero Dynkin label is

Λ−
j = 1, have conformal dimension

h(0; 〈0, . . . , 1, . . . , 0〉) =
j

2(k +N + 2)

(

j

2
+ k + 1

)

, (B.37)

and saturate the BPS bound for l+ = 0, l− = j/2.

Note that, in the ’t Hooft limit, and for v ≡ 〈1, 0, . . . , 0〉, we have

h(v; 0) =
N + 3/2

2(k +N + 2)
≃

N

2(k +N)
≃

λ

2
(B.38)

h(0; v) =
k + 3/2

2(k +N + 2)
≃

k

2(k +N)
≃

1− λ

2
. (B.39)
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In particular, for λ = 0,

h(0; v) ≃
1

2
. (B.40)

The other BPS representations (0; vj) appear in the j-th tensor power of (0; v) and have

conformal dimension j/2 for λ = 0.

B.5 Wedge characters

In the following, we present circumstantial evidence in favour of the claim that

χ
(wedge)
(0;Ξ) = χ

(wedge)
(0;Λ) , (B.41)

where χ
(wedge)
(0;Ξ) is the wedge character of the representation (0; Ξ) of the Sp(2N) vector

model, and χ
(wedge)
(0;Λ) is the wedge character of the representation (0; Λ) of the U(N) vector

model. No rigorous proof is provided in general. The wedge character of (0; v) is

χ
(wedge)
(0;v) (q, y) =

(

y1/2 + y−1/2
)

q1/2 + 2q

1− q
. (B.42)

Note that this character is equal to the character χ
(wedge)
(0;f) of the U(N) model, cf. [23]. As

in previously considered models [20, 50, 52], we claim that the decoupling of null states at

large N is taken care of by requiring that the (wedge) fusion rules of the representations of

the Sp(2N) vector model are simply given by the fusion rules of the U(N) vector model.

This then ensures that the vacuum representation does not appear in the decomposition

of (0; v) ⊗f (0; v). This is analoguous to the requirement in [20, 50, 52] that the vacuum

representation does not appear in the decomposition of (0; f)⊗f (0; f̄). The explicit fusion

rules are then

(0; Ξ1)⊗f (0; Ξ
2) =

⊕

Ξ
|Ξ|=|Ξ1|+|Ξ2|

(0; Ξ) , (B.43)

where |Ξ| =
∑

i i Ξi is the number of boxes of the corresponding Young diagram. In con-

clusion, since χ
(wedge)
(0;v) = χ

(wedge)
(0;f) and all the fusion rules coincide, all the wedge characters

must also be the same,

χ
(wedge)
(0;Ξ) = χ

(wedge)
(0;Λ) , (B.44)

for any Sp(2N) representation Ξ, where Λ is the U(N) representation with Dynkin labels

Λi = Ξi.

C The large level limit of the coset

C.1 Untwisted sector

The untwisted sector of the vector model is captured by the k → ∞ limit of the (0; Λ)

closed subsector of the coset representations. The coset character of these representations

is denoted bN,k
(0;Λ)(q) and can be obtained from

chN+1,k
0 (ι(v), q) · θ(v, q) =

∑

Λ

bN,k
(0;Λ)(q)ch

N,k+1
Λ (v, q) , (C.1)
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where ι(v) is the embedding of the sp(2N) weights into sp(2N +2), and θ(v, q) is the char-

acter of the 4N+4 free fermions. Also, chN+1,k
0 is the character of the trivial representation

of sp(2N + 2)k, and chN,k+1
Λ is the character of the Λ representation of sp(2N)k+1. Using

the Kac-Weyl formula (see [53]), and given the Sp(2N) roots ±ǫi ± ǫj for i 6= j, and ±2ǫi,

i, j = 1, . . . , N , the expression above becomes in the k → ∞ limit:

∑

Λ

a(0;Λ)(q)ch
N
Λ (v, q) =

θ(v, q)
∏∞

n=1

∏N+1
i=2 (1− viv1qn)(1− v−1

i v1qn)(1− v−1
i v−1

1 qn)

×
1

(1− viv
−1
1 qn)(1− v21q

n)(1− v−2
1 qn)(1− qn)

, (C.2)

where a(0;Λ) ∼= bN,k
(0;Λ) in the k → ∞ limit. On the other hand, given the embedding specified

in appendix B,

θ(v, q) =
∞
∏

n=1

N+1
∏

i=2

(1 + viq
n+1/2)2(1 + v−1

i qn+1/2)2(1 + qn+1/2)4 . (C.3)

Not keeping track of the sp(2) eigenvalues by setting v1 = 1, we finally find

∑

Λ

a(0;Λ)(q)ch
N
Λ (v, q) =

∞
∏

n=1

N+1
∏

i=2

(1 + viq
n+1/2)2(1 + v−1

i qn+1/2)2(1 + qn+1/2)4

(1− viqn)2(1− v−1
i qn)2(1− qn)4

,

which leads to the identification of the k → ∞ limit of the (0; Λ) subsector of the coset

theory as the sp(2N) continuous orbifold of 4N +4 free bosons and fermions transforming

in the 2× (2N)⊕ 4× (1) representation.

C.2 Twisted sectors

The Cartan torus of sp(2N) may be chosen as diag(z1, . . . , zN , z−1
1 , . . . , z−1

N ), for zj = e2πiαj

and αj ∈
[

−1
2 ,

1
2

]

. In order to label conjugacy classes, we divide out the action of the Weyl

group W = SN ⋉ Z
N
2 , which consists in exchanging the twists αj and reversing their sign.

Then conjugacy classes are then labeled by α = [α1, . . . , αN ] satisfying

1

2
≥ α1 ≥ . . . ≥ αN ≥ 0 . (C.4)

The conformal dimension of the α-twisted sector is given by h(α) =
∑N

i=1 |αi| =
∑N

i=1 αi.

For m = 0, . . . , N , the twisted sector ground states correspond to the coset representations
(

Λ
(m)
+ ; Λ

(m)
−

)

where

Λ
(m)
+ = 〈Λ1, . . . ,Λm, 0, . . . , 0〉

Λ
(m)
− = 〈Λ1, . . . ,Λm, 0, . . . , 0〉 . (C.5)

The corresponding twist is claimed to be

α =
1

k +N + 2

[

m
∑

i=1

Λi,
m
∑

i=2

Λi, . . . ,Λm, 0, . . . , 0

]

. (C.6)
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in the k → ∞ limit. Note that, by definition of the partition coefficients li, i = 1, . . . N ,

given in (B.31), we have

αi =
li

k +N + 2
. (C.7)

In the following subsections we give some evidence supporting this identification.

C.2.1 Conformal dimensions

The corresponding conformal dimensions can be seen to match: the conformal dimension

of the coset representation is given by (in terms of partition coefficients)

h
(

Λ
(m)
+ ; Λ

(m)
−

)

=
1

k +N + 2

(

C(N+1)(Λ
(m)
+ )− C(N)(Λ

(m)
− )

)

=
1

2(k +N + 2)

(

N+1
∑

i=1

l2i + 2
N+1
∑

i=1

(N − i+ 2)li

−
N
∑

i=1

l2i − 2

N
∑

i=1

(N − i+ 1)li

)

. (C.8)

Using the explicit form of (C.5), together with (C.7), it becomes

h
(

Λ
(m)
+ ; Λ

(m)
−

)

=
1

2(k +N + 2)

(

4
m
∑

i=1

li − 2
m
∑

i=1

li

)

(C.9)

=

m
∑

i=1

αi, (C.10)

which coincides with the twisted sector conformal dimension since αi = 0 for i > m.

C.2.2 Fermionic excitation spectrum

The fusion of a coset representation (Λ+; Λ−) with the minimal representation (0; v) has

the following form:

(Λ+; Λ−)⊗ (0; v) = (Λ+; Λ− ⊗ v) , (C.11)

where Λ− ⊗ v decomposes as

Λ− ⊗ v =
⊕

ǫ=±

N
⊕

r=1

Λ(r,ǫ) , (C.12)

with

Λ
(r,ǫ)
j =











Λj + ǫ j = r − 1

Λj − ǫ j = r

Λj otherwise .

(C.13)

With respect to the original coset state, the partition coefficients change as

lr → lr − ǫ , (C.14)
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while all the others remain the same. Then the conformal dimension of the fusion product

differs from the original one by

δh(r) = h(Λ+; Λ−)− h(Λ+; Λ
(r,ǫ))

=
1

2
+

1

k +N + 2

(

C(N)(Λ−)− C(N)(Λ
(r,ǫ)
− )

)

=
1

2
+

1

k +N + 2

(

−ǫlr +
1

2
− ǫ(N − r + 1)

)

∼=
1

2
− ǫαr, (C.15)

where in the last line we have used (C.7), and took the k → ∞ limit. It is then clear

that each of the channels of the fusion of a (Λ
(m)
+ ; Λ

(m)
− ) state with (0; v) corresponds to a

state twisted by ±αr, and therefore this state is indeed the twisted sector ground state for

α = [α1, . . . , αN ].

D Higher spin algebras

Higher spin theories in AdS3 are described as Chern-Simons theories with a higher spin

algebra as gauge algebra. In this section we mainly follow [37, 46]. The super Lie algebra

shs2[µ] is the tensor product of two different components: a gravitational part, and an

internal part. The gravitational part consists of the associative algebra defined as

sB[µ] =
U(osp(1, 2))

〈C2 −
1
4µ(µ− 1)1〉

∼= sB[1− µ] , (D.1)

where C2 is the second Casimir of osp(1, 2). This algebra can be faithfully realised in terms

of an associative algebra spanned by the oscillators ŷα, α = 1, 2 and an operator k, together

with the identity element 1, satisfying

[ŷα, ŷβ] = 2iǫαβ(1+ νk), kŷα = −ŷαk, k2 = 1 , (D.2)

with ν = 2µ− 1, so that the generators of the AdS3 superalgebra osp(1, 2) are

Tαβ =
1

4i
{ŷα, ŷβ} , ŷα , (D.3)

and the second Casimir is

C2 = −
1

2
TαβT

αβ −
i

4
ŷαŷ

α , (D.4)

which can be seen to equal 1
4µ(µ−1) automatically, using the oscillator realisation. Indices

are raised and lowered using ǫαβ .

Using the grading |ŷα| = 1, |k| = |1| = 0, this associative algebra can be turned into a

super Lie algebra shs[µ] by defining a bracket as

[a, b]± = ab− (−1)|a||b|ba , (D.5)

with a, b ∈ sB[µ], and by quotienting out the central element of sB[µ]. The spin of a

given element of shs[µ] is defined as its eigenvalue under the adjoint action of the Cartan
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generator of the gravitational sl(2) subalgebra generated by Tαβ . We can immediately

see that ŷ1 has spin 1/2, whereas ŷ2 has spin −1/2, since they form a doublet. Higher

powers of the oscillators in the associative algebra are associated with higher spin fields,

transforming in a certain representation of the sl(2) subalgebra.

An extended associative algebra sB2[µ] can be obtained by tensoring the gravitational

sB[µ] with a matrix algebra describing Chan-Paton degrees of freedom:

sBM [µ] = sB[µ]⊗Mat(2,C) , (D.6)

where Mat(2,C) is the usual algebra of complex 2× 2 matrices. This part of the extended

algebra does not change the properties of the elements with respect to the gravitational

part, and only adds some degeneracy. Proceeding as before, we obtain the Lie superalgebra

shs2[µ], given by

shs2[µ] = 1⊗ sl(2)⊕ shs[µ]⊗ 12 ⊕ shs[µ]⊗ sl(2) . (D.7)

An important result obtained in [23] is that shs2[µ] contains the N = 4 super Lie

algebra D(2, 1;α) as a subalgebra, with

α =
µ

µ− 1
=

ν + 1

ν − 1
. (D.8)

The basis elements of D(2, 1;α) are realised in shs2[µ] as

L0 =
1

8i
(ŷ1ŷ2 + ŷ2ŷ1)⊗ 12

L1 =
1

4i
ŷ1ŷ1 ⊗ 12

L−1 =
1

4i
ŷ2ŷ2 ⊗ 12

A±,i
0 =

1

2
(1± k)⊗ σi

G++
r = eπi/4ŷαrk ⊗ E12

G−−
r = −eπi/4ŷαrk ⊗ E21

G−+
r = −

eπi/4

2
[ŷαr ⊗ 12 + ŷαrk ⊗ (E11 − E22)]

G+−
r =

eπi/4

2
[ŷαr ⊗ 12 − ŷαrk ⊗ (E11 − E22)] ,

(D.9)

where Eab is the matrix whose only non-zero entry (equal to 1) is in the a, b position, σi

are the Pauli matrices, and αr = 3/2− r, r = ±1/2.

D.1 Truncations of higher spin algebras

A graded automorphism τ of a super Lie algebra L is defined as a linear invertible map of

L onto itself satisfying

τ([a1, a2]±) = [τ(a1), τ(a2)]± (D.10)

|τ(a1)| = |a1| , (D.11)

– 29 –



J
H
E
P
0
9
(
2
0
1
7
)
1
1
0

for a1, a2 ∈ L. All the elements a ∈ L satisfying

τ(a) = a , (D.12)

form a subalgebra, by virtue of (D.10). The automorphism is called involutive if τ2 = 1.

An anti-automorphism of second class η (henceforth shortened to anti-automorphism) is a

linear invertible map of a graded associative algebra A onto itself, which satisfies

η(a1 · a2) = (−1)|a1||a2|η(a2) · η(a1) . (D.13)

By endowing A with a bracket and turning it into a super Lie algebra LA, and if η preserves

the grading |η(a)| = |a|, then

η
(

[a1, a2]±
)

= − [η(a1), η(a2)]± , (D.14)

and therefore an automorphism τ of LA can be constructed as

τ = −η . (D.15)

Consistent higher spin theories can be obtained from the theory with gauge algebra

shs2[µ] by the use of automorphisms τ of shs2[µ], or anti-automorphisms η of the associative

algebra sB2[µ], which preserve the gravitational sl(2), and also that satisfy the consistency

condition τ(k) = k, η(k) = k. The automorphisms of the higher spin algebra define the real

forms of the higher spin algebra, whereas anti-automorphisms of the associative algebra

give rise to consistent theories with a truncated spectrum of massless fields, see [7, 43–45].

E Matching one-loop partition functions

In this section we compute and match the thermal partition function of AdS3 Chern-

Simons theory with symmetry algebra shs
sp
2 [µ], supplemented with two real scalars, with

the partition function of the dual coset theory in the ’t Hooft limit.

E.1 Coset partition functions

The character of the coset representation (Λ+; Λ−) is defined as

bN,k
(Λ+;Λ−)(q, y±) = tr(Λ+;Λ−)

(

qL0exp[J
I
0 tr(t

IH+)+KI
0 tr(t

IH−)]
)

, (E.1)

where H± are arbitrary elements of a Cartan subalgebra of the horizontal subalgebra of

the affine sp(2)+ ⊕ sp(2)− generated by the spin-1 currents JI , KI , with eigenvalues zi±,

i = 1, . . . ,M , in the fundamental representation. From these characters we construct the

partition function

Z(q, y±) = |q−
c
24 |2

∑

[(Λ+;Λ−)]

|bN,k
(Λ+;Λ−)(q, y±)|

2 . (E.2)

We are interested in the ’t Hooft limit for which N, k → ∞ with

λ =
k−

k+ + k−
≃

N

k +N
, (E.3)
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where k± are the levels of the affine algebras sp(2)±. The coset characters are obtained

from the character decomposition

ch2N+2,k
Λ+

(q, ι1(y+, v))θ(q, ι2(y±, v)) =
∑

Λ−

bN,k
(Λ+;Λ−)(q, y±)ch

2N,k+1
Λ−

(q, v) , (E.4)

where ch2N+2,k
Λ+

is the character of the Λ+ representation of sp(2N+2)k, whereas ι1,2 denote

the embeddings of the numerator into the denominator algebras, with v a sp(2N) matrix

with eigenvalues va, and y+ a sp(2) matrix with eigenvalues yi+.

In the ’t Hooft limit the branching identity (E.4) can be recast into the form
∑

Λ−

a(Λ+;Λ−)(q, y±) ch
2N
Λ−

(q, v) = ch2N+2
Λ+

(q, ι1(y+, v)) (E.5)

×
2N
∏

a=1

∏

i=± 1
2

∞
∏

n=1

(1+y−i
− vaqn−1/2)(1+yi−v

−aqn−1/2)

(1− y−i
+ vaqn)(1− yi+v

−aqn)
,

where

bN,k
(Λ+;Λ−)(q, y±)

∼= q
1
2κ [Cas2N+2(Λ+)−Cas2N(Λ−)]a(Λ+;Λ−)(q, y±) , (E.6)

in the ’t Hooft limit, and all the characters are now just regular Weyl characters.

For Λ+ = 0, this expresses a(0;Λ−) as the multiplicity of the Λ− representation of sp(2N)

in a system of free bosons and fermions transforming as given. In particular, for Λ− = 0,

this corresponds to the vacuum character a(0;0)(q, y±), encoding the chiral algebra of the

cosets. For a general Λ− this multiplicity may be found using the methods of [37, 50]. The

right hand side of the expression above is the character of an infinite dimensional vector

space spanned by vectors of the form
nψ
∏

k=1

ψakik
−rk−1/2

nj
∏

l=1

jbljl−sl−1|0〉 , (E.7)

for rk, sl ∈ N
0. Since the action of gl(∞|∞)+ on these mode numbers and the action of

sp(2N) on the indices commute, the multiplicity of Λ− will naturally be a character of

gl(∞|∞)+. For a fixed number of fields nψ, nj , a given sp(2N) representation Λ− such

that |Λ−| = nψ+nj will appear with multiplicity 0 or 1, where |Λ−| is the number of boxes

of the corresponding Young diagram. This multiplicity will be 1 only if there is a Young

supertableau of shape Λ− with even entries from {2sl + 2}, and odd entries from {2rk + 1}.

Summing over all possible mode numbers, and multiplying by all possible invariant states,

the total contribution of these to the subspace transforming in Λ− is

a(0;Λ−)(q, y±) = a(0;0)(q, y±)schΛt
−
(U1) , (E.8)

where

schΛ(U(h)) =
∑

T∈STabΛ

∏

i∈T

qh+
i
2 , (E.9)

is the supercharacter in the Λ− representation of the diagonal matrix U(h) ∈ GL(∞|∞)+
with entries

U(h)jj = (−1)jqh+
j

2 , (E.10)

and U1 = U(h = 1/2).
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In line with previous cases (see [50], but also [20, 37, 52]), we claim that the emergence

of null vectors in the ’t Hooft limit is taken care of by requiring that the fusion rules

of coset representations become effectively the U(N) tensor rules once fundamental and

antifundamental representations are decoupled (see [20] for a similar situation). This is

implemented by demanding that the total number of boxes does not decrease after fusion,

that is

Λ+ ⊗f Λ− =
⊕

Λ
|Λ|=|Λ+|+|Λ−|

Λ , (E.11)

with |Λ| denoting the total number of boxes in the respective Young diagram. If we denote

cΛΦΨ the Clebsch-Gordan coefficients for sp, such that

ch2N+2
Λ (ι1(y+, v)) =

∑

Φ,Ψ

cΛΦΨch
2N
Φ (v)ch2Ψ(y+) , (E.12)

then using the fusion relation (E.11), which implies the factorisation of the Clebsch-Gordan

coefficients, we obtain the following expression for a general coset character in the ’t Hooft

limit,

a(Λ+;Λ−)(q, y±) =
∑

Φ,Ψ,Π

c
Λ+

ΠΦc
Λ−

ΨΦch
2
Π(y+)a(0;Ψ)(q, y±) . (E.13)

Rewriting the expression above in terms of the vacuum coset character, we get

a(Λ+;Λ−)(q, y±) =
∑

Φ,Ψ,Π

c
Λ+

ΠΦc
Λ−

ΨΦch
2
Π(y+)schΨt(U1)a(0;0)(q, y±) , (E.14)

on which we can use the properties of the Clebsch-Gordan coefficients, and the identity

(see [37])

schΛ(U0) =
∑

Φ,Π

cΛΠΦch
2
Π(z+)schΦt(U1) , (E.15)

where U0 = U(h = 0), to obtain the simplified expression

a(Λ+;Λ−)(q, y±) = schΛ+(U0)schΛt
−
(U1)a(0;0)(q, y±) . (E.16)

Finally, in the ’t Hooft limit the overall multiplying factor simplifies to

q
1
2κ [CasN+2(Λ+)−CasN (Λ−)] ∼= q

λ
2
(|Λ+|−|Λ−|) , (E.17)

which we can absorb in the entries of the matrices U0, U1 by defining

schΛ+(U+) = q
λ
2
|Λ+|schΛ+(U0) (E.18)

schΛ−
(U−) = q−

λ
2
|Λ−|schΛ−

(U1) . (E.19)

We are now able to write the partition function of the coset in the ’t Hooft limit:

Z ’t Hooft(q, y±) =
∑

Λ+,Λ−

|schΛ+(U+)schΛ−
(U−)a(0;0)(q, y±)|

2 . (E.20)
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E.2 AdS3 partition function

As proven before, the chiral spectrum of the proposed coset dual, counted by a(0;0)(q, y±),

coincides with the gauge sector of the AdS3 truncated extended higher spin theory:

Zgauge(q, y±) = |a(0;0)(q, y±)|
2 . (E.21)

Following [37], full correspondence is achieved by adding matter fields, as in 3.3. The total

matter contribution to the partition function in thermal AdS3 is then

Zmatter(q, y±) = Z+
matter(q, y±)Z

−
matter(q, y±) , (E.22)

with

Z±
matter(q, y±) = qh± q̄h±

∏

i,j=± 1
2

∞
∏

m,n=0

(1 + yi∓ȳ
j
±q

m+1/2q̄n)(1 + yi±ȳ
j
∓q

mq̄n+1/2)

(1− yi±ȳ
j
±q

mq̄n)(1− yi∓ȳ
j
∓q

m+1/2q̄n+1/2)
, (E.23)

where

h+ =
µ

2
, h− =

1− µ

2
. (E.24)

We can now use the GL(∞|∞) supermatrix

U± = qh±diag
(

y
1/2
± , y

−1/2
± ,−y

1/2
∓ q1/2,−y

−1/2
∓ q1/2,

y
1/2
± q1, y

−1/2
± q1,−y

1/2
∓ q3/2,−y

−1/2
∓ q3/2, . . .

)

,
(E.25)

together with the Cauchy identity, to write the above expression as

Z±
matter(q, y±) =

∑

Λ

schΛ(U±)schΛ(U±) . (E.26)

It is now evident we can match the higher spin partition function

Z1-loop
AdS3

(q, y±) = Zgauge(q, y±)Z
+
matter(q, y±)Z

−
matter(q, y±) , (E.27)

with the ’t Hooft limit of the coset partition function (E.20), if we identify λ = µ.
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