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Abstract: The gluon fusion component of Higgs-boson production in association with

dijets is of particular interest because it both (a) allows for a study of the CP -structure of

the Higgs-boson couplings to gluons, and (b) provides a background to the otherwise clean

study of Higgs-boson production through vector-boson fusion. The degree to which this

background can be controlled, and the CP -structure of the gluon-Higgs coupling extracted,

both depend on the successful description of the perturbative corrections to the gluon-fusion

process.

High Energy Jets (HEJ) provides all-order, perturbative predictions for multi-jet pro-

cesses at hadron colliders at a fully exclusive, partonic level. We develop the framework

of HEJ to include the process of Higgs-boson production in association with at least two

jets. We discuss the logarithmic accuracy obtained in the underlying all-order results, and

calculate the first next-to-leading corrections to the framework of HEJ, thereby significantly

reducing the corrections which arise by matching to and merging fixed-order results.

Finally, we compare predictions for relevant observables obtained with NLO and HEJ.

We observe that the selection criteria commonly used for isolating the vector-boson fusion

component suppresses the gluon-fusion component even further than predicted at NLO.
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1 Introduction

Immediately after the observation [1, 2] at the CERN LHC of the fundamental Higgs-like

boson, attention turned to measuring the strength and properties of its couplings to other

SM particles, and its intrinsic CP -properties. Initially, these measurements were performed

by studying inclusive Higgs boson production in the Higgs boson decay channels γγ and

ZZ [3–11]. As the inclusive Higgs boson production is dominated by gluon-fusion Higgs

boson production, any measurement of the strength of the coupling of the Higgs boson to

e.g. Z will involve a product of this coupling with the coupling for the production of the

Higgs boson through gluon fusion, mediated by heavy (top and bottom) quark loops.

A precise measurement of the coupling of the Higgs boson to the electroweak bosons is

obviously important to determine if indeed a single fundamental Higgs boson is fully respon-

sible for the mass-generation of fundamental particles and electroweak symmetry breaking,
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as in the Standard Model. In this respect, it is interesting to study Higgs boson production

directly through weak boson fusion. At the LHC, this process would occur perturbatively in

the process of Higgs boson production in association with at least two hard jets. This pro-

cess is of interest then not just as a perturbative correction (at order O(α4
s)) to the inclusive

Higgs boson production through gluon fusion, but also as a O(α4
w) Born level process that

allows for a direct measurement of the strength of the coupling between the Higgs boson and

the weak bosons. Since the quantum interference between the two contributing production

channels of so-called vector-boson fusion (VBF) (involving a direct coupling between the

Higgs and the weak bosons) and gluon fusion (GF) is insignificant [12–14], it is justified to

discuss the processes separately. The study of weak boson fusion production of Higgs bosons

then allows for a measurement of the higgs boson to weak boson coupling without relying

on a knowledge of the loop-induced coupling strength between gluons and the Higgs boson.

The final analyses of data after Run-I [11, 15, 16] allowed for the Higgs boson pro-

duction to be studied for small numbers of co-produced jets, in particular also for the

production in association with two or more jets. These measurements, therefore, start

probing directly the VBF production mechanism, where the Born-level process involves

quarks only scattering by the exchange of a weak boson. This is dominated by valence

quarks, and hence the resulting jets will carry a significantly larger part of the light-cone

proton momenta than what is the case of the gluon-fusion production mechanism, where

the Hjj cross section contribution for inclusive cuts is dominated by the gg-component.

The distinctive topology for VBF allows for event selection cuts on e.g. a large invariant

mass and/or rapidity separation between the dijets in order to suppress background. This

also suppresses the contribution from the gluon-fusion process relative to VBF. While the

inclusive GF cross section is dominated by the gg-component, the qg-component domi-

nates [17, 18] after a large invariant mass between the dijets is required.

Requiring a significant invariant mass between dijets is interesting not just as a tool

to suppress the gluon-fusion contribution over weak-boson fusion, but for a slightly less

restrictive cut on the invariant mass, which allows more gluon-fusion events in the sample,

it is possible to study the CP -structure of the gluon-Higgs couplings [19, 20]. In particular,

such analyses of the Hjj sample allow for an extraction of mixing parameters in scenarios

with CP -violation in the Higgs sector. However, the correct description of the gluon-

fusion contribution in the region of phase space with a significant invariant mass between

the dijets is more challenging than is the case for weak-boson fusion. The reason is that

the gluon-fusion component allows for a colour-octet exchange between the dijets, whereas

the weak-boson fusion component obviously has no colour exchange between the jets. This

leads to a different radiation pattern for the two processes [21], where the gluon-fusion

component will radiate more hard, observable jets in the rapidity region spanned by the

colour octet exchange than the weak-boson fusion process. This again leads to an increase

in the expected number of hard jets in the event as the rapidity span is increased. This

behaviour is universal for all processes allowing for a colour octet exchange between jets,

and has already been observed in both pure dijet production [22, 23] and the production

of W+dijets [24]. Not just does the colour-octet exchange emphasise the contribution

from real-emission, higher-order perturbative corrections, but it is also accompanied by a
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tower of logarithms from virtual corrections. Both sources of perturbative corrections are

included in the BFKL-equation [25–28], which captures the dominant logarithms (ln ŝ/|t̂|))
which govern the high-energy limit of the on-shell scattering matrix elements.

However, such logarithms are not systematically included in the standard perturbative

methods for obtaining predictions for LHC observables. Analyses of e.g. W production in

association with dijets for both D0 [24] (at the 1.96 TeV Tevatron) and ATLAS [29] (at the

7 TeV LHC) consistently reveal a tension between data and a standard set of predictions in

the region of phase space of large dijet invariant mass or rapidity separation. This is true for

the differential cross section depending on just the Born-level momenta, and for observables

describing additional jet activity. This tension between data and the predictions of the

standard tools is therefore present for the observables and the region of phase space that

is of direct relevance for the study of Higgs boson production in association with dijets.

The dominant logarithms of ŝ/|t̂| are, however, systematically included in the calcula-

tions of the on-shell partonic scattering amplitudes within the framework of High Energy

Jets [30–34]. The framework is based on an approximation to the n-body on-shell scat-

tering matrix element. Within this approximation, both real and virtual corrections are

included to all orders in perturbation theory. The virtual corrections not only cancel the

infra-red poles from the real corrections, but also contribute to the finite part of the matrix

element. In fact, this finite contribution is instrumental in achieving leading-logarithmic

accuracy. This is in contrast to the standard formulation of a parton shower, where the

assumed Sudakov form of the virtual corrections keeps the shower unitary, allowing for a

probabilistic interpretation of emission.

In High Energy Jets, the sum over n and the integration over each n-body phase space

is performed explicitly using Monte Carlo sampling, and as such the predictions are made

at the partonic level with direct access to the four-momenta of each of the n particles. The

framework merges fixed-order (currently leading order), high-multiplicity matrix-elements

with an all-order description of the dominant logarithms. The formalism has been im-

plemented for several processes, and compares favourably to data for e.g. dijet (or more)

production [22, 23, 35], the production of a W boson in association with two jets [24, 29]

and the production of a Z-boson or virtual photon in association with two jets [34]. These

studies indicate that in the large-invariant mass, and the large rapidity difference-region,

the logarithms of HEJ are important, and their inclusion improves the theoretical prediction.

The experimental studies of dijets and W+dijets therefore also indicate that High

Energy Jets should be relevant for a successful description of the gluon-fusion production of

a Higgs boson in association with dijets, in particular in the region of interest for the study

of CP -properties, and for understanding how to use the radiation pattern to successfully

suppress the gluon-fusion contribution to Higgs boson+dijets when studying weak-boson

fusion.

This paper presents the impact on the physics analyses, and the implementation of

High Energy Jets for the gluon-fusion contribution to Higgs-boson production in association

with dijets. The earlier application of High Energy Jets included the leading logarithms

in ŝ/t̂ only. In section 2 we discuss the first systematic inclusion of part of the sub-

leading contributions within the framework of High Energy Jets . The resulting predictions
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for several of the observables measured in Higgs boson+dijet production are presented in

section 3, and the conclusion discussed in section 4.

2 The formal accuracy of high energy jets

In this section we will present the procedure used for obtaining predictions within High

Energy Jets (HEJ). HEJ is concerned with the description of processes involving a t-channel

colour exchange between two jets, such as dijet-production, and QCD production of

W+dijets, Z/γ+dijets (both starting at order α2
sαw), and Higgs boson+dijets (starting

at order α4
s).

Underpinning HEJ is an all-order approximation to the on-shell, hard-scattering matrix

elements, explicit in the momenta of all particles, and for each multiplicity. The cancella-

tion of IR singularities between real and virtual corrections is organised with subtraction

terms, which are sufficiently simple to allow the explicit summation over multiplicities, and

the integration over phase space to be performed using Monte Carlo techniques. The ap-

proximation to the hard scattering matrix element ensures a certain logarithmic accuracy

of the predictions, which will be detailed in section 2.1. As further discussed in section 2.7,

the all-order approximations are supplemented by corrections using the fixed-order (so far

just tree-level) predictions for several jet multiplicities. As such, HEJ provides an alter-

native procedure for merging fixed-order samples of various jet multiplicities to that of

CKKW-L [36, 37], which is based on the logarithmic accuracy achieved in a parton shower.

Instead, the merging procedure of HEJ maintains both the logarithmic accuracy at large

invariant mass between jets (as discussed in the next session) and the fixed-order accuracy

of the merged samples.

2.1 Logarithmic corrections and logarithmic accuracy

In this section we will first identify the leading contribution to Higgs boson production in

association with dijets when these dijets have a large invariant mass. We then identify a

source of systematic and logarithmically (in the invariant mass) enhanced perturbative cor-

rections both for real emissions and virtual corrections, and discuss how these logarithmic

corrections can be summed to all orders using the formalism of High Energy Jets .

2.1.1 Leading contributions at large invariant mass

Consider for illustration the production of a Higgs boson in association with dijets, with

the rapidity of the Higgs boson between that of the jets. We label final momenta as shown

in figure 1, such that the rapidities satisfy y1 < yH < y2 and the incoming momentum

pa(pb) is in the backward (forward) direction. In the following, we will be frequently

interested in amplitudes in the limit of Multi-Regge kinematics (MRK), defined by a large

center-of-mass energy
√
s12, large invariant masses between all outgoing momenta, and

fixed t-channel momenta. For our current example, we introduce the t-channel momenta of

the system as t1 = (pa− p1)2, t2 = (pa− p1− pH)2 and consider large s1H , s2H , s12, keeping

t1 and t2 fixed. An analysis of the analytic properties of scattering amplitudes [38] (e.g.
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Figure 1. Production of a Higgs boson with momentum pH in between two jets with momenta

p1, p2. Arrows indicate the direction of the momentum flow.

from Regge theory for multi-particle production) indicates that in this limit the on-shell

scattering amplitude M should scale as [39]

M∼ s
α1(t1)
1H s

α2(t2)
2H γ (t1, t2, s12/(s1Hs2H)) . (2.1)

Here, α1(t1) is the spin of the particle that can be exchanged in the t1-channel between the

particle of jet 1 and the Higgs boson, α2(t2) is the equivalent for the t2-channel between

the Higgs boson and the particle of jet 2 and γ is a function of transverse scales only. For a

given momentum configuration of the jets and the Higgs boson, the leading contribution to

Hjj-production therefore comes from the subprocesses with a parton flavour assignment

to the jets which allows for the particle of the largest possible spin to be connecting the

jets. For QCD this is the spin-1 gluonic colour-octet exchange. If the flavour assignment of

a sub-process is such that a quark exchange is mandated, then the contribution to the jet

cross section (proportional to the square of the matrix element) from this subprocess is sup-

pressed by the invariant mass of the dijet pair, as compared to the subprocess where a gluon

exchange is possible. For a given momentum configuration of the jets, the flavour assign-

ments of the incoming states and of the corresponding jets which can proceed through gluon

(colour-octet) exchanges between each jet are called the Fadin-Kuraev-Lipatov (FKL) con-

figurations. These will form the leading contribution in sij/tk to the given jet configuration.

We illustrate this by continuing the example above. Consider first the case where both

the incoming and the outgoing partons making up the jets are gluons as shown in figure 2a.

At Born level, the spin of all exchanged particles is 1 (since they are all gluons), and

therefore the amplitude must scale as M ∼ s1H s2H γ (t1, t2, s12/(s1Hs2H)), where in the

MRK limit s12/(s1Hs2H)→ 1/(m2
H + p2⊥H), t1 → −p2⊥j1 , t2 → −p2⊥j2 , such that γ depends

on transverse scales only. This scaling is indeed demonstrated in figure 3. This plot shows

|M|2/(s21H s22H)m4
⊥H , where the square of the Born level matrix element (extracted from

Madgraph5 aMC@NLO [40]) is evaluated in the phase space configurations of increasing

rapidity separation between all particles. In particular, the 4-momenta p = (E, px, py, pz)

of the two jets pj1 , pj2 and the Higgs boson pH are parametrised in terms of their transverse

– 5 –
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(a) (b)

(c) (d)

Figure 2. Example configurations for Higgs production in association with jets. Outgoing particles

are ordered in increasing rapidity. Both (a) and (b) can be generated via gluonic t-channel exchange

between each pair of adjacent outgoing particles and are therefore FKL configurations. The non-

FKL configurations (c) and (d) require a quark t-channel exchange.

momenta, azimuthal angle and rapidity as

pj1 = p⊥1(cosh y1, cosφ1, sinφ1, sinh y1)

pjH = (m⊥H cosh yH , p⊥H cosφH , p⊥H sinφH ,m⊥H sinh yH)

pj2 = p⊥2(cosh y2, cosφ2, sinφ2, sinh y2).

(2.2)

The specific choices for angles and transverse momenta are irrelevant for the conclusion, but

here the phase space points used in the plot were p⊥1 = p⊥2 = 70 GeV, φ1 = 2
3π, y1 = −∆,

φ2 = π, y2 = ∆, yH = ∆/3 and p⊥H = −(p⊥1+p⊥2) where ∆ is increasing along the x-axis.

The matrix element exhibits the expected Multi-Regge scaling according to eq. (2.1), for

spin-1 (gluon) exchanges, as |M|2/(s21H s22H)m4
⊥H tends to a constant as ∆y increases.

We can illustrate the suppression introduced when one requires a quark exchange

in the t-channel by considering the squared matrix-elements for non-FKL configurations

versus a corresponding FKL configuration. We will consider the three rapidity orderings

of the flavour content in the process pp → Hj1j2j3 shown in panels (b) to (d) of figure 2.

The rapidity-ordering qQ → qgHQ can proceed through colour-octet exchanges between

each of the jet-pairs (j1, j2), and (j2, j3) (and the Higgs boson) and hence is an FKL

configuration. The square of the matrix element for the cross section then scales as |M1|2 ∝
s2j1j2s

2
j2H

s2Hj3Γ1 (where Γ1 depends on transverse scales only). If now the parton content

of j1 and j2 is swapped, the previous possibility of a gluon exchange between jets 1 and 2

is replaced by a quark exchange. Therefore, the scattering-process will scale as |M2|2 ∝
sj1j2s

2
j2H

s2Hj3Γ2 (where Γ2 depends on transverse scales only), which is therefore suppressed
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1

H

2

Figure 3. The square of the partonic matrix element for the processes gg → gHg divided by

(s2j1H s2j2H)m4
⊥H . This is plotted for the phase space points parametrised according to eq. (2.2).

The square of the matrix element exhibits the expected Multi-Regge scaling according to eq. (2.1),

for spin-1 (gluon) exchanges and γ ∝ 1/m4
⊥H , as the curve tends to a constant for increasing ∆y.

by one power of sj1j2 with respect to the FKL configuration. The third configuration we

consider is qQ→ gHqQ. Like the second configuration, this only allows a quark exchange

between jets 1 and 2, now with the Higgs boson in between in rapidity, and hence scales

as |M3|2 ∝ sj1HsHj2s2j2j3Γ3 (where Γ3 depends on transverse scales only).

We illustrate the behaviour of these matrix elements in figure 4. The left plot clearly

shows the resulting suppression of the square of the matrix elements for the non-FKL

configurations (qQ → gqHQ (blue) and qQ → gHqQ (green)) compared to the FKL

ordering qQ → qgHQ (red). The latter tends to a constant times s2 while the first two

exhibit an exponential suppression for large ∆y (corresponding to a power-suppression in

sj1j2). The suppression is indeed verified to be sj1j2 on the right-hand plot in figure 4.

Here, the squared matrix elements |M|2 divided by s2 has been multiplied by sj1j2 and

tends to a constant for large ∆y in both cases.

2.1.2 Leading contribution from perturbative QCD

An alternative derivation of the dominance of the FKL configurations can be found by

considering which of all the possible colour connections will dominate in the Multi-Regge-

Kinematic (MRK) limit. As the Higgs boson is colour-neutral and irrelevant for the argu-

ments, we restrict here the discussion to amplitudes involving just quarks and gluons, and

follow the treatment of ref. [41]. We begin by considering the process qg → qg.1 Without

loss of generality we take the backward incoming parton to be the quark. For the outgoing

quark and gluon, there are obviously two possible rapidity-orderings : yq < yg and yq > yg.

These are shown in diagrams with rapidity-ordered final states in figures 5 and 6, together

with the corresponding planar colour connections. By explicit calculation one quickly finds

1And not gg → gg, since in a pure gluon amplitude the identical final state particles prevents a clear

identification of the u and t channel, unless of course the scattering is of gluons with different helicities.
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i|2
/s
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Figure 4. These plots demonstrate that introducing a quark exchange in place of a gluon exchange

does indeed suppress the amplitude compared to the FKL configuration. In the left plot, the

squared matrix elements are shown divided by s2 for the three rapidity configurations described in

the text. For the FKL configuration, |M1|
2
/s2 (red) tends to a constant as the rapidity separation

increases, while the same quantity for the non-FKL configurations |M2|
2

(blue) and |M3|
2

(green)

are exponentially suppressed. In the right plot, the suppression is shown to be a factor of sj1j2 as

the same quantities multiplied by sj1j2 now tend to a constant in agreement with eq. (2.1).

a

b

1

2

Figure 5. Left: quark-gluon scattering with rapidity ordering yq � yg and Right: the correspond-

ing leading colour connection in the MRK limit.

a

b

1

2

Figure 6. Left: quark-gluon scattering with rapidity ordering yq � yg and Right: the correspond-

ing leading colour connection in the MRK limit.
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p1 p2 p4 p5 p7 p8

pa pb

p3 p6

Figure 7. Parke-Taylor amplitude with colour ordering which respects the rapidity ordering

y1 � · · · � y8.

(see appendix A) that the tree-level result for the initial states fixed as the gluon incoming

with positive light-cone momentum and the quark with negative light-cone momentum,

the amplitude for the two rapidity orderings of the final state in the MRK limit scale as

|M(yq � yg)| ∼ s γ1 and |M(yq � yg)| ∼
√
s γ2, (2.3)

in agreement with eq. (2.1) and hence the dominant flavour-configuration in the MRK

limit is given by the momentum configuration with yq � yg. As illustrated in the figures,

this is the configuration where a colour octet (two colour lines) is exchanged, when

particles are drawn ordered in rapidity.

2.1.3 Dominant contributions at arbitrary multiplicities

The result of the previous section in fact generalises beyond the simple 2 → 2 process.

In ref. [41], the compact Parke-Taylor expression [42] for the maximally helicity violat-

ing (MHV) amplitudes for all-gluon processes gg → g . . . g was used to show that for an

arbitrary number of gluons, the colour connections which dominate kinematically in the

MRK limit are those which can be represented on a so-called two-sided plot. An example

of such a plot is shown in figure 7. The momentum of the incoming particles are labelled

pa (negative z-momentum), and pb (positive z-momentum), and the outgoing particles are

ordered in rapidity from left to right.

The colour connections which dominate in the MRK limit are found [41] to be pre-

cisely all those which may be drawn without any crossed lines. Furthermore, these colour

connections all contribute with the same kinematic factor in the MRK limit. The colour

factor arising from these planar colour connections coincides with the colour factor from a

single diagram with maximal t-channel gluon exchanges. In other words, for 2 → n gluons,

the single colour factor of the FKL amplitude would be

f cac1d1fd1c2d2 . . . fdn−1cncb , (2.4)

where ca, c1, . . . are the colour indices of the rapidity-ordered external gluons and the di
are the repeated indices of t-channel gluons. All other independent permutations of the
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indices multiply kinematic factors which are suppressed in the MRK limit. The final result

for the limit of the colour summed-and-averaged square of the scattering amplitude agrees

with that of the high-energy limit of QCD derived by Fadin-Kuraev-Lipatov (FKL) [26].

The multi-Regge kinematic limit of the kinematic part of the Parke-Taylor amplitudes

is found [43] to be such that the full colour summed and averaged square of the scattering

amplitude receives a factor
4g2CA
k2i,⊥

(2.5)

for each final state gluon beyond the first two. For example, the MRK limit of the colour

and spin summed and averaged matrix element for gg → gg is

|M|2 −→ 4ŝ2(
N2
C − 1

) g2CA
k21⊥

g2CA
k22⊥

. (2.6)

Similarly, the MRK limit of the colour and spin summed and averaged matrix element for

gg → ggg is

|M|2 −→ 4ŝ2(
N2
C − 1

) g2CA
k21⊥

4g2CA
k22⊥

g2CA
k23⊥

. (2.7)

Up to this multiplicity, only MHV configurations contribute to the amplitude. The above

expressions eqs. (2.6) and (2.7) therefore already cover the most general case.

In the following, we consider the partons extremal in rapidity (i.e. partons 1 and 2 for

the Born process, 1 and 3 for the 2 → 3-scattering and 1 and n in the general 2 → n-

scattering) to be hard in the perturbative sense. Additional partons emitted in-between in

rapidity are then considered part of the radiative corrections to the process.

For a specific choice of rapidities for the extremal partons p1, p3 in the limit of the

2→ 3-matrix element of eq. (2.7), the phase space integration of the position of the middle

parton will contribute a factor∫
d2k2⊥
(2π)2

∫ y3

y1

dy2
4π

4g2CA
k22⊥

=
y3 − y1

4π

∫
d2k2⊥
(2π)2

4g2CA
k22⊥

= (y3 − y1) 4αsCA

∫
d2k2⊥
(2π)2

1

k22⊥
.

(2.8)

The integral over transverse phase space is IR divergent; the divergence cancels that in-

troduced by the virtual corrections to the 2→ 2-scattering. This cancellation is organised

by using e.g. dimensional regularisation of the integrals, as will be discussed in more detail

later. The point here is that the real (and virtual) corrections to the Born-level scat-

tering introduce corrections proportional to the rapidity separation between the extremal

(Born-level) partons. In the MRK limit, log ŝ/t̂→ (y3 − y1), and so we have sketched the

appearance of logarithmic corrections in the perturbative series of the 2 → 2-scattering.

This analysis carries through to any order in αs. One notes that all dependence on the

rapidity of the middle partons is absent in the factor in eq. (2.5), and in the contribution to

the corrections of eq. (2.8) . This leads to a simple diffential equation for the cross section

in ∆y = yn − y1; this is called the BFKL evolution equation [26–28].

Above, we have discussed the colour connections present in the MRK limit in the tree-

level matrix elements for any number of final-state gluons, i.e. the real corrections to the

– 10 –
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Figure 8. Two simple examples of the factorisation of QCD amplitudes in the MRK limit. Given

the process described by the large oval on the left hand side, the amplitude in the MRK limit

may be written as Left: a product of two independent impact factors (black circles) and a gluon

exchange and, Right: two independent impact factors and a Lipatov emission vertex (grey square)

connected with two t-channel gluon exchanges.

Born level. The virtual corrections are encoded at all-orders through simple factors multi-

plying the t-channel poles and hence the colour discussion above generalises immediately

to these cases too.

At higher multiplicities, also non-MHV configurations contribute to the amplitude. In

the MRK limit, the dominant configurations all conserve helicity between the incoming

gluon and the extremal gluon at the respective end (for MHV configurations, this can be

seen directly by considering the numerators in the Parke-Taylor amplitudes [41]). Flipping

the helicity of any gluon emitted in-between the extremal gluons only changes the matrix

element by a phase in the MRK limit, so that all helicity configurations which occur in the

MRK limit can be related to the Parke-Taylor formula.

2.2 Fadin-Kuraev-Lipatov amplitudes

In the previous section, we described the behaviour of QCD amplitudes in the limit of large

invariant mass between each particle. Obviously, if the full amplitude is known, the MRK

limit of it can be directly obtained. However, the limits can also be derived based on the

Fadin-Kuraev-Lipatov (FKL) amplitudes [25–27].

QCD scattering amplitudes factorise in the MRK limit into what in the (B)FKL lan-

guage are called impact factors and Lipatov vertices, which are connected by gluon ex-

changes in the t-channel. Each of these components of the amplitude depends only on a

much reduced subset of momenta and is otherwise independent of the rest of the amplitude.

This feature persists after the addition of a Higgs, W or Z/γ∗ boson to the scattering. Two

simple examples are shown in figure 8. What is meant by the term “factorisation of the

amplitude” is that the correct MRK limit of the amplitude can be obtained from a simple

analytic approximation, which consists of factors, each of which depend only on a subset

of all the momenta of the process. As an example, in the process on the left-hand-side of

figure 8, the flavour f1, f2 of the external lines may be quark or gluon and in the MRK

limit (y1 � y2), the amplitude may be expressed in the form:

Mf1(pa)f2(pb)→f1(p1)f2(p2) → ŝ C(pa, p1)
1

(pa − p1)2
C(pb, p2), (2.9)

where C(pi, pj) indicates an impact factor, which depends on the two momenta along

the same direction on the light-cone only (i.e. pa, p1 are the parton momenta each with

the maximum positive light-cone momentum, pb, p2 have the largest negative light-cone
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momentum). The correct MRK limit of the full amplitude would then be obtained with

this analytic expression, for any configurations of the transverse momenta. The square of

the amplitude is then simply found as

|Mf1(pa)f2(pb)→f1(p1)f2(p2)|2 → ŝ2
|C(pa, p1)|2
(pa − p1)2

|C(pb, p2)|2
(pb − p2)2

. (2.10)

Similarly, the correct MRK limit of the scattering amplitude for the three-particle final

state on the right-hand side may be written

|Mf1(pa)f2(pb)→f1(p1)g(p2)f2(p3)|2 → ŝ2
|C(pa, p1)|2
(pa − p1)2

|VL(p2)|2
(pa − p1)2(pb − p3)2

|C(pb, p3)|2
(pb − p3)2

= ŝ2
|C(pa, p1)|2

t1

|VL(p2)|2
t1 t2

|C(pb, p3)|2
t2

(2.11)

where VL is a so-called Lipatov vertex. The only difference to the form of the two-particle

final state is the insertion of a vertex and a propagator in the analytic form of the MRK

limit, which has a form suggestive of the t-channel exchange. The t-channel interpretation

of the analytic form of the kinematic part of the amplitude is supported by the colour-

connections studied in section 2.1.2, but while the contribution from individual t-channel

Feynman diagrams are obviously gauge dependent, it is important to realise that the MRK

limit of the scattering amplitude is a gauge-independent statement. It just happens to have

the analytic form expected from a t-channel gluon exchange, as expected from the analysis

presented in section 2.1.1.

For the impact factors one finds |C(pa, p1)|2 = 1, and in the MRK limit t1 →
−k21⊥, t2 → −k23⊥, and one finds [27] that the factor introduced from an additional gluon

emission of transverse momentum k2⊥ into the FKL result for the square of the matrix

element is simply
|VL(p2)|2
t1 t2

→ 4g2CA
k22⊥

. (2.12)

Therefore, the MRK limit of the QCD amplitudes found in section 2.1.3 are reproduced by

the FKL amplitudes [41, 43]. This is true for an arbitrary number of gluons emitted, such

that the FKL result for the leading-order contribution to the colour-and-spin summed-and-

averaged square of the scattering amplitude is given by

|MFKL
gg→g1···gn |2 =

2ŝ2

4
(
N2
C − 1

) n∏
1

g2CA
k2i⊥

. (2.13)

The t-channel structure of the FKL amplitudes allows for the inclusion of the dimen-

sionally regulated virtual corrections (in D = 4 − 2ε dimensions) through the Lipatov

Ansatz for the Reggeized t-channel colour-octet exchanges. This is the prescription for in-

cluding the all-order virtual corrections to the Born-level colour octet exchange by making

the following substitution in eq. (2.10):

1

ti−1
→ 1

ti−1
exp [α̂(qi)(yi−1 − yi)] (2.14)
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where

α̂(qi) = −g2 CA
Γ(1− ε)
(4π)2+ε

2

ε

(
q2i⊥/µ

2
)ε
, (2.15)

with qi = pa −
∑i

j=1 pj , such that ti = q2i . This ansatz for the exponentiation of the

virtual corrections in the appropriate limit of the n-parton scattering amplitude has been

proved to even the sub-leading level [39, 44–46], which leads to a perturbative correction

to leading-logarithmic results for α̂, the Lipatov vertex and the impact factors.

The FKL result for the square of the scattering matrix for 2 → n obtained by using

the kinematic approximations valid in the multi-regge-kinematic limit has no dependence

on the rapidities of the final-state particles (in essence because the limit of infinite rapidity-

separation has been applied). The poles in ε in the dimensionally regulated inclusion of the

virtual corrections through the Lipatov ansatz turn out to cancel order-by-order with the

poles from the dimensionally regulated integration over the soft phase space of additional

emissions (intermediate in rapidity between parton 1 and n) included through the FKL

result for the square of the matrix element for 2 → m,m > n. A finite contribution from

the virtual corrections is left over. If now the contribution to the centre-of-mass energy√
ŝ and therefore also to the longitudinal momentum of the incoming partons is ignored

from all but the most backward and forward parton, then the sum over the integration

over phase space of any parton of intermediate rapidity can be performed analytically.

This leads to the much celebrated BFKL equation [28], which captures the leading (and

sub-leading) behaviour in log(ŝ/p2t ). It is seen that the logarithmic behaviour is the same

when using the FKL amplitudes of eq. (2.13) and the limit of the full QCD amplitudes as

discussed in section 2.1.3. The large-rapidity behaviour of the m-parton amplitudes of full

QCD and FKL is the same in terms of powers of ŝ/p2ti, which is sufficient to guarantee the

same logarithmic behaviour of the integrated cross section in terms of log(ŝ/p2t ).

2.3 Construction of the simplest HEJ amplitude

In the previous two subsections, we have described how the leading behaviour of scatter-

ing amplitudes in QCD arises through the study of t-channel poles, and how the simple

structure in the MRK limit is captured to all orders in αs by the FKL amplitudes. So far

with HEJ, all-order results have been achieved for such FKL configurations only. All other

kinematic configurations have been included to fixed order only through a matching and

merging procedure described in section 2.7. In this paper, we present for the first time the

inclusion of all-order results also for some sub-leading corrections, namely quark-initiated

processes with one gluon emitted outside the FKL-ordered phase space. These configura-

tions correspond to the suppressed contributions studied in figure 4. The leading logarith-

mic corrections to these processes constitute the first sub-leading logarithmic corrections

included in HEJ. The configurations constitute the largest part of the sub-leading cross-

section, which previously was included through the näıve addition of fixed-order samples.

The inclusion of these sub-leading (and their matching to fixed-order accuracy) therefore

gives a much more satisfactory theoretical description of the scattering.

The motivation behind the HEJ framework is to capture the behaviour of amplitudes

at large ŝ without applying the full tower of approximations necessary for obtaining an
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analytic answer for the cross section through the BFKL theory. By allowing for numerical

integration of multi-particle amplitudes, we can both allow these to have a more compli-

cated kinematic dependence than the 1/k2⊥ of the FKL-amplitudes, and account for the

longitudinal momentum-conservation which is invariably lost in any formulation involving

the BFKL equation (at both LL and NLL accuracy).

The simplest of all QCD processes is that of qQ→ qQ, proceeding through a t-channel

gluon exchange only. The MRK limit of the full QCD result and the FKL approximation

of the square of this amplitude is

|MQCD
qQ→qQ|2 → |MFKL

qQ→qQ|2 =
2ŝ2

4
(
N2
C − 1

) g2CF
k21⊥

g2CF
k22⊥

=

(
g2CF

)2
4(N2

C − 1)

2ŝ2

k21⊥k
2
2⊥
. (2.16)

The leading-order QCD result is given by

|MQCD
qQ→qQ|2 =

(
g2CF

)2
4(N2

C − 1)

ŝ2 + û2

t̂2
. (2.17)

Two kinematic approximations are necessary to get from the full result to the approxima-

tion of FKL: ŝ ∼ −û, t̂ ∼ −k21⊥ = −k22⊥ (where the last equality holds for the simple 2→ 2

process). While both of these are valid in the MRK limit, they are easily off by an order

of magnitude within the relevant phase space of the LHC.

In constructing a Monte Carlo phase space integrator, which is sufficiently efficient

to calculate explicitly the phase space integration over many-particle (e.g. up to 30) final

state phase space, we can seek to build an approximation for the matrix elements, which

still captures the leading logarithmic behaviour generated from the t-channel poles, but

which relies on fewer kinematic approximations. In particular, we want the description of

the amplitude to be:

• exact for the simple 2→ 2-process proceeding only through a t-channel exchange;2

• gauge-invariant for any additional gluon emitted, i.e. the Ward Identity is fulfilled

(not just asymptotically in the MRK-limit, as for FKL-amplitudes, but exactly, ev-

erywhere in phase space), kµnMµ = 0;

• such that the soft divergences of the approximant are cancelled by the terms generated

from the Lipatov Ansatz for the virtual corrections to the tree-level results (also for

2→ n-processes); and

• sufficiently fast to evaluate such that the numerical integration is feasible.

Let us first focus on building this simple approximant for the 2 → 2-processes. The Li-

patov Ansatz can most easily be applied if the analytic structure of the m-parton amplitude

is factorised into a dependence on 1-parton and the (m − 1)-parton amplitude (obviously

evaluated with the momenta of the m-parton phase space). It is therefore important to

2We note that the approximation obtained through a BFKL-equation cannot improve upon the approx-

imant in eq. (2.16), even through the inclusion of next-to-leading logarithmic terms (or higher).
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build a good approximant to even the simplest processes, since obviously the multi-particle

approximations are built on successive applications of these. We will see that by using he-

licity amplitudes, we can build such a simple structure for approximants of multi-particle

amplitudes, which are valid even before the Multi-Regge-Kinematic limit is applied.

Since we will be evaluating the amplitudes numerically in the Monte-Carlo integration,

there is no problem in keeping the full kinematic dependence on the t-channel propagator-

momentum t̂ in eq. (2.17) rather than performing the MRK-approximation t̂ → −k21⊥.

Clearly, the t-channel poles are described best by maintaining the full dependence on the

t-channel momenta. We now turn to describing the remaining invariants, s and u. In the

full MRK limit, s = −u; in practice, there is a large deviation throughout phase space.

By studying the amplitude for qQ→ qQ, we find that terms proportional to s2 arise from

amplitudes where the quarks have identical helicities; while terms proportional to u2 arise

from amplitudes where the two quark lines have opposite helicities. Explicitly, in terms of

currents jµ±(pi, pj) = ū±(pi)γ
µu±(pj), one finds that

|jµ±(p1, pa) j
±
µ (p2, pb)|2 = s2, |jµ±(p1, pa) j

∓
µ (p2, pb)|2 = u2. (2.18)

By working at the helicity amplitude level, we have achieved a description of the 2 → 2

amplitude that is exact, and furthermore the analytic form generalises easily to 2 → n.

These components then depend on {pa, p1} and {pb, p2} separately as in eq. (2.9). Hence the

product of two scalar impact factors has been expanded to a contraction of vector currents.

In fact, this factorised form also continues when one moves to qg → qg with the same

quark current as above [31]. The gluon current has an additional scalar factor, but it can

still be written in a form which depends only on the gluon momenta, and can be found

in eq. (8) of ref. [32], with the exact amplitude for qg → qg written in terms of the HEJ

building-blocks as

|Mq−g+→q−g+ |2 =
1

N2
C − 1

|〈b|ρ|2〉〈1|ρ|a〉|2

·
(
g2s CF

1

t1

)
·
(
g2s

[
1

2

1 + z2

z

(
CA −

1

CA

)
+

1

CA

]
1

t2

)
,

(2.19)

where z = p−2 /p
−
b (and again t1 = (pa − p1)2 = (pb − p2)2 = t2). This is written for the

case of a backward moving incoming gluon; for a forward-moving gluon, one would simply

define z = p+2 /p
+
b . A similar t-channel factorised form is found for g+g− → g+g− scattering

(in the configuration with scattering of gluons with the same helicity there is of course no

unique concept of the t-channel).

We will later discuss how the scattering amplitude can be extended to capture the

all-order leading logarithmic accuracy of the cross section by accounting for the emissions

of additional gluons.

The structure of an amplitude approximated by building blocks, each depending only

on the momenta of a small subset of the particles is obviously appealing computation-

ally. Not only though are these factors independent of other particle momenta, they are
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completely independent of the rest of the process and are therefore in that sense, process-

independent. So, if particles a and 1 are the same flavour in each case (either quark or

gluon), the factor of the FKL formalism C(pa, p1) in eqs. (2.9) and (2.11) will be identical,

and so will the currents used in HEJ.

The next building block we need to derive is the Lipatov vertex, VL, for additional

FKL-ordered gluon emissions. The simplest process to study is qQ→ qgQ. It is necessary

to sum the contributions from all five tree-level diagrams. After some manipulation in the

high-energy limit this yields [30]

MHEJ
tree qQ→qgQ = −g2sT a1i1iaT

a2
i3ib

SqQ(p1, p3, pa, pb)

q21q
2
2

× igsfa1b2a2 εν2(p2)V
ν2
L (q1, q2), (2.20)

where SqQ(p1, p3, pa, pb) is still a contraction of currents:

SqQ(p1, p3, pa, pb) = jµ(p1, pa) jµ(p3, pb), (2.21)

and V ν
L is a Lipatov-type vertex for gluon emission, which is given by:

V ν
L (qi, qi+1) = −(qi + qi+1)

ν

+
pνa
2

(
q2i

pi+1 · pa
+
pi+1 · pb
pa · pb

+
pi+1 · pn
pa · pn

)
+ pa ↔ p1

− pνb
2

(
q2i+1

pi+1 · pb
+
pi+1 · pa
pb · pa

+
pi+1 · p1
pb · p1

)
− pb ↔ pn.

(2.22)

This form is slightly more involved than the standard Lipatov (or Reggeon-Reggeon-

particle-) vertex of BFKL [47], since it maintains the dependence on each of the 4 quark

momenta rather than making the approximation pa ∼ p1, pb ∼ pn; the two last terms in

each bracket constitutes the eikonal approximation to the emission off each leg. The dif-

ference between the form used in BFKL and in HEJ is formally sub-leading, but crucial for

obtaining analytic results in BFKL. Conversely, the full form of eq. (2.22) unsurprisingly

gives a more accurate description of the sub-asymptotic region of phase space, and thus

leads to smaller matching-corrections. In choosing to perform the phase space integrations

numerically, we are free to choose the numerically more accurate form.

Now the power of the high-energy limit becomes manifest. With only the building

blocks derived so far, the leading contribution of the scattering amplitude (in powers of

ŝ/p2t , forming the leading logarithmic contribution to the integrated cross section) for any

number of intermediate gluon emissions is described by

MHEJ
tree = −g2sT a1i1iaT

an−1

inib

SqQ(p1, pn, pa, pb)√
q21q

2
j q

2
j+1q

2
n−1

×
n−1∏
k=2

igsf
ak−1bkak

ενk(pk)V
νk
L (qk−1, qk)√
q2k−1q

2
k

. (2.23)

This structure is shown in figure 9, where the Lipatov vertices are shown as grey boxes.

The amplitude for the equivalent process with one or two incoming gluons is identical,

except for a minor alteration to the function S.
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qn−2 ↓

qn−1 ↓
Current

Current

Figure 9. The analytic structure of the base tree-level scattering amplitude for qQ→ qQ+(n−2)g

in High Energy Jets. Grey boxes denote Lipatov vertices.

2.4 Regularisation and leading logarithmic all-order cross sections

In sections 2.1–2.3 we identified the leading contributions for jet production in the multi-

Regge-kinematic limit, and showed how to obtain an accurate approximation to the Born-

level matrix elements for such processes for any multiplicity of gluon emissions. The only

singularities present in this approximation are those arising from the t-channel propagators

in the colour-octet exchanges of the rapidity-ordered final state, and these singularities of

the Born-level amplitude are outside the physical region. As discussed in section 2.1.3,

logarithmic corrections in ŝ/p2t arise in the region of jets widely separated in rapidity. So

far, we have discussed Born-level results only. In this section, we will discuss the calculation

of the cross section to each order in αs, and the regularisation of the IR singularities. No

UV singularities appear at the logarithmic order discussed.

The reason for developing an approximation to the t-channel poles of the scattering

tree-level matrix elements is that the leading logarithmic contribution to the loop correc-

tions of these processes can still be obtained using the Lipatov ansatz [26], just as discussed

for the FKL amplitudes in section 2.2. This ansatz states that the leading logarithmic con-

tribution to the virtual corrections for amplitudes in the MRK limit can be found to all

orders in the coupling by replacing each t-channel propagator between the two particles of

ordered rapidities yi and yi+1 (yi < yi+1) in the amplitudes constructed in section 2.3 as

follows:
1

ti
→ 1

ti
exp [α̂(qi)(yi+1 − yi)] (2.24)

with

α̂(qi) = −g2 CA
Γ(1− ε)
(4π)2+ε

2

ε

(
q2i⊥/µ

2
)ε
. (2.25)

As mentioned earlier, this ansatz for the exponentiation and factorisation of the virtual

corrections in the appropriate limit of the n-parton scattering amplitude has been proved

to hold even at the sub-leading level [39, 44–46] and explicitly checked against the two-loop

amplitudes for qg-scattering [48].

As demonstrated in e.g. ref. [32] and below, the poles in ε cancel exactly between

the dimensionally regularised (in D = 4 − 2ε dimensions) virtual and real corrections

to processes of any multiplicity, when calculated with the constructed amplitudes which

ensure the correct leading logarithmic (in ŝ) behaviour of the cross section. This allows for
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the calculation of the inclusive cross section (for the leading and the included sub-leading

processes) as explicit sums of n-body 4-dimensional phase space integrals of dimensionally

regularised n+ 2-particle matrix elements.

The first step in organising the cancellation of the poles in ε and obtaining the regu-

larised cross sections is to define for each Born-level momentum configuration the regions

in phase space for which the real corrections for gluon emissions can be calculated to any

order in the coupling. It is the phase space region in rapidity delimited by the extremal

partons. These partons extremal in rapidity are required to be perturbative (i.e. of a trans-

verse momentum similar to the hard jet scale), since these form parts of the fundamental

currents of the formalism, and there is (at LL accuracy) no accompanying virtual cor-

rections to regulate the divergences present as the transverse momenta of these extremal

partons tend to zero. However, for the phase space bounded in rapidity by these extremal,

hard partons, the soft singularity from the real emission of additional gluons is regulated

by the singularity from the virtual corrections to all orders in the coupling (i.e. for any

number of emissions into that region of rapidity).

To illustrate the specifics of this procedure, consider for simplicity the process qQ→ jj.

We will now show how the leading logarithmic perturbative corrections to this process are

calculated to all orders through the explicit construction of regulated, four-dimensional

amplitudes, which can be summed and integrated explicitly using Monte-Carlo techniques.

We will apply dimensional regularisation (working in D = 4− 2ε dimensions) in order

to facilitate the cancellation of poles from real and virtual corrections. The colour and

spin summed and averaged square of the scattering matrix element for the process f1f2 →
f1 · g · f2 (where ·g· indicates the possibility of any number of gluons), following from

eq. (2.23) but extended to 4− 2ε dimensions, is

∣∣∣MHEJ
ε f1f2→f1·g·f2

∣∣∣2 =
1

4 (N2
C − 1)

‖Sf1f2→f1f2‖2

·
(
g2s Kf1

1

t1

)
·
(
g2s Kf2

1

tn−1

)
·
n−2∏
i=1

(−g2sCA
titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1∏
j=1

exp [2α̂(qj)(yj+1 − yj)] .

(2.26)

The colour factors Kfi are CF if particle i is a quark and CA if it is a gluon. The matrix

element above describes the leading-logarithmic corrections to dijet production at all or-

ders in αs. These take the form of additional partons in the final state described by the

V µ emission vertices and the corresponding exponential factors arising from the virtual

contributions to the process. We organise the cancellation of the divergences by means

of a phase-space slicing parameter λ, which separates the “hard” region (p⊥ > λ) from

the “soft” region (p⊥ < λ). The divergences arising from soft emissions arise from the
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singularities of the emission vertices. Explicitly, in the limit that pk → 0,

V µ(qk−1, qk)Vµ(qk−1, qk)
tk−1tk

→ −4

p2k⊥
. (2.27)

We therefore have

∣∣∣MHEJ
tree,ε f1f2→f1(n−2)gf2({pi})

∣∣∣2 −→
pk → 0

(
4g2sCA
p2k⊥

) ∣∣∣MHEJ
tree,ε f1f2→f1(n−3)gf2({pi}\pk)

∣∣∣2.
(2.28)

The set of particle momenta on the right-hand side (the set of n − 1 momenta obtained

by removing pk) still satisfies momentum conservation since we are precisely considering

the case of pk → 0. The divergence in the 2 → n-scattering matrix element in the limit

pk → 0 is therefore identical to that obtained using the simple factor in eq. (2.28). We can

therefore organise the cancellation of soft divergences between real and virtual corrections

by first subtracting the term in brackets from the square of the Lipatov vertices. Since we

only need to regularise the divergence, we will restrict this real-subtraction term to soft

momenta, i.e. pk⊥ < λ. The integral of the real-emission subtraction term is then found as

µ−2ε
∫
soft

d3+2εpk
(2π)3+2ε2Ek

4g2sCA
|pk⊥|2

= µ−2ε
∫ λ

0

d2+2εpk⊥
(2π)2+2ε

∫ yk+1

yk−1

dyk
4π

4g2sCA
|pk⊥|2

= µ−2ε
4g2sCA

(2π)2+2ε(4π)
(yk+1 − yk−1)

∫ λ

0

d2+2εpk⊥
|pk⊥|2

=
g2sCA

π(2π)2+2ε
(yk+1 − yk−1)

1

ε

π1+ε

Γ(1 + ε)

(
λ2

µ2

)ε
.

(2.29)

This contribution will be added to the virtual corrections for the n − 1-momenta state.

These virtual corrections can be found by expanding the exponential factor in the last line

of eq. (2.26) which spans the rapidity region integrated over in eq. (2.29). We therefore

find to first order in αs(
−2(yk+1 − yk−1)g2sCA

Γ(1− ε)
(4π)2+ε

2

ε

(
q2k⊥
µ2

)ε) ∣∣∣MHEJ
tree,ε f1f2→f1(n−3)gf2({pi}\pk)

∣∣∣2. (2.30)

Combining this with the contribution from the integral of the real-emission subtraction

term in eq. (2.29) and expanding in ε, the pole in ε and (the dependence on µ) cancels

exactly. This is in fact true order-by-order in ε, and the finite correction which remains

can be absorbed into the regularised trajectory

ω0(q2⊥) =
g2sCA
4π2

log

(
λ2

q2⊥

)
= αs

CA
π

log

(
λ2

q2⊥

)
. (2.31)

We can repeat this for each real emission between the extremal partons, which yields the
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following all-order description of dijet production:∣∣∣MHEJ
ε f1f2→f1·g·f2

∣∣∣2 =
1

4 (N2
C − 1)

‖Sf1f2→f1f2‖2

·
(
g2s Kf1

1

t1

)
·
(
g2s Kf2

1

tn−1

)
·
n−2∏
i=1

(−g2sCA
titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1∏
j=1

exp
[
ω0(qj⊥)(yj+1 − yj)

]
.

(2.32)

The remaining numerical phase space integration now excludes the soft region, i.e. we

require pk⊥ > λ for all emitted gluons.

In practice, we find that the contribution from the small, finite integral of the difference

between the Lipatov vertex and the subtraction term is negligible for transverse momenta

less than roughly κ = 0.2 GeV = 200 MeV, but can be relevant if λ is larger than that

value. We therefore add the correction

V µ(qk−1, qk)Vµ(qk−1, qk)
tk−1tk

+
4

p2k⊥
. (2.33)

for values of κ < |pk⊥| < λ and find stable results under variation of both κ and λ. Numer-

ically stable results can be obtained with κ as low as 0.1 GeV (but we will take κ = 0.2 GeV

since the results are the same, but require less computing time). In fact, if we choose

κ = λ, then the real subtraction term is only applied in the region of phase space which is

integrated over analytically. In the remaining transverse-momentum phase space, which is

integrated over numerically, the integrand will be positive definite, since the Lipatov vertex

is a space-like 4-vector, and there are no subtraction terms in this resolved phase space.

The matrix-element squared in eq. (2.32) is the basis of the HEJ description of dijet

production. In order to generate final cross sections, this is supplemented with both match-

ing and merging and is then integrated over the final phase space. However, this procedure

will be the same after the inclusion of the new corrections described in the next section,

and we therefore postpone the discussion of these final aspects until section 2.7.

2.5 The first set of sub-leading corrections

Section 2.1 presented the FKL configurations, i.e. the flavour and momentum configurations

which result in the leading power behaviour in s/p2⊥ of the amplitudes. By integrating these

over phase space we find the leading logarithmic contributions in s/p2⊥ to the cross section.

There is a term of order αs log(ŝ/t) ≈ αs∆y contributing for each additional emission of

a gluon between the two quarks in rapidity. These terms contribute to the cross section

as α2
s(αs∆y)n for all n. The remaining momentum-orderings can be included by simply

adding tree-level predictions for these to the events sample, as done in refs. [32–34]. Using

this method, higher-order corrections are included to FKL-orderings only.

– 20 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
5

a

b 3

2

1

y2 ≪ y3 y1 ≪ y2 ≪ y3

Figure 10. The factorisation property still applies whenever there is a strong rapidity order

imposed, even if not the full MRK limit.

In this section, we will describe the inclusion of one set of next-to-leading logarithmic

corrections to the cross sections. Such can arise as sub-leading corrections to processes

already included at leading-logarithmic accuracy (i.e. as a control of a sub-leading behaviour

in the power-expansion of the amplitude), or as the inclusion of processes that do not

contribute at leading logarithmic accuracy. Such processes will also contribute at sub-

leading level in the power-expansion of the amplitude, but the two contributions to the

overall NLL corrections to the amplitude are physically disconnected. In fact, we will here

calculate the leading logarithmic corrections to flavour and momentum orderings which at

Born-level behave as α2
sαs (i.e. without the ∆y-enhancement of FKL-orderings). We focus

on these, since an investigation of the non-FKL matching contributions identify these

as the largest contribution. We relax the requirement of an ordering in rapidity of the

emission of exactly one gluon. This means that one gluon is allowed outside of the rapidity

range delimited by the outgoing quarks, e.g. qQ → gqQ in that rapidity order, and we

will term these flavour and momentum configuration unordered emissions. Specifically,

the approximations for the amplitudes for these configurations require all terms are kept

according to the ordering s2g ≈ s12, i.e. y1 ≈ yg � y2.

The discussion in section 2.1 tells us that the square of the amplitude for these un-

ordered configurations are suppressed by one power of s1g compared to the FKL-ordered

process; the leading-logarithmic corrections to this unordered process will then form part

of the sub-leading corrections to the cross section. The advantage of including an all-order

treatment of these processes is two-fold: firstly we will now be able to apply the resumma-

tion of all-order high-energy logarithms to a greater part of inclusive jet cross sections and

secondly, we reduce our dependence on leading-order matching. We will explicitly evaluate

their contribution and the impact of their inclusion in section 2.7; here we describe their

construction.

In section 2.2, we described the factorisation of amplitudes in the MRK limit, illus-

trated in figure 8. In general, the factorisation property of the amplitudes is actually

stronger still: it holds whenever there is any large rapidity separation between any groups

of particles, as illustrated in figure 10. If the only requirement on the ordered rapidities is a

large difference between yn−1 and yn (yn−1 � yn, i.e. ∀{i, j, k, l} ∈ {1, . . . , n−1}, i 6= j, k 6=
l : sij ∼ skl, sin ∼ sjn), but no further requirement on a large difference between any of

y1, y2, . . . , yn, then the leading power of the amplitude can still be written as a contraction

of the quark current with a sub-amplitude, depending only on the reduced set of momenta
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a

b 2

1

g

Figure 11. One of the diagrams which contribute to the process qQ → gqQ, illustrating the

labelling convention used throughout this section. We will consider the case where yg ∼ y1 � y2.

a (b) is the incoming quark in the backward (forward) direction respectively, which we here assume

to be of different flavours.

pa, p1, . . . , pn−1:

M∼Mµ
sub(pa, p1, . . . , pn−1)

1

tn−1
jµ(pb, pn) (2.34)

In the stricter MRK limit of large rapidity differences between all 1, . . . , n − 1, the sub-

amplitude Mµ
sub(pa, p1, . . . , pn−1) would factorise further into another quark current, Li-

patov vertices, and t-channel propagators, as indicated on the right-hand side of figure 10.

Clearly, the more complicated sub-amplitude Mµ
sub(pa, p1, . . . , pn−1) includes the leading-

power behaviour in the full MRK limit, and hence one can recover this fully factorised form

starting from eq. (2.34).

In order to extend the current-based formalism of HEJ to include the first next-to-

leading logarithmic corrections, we will therefore need to extract a form junoµ (p1, pg, pa),

which takes the place ofMµ
sub(pa, p1, . . . , pn−1) in eq. (2.34). Here, we have (without loss of

generality) considered the case of y1 ∼ yg � y2. We then seek an expression for a quantity

junoµ (p1, pg, pa) such that the equation

MHEJ
tree qQ→gqQ = −g3sT d2b

juno cdµ (p1, pg, pa)j
µ(p2, pb)

tb2
(2.35)

will contain all the leading-power behaviour of the full tree-level amplitude. We will give

the new current a superscript uno, since it will be used only for the calculation of unordered

emissions, yg < y1. Emissions in-between the quarks, y1 < yg, are already accounted for

using the real and virtual corrections described in the previous section and so we do not

apply this correction there. The new current now carries colour indices cd, where c is the

colour of the emitted gluon, and d is the colour of the gluon exchanged in the t-channel.

One of the five Feynman diagrams which contribute to this process is shown in figure 11,

which also defines the momentum labelling. The exact tree-level expression for the sum of
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all five diagrams is:

Mtree = (igs)
3 T c1iT

d
iaT

d
2b εgν

〈1|ν|g〉〈g|µ|a〉+ 2pν1〈1|µ|a〉
s1gtb2

〈2|µ|b〉

+ (igs)
3 T d1iT

c
iaT

d
2b εgν

2pνa〈1|µ|a〉 − 〈1|µ|g〉〈g|ν|a〉
tagtb2

〈2|µ|b〉

+ (igs)
3 T c2iT

d
ibT

d
1a εgν

〈2|ν|g〉〈g|µ|b〉+ 2pν2〈2|µ|b〉
s2gta1

〈1|µ|a〉

+ (igs)
3 T d2iT

c
ibT

d
1a εgν

2pνb 〈2|µ|b〉 − 〈2|µ|g〉〈g|ν|b〉
tbgta1

〈1|µ|a〉

− g3s fdecT d1aT e2b εgν
〈1|ρ|a〉〈2|µ|b〉

ta1tb2

(
2pµg g

νρ − 2pρgg
µν − (q1 + q2)

νgµρ
)
,

(2.36)

where we have used the shorthands

〈i|µ|j〉 = ū−(pi)γ
µu−(pj), sij = (pi + pj)

2, tij = (pi − pj)2, (2.37)

and the T cij are colour matrices. The external gluon carries the colour index c, and {a, b, 1, 2}
in the subscript indicates the colour index of the relevant external quark. Repeated indices

are summed over. Of course, this expression can be considerably simplifed by contracting

the Lorentz indices and re-arranging. However, we choose not to do so here as the extended

form is particularly convenient for the discussion below.

In the MRK limit, where y1 � yg � y2, one term in each of the first four lines of

eq. (2.36) becomes sub-dominant (the term with numerator dependence on pg). This is most

easily seen by performing the Lorentz contractions. In this case, the expression becomes [30]

MFKL
tree = −g3sfdecT d1aT e2b εgν

〈1|µ|a〉〈2|µ|b〉
ta1tb2

V ν
L

= −g3sfdecT d1aT e2b εgν
jµ(p1, pa)jµ(p2, pb)

ta1tb2
V ν
L ,

(2.38)

analogously to eq. (2.20), and illustrated by the right-hand diagram of figure 10. However,

for the case at hand, we no longer want to assume a strong ordering between yg and y1.

In this case, the only sub-dominant terms are the pg-dependent terms in the numerator

in lines 3 and 4 of eq. (2.36). We observe that by discarding these two terms, every other

term immediately appears in the form jµ(p2, pb) × Xµ. The sum of these Xµ-pieces will

therefore become our unordered current.

We now turn our attention to colour factors. The ‘b-2’ end of the chain has to have a

single colour matrix of the form T d2b, for a dummy index d, in order to be consistent with

the factorised picture; this is to ensure it can be contracted with either a normal quark- or

gluon-current, or the unordered two-particle junoµ (p1, pg, pa). This is already the case for

the first, second and fifth lines of eq. (2.36). The MRK limit implies pb ' p2 = p+ and the
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dominant terms in the 3rd and 4th lines are:

− ig3s 〈1|µ|a〉〈2|µ|b〉 εgν
(

2pν2
ta1s2g

T c2iT
d
ibT

d
1a +

2pνb
tbgta1

T d2iT
c
ibT

d
1a

)
' −ig3s 〈1|µ|a〉〈2|µ|b〉 ε1ν

1

ta1

pν+
p+ · pg

T d1a

(
T c2iT

d
ib − T d2iT cib

)
= g3s 〈1|µ|a〉〈2|µ|b〉 ε1ν

1

ta1

pν+
p+ · pg

f cdeT d1aT
e
2b

' g3s 〈1|µ|a〉〈2|µ|b〉 εgν f cdeT d1aT
e
2b

1

2ta1

(
pνb

(pb · pg)
+

pν2
(p2 · pg)

)
.

(2.39)

We have chosen to restore the symmetry of pb and p2 in the last line (as we do in V ν
L above).

The MRK limit is of course independent of such choices. We then arrive at the following

expression for the amplitude for quark-quark scattering with an additional unordered gluon

emission:

MHEJ
tree qQ→gqQ = −g3s

〈2|µ|b〉ε1ν
tb2

T d2b

(
iT c1iT

d
ia U

µν
1 + iT d1iT

c
ia U

µν
2 + f ecdT e1a L

µν
)
. (2.40)

The tensors Uµν1 , Uµν2 and Lµν may then be read off from eqs. (2.36) and (2.39) as

Uµν1 =
1

s1g

(
jν1gj

µ
ga + 2pν1j

µ
1a

)
Uµν2 =

1

tag

(
2jµ1ap

ν
a − jµ1gjνga

)
Lµν =

1

ta1

(
−2pµg j

ν
1a + 2pg.j1ag

µν + (q1 + q2)
νjµ1a +

tb2
2
jµ1a

(
pν2
pg.p2

+
pνb
pg.pb

))
.

(2.41)

The three colour factors in eq. (2.40) are not independent and can be combined to give

AqQ→gqQ = −ig3s
〈2|µ|b〉εgν

tb2
T d2b

(
T c1iT

d
ia (Uµν1 − Lµν) + T d1iT

c
ia (Uµν2 + Lµν)

)
. (2.42)

By comparison to eq. (2.35), we extract

juno µ cd(p1, pg, pa) = iεgν

(
T c1iT

d
ia (Uµν1 − Lµν) + T d1iT

c
ia (Uµν2 + Lµν)

)
. (2.43)

Gauge-invariance of this new current is satisfied throughout phase space; it is easily checked

that replacing εgν with pgν gives identically zero. One can also check that the use of

eq. (2.43) in the MRK limit will result in the BFKL NLO impact factor derived in ref. [49].

After some colour algebra, the final summed and averaged amplitude for q(pa) Q(pb)→
g(pg) q(p1) Q(p2) is then given by∣∣∣MHEJ

tree qQ→gqQ

∣∣∣2=− g6s
16t2b2

∑
ha,h1,hb,h2

[
CF
(
2Re

(
[(Lµν−Uµν1 )·j2bµ] [(Lρν+U ρ

2 ν)·j2bρ]∗
))

+2
C2
F

CA

∣∣(Uµν1 +Uµν2 )·j2bµ
∣∣2]

≡− g6s
16t2b2

CF
∥∥Suno

f1f2→gf1f2
∥∥2 , (2.44)
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where the sum runs over the helicities of the four quarks and the square in the second

line indicates contraction over the ν-index. The final line defines the function Suno and is

analogous to the rapidity-ordered case described in eq. (2.21).

We now follow the formalism for additional ordered emissions derived in section 2.3

to arrive at the following HEJ matrix element in 4 − 2ε dimensions for f1f2 → gf1 · g · f2,
where f1 now must be a quark (cf. eq. (2.26):∣∣∣MHEJ

ε qf2→gq·g·f2

∣∣∣2 =
1

4 (N2
C − 1)

g2s
∥∥Suno

qf2→gqf2
∥∥2

·
(
g2s CF

1

t1

)
·
(
g2s Kf2

1

tn−1

)
·
n−2∏
i=1

(−g2sCA
titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1∏
j=1

exp [2α̂(qj)(yj+1 − yj)] .

(2.45)

We are now ready to build the regularised matrix-element with the appropriate all-

order corrections in the manner of section 2.4. Such corrections can be added for gluon

emissions in the phase space delimited by the rapidity(ies) of the final state quark(s). This

region will be denoted the all-order summation region. The momenta of the quarks are

still required to be hard, and form part of the two jets extremal (but one) in rapidity.

One current includes the unordered gluon emission, which allows for a single gluon to be

emitted outside this all-order summation region. Such an unordered gluon is required to

enter a separate hard jet from that of the quark, since the associated collinear singularity

is otherwise unregulated: it would cancel with the singularity associated with the one-loop

correction to the quark production, which form part of the full NLL corrections, which

are not yet included in the formalism. However, in the all-order summation region, the

infrared singularities cancel as discussed in the previous section. We therefore find∣∣∣MHEJ
qf2→gq·g·f2

∣∣∣2 =
1

4 (N2
C − 1)

g2s
∥∥Suno

qf2→gqf2
∥∥2

·
(
g2sCF

1

t1

)
·
(
g2s Kf2

1

tn−1

)
·
n−2∏
i=1

(−g2sCA
titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1∏
j=1

exp
[
ω0(qj⊥)(yj+1 − yj)

]
.

(2.46)

There is a corresponding equation for the gluon emitted instead forward of the most forward

quark, f2.

The currents for the unordered emission therefore enter the calculation of the all-order,

leading corrections to the Born-level three-jet processes with a gluon jet of larger absolute
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rapidity than that of the respective quark jet. These three-jet events form part of the

sub-leading logarithmic corrections to inclusive dijet production.

2.6 High energy corrections to Higgs boson production with jets

In order to develop the formalism for unordered emissions, we have so far worked with am-

plitudes purely within QCD. However, it is straight-forward to extend the HEJ description

of jet processes to include the production also of a Higgs boson. In this paper in particular

we are concerned with the production of a Higgs boson with at least two jets so in this

section we briefly review the existing HEJ description of this process first developed in [30].

This makes use of the infinite top-mass limit, but this limit not only commutes with the

high-energy limit [50], but results can be obtained for the high-energy limit without ap-

plying the infinite top-mass limit. We leave such investigations for a future study, but will

here add the possibility of unordered gluon emissions derived in the previous subsection

to the amplitudes derived in ref. [30] for Higgs boson production in association with jets.

This will result in different formulae for the high-energy approximations to the scattering

amplitude for the various rapidity-orderings of particles. We discuss each here in turn.

2.6.1 Higgs boson with rapidity between that of hard jets

We begin with the HEJ approximation to the tree-level amplitude for qQ→ HqQ+(n−2)g.

From the discussion in the previous section, the dominant momentum configurations in the

MRK limit are those where the gluons are all emitted between the two quarks in rapidity.

We will exploit the factorisation of the amplitudes discussed in the previous subsection

(and which still holds when a Higgs boson is included) to describe an amplitude as the

contraction of two currents over a ggH-vertex, multiplied by a product of vertices for each

additional gluon emission. This is illustrated schematically in figure 12 for the case where

the Higgs boson is also between the outer quark jets in rapidity, between gluons j and

j + 1. This figure also gives the definitions of the momenta pi and qj used in this section.

The vertices for additional gluon emissions depend on the momenta of that emission and

the momenta of the parton of maximum and minimum rapidity, but not on the momenta

of any other emissions or the Higgs boson. The amplitude can then be written [30, 51, 52]

MHEJ
tree qQ→Hq·g·Q = −g2sT a1i1iaT

an−1

inib

SqQ→qQH(p1, pn, pa, pb, qj , qj+1)√
q21q

2
j q

2
j+1q

2
n

×
j∏

k=2

igsf
ak−1bkak

ενk(pk)V
νk
L (qk−1, qk)√
q2k−1q

2
k

×
n−1∏
k=j+1

igsf
ak−1bkak

ενk(pk)V
νk
L (qk, qk+1)√
q2kq

2
k+1

.

(2.47)

Here ij and bk are the colour indices of the relevant quark and the kth external gluon and

the aj indices are summed over. The expression SqQ→qQH(p1, pn, pa, pb, qj , qj+1) represents

the contraction of the two end currents with the ggH-vertex in the limit of infinite top
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pa p1

p2

pj

pH

pn−1

pnpb

Increasing
Rapidity

q1 ↓

q2 ↓

qj ↓

qj+1 ↓

qn−1 ↓

qn ↓
Current

Current

Figure 12. The analytic structure of the base tree-level scattering amplitude for qQ → HqQ +

(n− 2)g in High Energy Jets. In this case, the Higgs boson is emitted between gluons j and j + 1

in rapidity.

mass:

SqQ→qQH(p1, pn, pa, pb, qj , qj+1) = jµ(p1, pa)jν(pn, pb)V
µ,ν
H (qj , qj+1), (2.48)

where V µ,ν
H (qj , qj+1) =

( αs
3πv

)(
gµνqj .qj+1 − qνj qµj+1

)
, jµ(po, pi) = ū(po)γµu(pi).

The two products which represent the gluon emissions are separated at the point where the

Higgs boson occurs in rapidity in order to correctly assign the relevant qi. Our description

of processes with incoming gluons follows the same prescription as that for pure QCD

processes. The relevant quark current(s) in eq. (2.48) have the same form multiplied by a

scalar factor.

We now wish to include the emission of an unordered gluon in the description of these

Higgs boson processes. In section 2.5, the only modification to the ordered process was in

the spinor factor. Comparing eq. (2.32) and (2.46),

‖Sf1f2→f1f2‖2 →
∥∥Suno

qf2→gqf2
∥∥2 . (2.49)

The factorisation property of the amplitudes implies that we may apply the same prescrip-

tion here. The infrared divergences are regulated here in the same way as in the pure

QCD amplitudes. The virtual corrections are still given by the Lipatov ansatz with the

prescription given in eq. (2.24), which leads to the following infrared finite amplitude for a
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Higgs boson produced between particles j and j + 1 in rapidity (cf. eq. (2.32)):

∣∣∣MHEJ
f1f2→Hgf1·g·f2

∣∣∣2 =
1

4(N2
C − 1)

∥∥SunoqQ→qQH(p1, pg, pn, pa, pb, qj , qj+1)
∥∥2

·
(
g2sKf1

1

t1

)
·
(
g2sKf2

1

tn

)
·

j∏
k=2

(−g2sCA
tk1tk

V νk(qk−1, qk)Vνk(qk−1, qk)
)

·
n−1∏
k=j+1

(−g2sCA
tktk+1

V νk(qk, qk+1)V
νk(qk, qk+1)

)

·
j−1∏
i=1

exp
[
ω0(qi⊥)(yi+1 − yi)

]
·

n∏
i=j+2

exp
[
ω0(qi⊥)(yi − yi−1)

]
· exp

[
ω0(qj⊥)(yH − yj)

]
· exp

[
ω0(qj+1⊥)(yj+1 − yH)

]
,

(2.50)

where now

SunoqQH(p1, pg, pn, pa, pb, qi, qi+1) = junoµ (p1, pg, pa)jν(pn, pb)V
H
µν(qi−1, qi), (2.51)

for a gluon emission most backward in rapidity of all coloured particles. The modified cur-

rent junoµ (p1, pg, pa) is exactly the one given in eq. (2.43). If, instead, the unordered emission

is forward in rapidity of all coloured particles, the current pair jµ(p1, pg, pa)jν(pn, pb) be-

comes jµ(p1, pa)j
uno
ν (pn, pg, pb).

2.6.2 Higgs boson with rapidity outside that of hard jets

The remaining case to consider is the case where the Higgs boson is produced outside

of the coloured particles in rapidity, see e.g. figure 13(b). Motivated by the amplitude

for qQ → qQH (where of course there is just one t-channel amplitude applied for all

momentum configurations), we will apply the leading factorised amplitude, which is the

configuration where the Higgs-boson vertex is the first (last) vertex in the t-channel chain if

the rapidity of the Higgs boson is less (greater) than the rapidity of the quarks. Therefore,

in practice, the two configurations in figures 13(a) and (b) have the same description.

When the Higgs boson is produced outside of the coloured particles in rapidity, we will

only include unordered gluon emissions where these occur at the opposite end of the chain to

the Higgs boson (all possibilities could in principle be included, but these are perturbative

corrections to already suppressed configurations). The matrix element squared in this case

is then given by eq. (2.50) with j = 1 if the Higgs is most backward in rapidity. It has

j = n− 1 if the Higgs is most forward in rapidity and jµ(p1, pa)j
uno
ν (pn, pg, pb) in place of

junoµ (p1, pg, pa)jν(pn, pb) in eq. (2.51). For example, the all-order equation corresponding

to an unordered gluon emission as the most backward outgoing particle and a Higgs boson

as the most forward outgoing particle (the n-emission equivalent of figure 13(b)) is given
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(a) (b)

Figure 13. Sample diagrams for a Higgs+3j process including an unordered gluon emission: (a)

the Higgs is emitted in between the jet system in rapidity and (b) the Higgs is emitted outside via

an adapted current.

by: ∣∣∣MHEJ
f1f2→gf1·g·f2H

∣∣∣2 =
1

4(N2
C − 1)

∥∥SunoqQ→qQH(p1, pg, pn, pa, pb, qn−1, qn)
∥∥2

·
(
g2sKf1

1

t1

)
·
(
g2sKf2

1

tn

)
·
n−1∏
k=2

(−g2sCA
tk1tk

V νk(qk−1, qk)Vνk(qk−1, qk)
)

·
n−2∏
i=1

exp
[
ω0(qi⊥)(yi+1 − yi)

]
· exp

[
ω0(qn−1⊥)(yH − yn−1)

]
· exp

[
ω0(qn⊥)(yn − yH)

]
,

(2.52)

where qn = qn−1 − pH in clear analogy to eq. (2.50) with j = n− 1.

If the flavour f1 (or f2) is a gluon, the amplitude for the emission of a Higgs boson

with more extremal rapidity than the gluons receives contributions also from top box

diagrams, not just the triangle diagrams implemented in the formalism of the currents.

We will use the amplitude derived for the strict MRK limit in ref. [50] for these kinematic

configurations. Their contribution is suppressed for large rapidity spans, but they are

included for completeness.

2.6.3 Perturbative validation of the approximations

We now test the quality of the approximation by comparing this result with the full matrix

element result taken from Madgraph [40] order-by-order in the strong coupling. In figure 14,

we compare the matrix element squared for ud → guHd in a slice through phase space

where the rapidities are chosen to be: yg = −∆, yu = −∆/3, yH = ∆/3 and yd = ∆

for ∆ ∈ {0, 10}. The matrix-element squared has been multiplied by one power of the gu

invariant mass, s12, to counteract the suppression discussed in section 2.1.1. We observe

very close agreement throughout the rapidity range between the full MadGraph result (red,

solid) and the unordered HEJ formalism (green, dashed).
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Figure 14. A slice through phase space of
∣∣M∣∣2× s12/(256π5ŝ2) for the process ud→ guHd. The

rapidities of the final-state particles are chosen to be yg = −∆, yu = −∆/3, yH = ∆/3 and yd = ∆.

The new HEJ description of this unordered configuraton (“HEJ (Born level only)”, green dashed)

shows close agreement to the full tree level result (red solid) throughout the range.
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Figure 15. The rapidity span distribution for ud → guHd events after integration over phase

space in the region where the gluon is the most backward final state particle: yg < yu < yH < yd
and ∆yfb = yd − yg. The approximation (“HEJ Born level”, blue dashed) gives an extremely good

description of the full tree-level matrix element (red, solid).

In figure 15 we show the distribution of the rapidity difference between the most forward

and backward hard jet again for the process ud→ guHd, integrated over the region of phase

space where yg < yu < yH < yQ. We apply modest jet cuts, requiring the partons to form

3 jets with pT > 30 GeV and |y| < 4.4. Here, we consider on-shell Higgs-boson production

and require |yH | < 2.37. It is clear that the description from the new impact factor

describing unordered emissions tracks the result from the full matrix element extremely

closely throughout the full range of ∆yfb, becoming indistinguishable at large ∆yfb.

The square of the matrix elements can be trivially extended to include, for example,

the diphoton decay of the Higgs boson by simply multiplying the square of the matrix
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elements of either the FKL-ordered (eq. (2.32)) or unordered configuration (eq. (2.50)) by

the branching ratio, BR(H → γγ), and generating the decay products isotropically. This

is available as an option in the code.

2.7 Matching and merging of fixed order samples and final results

Using the formalism outlined in the previous sections, the all-order summed contribution

to the FKL-ordered plus first unordered cross section for the production of a Higgs boson

which decays to two photons in association with at least two jets can now be found as

σresumH+2j =
∑
fa,fb

∞∑
n=2

(∫ ∞
p1⊥=p⊥ext,min

d2p1⊥
(2π)3

∫ ymax

ymin

dy1
2

) (∫ ∞
pn⊥=p⊥ext,min

d2pn⊥
(2π)3

∫ ymax

yn−1

dyn
2

)

×
n−1∏
i=2

(∫ ∞
pi⊥=κ

d2pi⊥
(2π)3

∫ ymax

yi−1

dyi
2

) ∫
d3pγ1

(2π)3 2Eγ1

∫
d3pγ2

(2π)3 2Eγ2

× |M
reg
HEJ({pi,pγ1 ,pγ2},µR,λ)|2

ŝ2
· xaffa(xa,Qa) ·xbffb(xb,Qb)

×(2π)4 δ2

(
n∑
k=1

pk⊥+pγ1⊥+pγ2⊥

)
O2j({pi}), (2.53)

where in principle ymin = −∞ and ymax = ∞ (in practice, they can both technically be

put to ±5 because of the requirement that the extremal partons form part of the observed

extremal jets). Furthermore, we will choose by default κ = 0.2 GeV and λ = κ (see

section 2.4 for the definition of these regulators). κ has to be chosen small (as close to

0 as possible), and setting λ = κ ensures that events are generated with positive weight

only. While the correct results are obtained in the limit λ → 0, the results are stable

below λ = 2 GeV. The factors of xifi,fi(xi, Qi), i = a, b, are the parton density functions

for a parton of flavour fi evaluated at momentum fraction xi and factorisation scale Qi. In

practice, we take both Qa and Qb to be equal to the factorisation scale µF which can be

taken to be either fixed or a number of dynamic scales (including HT /2 or the maximum

pT of any single jet). The renormalisation scale µR may also be evaluated at a fixed or

dynamic scale. The step function, O2j({pi}), implements the chosen cuts of the process,

which consists of a minimum requirement that at least two hard jets are observed.

The expression in eq. (2.53) has leading-logarithmic accuracy by construction. We

can impose leading-order fixed-order accuracy through matching to leading-order matrix

elements. Eq. (2.53) only describes FKL momentum configurations or FKL momentum

configurations with one extra unordered emission, hereafter referred to together as “HEJ

configurations”. We therefore implement matching to full fixed-order in two different ways,

depending on the flavour and momentum configuration.

Firstly, for the HEJ configurations covered by the formula above (i.e. those where

higher-order corrections are systematically summed), we employ multiplicative matching

to leading-order accuracy, where the final state partons generated by the all-order results is

clustered into two or three jets. These jets can be formed from a higher number of partons,

which means that they are not necessarily on-shell. Since the evaluation of leading-order
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matrix elements require particles with on-shell momenta, we reshuffle the jet-momenta

to put them on-shell, using an algorithm described in [32]. After this the matching is

implemented by multiplying the HEJ matrix-element-squared by the factor

wH+n−jet ≡

∣∣∣MLO
f1f2→f1·g·f2H ({ji})

∣∣∣2∣∣∣MHEJ
tree f1f2→f1·g·f2H ({ji})

∣∣∣2 , (2.54)

where {ji} are the on-shell jet-momenta.

An alternative way to think of this procedure is to view the matching as a merging

procedure as used routinely for parton showers (CKKW-L [36, 37]) for leading-order matrix

elements at different orders where in place of the logarithms controlled by a parton shower

prescription, the logarithms instead are those which are leading in the high-energy limit.

This procedure gives

σresum, match
H+2j =

∑
fa,fb

∞∑
n=2

(∫ ∞
p1⊥=p⊥ext,min

d2p1⊥
(2π)3

∫ ymax

ymin

dy1
2

)(∫ ∞
pn⊥=p⊥ext,min

d2pn⊥
(2π)3

∫ ymax

yn−1

dyn
2

)

×
n−1∏
i=2

(∫ ∞
pi⊥=κ

d2pi⊥
(2π)3

∫ ymax

yi−1

dyi
2

) ∫
d3pγ1

(2π)3 2Eγ1

∫
d3pγ2

(2π)3 2Eγ2

× |M
reg
HEJ({pi,pγ1 ,pγ2},µR,λ)|2

ŝ2
×
( ∞∑
m=1

Oemj({pi}) wH+m−jet

)
(2.55)

× xaffa(xa,Qa) ·xbffb(xb,Qb)·(2π)4 δ2

(
n∑
k=1

pk⊥+pγ1⊥+pγ2⊥

)
O2j({pi}).

The functions, Oemj({pi}), are step-functions which determine whether or not the given

set of momenta cluster into exactly m jets. No matching is performed for the high jet-

multiplicity states, where the leading order matrix element is very slow to evaluate, or not

evaluated at all (currently 4 jets and above).

Secondly, the momentum configurations which do not correspond to HEJ configurations

are not described at all by eq. (2.53). We therefore add exclusive tree-level samples of these

for two and three jets, which gives a sum of terms like the following:

σnon−HEJ
H+mj =

∑
fa,fb

∑
{fi}

m∏
k=1

(∫ ∞
pk⊥=p⊥min

d2pk⊥
(2π)3

∫ ymax

ymin

dyk
2

) ∫
d3pγ1

(2π)3 2Eγ1

∫
d3pγ2

(2π)3 2Eγ2

×
|MLO

fafb→f1...fmH ({pi}) |
2

ŝ2
·Θmj({fi}, {pi})

× xaffa(xa, Qa) · xbffb(xb, Qb) · (2π)4 δ2

(
n∑
k=1

pk⊥ + pγ1⊥ + pγ2⊥

)
. (2.56)

The new function, Θmj({fi}, {pi}), returns 1 if the flavour assignments and momenta cor-

respond to a configuration not captured by the all-order summation configuration (ie. they

are not FKL or one unordered emission) and zero otherwise.
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FKL-ordered Unordered non-FKL-ordered

No unordered resummation 1059 fb (85%) — 185 fb (15%)

With unordered resummation 1059 fb (86%) 47 fb (4%) 120 fb (10%)

qg-channel only

No unordered resummation 452 fb (81%) — 103 fb (19%)

With unordered resummation 452 fb (84%) 38 fb (7%) 48 fb (9%)

qQ-channel only

No unordered resummation 84 fb (82%) — 18 fb (18%)

With unordered resummation 84 fb (84%) 9 fb (9%) 7 fb (7%)

Table 1. The total inclusive 3-jet cross section split into different components when unordered

emissions are and are not included in the description. The second and third sections show the same

numbers for subprocesses with a single initial gluon (labelled “qg”) and subprocesses with no gluons

in the initial state (labelled “qQ”).

The full equation for the HEJ cross section for the production of a Higgs boson which

decays to two photons in association with at least two jets, including the two types of

matching described above is therefore

σHEJ
H+2j = σresum, match

H+2j +

mmax∑
m=2

σnon−HEJ
H+mj . (2.57)

The addition of tree-level events which do not correspond to HEJ configurations is im-

portant for the description in regions of phase space which are far from the high-energy

limit. However, the description reached is obviously inferior to that reached by the all-order

treatment. The inclusion of momentum configurations with one unordered gluon emission is

the first important step in reducing the influence of the tree-level samples in the overall de-

scription. The theoretical developments described in section 2.5 allow us to move these mo-

mentum configurations from the “non-HEJ” terms to the “resum, match” term in eq. (2.57).

In order to illustrate this point, we give the components of the cross section for inclusive

H + 3j production in table 1, within simple cuts (|yH | < 2.37, |p⊥j | > 30 GeV, |yj | < 4.4).

One can see that the effect of extending the all-order summation to include next-to-leading

order terms through the unordered emissions has reduced the dependence on fixed-order

matching (the non-FKL-ordered component) from 15% to 10% overall. However, the total

rate includes the large gg-component which is unaffected by the description of unordered

emissions. The equivalent numbers for “qg”-channels (labelling all channels with exactly

one gluon in the initial state) show a much larger effect. The cross section of the non-FKL-

ordered component halves, and the relative importance of this component drops from 19%

to 9%. There is a similarly dramatic effect in the “qQ”-channel (labelling all subprocesses

with no gluons in the initial state) where now the percentage significance of the non-FKL-

ordered component has dropped from 18% down to 7%.
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Figure 16. Plots showing the make-up of the cross-section as a function of the rapidity difference

between the most forward and backward jets, ∆yfb. The left-hand side shows the composition when

the unordered emissions are included only through addition of fixed-order events. The green dotted

line is the contribution from all such fixed-order events, the red dashed line is the contribution

from the all-order summation, and the black solid line is the sum of the two. The right-hand side

plot shows the same results, when the all-order summation is extended to included the unordered

emissions. The bottom plot shows the relative change in the fixed-order, all-order and total rate

after the extension of the all-order summation. The distributions are discussed further in the text.

Figures 16 and 17 show the composition of the Higgs-boson plus three-jet cross-section

in terms of the all-order and fixed-order components as a function of the rapidity span of the

event, ∆yfb, and the scalar sum of transverse momenta, HT . The top plot on the left-hand

side shows the composition when the unordered emissions are included only through the

addition of fixed-order events. The green dash-dotted line is the contribution from all such

fixed-order events, the red dashed line is the contribution from the all-order summation,

and the black solid line is the sum of the two. The top right-hand side plots shows the

same results, once the all-order summation is extended to include the unordered emissions.

The first thing to note on figure 16 (top left) is that the relative contribution of the

fixed-order component is uniformly decreasing from 30% to 0% for increasing rapidity-spans

∆yfb. This is because the FKL-ordered contributions dominate for large ∆yfb. Secondly,

we note that including the unordered emissions in the all-order treatment reduces the

impact of the fixed-order matching significantly (as seen by comparing the lower panels

of figure 16), specifically from roughly 30% to 24% in the bin of lowest rapidity span
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(where it peaks), and that the approach to 0% is much faster, since the largest sub-leading

logarithmic contribution is now included in the all-order approach. Lastly, we note that

the sum of the fixed-order and all-order results are largely unchanged after the inclusion of

the unordered emissions in the all-order summation: this is seen by the black lines being

largely unchanged between the left and right plots. This is made clearer in the bottom

plot on figure 16, which shows the relative change in the differential cross section for the

two components and for the total rate. We see that the total rate is almost unchanged

for all ∆yfb. This is in line with the rough expectation, since NLL corrections should

amount to a correction of order αs compared to the LL in the relevant channels (and the

unordered emissions lead to corrections to only the channels with incoming quarks, not the

gg-channel). However, the dramatic reduction in the fixed-order component of the cross

section starts at about 25% and rises linearly to 70% over the same interval. The increase

in the reduction of the fixed-order component is driven by the leading logarithms in the

unordered H+3j cross section, which as discussed earlier constitutes part of the sub-leading

corrections to H + 3j. The fact that the reduction is linear in ∆y is a nice illustration of

the dependence on log(s/t) ≈ ∆y of the component moved from the fixed-order treatment

to the all-order component. Figure 17 shows the same information versus HT . While HT is

not systematically connected with the all-order summation, a large value of HT limits the

range of ∆yfb; so as seen on the top left plot (the results when the unordered emissions are

left in the fixed-order component), the contribution from the fixed-order component of the

cross section increases from 8% to 16% and decreases to around 12% as HT increases from

200 GeV to 1 TeV. The plot at the top right shows the results when the unordered, NLL

emissions are included in the all-order treatment, and here the contribution from the fixed-

order component is reduced to 4%-12% throughout the range of HT , and is below 8% by

HT = 1 TeV. This shows again that the first NLL terms of the unordered emissions amount

to a large portion of the O(α5
s)-contribution not accounted for by the FKL configurations.

As seen on the lower plot, the change in the all-order rate increases slightly from 4% to

5%, while the fixed-order contribution decreases from 32% to 42%, leading to an overall

decrease in the total differential rate of a few percent.

As demonstrated in figures 16–17, the inclusion of the first NLL terms through the

unordered emissions leads to a large systematic reduction in the dependence of the cross

section on the matching through the fixed-order component. The inclusion of the unordered

emissions and reduction in the dependence on the fixed-order matching is particularly im-

portant for studies of the average number of jets versus the rapidity span, as discussed later.

3 Analysis of results

In this section we will present the predictions which arise from the formalism described in

the previous section. The study of the gluon-fusion component of Higgs-boson production

in association with dijets is interesting for two separate reasons: firstly, it is a background

to the extraction of the measurement of the weak-boson-fusion component, and while both

production mechanisms manifest themselves in the Higgs boson+dijet channel, several kine-

matic distributions and in particular their higher-order corrections differ, and a thorough
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Figure 17. Plots showing the make-up of the cross-section as a function of the total transverse

momentum of the event, HT . The left-hand side shows the composition when the unordered emis-

sions are included only through addition of fixed-order events. The green dash-dotted line is the

contribution from all such fixed-order events, the red dashed line is the contribution from the all-

order summation, and the black solid line is the sum of the two. The right-hand side plot shows

the same results, when the all-order summation is extended to included the unordered emissions.

The distributions are discussed further in the text.

understanding of these can aid in the suppression of the gluon-fusion-component when the

aim is a study of VBF. Secondly, the gluon-fusion component in Higgs boson+dijets can be

studied on its own and as such e.g. the azimuthal correlation between the jets can be used

for an extraction of the CP -structure of the Higgs boson to gluon coupling, even in the

case of direct CP -violation and mixing in extended Higgs sectors [19, 20, 53]. These two

studies would evidently need separate cuts and approaches for event selection, in order to

enhance or suppress the gluon-fusion component. For both purposes, the region of phase

space with large rapidity span and large dijet invariant mass is of interest.

3.1 Setup and parameters

In the current investigation we will focus on a few variables from the first experimental

analyses [15], except that the predictions presented here will be for the LHC@13TeV.

Furthermore, we require that the events contain at least two jets (anti-kT algorithm, R =

0.4) which satisfy

p⊥,j > 30 GeV, |yj | < 4.4. (3.1)

– 36 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
5

Since the weak-boson fusion process is initiated by two quarks, which often carry a

large part of the proton momenta, and receive only a modest transverse momentum in

the t-channel exchange of a weak boson, such events will frequently result in a pair of

jets separated by a large invariant mass and rapidity. Following the early analysis of the

ATLAS collaboration [15], we will also investigate the gluon-fusion contribution within the

VBF-selection cuts applied to the two hardest jets in the event

|y1 − y2| > 2.8, mj1j2 > 400 GeV. (3.2)

As already discussed, the radiative corrections for the weak-boson fusion process are sig-

nificantly smaller than those for the gluon-fusion process. In particular, the contribution

from the 3-jet rate is small, and so for the VBF process it is less relevant to distinguish

whether the two jets which are asked to fulfil the VBF cuts are also the two hardest jets,

the forward-backward jets (which always have the largest rapidity separation, and often

the largest invariant mass), or whether one merely requires the existence of at least two

jets which fulfil the VBF cuts.

As in [15], we consider Higgs boson decays into two photons with

|yγ | < 2.37, 105 GeV < mγ1γ2 < 160 GeV,

p⊥,γ1 > 0.35mγ1γ2 , p⊥,γ2 > 0.25mγ1γ2 , (3.3)

and require the photons to be separated from the jets and each other by

∆R(γ, j),∆R(γ1, γ2) > 0.4.

We use the CT14nlo pdf set [54] as provided by LHAPDF6 [55], choosing central renor-

malisation and factorisation scales of µr = µf = HT /2. To estimate the perturbative uncer-

tainty we also consider all combinations of µr, µf ∈ {HT /4,
√

2HT /4, HT /2, HT /
√

2, HT }
that fulfil 1/2 < µr/µf < 2. Larger ratios of the scales are excluded in order to avoid

artificially large logarithms. In the effective ggH coupling in both calculations, we take the

limit of an infinite top mass and set the renormalisation scale to the Higgs boson mass.

3.2 Differential distributions for Higgs boson plus dijets

This subsection will present a comparison of results for the gluon-fusion component

of Higgs-boson-plus-dijets from HEJ and from a NLO QCD calculation facilitated by

MCFM [56, 57]. We also show leading-order results in order to demonstrate the higher-

order effects in both schemes. To avoid visual clutter, we refrain from including the scale-

variation uncertainties for the leading-order curves. We start by discussing distributions

obtained within the inclusive cuts of eq. (3.1) and eq. (3.3) which will be important for

understanding the impact of the VBF cuts in eq. (3.2).

Firstly, we find that with the scales choices made, the inclusive cross section for Higgs-

boson-plus-dijets at NLO is 6.48+0.08
−0.57 fb, while the result obtained in HEJ is 5.02+1.67

−1.10 fb.

The central value found at leading order is 4.41 fb, and so the result for HEJ is in-between

that for LO and NLO. The cross-section obtained at LO is not within the scale variation

of the NLO result, and the higher-order corrections are therefore expected to be large.3

3The explanation for this is different to that for the case of inclusive Higgs-boson production, since all

possible combinations of incoming partons are allowed even at LO.
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Figure 18. The distribution of the invariant mass between the two hardest jets. Predictions

from HEJ are shown in red (full line) while the NLO result is shown in blue (dashed line). The

distributions are discussed further in the text.
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Figure 19. The average number of jets as a function of the rapidity difference between the most for-

ward and backward jets (a) and between the hardest two jets (b). The HEJ predictions are shown in

red while the NLO results are shown in blue (dashed). Both distributions are discussed in the text.

Figure 18 shows the distribution in the invariant mass between the two hardest (in

transverse momentum) jets within the inclusive cuts. The distribution obtained with HEJ

is slightly steeper than that at NLO; we will see below that this is because HEJ allows for

more jet radiation than a NLO-calculation, and the samples with more than just two jets

carry more relative weight. This in turn means the hardest two jets on average are closer

in rapidity and therefore have a smaller invariant mass.

To investigate further the expected impact of the VBF cuts, we calculate the average

number of hard jets observed versus the rapidity difference between jets. A successful
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description of this radiation pattern is necessary for the distinction of the VBF and GF

process [21], and in particular for a correct description of the effect of the VBF cuts on the

GF component. It is well-known that in all descriptions of dijet processes, and indeed data,

the average number of hard jets increases with the rapidity difference between the most

forward and backward hard jets, yfb. This is clearly seen in the results for both NLO and

HEJ in figure 19a. The prediction from HEJ rises more steeply than the equivalent prediction

from the NLO calculation, which plateaus at a value of 2.4 already for ∆yfb = 5, where

the prediction for the exclusive hard 3-jet rate is nearly as large as the exclusive hard

2-jet rate (obviously the NLO calculation for Higgs boson plus dijet production gives an

NLO estimate for the dijet rate, but only a LO estimate for the trijet rate). It is indeed

expected that HEJ should rise higher than NLO, as the NLO calculation contains only

contributions from 2- and 3-jet events and does not contain the all-order evolution in

rapidity which is present in HEJ. This steeper dependence obtained in HEJ has been seen

to give a good description of data in other dijet processes, where data has already allowed

detailed analyses, see e.g. ref. [24]. Since the contribution from higher jet counts is small in

the VBF-process, a large number of jets from the gluon-fusion process would make it easier

to distinguish the two. This will be the source of the difference between the prediction of

HEJ and NLO for the GF contribution within the VBF-cuts.

Figure 19b shows the average number of hard jets within the same phase space as

figure 19a, but as a function of the rapidity separation between the two hardest jets, and

not counting jets with rapidities outside the two hardest jets. HEJ has been shown to also

give a good description of this observable for other dijet processes [24]. When the jets

outside the two hardest ones are excluded, the rise in the average number of hard jets

counted is far less for both NLO and HEJ. Indeed, both predictions plateau with a value

of roughly 2.2 at around ∆y12 = 6. The difference between figure 19a and figure 19b

is caused only by events with three or more jets (since if there are just two, there is no

difference between the two hardest jets, and the two furthest apart in rapidity), and thus

no large difference between the two observables is expected for the VBF process. The

large contribution from the component with 3-jets and higher in the gluon-fusion process

means that significant differences can arise in superficially similarly defined quantities as

illustrated in figure 19. This is important for the use of cuts to suppress the gluon-fusion

component in VBF analysis, and separately for the focus on the gluon-fusion component

e.g. for the extraction of the CP -structure of the ggH-coupling.

We will now discuss kinematic distributions of the Higgs-boson and the jets, both for

the inclusive and the VBF cuts. The prediction obtained with NLO for the cross-section

within the VBF-cuts is 0.87+0.02
−0.09 fb, and with HEJ it is 0.48+0.17

−0.11 fb. We argue that for the

VBF-cuts the results obtained with HEJ are more reliable than those obtained with NLO.

This is because a successful description of the VBF-cuts relies on the description of the

emission of further hard jets from the production of Higgs-boson plus dijets. Even at the

Tevatron centre-of-mass energy of 1.96 TeV, the pure NLO-calculation gives an insufficient

description of the average number of jets in other dijet-processes such as W+dijets. This

deficiency of the NLO-calculation will be even larger at the LHC, whereas HEJ gives a good

description of the hard jet-production in other processes with similar jet-cuts as those

applied in this study of Higgs-boson production with dijets.
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Figure 20. (a) The transverse momentum distribution of the Higgs boson in inclusive dijet events,

and (b) when the hardest two jets are required to pass the VBF-cuts. Predictions from HEJ are shown

in red while the NLO result is shown in blue. Both distributions are discussed further in the text.

In figure 20(a), we show the Higgs transverse momentum distribution within the cuts of

eq. (3.1), while figure 20(b) is the same distribution when also the VBF cuts of eq. (3.2) are

fulfilled. We observe the understood reduction in cross-section obtained with HEJ compared

to NLO. The two peaks visible in the LO obtained within the VBF cuts are caused by the

azimuthal structure of the ggH coupling. As we will see later, the cross-section peaks when

the jets are back-to-back and has another local maximum when they are collinear. This in-

duces the two features in the LO curves, which become broader and indistinguishable when

further radiation is included through either the NLO corrections or the all-order summa-

tion. The radiative corrections at NLO are found to be large for the gluon-fusion component

of Higgs-plus-dijets; in particular, the 3-jet component forms a significant part of the 2-jet

cross section at NLO — contrary to the situation for the VBF component. Furthermore the

one-loop interference between the QCD and EW component is negligible [12]. Requiring

that the two hardest jets are separated in rapidity and invariant mass according to eq. (3.2)

reduces the gluon fusion component more compared to just requiring the existence of two

jets which satisfy the requirement. Other selection processes may be of significance for the

study of the gluon-fusion component alone, and will be the focus of further studies. We

note again here that the application of the further VBF cuts reduces the gluon-fusion cross

section from 6.48 fb (inclusive) to 0.87 fb (VBF cuts) at NLO and from 5.02 fb to 0.48 fb in

the HEJ resummation. This corresponds to a severe reduction of the HEJ cross section to

9.4%, whereas NLO QCD predicts a reduction to 13.4% of the inclusive cross section, and

the difference is explained by the deficiency of a NLO-calculation in describing the number

of hard jets produced by the gluon-fusion process in the VBF-region of phase space.4

We also note that the transverse momentum distribution for the Higgs boson is rela-

tively hard such that the effective theory derived from mt →∞ will obviously not apply in

4The NLO calculation of the inclusive rate does of course not answer the question of the number of hard

jets produced at NLO accuracy.
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Figure 21. (a) The distribution of the azimuthal angle between the two hardest jets, φj1j2 , and

(b) ditto within the VBF cuts. The cosine-like even distribution is a finger-print of the CP -even

structure of the ggH-vertex. Predictions from HEJ are shown in red (solid line) while the NLO

result is shown in blue (dashed).

all the relevant region, but the results presented here are still relevant for inspecting the im-

pact of the high-energy summation. Furthermore, the mt →∞-limit and the high-energy

limits commute, and the leading high-energy effects can be calculated with full top-mass

dependence. This is the focus of ongoing work within HEJ.

A tree-level analysis indicates that the CP structure of the Higgs coupling can be

cleanly studied using the azimuthal angle between the two jets [19], with the definition

of the azimuthal angle extended to the full range [−π;π] by e.g. always measuring it

counter-clockwise relative to a predefined forward direction. The Born-level analysis of the

Standard Model couplings predicts an even, cosine-like behaviour, and the extension of the

azimuthal angle to the full range of −π to π allows for a probe of CP admixtures [19]. In

figure 21, we show the distribution of the angle between the hardest two jets, φj1j2 with

(a) inclusive and (b) VBF cuts. We again see the same reduction in cross section of HEJ

compared to the NLO prediction. The shape around φj1j2 = 0 in figure 21(a) is caused by

the removal of tree-level three-parton events which appear in two-jet configurations — the

extension of the dip is determined by the R-parameter in the jet-clustering, which removes

the contribution arising from collinear splittings of 2-jet events.

We have therefore seen in this section that higher-order corrections in Higgs-boson-

plus-dijet production are large and have a significant impact on the results of imposing

VBF event selection cuts.

4 Conclusions

In this paper we have described the production of a Higgs boson with at least two jets

within the High Energy Jets (HEJ) formalism. This key process will be central to efforts to

pin down properties of the Higgs couplings to vector bosons. We implemented the process

of Higgs-boson production in association with at least two jets within the framework of
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HEJ. Furthermore, we calculated the first next-to-leading logarithmic corrections to the

framework by including the un-ordered emission of a gluon (i.e. the emission of gluon

outside of the rapidity region contributing to the leading-logarithmic behaviour of the

cross section) in the all-order treatment for the first time. Such regions were previously

accounted for only through matching to fixed-order matrix-elements. The new results

increases the fraction of the total cross section which is controlled by HEJ and subject to

resummation, while also reducing our dependence on fixed-order matching.

We have then studied the predicted jet radiation patterns for various distributions

within typical experimental cuts, and compared these to the corresponding results for a

fixed-order NLO calculation. The inclusion of higher-order corrections beyond NLO are

clearly observed in the average number of jets as a function of rapidity, where other variables

show less pronounced differences. This result can be used to distinguish the gluon-fusion

and vector-boson fusion component of the Higgs boson+dijet cross section.

We have also seen that imposing topological “VBF” cuts has a significant impact on

the cross section beyond that predicted at NLO (for the particular choice here, the cross

section was reduced to 9.4% of the original). This is understood as a combination of

increased jet activity in any event with a reasonable rapidity separation and the impact of

the all-order virtual corrections included in the HEJ description.
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A Tree-level amplitudes for qg → qg

A short calculation gives the amplitude for the process qg → qg. We use the following

notation for spinors:

u±(p) = |p±〉, u±(p) = 〈p± |,
〈pk〉 = 〈p− |k+〉 = u−(p)u+(k),

[pk] = 〈p+ |k−〉 = u+(p)u−(k),

(A.1)

and then find for q−(pa) + g−(pb)→ q−(p1) + g−(p2)

iMqg→qg = 2ig2
(
t21et

b
ea

〈2a〉〈12〉2
〈a1〉〈2b〉〈ba〉 + tb1et

2
ea

[ab]3

[1a][a2][2b]

)
. (A.2)
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The factors of tXMN are fundamental colour matrices; where an index is one of {a, b, 1, 2},
it represents the index associated with that particle. Repeated indices are summed over.

We now wish to consider the behaviour of this expression in the HE limit. Without

loss of generality, we take pa to be in the incoming positive direction and pb to be in the

incoming negative direction. We consider first the configuration that is consistent with

FKL-ordering such that y1 � y2. The magnitude of each spinor product 〈ij〉 or [ij] is

given by the square root of the magnitude of the corresponding invariant:

|〈ij〉| =
√
|sij | = |[ij]|. (A.3)

Therefore in this configuration, for example, |[ab]| = √s→∞ in the HE limit and |[b2]| =√−t remains finite. We therefore find that both terms in eq. (A.2) scale as s/t, and in

particular that the s-dependence is s1 in agreement with Regge theory.

Alternatively, if we take y2 � y1, this means that t = (p2 − pa)2 such that 〈b1〉 scales

like
√−t while 〈b2〉 now scales like

√
s. Therefore the terms in eq. (A.2) now scale as

√
t/s

and
√
s/t respectively. The dominant behaviour in the HE limit is therefore

√
s/t, again

in agreement with Regge theory.

We have chosen a particular helicity assignment here. The analogous expression for

q−(pa) + g+(pb)→ q−(p1) + g+(p2) is

iMqg→qg = −2ig2
(
t21et

b
ea

[a2]3

[1a][ab][b2]
+ tb1et

2
ea

〈ba〉〈1b〉2
〈1a〉〈a2〉〈2b〉

)
. (A.4)

Again, in the FKL configuration both terms scale as s/t. However, in this case in the non-

FKL configuration neither term contributes a leading
√
s/t term, and instead yield

√
t3/s3

and
√
t/s respectively. The other two non-zero helicity configurations may be obtained by

complex conjugation.
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